
A MDD Approach for RTOS Integration on Valid Real-Time Design Model

Rania Mzid∗, Chokri Mraidha∗, Jean-Philippe Babau† and Mohamed Abid‡
∗ CEA, LIST, Laboratory of model driven engineering for embedded systems

Point Courrier 174, Gif-sur-Yvette, 91191, France
Email: {rania.mzid, chokri.mraidha}@cea.fr
†Lab-STICC, UBO, UEB, Brest, France
Email:Jean-Philippe.Babau@univ-brest.fr

‡ CES Laboratory, National school of engineers of Sfax, Sfax, Tunisia
Email: Mohamed.Abid@enis.rnu.tn

Abstract—The transition from the design model to the im-
plementation model is a critical phase in Real-Time Embedded
Systems development process. Indeed, this model must conserve
functional and non-functional requirements of the design model
on the target execution platform. In this paper, we propose a
two-steps approach based on an explicit description of two
types of platform: the abstract platform used at the design
level to validate the different design choices, and the concrete
execution platform. The first step consists in feasibility tests
whose role is to help the designer detecting the potential
refinement problems. The second step is a mapping step that
ensures the compliance of the implementation model with the
design model taking into consideration the characteristics of
the target execution platform.

Keywords-Real-Time Embedded Systems; MDD; Real-Time
Validation; Abstract platform; Concrete platform;

I. INTRODUCTION

In order to overcome the increasing complexity of Real-
Time Embedded Systems (RTES), researches are moving
toward a rise in level of abstraction using Model-Driven- De-
velopment (MDD) [1]. MDD introduces intermediate models
starting from the model of the specification and going to
the model of the implementation, while passing through
the design model (see Figure. 1). The specification model
concentrates on functional and behavioral description of the
system. At design level, model concentrates on architectural
concerns, focusing on concurrency by introducing tasks and
by defining a scheduling policy. Whereas implementation
models integrate technological concerns like, in our case,
specific Real-Time Operating System (RTOS).

Validation is a key point of RTES: at every modeling level
a timing validation is performed. At specification level an
analysis of time budgeting [2] may be applied. At design
level, scheduling analysis [3] and performance analysis
[4] validate the design choices in terms of non-functional
requirements. Accurate analysis may be performed at imple-
mentation, to verify whether the timing properties are met
on the real platform.

To enable timing validation, a convenient level of abstrac-
tion for the underlying platform must be considered. At spec-
ification level, analysis does not make any assumptions about

resource limitations. The corresponding platform, called
virtual platform is considered as an ideal platform. At design
level, the topology of the hardware architecture is assumed
to be known. For software aspect, the abstract platform is
considered as a generic platform that offers unlimited soft-
ware resources (tasks and communication mechanisms). At
implementation level, the concrete platform model integrates
the target RTOS technological constraints.

In order to reduce development cost, one main objective
of generative MDD approaches is to apply the correct-by-
construction paradigm. One challenge is then to automate
a correct transition from design to implementation models,
which preserves timing properties.

For platform aspect, refinement of a design model to an
implementation model corresponds to a mapping between
the abstract resources and the concrete ones. However,
the consequent implementation model may not match the
original design model. This scenario happens in the case
where the concrete platform is too restrictive with regard to
the abstract one or when incoherent correspondence between
properties of abstract and concrete resources occurs. In that
case, the designer iterates on the design model, modifying
and re-validating it, looking for an implementable solution.
These modifications are usually based on the designer ex-
perience and reduce portability of design model: the design
model becomes specific to a concrete platform.

To tackle this issue, we propose to add a feasibility
tests step and a mapping step between the design and the
implementation phases. The purpose of the first step is
to help the designer detecting early potential refinement
problems and their sources. The second step aims at keeping
the design model independent of a concrete platform. The
proposed approach is based on an explicit description of the
abstract platform, used for validation, and the concrete one
used for implementation. These platforms are decribed in
models that are independant of the application. The platform
models play a primary role in performing the feasibility
tests and the mapping to obtain an implementation model
preserving the timing properties of the design.

