IP based configurable SIMD massively parallel SoC

Mouna Baklouti* and Mohamed Abid
CES Laboratory
ENIS School
Sfax - Tunisia
Email: mohamed.abid@enis.rnu.tn

Philippe Marquet and Jean Luc Dekeyser

*Univ. Lille, F-59044, Villeneuve dascq, France
LIFL, Univ. Lille 1, F-59650, Villeneuve dascq, France
INRIA Lille Nord Europe, F-59650, Villeneuve dascq, France
UMR 8022, CNRS, F-59650, Villeneuve dascq, France

fmouna.baklouti,philippe.marquet,jean-luc.dekeyserg @lifl.fr

Abstract—Significant advances in the field of configurable
computing have enabled parallel processing within a single Field-
Programmable Gate Array (FPGA) chip. This paper presents the
implementation of a flexible and programmable Single Instruc-
tion Multiple Data (SIMD) processing system on FPGA that can
be adapted to the application. Its implementation is based on an
IP (Intellectual Property) assembling approach making its design
fast and easy. A generation tool is also developed to generate the
SIMD configuration depending on the application requirements.
The proposed parallel processing system on chip is portable,
scalable and flexible since it can be customized to match the needs
of a data parallel application. Based on FPGA, different SIMD
configurations have been evaluated in terms of performance and
area trade-offs. The proposed parametric system shows good
results executing some signal processing applications such as
parallel matrices multiplication, FIR filter and RGB to YIQ
image color conversion.

I. INTRODUCTION

Intensive signal or image processing covers a variety of
applications where speed and accuracy matters a lot. Massively
parallel architectures, in particular Single Instruction Multiple
Data (SIMD) architectures are proposed to be good executers.
In fact, the SIMD architectures are widely recognized as
being well-suited for media-centric applications since they
can efficiently exploit massive data parallelism available with
minimal energy [2].

However in the nineties, this class of processors has faced
many challenges due to its increasing fabrication cost and
design complexity [1]. Nowadays, the recent great evolution of
silicon integration technology on the one hand, and the wide
usage of reusable Intellectual Property (IP) cores on the other
hand, are more and more adopted to rise these challenges and
reduce the time to market. This context substantially alleviates
the design cost of a dedicated processor for a SIMD system.
In addition with IP reuse we can easily and rapidly design
a parallel architecture that can be tuned according to the
application requirements.

Several SIMD architectures have been proposed to exploit
data intensive parallelism. They can be partitioned into hard-
ware specific solutions [11], [12], or reconfigurable solutions
[7]. However, they are hard to implement and they are
optimized for specific applications. This normally results in
good performance for the targeted application; however the
performance of other applications may not be so good due to
the diversity of parallel application requirements. Thus, current

[imstacy for——
i Processing Element Array
i ’ T)
i ! |PEMO PEM1
i
Control / pinstructions PEOT—¢ PE1 | |
E ‘ N
i PEM2 PEM3 ‘
i PE29— PE3

switches

Internal
network

N
--|=
S

FIFO

1/0
Device

—‘ o—eo Neighboring link

<«—>mpNoC link

Fig. 1. MppSoC system.

developments of parallel architectures often fail to deliver the
needed performance across different parallel applications.

For all those reasons, our goal is to design a programmable
and flexible parallel SIMD processing on chip architecture,
named mppSoC (massively parallel processing System on
Chip), based on an IP reuse approach. MppSoC is extensible,
configurable and can be customized to match the needs of a
data parallel application.

We target FPGA devices to implement and test our proposed
design. Compared to ASIC, FPGA requires much less develop-
ment costs which is a very important issue. FPGA devices are
characterized by their increased capacity, smaller NRE (non-
recurring engineering) costs, and programmability. They can
also be re-wired and remotely reconfigured at any time helping
us to easily test different mppSoC configurations.

By providing tools to guarantee the architectural mppSoC
flexibility, the design can be used to a variety of data in-
tensive signal processing applications. The advantages of this
approach are to reduce development costs and time to market
and to be able to rapidly implement a SIMD on chip system
adapted to the application. Both speed and flexibility are of
paramount importance for parallel competitive systems. The
next section describes the mppSoC system and focuses on

R
—J -

Xnet

Mesh Torus

Linear Array Ring

Fig. 2. Neighbourhood network topologies.

the proposed IP based assembling methodology to implement
one mppSoC configuration on FPGA. It also introduces the
developed mppSoC tool. Section 3 presents the FPGA based
synthesis results of some mppSoC configurations and dis-
cusses the experimental results showing the performance of
the mppSoC system. Finally, section 4 concludes this paper
with a brief outlook on future work.