The paper is organized as follows. Section 2 gives a

Figure 1. Platform levels from a validation point of view in a MDD
approach

background on design model and related timing validation.
Section 3 presents the platform modeling framework and its
main principales. Section 4 explains in details the approach
to obtain a valid implementation model from the design
model. Section 5 illustrates on an example the proposed ap-
proach. Section 6 discusses some related works and Section
7 concludes the paper and presents some perspectives.

II. DESIGN MODEL AND OPTIMUM OVERVIEW

In this paper we assume that timing validation is per-
formed at the design level using Optimum [5]. The Optimum
methodology introduces timing validation from the specifi-
cation level in order to guide the design of the concurrency
model that satisfies the timing constraints. This methodology
is based on two phases:
• the first phase considers as input the high-level func-

tional model, to which time budgets have been allocated
to functions and assessed with regard to the application
timing requirements;

• the second phase deals with software architecture ex-
ploration. In that phase, Optimum seeks to produce
a software architecture model that satisfies timing re-
quirements. This objective achievement is guided by
scheduling analysis. At the end, the obtained concur-
rency model consists of a set of tasks characterized
by their priorities. Each task is allocated to a specific
hardware component (execution node or communica-
tion media). It is important to notice that, in order
to generate and validate the design model, Optimum
considers implicitly some assumptions on the software
platform such as scheduling policy, task activation and
communication mechanisms.

In this paper, the design model is based on a set of
independent tasks τ = {τ1, τ2, , τn} executing the different
functions of the system. We assume that all tasks are
scheduled according to their priority. So each task τi ∈ τ is
characterized by its priority Pi and runs at a base period
Ti. Besides, we suppose that the hardware architecture
corresponds to a single execution node (mono-processor
architecture).

The different design choices ensure that the current design
model translates the system specification and fulfills its

timing constraints under the assumptions made by Optimum
and that are related to the software platform (scheduling pol-
icy, task activation and communication mechanisms). These
choices are validation-oriented and not implementation-
oriented.

From this correct model (design model), the objective of
this work is to ensure a correct transition to the implemen-
tation model while respecting the timing properties. More
precisely, we focus on platform aspect because validation is
based on the abstract platform while execution is based on
the concrete one.

III. PLATFORM MODELING FRAMEWORK

In this section, we present the proposed platform mod-
eling principles. Then we give excerpts of the abstract and
concrete platform models.

A. Platform modeling

One key point of the proposed approach is to ensure a
correct deployment of the design model on a specific RTOS.
In that context, [6] presents 8 approaches, grouped into 3
groups: embedded, implicit and explicit platform representa-
tions. It appears that embedded and implicit representations
are faster to implement code generation. But they are less
appropriate to target several platforms. Consequently, an
explicit representation of the concrete platform appears to
be more suited to our needs. In the explicit approach, the
target platform is described as a standalone model and is an
input for the deployment model transformation.

Several works gave interest in the definition of Domain
Specific Languages (DSLs)[6][7] [8] or profiles [9][10] for
platform description. However, Software Resource Modeling
(SRM) sub-profile of the MARTE standard [9] seems to
be the best choice. It specifies a set of modeling artifacts
that can be used to describe the resources and services
provided by any RTOS. The use of SRM as a pivot language
to describe both abstract and concrete platforms allows to
capture the semantic of the different concepts defined in the
platform models and thus enables an automatic transforma-
tion between the design and the implementation models.

The abstract platform represents the set of software re-
sources necessary to perform validation. We propose the
following principles for its definition:

• the abstract platform defines all the resource concepts
necessary for validation, here schedulability analysis;

• the abstract platform is independent from a particular
concrete platform but it shares the same concepts in
order to prepare deployment stage;

• the abstract platform provides all possible concepts
provided by concrete RTOSs to avoid making concrete
platform specific assumptions that would limit the
designer among design choice options;

The abstract platform may be viewed as an ideal platform
for validation purpose, that contains all the possible concepts
provided by a set of concrete platforms.

A concrete platform corresponds to a specific RTOS or to
a standardized RTOS API, like POSIX [11] or OSEK [12].
The numerous RTOS or standards share common concepts
but with specific features.

In the following subsections, we present the abstract and
the concrete platform models considered in this paper. The
abstract platform is the Optimum platform since we assume
that timing validation at the design level is performed with
Optimum. RTEMS [13] has been chosen as a concrete
platform. Nevertheless, our approach is applicable for any
timing validation tool and any RTOS. Platform models con-
form to the meta-model UML enriched with SRM profile.
For the present work, platform modeling based on SRM,
concentrates on features used for schedulability analysis:

• information on task and their activation mechanism;
• information related to scheduling: scheduling policy

and priorities;
• applicative timing constraints;
• timing precision;

B. Abstract platform model for Optimum

The Optimum platform acts as the abstract platform.
The abstract platform model characterizes the set of RTOS
concepts which are mandatory to correctly create the design
model with respect to schedulability analysis. For reason of
space, we present just an excerpt of the Optimum platform
model, however it contains many other concepts such as
shared resources or communication mechanisms for multi-
processor environments.

The necessary RTOS concepts are encapsulated in three
concepts (see Figure. 2) which are Optimum Task, Opti-
mum Scheduler and PeriodicOptimum Task. Each of these
concepts is annotated with appropriate SRM stereotype
holding its corresponding semantics. For example, Opti-
mum Task class is identified as ”swSchedulableResource”
to mention that it serves to execute application functions.
We characterize each concept by the properties that are
needed by Optimum to perform timing validation. The
Optimum Scheduler has two properties which are policy and
isPreemptive. These properties represent the information of
the platform scheduler that is necessary for validation.

For each concept, we give a default value to the properties
that characterize the platform and are independent of the
application. For the Optimum Task concept the maxPri-
orityLevel and minPriorityLevel attributes correspond re-
spectively to the maximum and minimum priority level
authorized by the Optimum platform. 0 is the the highest
priority of an Optimum Task. In addition, isPriorityVary and
isUnique attributes of the Optimum Task are used to mention
respectively that an Optimum task can have more than one

Figure 2. Excerpt of the Optimum platform model

priority value and that two Optimum tasks can have the same
level of priority.

Other properties of the Optimum Task concept do not
have default values. The property priorityElements of
”swSchedulableResource” corresponds to priorityValue at-
tributes of the Optimum Task. PeriodicOptimum Task is a
particular type of Optimum Task with a periodic activation
pattern. This is illustrated by a default value equal to
”periodic” of the arrivalType property of the PeriodicOpti-
mum Task.

C. RTOS platform model (RTEMS Operating System)

As for abstract platform, we characterize for the concrete
platform: tasks, activation and priorities as it is shown in
Figure 3. A RTEMS task is represented with RTEMS Task
class annotated with ”swSchedulableResource”. The pri-
orityValue property of a task varies between 1 and 255
which corresponds respectively to maxPriorityLevel and
minPriorityLevel properties. A RTEMS task may have more
than one priority value, so that the isPriorityVary property
is set to true. Furthermore, two RTEMS tasks can have the
same priority value, this is the reason why isUnique property
default value is set to false.

We define also an RTEMS Clock concept in the RTEMS
model and we annotate this class with ”swTimerResource”.
A clock is characterized by its tick which is represented by
an attribute in the RTEMS Clock class. The value of the
clock tick is a characteristic of the RTOS and corresponds
to durationElements property in the stereotype ”swTimer-
Resource”. Indeed, we can associate to the RTEMS clock
an infinite number of timers. A RTEMS Timer concept is
identified as an ”alarm” and has a period and an arrivalType
as well. Although the concept of periodic task does not
exist natively in RTEMS, we can define a pattern that
describes the realization of the periodic task with the basic
concepts of the RTEMS core. Figure 4 shows a possible
pattern to realize a periodic task in RTEMS. A class
named RTEMS PeriodicTask is created and identified as
”swSchedulableResource”. This class has three properties:
clock, timer and task which are defined respectively as

Figure 3. Extract of RTEMS core model

RTEMS Clock, RTEMS Timer and RTEMS Task. Eventu-
ally, the priority of the RTEMS PeriodicTask corresponds to
the priority of its task property. Besides, the period of the
latter and the type which is ”periodic” corresponds to the
period and type of its timer property. Due to space limitation,
we have presented only an excerpt of the RTEMS model.