II. FLEXIBLE MPPSOC DESIGN

As a basic model design [4], the SIMD FPGA architec-
ture (Fig 1) is composed of a main controller ACU (Array
Controller Unit) connected to its sequential instruction and
data memories named InstACU and MemACU respectively,
and a number of elementary processors (PEs). Each PE is
connected to its local private data memory. We distinguish two
mppSoC networks: a neighbourhood interconnection network
to assure neighbour communications between PEs and a global
router, called a massively parallel Network on Chip, mpNoC,
to perform point to point communications. The designer can
use none, one or both routers to generate the needed mppSoC
configuration.

A particularly important feature of the mppSoC is the ability
to target diverse applications by customizing the basic archi-
tecture. This customization is achieved with its parametrization
as well as its extensibility and reconfigurability. In fact, the
mppSoC is parametric in terms of the number of PEs as well as
the memory size. In addition, the neighbourhood network can
be configured at compile time to have one topology among five
(2D (mesh, torus, Xnet) and 1D (linear, array)) as illustrated
in the figure 2.

Furthermore, the mpNoC is designed as an IP which syn-
chronously connects a set of inputs to a set of outputs. It
is based on an internal interconnection network that can be
chosen at compile time (shared bus, crossbar, multi-stages,
etc.) according to the applications requirements. Allowing
designer to choose the internal network increases run-time
performances. The mpNoC assures irregular communications
between processors and also performs parallel I/O data transfer
which is clearly a key issue in a SIMD system. The mpNoC
can be configured at run-time to support one of the three
different bidirectional communication modes (PE-PE, ACU-
PE, I/O Device-PE) making it powerful and suitable for
parallel systems [6].

Programmability of the architecture is ensured in the design
by performing a tool chain to generate binary data parallel
programs that ensures multiple applications can be mapped
onto the generated hardware. An mppSoC generation tool is
also developed to generate the VHDL synthesizable code of
the chosen mppSoC configuration. This tool is based on an
mppSoC IP library and uses a VHDL configuration file that
instantiates the mppSoC parameters. This file can be modified
as required by the designer.

The architecture is designed as an assembling of various
components or IPs, including processors (ACU + PE), memo-
ries and networks (neighborhood network and mpNoC). These
IPs are partitioned into standard IPs such as processor IP,
memory I[P and interconnection network IP, and mppSoC
dedicated IPs provided by the mppSoC tool. Some standard
IPs are furnished in a HW library to alleviate their design.
The designer can also choose his own IP. For that purpose,
a descriptive manual can help him to connect one new IP to
other mppSoC components. MppSoC dedicated IPs, named
IP glues or ad-hoc IPs, must always be used to construct the
architecture such as IP controller integrated with the use of a
global router to assure the synchronization of the architecture
functioning. These IPs are automatically generated by the
mppSoC tool when needed.

To build the mppSoC processors, namely ACU and PE,
two assembling methodologies are proposed. The first one,
called reduction methodology, is based on the reduction of
the main processor in order to have a small reduced one
[5]. This significant gain allows integrating a large number
of PE on a single chip. In the second methodology, called
replication methodology, the PE is constructed by the same
processor as the ACU to reduce the design time and make
the architecture assembling faster. This methodology offers a
large gain in the development time since it is easy. However,
we are unable in this case to integrate many PEs on a single
chip. The criterion for using this methodology is to choose a
smaller processor that can be fitted in large quantities in one
FPGA. So, there is a compromise between the two processor
assembling methodologies and the designer has to choose the
most appropriate one satisfying his needs.

In order to generate one mppSoC configuration, an mppSoC
generation tool has been developed. It helps the designer
choosing a SIMD configuration at a high abstraction level and
automatically generating its source code. The generated system
can be then directly prototyped or simulated using synthesis
and simulation tools (such as the Quartus synthesis tool for
Altera devices and Modelsim tool for simulation).

To validate the proposed mppSoC IP assembling design,
different data parallel algorithms have been tested on mppSoC.
Using the mppSoC tool, the designer can easily implement
various mppSoC configurations in order to choose the most
appropriate and efficient one for a given application. These
experiments are evaluated with regard to their performance
and cost.

chaase the methodology

@ reduction methodology
© Second processor des

Fig. 3. mppSoC generation tool interface.

III. EXPERIMENTATION ON FPGA

Different data parallel applications have been executed on
mppSoC to test its performance. They are written in MIPS
assembly code in the case of the minimips processor and C
code when using the NIOS processor. Each mppSoC configu-
ration is generated, based on the mppSoC generation tool, in
synthesizable VHDL code. It is then prototyped on the Altera
Stratix 25180 FPGA with 179k logic elements. The mppSoC is
also portable and can be efficiently implemented on any other
FPGA architecture. The next section describes the generation
tool and enumerates the steps needed to generate an mppSoC
configuration.