Figure 4. Periodic task pattern for RTEMS

IV. TOWARD A VALID IMPLEMENTATION MODEL

A valid implementation model is a model that preserves
the properties of the application on the concrete execution
platform. This section details our two-steps approach for
transformation of the design model toward a valid concrete
platform specific implementation model. Figure. 5 gives a
schematic overview of the involved models, tests and trans-
formations. The feasibility tests step which is responsible for

Design Model

Feasibility Tests Step

Mapping Step

Optimum Platform

Model

Implementation Model
RTOS Platform

Model

« uses »

« uses »

A
u

to
m

a
ti
c
 R

e
fi
n

e
m

e
n

t

Figure 5. Overview of the proposed approach

checking the feasibility of the design model on the concrete
platform. It provides feedbacks to the designer, when the
model is non-feasible, to help him in detecting the source

of the problem. The second step is the mapping that permits
to obtain the appropriate implementation model.

A. Feasibility Tests Step

The feasibility tests step uses the abstract and concrete
platform models described in the previous section and pro-
vides three possible outputs:
• an error when the input design model is not imple-

mentable on the RTOS. An error informs the designer
about the source of the problem. For example, if the
number of priority levels used in the design model is
higher than the number allowed by the RTOS. In that
case, an error is generated with an associated message
indicating that the number of priority levels provided
by this RTOS is not sufficient to implement the input
design model. Algorithm 1 illustrates this test;

• a warning when the design model is implementable on
the RTOS with adaptation of the resources properties.
This adaptation may affect the correctness and the
timing performance of the application. Hence it neces-
sitates a fresh schedulability analysis. For example, if
at design level, two tasks have the same priority level
and at concrete level, the RTOS does not allow same
priority level. The input design model has to be re-
factored by affecting consecutive priority levels to the
two tasks and adapting, if necessary, the priority levels
of others tasks. Schedulability analysis is re-performed
since timing behavior of the two tasks change. In that
situation, this step generates a warning to highlight this
problem and a design refactoring operation proposal;

• no problem when there is no feasibility problems then
a mapping step can be performed without any change.

The set of feasibility tests to perform depends on the
complexity of the design model : the number of used RTOS
concepts. In Table. I, we give the list of the feasibility
tests performed under the assumptions made on the design
model in this paper. The list is not exhaustive in the general
case (usage of communication mechanisms and protection
protocol for shared resources).

B. Mapping Step

If the design model is implementable on the target RTOS,
we perform the mapping step. The purpose of this step is
to generate the implementation model. The latter should
preserve the high level specification and should ensure the
respect of timing requirements validated at the design level.
To this end, this step performs two levels of mapping: the
mapping of concepts and the mapping of the properties’ val-
ues of these concepts. Algorithm 2 illustrates this mapping
step. For each instance in the design model which is of type
T that corresponds to a resource in the Optimum platform,
this algorithm generates an instance in the implementation
model which is of type T’ that corresponds to a resource in
the RTOS model. This generation is performed if and only

Algorithm 1: Test Number Priority Levels
Input:
Ma: Design Model of the application
MPA : Abstract platform model
MPC : Concrete platform model
Output:
Verdict S = {E, W, NP}; E: Error, W: Warning, NP: No problem
Notations:
Type (i) : the type of the instance i
S(c): the stereotype to which the class c is conform
Properties(s): properties of the stereotype s
PriorityLevels(MPA): list of priority levels used in the design model
begin

S ←− NP
for i ∈Ma such as S(Type (i)) =”swSchedulaleResources” do

PrioV alue(i)←− val(p) such as p = ”priorityElements[1]”∈
Properties (S(Type (i)))
if PrioV alue(i) /∈ PriorityLevels(MPA) then

add(PrioV alue(i), PriorityLevels(MPA))

NbrLevelsMPA
←− sizeof(PriorityLevels(MPA))

if it 3 c ∈MPC such as S(c) =”swSchedulaleResources” then
MaxPrioLevel←− val(p) such as p = ”priorityElements[2]”∈
Properties (S(c))
MinPrioLevel←− val(p) such as p = ”priorityElements[3]”∈
Properties (S(c))
NbrLevelsMPC

←− |MaxPrioLevel−MinPrioLevel|

if NbrLevelsMPA
> NbrLevelsMPC

then
S ←− E

return S

Table I
LIST OF FEASIBILITY TESTS

Feasibility Test Description
Periodic Task Verify if the concept of periodic task exist or not

in the concrete platform
Timer Granularity Test if the timer granularity of the RTOS is poor

compared to the values of timing requirements at
the design level

Task Number Test if the number of application tasks authorized
by the RTOS is lower than the number of tasks
defined in the design model

Scheduler Test the adequacy of types between the abstract
and the concrete scheduler

Variable Priority Level Verify if the RTOS support the variation of the
priority of a task

Equal Priority Level Verify if the RTOS support that two tasks have the
same priority level

if T matches T’. Once the instance which is of type T’ is
generated we have to perform the second level of mapping
(Mappingp in Algorithm 2) for the properties that match.

In this paper, the matching is ensured by the use of the
pivot language SRM. So we suppose that two types T and
T’ match if and only if :
• they have the same applied stereotype from SRM;
• the properties of the the applied stereotype that refer-

ence T attributes, reference also T’ attributes.
In addition, we assume that two properties match if and only
if :
• they are referenced by the same property from the

applied stereotype;
• they do not have a default value.
In Figure 6, Optimum Task and RTEMS Task match

because they have the same applied steryotype ”swSchedu-

Algorithm 2: Mapping Step
Input:
Ma: Design Model of the application
MPA : Abstract platform model
MPC : Concrete platform model
Output:
Mimpl: Implementation model of the application specific to the concrete
platform PC
Notations:
Type (i): The concept of the platform that types the instance i
Property (c): The set of the properties of the platform concept c
begin

for i ∈Ma such as Type(i) ∈MPA do
Createinstance(i′,Mimpl) such as Type(i) matches
Type(i′) ∈MPC

for p ∈ Property(Type(i)) do
if it 3 p′ ∈ Property(Type(i′)) such as p′ matches p
then

valuep(i
′)←−Mappingp(valuep(i)) For the

Concrete Platform PC

return Mimpl

lableResource” and the property ”priorityElements” of
this stereotype references attributes of Optimum Task and
RTEMS Task. For the properties, we can see that the only
attribute that is referenced by the property ”priorityEle-
ments” of ”swSchedulableResource” and that has not a
default value is PriorityValue. Thus an appropriate mapping
of this attribute must be considered. We give more details
about this mapping through an example in the following
section.

Figure 6. Matching using SRM

V. CASE STUDY

In this section, the proposed approach is illustrated
through a case study. Firstly, the design model satisfying
timing requirements is presented. Then the transformation
of this design model to an implementation model specific to
RTEMS is detailed.

A. Design Model

We consider a design model that consists of four periodic
tasks. These tasks are instances of PeriodicOptimum Task.
Figure 7 depicts the model generated by Optimum (for
matter of space, a tabular representation is given instead of
the model diagrams).

Optimum gives the highest priority which is 0 to the task
T1, it assigns the same priority level to tasks T2 and T3

Figure 7. Example of a design model generated using Optimum

and gives to T4 a priority value equals to 30. In addition,
based on some information such as timebudget, jitter, etc,
Optimum computes the response time for each task in order
to verify whether its choices, here priority value of each
task, respect the timing requirements. As shown in Figure
7, the response time of the different tasks is lower than
their respective deadline. Consequently, the design model
generated by Optimum meets its timing constraints in terms
of schedulability.