A. mppSoC generation tool

The mppSoC generation tool is based on an mppSoC IP
library that contains some IPs to be directly integrated in the
mppSoC. The library is composed of processors, memories
and interconnection networks. Different IPs are provided in
order to alleviate their design and to accelerate the generation
process. The tool has a simple GUI interface, as illustrated in
the figure 3, enabling the user to select an mppSoC configu-
ration and generate its VHDL code. It contains different steps
in which the designer has to make various choices:

1) select the processor IP from the mppSoC IP library (we
can actually choose among three available processors:
minimips [14], MIPS [15] and NIOS [16]);

2) choose the processor assembling methodology (reduc-
tion/replication);

3) choose the memory IP from the IP library;

4) choose the mppSoC architectural parameters namely the
number of PEs and their arrangement (1D or 2D grid)
as well as the memory size;

5) select/no the neighbourhood network and its topology.
In this step the user can choose among linear or ring
topologies if he has chosen a 1D PE arrangement or
among torus, mesh or Xnet if the PEs are placed in a
2D grid;

6) select/no the mpNoC interconnection network (shared
bus, crossbar or Delta multi-stage network (omega,
baseline or butterfly)).

By this way, the designer can generate the configuration
satisfying his needs. We notice that the developed generation
tool facilitates the mppSoC design and that any modification
in the configuration could be easily done.

B. Synthesis results

Using the mppSoC tool, it was easy to prototype different
configurations on the FPGA Stratix 2S180 device which
includes 143520 ALUTs for hardware logic [13]. The table I
shows some synthesis results varying the mppSoC parameters
as well as its integrated components. The processor used in
these designs is the minimips [14].

We clearly notice that the processor replication consumes
more FPGA area than the processor reduction. With the
latter methodology, we can put a large number of PEs on a
single chip (up to 84 PEs on the Stratix 2S180). We also
deduce the impact of the integrated network in the FPGA
resources. Comparing for example between the first and the
second configurations, it is clearly shown that the crossbar
consumes more FPGA logic than the omega network. The
neighbourhood network also consumes fewer FPGA resources
than the mpNoC. Thus, depending on his needs the designer
can integrate the needed components in the selected mppSoC
configuration. The mppSoC generation tool significantly facil-
itates the mppSoC design and rapidly allows the modification
of the SIMD configuration. It just takes fewer seconds to
generate an mppSoC configuration.

C. Application experimental results

This section gives better insight on the performance of the
proposed flexible mppSoC system. The table II presents the ex-
ecution time results running different data parallel applications
on mppSoC configurations and compared to other systems.
The tested mppSoC configurations are obtained varying the
parameters and the used networks in order to find the most
adequate configuration.

From these experiments we demonstrate the effectiveness of
mppSoC to compute data processing applications. In fact, the
mppSoC has shown better results running a parallel matrices
multiplication compared to an FPGA based parallel accelerator
for matrix multiplication [8]. This proves the efficiency of
the parallel proposed SoC. The mppSoC performance also
compares favourably to that of a multi-FPGA (eleven Virtex
II) based custom hardware design [10]. So, the mppSoC
system not only achieves better execution time than dedi-
cated hardware systems but also presents the advantage of
programmability to address a wide range of data intensive
processing applications. We notice comparable results between
the SIMD execution and the DSP [9] execution. This is
explained by the fact that the DSP is realized on an ASIC
(Application Specific Integrated Circuit) and presents a higher
frequency than the FPGA based mppSoC. Nevertheless, the
DSP is slightly faster than our proposed SoC.

This analysis demonstrates the efficiency of mppSoC to
compute data intensive processing applications. Moreover, the

TABLE I
SYNTHESIS RESULTS ON STRATIX 2S180

Number Processor Neighbourhood mpNoC Logic Utilization Total memory
PEs Assembling network interconnection | ALUTs | registers | % ACU PE %
Methodo. network (bytes) | (bytes)
8 replication - crossbar 42059 16863 27 4096 1024 3
16 reduction - omega 27268 11481 21 4096 4096 6
32 reduction 2D Torus crossbar 81796 22478 45 2048 600 4
64 reduction Xnet - 89154 24479 49 4096 2048 8
84 reduction - omega 130603 41620 96 2048 2048 10
TABLE II
SYNTHESIS RESULTS ON STRATIX 25180
[Application [mppSoC configuration [Execution Time (us) | System : Execution Time (us)]
Parallel matrices of size 200x200 processor (minimips/reduction) 6000 H-SIMD [8] : 7000
multiplication + 64 PEs + 2D Torus
64-tap FIR on an impulse processor (minimips/reduction) 2.06 MD32 DSP without BPU [9] : 1.26
response with a length of 128 + 64 PEs + linear neighbouring network
RGB to YIQ color conversion processor (NIOS/replication) 769 multi-FPGA [10] : 10000
on 320x240 color image + 32PEs + crossbar based mpNoC

mppSoC is flexible, programmable and can be easily tuned
according to the application requirements.