B. Refinement of the design model to an RTEMS implemen-
tation model

The refinement of the previous design model to an
RTEMS implementation model, following our approach,
does not raise feasibility concerns. Consequently we apply
the mapping algorithm defined in the previous section to
our design model. This algorithm generates four tasks T1’,
T2’, T3’ et T4’ which are instances of RTEMS PeriodicTask.
RTEMS PeriodicTask is the appropriate matching type since
its satisfies the matching conditions explained in section IV-
B. For the properties, the mapping algorithm 2 detects that
an appropriate mapping of the period and the priority values
must be considered.

At the design level, the period values of the different
tasks are expressed in ms. The by-default tick in the RTEMS
model is equal to 100 µs. To ensure a correct mapping of the
period values, we propose a timing unity adaptation detailed
in algorithm 3. This algorithm is defined to determine the

Algorithm 3: Mappingperiod(PeriodV alue(is))
Input:
MPC : Concrete platform model
Output:
PeriodV alue′(is): The converted period value for the concrete platform PC
Notations:
unitPA: The unit of the period of the instance is
unitPC : The unit of the clock tick of the concrete platform PC
α : The coefficient / unitPA = α unitPC

TickValue: The value of the clock tick of the corresponding concrete platform
PC
begin

unitPA ←− getPeriodUnit(is)
unitPC ←− getClockT ickUnit(MPC)
α←− computeCoefficient(unitPA, unitPC)
TickV alue←− getClockT ickV alue(MPC)
periodV alue′(is)←− (periodV alue(is) ∗ α)/valueTick
return PeriodV alue′(is)

appropriate value of period for the concrete platform. It
considers as input only the concrete platform model (here

the RTEMS model) and the instance for which we want to
determine the value of period. The concrete platform model
gives the clock tick value of the RTOS.

On the other hand, if the clock tick of the target RTOS
is configurable (which is the case for RTEMS for example),
our approach detects the minimum timing precision in the
design model (period value of T1 which is equal to 100 ms in
the example) and adjusts the clock granularity to this value
(i.e. RTEMS clock tick will be equal to 100 000 µs). Thus
the period value of the generated task T1’ will be equal,
in that case, to 1 tick. This can be seen as an optimization
for the implementation since the interruption of the ticks
management will run at minimum frequency and thus the
processor load due to the ticks management is reduced.

In order to generate valid implementation models from
a priority point of view, the mapping algorithm of the
priority values must ensure that the used priority values at
the implementation level are between the maximum and the
minimum priority level allowed by the RTOS (maxPrior-
ityLevel and minPriorityLevel of the RTEMS Task attributes
in the RTEMS model). Besides, the execution order of the
different tasks defined at the design level is preserved at the
implementation level. Our approach proposes four strategies
to perform the mapping of the priority values. We present
briefly these mapping strategies:

• Direct mapping keeps at the implementation the same
priority values used in the design model. This type of
mapping does not ensure always valid implementation
models.

• Linear mapping generates consecutive values from
available minPriorityLevel of the used RTOS. If fea-
sible, it ensures always valid implementation models.
However, the generated priority is less convenient to
insert new task at run-time.

• Mapping by step is similar to the previous one, but
adding a step between two consecutive levels of prior-
ity. The validity of the obtained implementation model
depends on the step size. Like for direct mapping, it is
necessary to add a supplementary test to verify whether
this mapping is possible.

• Proportional mapping distributes applicative priority
values over the maximal range offered by the RTOS
(from minPriorityLevel to maxPriorityLevel). It guar-
antees valid implementation models. Nevertheless, this
type of mapping is not possible if the RTOS does
not provide an upper bound of priority levels (i.e.
maxPriorityLevel = infinity).

The selection of the strategy to use depends on the
designer intention and the capacity of the strategy to generate
valid implementation model i.e. in our example, the direct
mapping can not be used because the task T1, at the design
level, has a priority value equal to 0 which is not authorized
in RTEMS as 1 is the higher priority level. So if the

designer chooses this strategy of mapping our approach
generates an error in order to inform him that the use of
this strategy does not guarantee a valid RTEMS model
and proposes the other mapping strategies. For reason of
space, we present below just the linear mapping. Algorithm