IV. CONCLUSION

This work presents a rapid IP assembling approach to design
a flexible massively parallel processing on chip system named
mppSoC. This approach leads to the design large and complex
parallel architectures with less costs and higher performances.
An mppSoC generation tool is also developed to automatically
generate the mppSoC configuration at an RTL abstraction level
as specified by the designer at a high abstraction level.

This work opens an interesting topic for future research
and development on parallel architectures. Our long term is
to promote a more complete framework to make mppSoC
exploration.

(1]

(2]
(3]

(4]

(31

(6]

(71

(8]

REFERENCES

E. Strohmaier, J. J. Dongarra, H. W. Meuer and H. D. Simon, The
Marketplace of High Performance Computing. Parallel Computing,
Vol. 25, Elsevier, 1999, pp. 1517-1544.

A. Gentile and D. Scott Wills, Portable Video Supercomputing. IEEE
Transactions on Computers, Vol. 53, No. 8, August 2004.

W. C. Meilander, J. W. Baker and M. Jin, Importance of SIMD
Computation Reconsidered, in: Proceedings of International Parallel
and Distributed Processing Symposium, 2003.

Ph. Marquet, S. Duquennoy, S. Le Beux, S. Meftali and JL. Dekeyser,
Massively parallel processing on a chip, in: Proceedings of the 4th
International Conf. Computing Frontiers (FPL), 2007.

M. Baklouti, Ph. Marquet, JL. Dekeyser and M. Abid, A design and
an implementation of a parallel based SIMD architecture for SoC on
FPGA, in: Proceedings of Conference on Design and Architectures
for Signal and Image processing (DASIP), 2008.

M. Baklouti, Ph. Marquet, JL. Dekeyser and M. Abid, Reconfigurable
Communication Networks in a Parametric SIMD Parallel System
on Chip, in: International Symposium on Applied Reconfigurable
Computing (ARC), 2010.

H. Fatemi, B. Mesman, H. Corporaal, T. Basten and R. Kleihorst, RC-
SIMD: Reconfigurable Communication SIMD Architecture for Image
Processing Applications, Journal of Embedded Computing, Vol. 2,
2006, pp. 167-179.

X. Xu, S. G. Ziavras, T. G. Chang, An FPGA-Based Parallel Ac-
celerator for Matrix Multiplications in the Newton-Raphson Method,
in: Lecture Notes in Computer Science, Embedded and Ubiquitous
Computing, Springer, Berlin, 2005, pp. 458-468.

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

C. Xiaoyi, Y. Qingdong and L. Peng, Data Bypassing Architecture
and Circuit Design for 32-bit Digital Signal Processor, in: Journal of
Electronics, Vol. 22, No.6, 2005.

M. Z. Hasan and S. G. Sotirios, Customized kernel execution on recon-

figurable hardware for embedded applications, in: J. Microprocessors

and Microsystems, 2009, pp. 211220.

M. Sayed, W. Badawy and G. Jullien, Towards an H.264/AVC HW/SW
Integrated Solution: An Efficient VBSME Architecture, IEEE Trans-
actions on Circuits and SystemslI, Vol. 55, No. 9, September 2008.
R. Lopez Rosas, A. de Luca and F. Barbosa Santillan, SIMD Archi-
tecture for Image Segmentation using Sobel Operators Implemented
in FPGA Technology, 2nd International Conference on Electrical and
Electronics Engineering (ICEEE) and XI Conference on Electrical
Engineering (CIE 2005) , Mexico City, Mexico, 2005.

Altera Corporation, Stratix Il Device Handbook, 2004.

Opencores, minimips overview, http://www.opencores.org/?do=project
&who=minimips.

S. Connors, T. Brown, J. Hansen and C. Kief, Mips source code,
http://www.eece.unm.edu/ivpcl/classes/mips microprocessor/mips mi-
croprocessor.html.

Altera, Nios 11 Processor Reference Handbook.
http://www.altera.com/literature/hb/nios2/n2cpu niiSv1.pdf., 2009.