Algorithm 4: Linear Mappingpriority(PriorityV alue(is))
Input:
Ma: Design Model of the application
MPA : Abstract platform model
MPC : Concrete platform model
is: Instance in the design model for which we want to determine the
corresponding priority value
Output:
PriorityV alue′(is): The converted priority value for the concrete platform
PC
Notations:
Type(i): The concept of the platform that types the instance i
Higher-levels(i): priority levels higher than the current priority value
PriorityValue
begin

highestPrioPA←− getHighestPriorityLevel(MPA)
lowestPrioPA←− getLowestPriorityLevel(MPA)
if (highestPrioPA < lowestPrioPA) then

for i′s ∈Ma/Type(i
′
s) = Type(is) do

if (PriorityV alue(i′s) < PriorityV alue(is)) then
if (PriorityV alue(i′s) /∈ Higher − levels(is))
then

add(PriorityV alue(i′s), Higher −
levels(is))

else
for i′s ∈Ma/Type(i

′
s) = Type(is) do

if (PriorityV alue(i′s) > PriorityV alue(is)) then
if (PriorityV alue(i′s) /∈ Higher − levels(is))
then

add(PriorityV alue(i′s), Higher −
levels(is))

highestPrioPC ←− getHighestPriorityLevel(MPC)
lowestPrioPC ←− getLowestPriorityLevel(MPC)
if (highestPrioPC < lowestPrioPC) then

PriorityV alue′(is)←−
highestPrioPC + Sizeof(Higher − levels(is))

else
PriorityV alue′(is)←−
highestPrioPC − Sizeof(Higher − levels(is))

return PriorityV alue′(is)

4 considers as inputs the platform models (abstract and
concrete) and the design model of the application. For each
task instance in the design model, this algorithm computes
the adequate priority value for the concrete platform, based
on some information presented in the platform models. For
example, maxPriorityLevel and minPriorityLevel are used to
determine the order of the priority in the platform and serves
to determine the appropriate value.

Figure 8 and Figure 9 represent two examples of RTEMS
implementation models which can be obtained by applying
our approach. The RTEMS model given in Figure 8 is
obtained by applying the mapping of the period values (algo-
rithm 3) and by performing the linear mapping (algorithm
4). However, the model given in Figure 9 is obtained by
performing the proportional mapping and by configuring the

RTEMS clock tick for optimisation.

Figure 8. RTEMS implementation model with linear priority mapping

Figure 9. RTEMS implementation model with proportional priority
mapping and period mapping optimization

These two models correspond to an implementation model
with properties values (priority and period) equivalent to
those in the design model while considering RTEMS plat-
form characteristics. For instance, T1’ at the implementation
level has a period equals to 1000 tick which corresponds
exactly to 100 ms at the design level. In addition, from a
priority point of view, these two models are valid. In fact,
the priority values in Figure 8 and Figure 9 are between 1
and 255 which correspond respectively to the maximum and
minimum priority level allowed by RTEMS. The execution
order of the different tasks defined at the design level is also
preserved in both models.

VI. RELATED WORK

Platform consideration during the development cycle to
transform a system specification to an implementation has
frequently been raised by several works. MoPCoM approach
[14] is a co-design methodology that represents a refinement
of the MDA Y-Chart [15] and is based on OMG standards.
This methodology uses UML and MARTE [9] to represent
the different models and SysML [16] for the expression of
functional and non-functional requirements enhanced with
some MARTE elements. MoPCoM methodology defines
three design levels: Abstract Modeling Level (AML) is
the first design level, where the goal is to model system
behavior. Execution Modeling Level (EML) is the inter-
mediate level, where performance analysis can be done,
thanks to the availability of execution nodes topology of
the system. Detailed Modeling Level (DML) is the last
modeling level, which allows code generation. At each level
a convenient granularity of platform model is considered to
allow analysis. Even if this work is in a co-design context,
we have the same three different levels: one specification
level, one validation-oriented level and one implementation
level.

In a software development context, the authors in [17]
consider a platform as an RTOS and propose a generative
process in order to transform an application deployed on one
platform to another based on an explicit description of the

latter using SRM. This work makes the assumption that the
deployment is always possible. In the same way, the author
in [6] proposes a deployment process of an application on a
software platform (RTOS). This process considers an explicit
description of the RTOS using a Domain Specific language
(DSL) called RTEPML and focuses on defining generic
transformations to automate the process. Compared to [17],
this approach claims the necessity to perform the feasibility
tests in particular a test to verify the availability of a concept
on the target platform before the deployment. Moreover,
these two approaches define generic transformations. No
special attention is paid to the characteristics of the different
resources of the RTOS and its influence on the validity
of the obtained model. In our approach, we define and
implement the necessary tests to perform and we add a
specific mapping step to integrate specific platform char-
acteristics. In [18], the author proposes an MDA approach
for distributed applications. In the paper, the author promotes
an explicit definition of an abstract platform to get reference
architecture for the design of Platform Independent Model
(PIM) for distributed applications. Like in our approach,
this work addresses the notion of abstract platform and
proposes an explicit representation of the latter. However, it
is interested on distributed applications and does not focus
on Real-Time Embedded Systems.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a MDD approach to automate
the transition from design model, which is assumed to meet
its real-time constraints, to an implementation model specific
to a RTOS. This approach aims at providing a generic and
automatic guidance framework to the designer in order to
guarantee that the implementation model conserves non-
functional properties of the design model on the target
platform. The proposed approach is based on an explicit
definition of two types of platforms: the abstract platform
used at the design level to perform a timing analysis, and
the concrete platform (RTOS) providing execution services
for the application.

As future work, our aim is to consider and exploit the
behavior of the application and the services provided by the
RTOS to provide a full code generation from the design
model while ensuring the respect of the execution semantic
of the latter at the implementation level.

REFERENCES

[1] B. Schtz, A. Pretschner, F. Huber, J. Philipps. Model based
development of embedded systems, Lecture Notes in Computer
Science, vol 2426, 2002, Springer, 2002, pp.331-336.

[2] C. Ferdinand, R. Hechmann, D. Kastner, K. Richter, N.
Feiertag, M. Jersak. Integration of Code-Level and System-
Level Timing Analysis for early Architecture Exploration and
Reliable Timing Verification. In Proceeding of the Embedded
Real Time Software and Systems (ERTS2 2010). Toulouse,
France.

[3] L. Sha, T. Abdelzaher, , K. E. Arzen., A. Cervin, T. P. Baker,
A. Burns , G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K.
Mok. Real time scheduling theory: A historical perspective.
Real-Time Systems 28(2/3): 101155. 2004.

[4] M. Woodside, G. Franks, and D. Petriu. The future of software
performance engineering. Future of Software Engineer

[5] C. Mraidha, S. Tucci Piergiovanni and S. Gerard: Optimum:
a MARTE-based methodology for schedulability analysis at
early design stages. ACM SIGSOFT Software Engineering
Notes 36(1): 1-8 (2011)

[6] M. Brun. Contribution à la considération explicite des
plates-formes d’exécution logicielles lors d’un processus de
déploiement d’application. PhD Thesis university of Nantes.
October 2010.

[7] SAE, Architecture Analysis & Design Language (AADL), AS-
5506, 2004.

[8] Tivadar Szemethy : Domain-Specific Models, Model Analysis,
Model Transformations. Phd Thesis, University of Vanderbilt,
Nashville, Tennessee, USA, May 2006.

[9] Object Management Group, UML Profile for MARTE: Mod-
eling and Analysis of Real-Time Embedded Systems, Object
Management Group, Inc., September 2010, OMG document
number: ptc/2010-08-32

[10] P. Kukkala, J. Riihimki, M. Hmlinen and K. Kronlf : UML
2.0 Profile for Embedded System Design, Automation and Test
in Europe Conference (DATE 2005), pp. 710-715,March 2005.

[11] The Open Group Base Specifications, Portable Operating
System Interface(POSIX), ANSI/IEEE Std 1003.1, 2004.

[12] OSEK Group. OSEK/VDX Operating System Specication.
http://www.osek-vdx.org.

[13] RTEMS C Users Guide. Edition 4.6.5, for RTEMS 4.6.5.
August 2003.

[14] A. Koudri, D.A. Joel Champeau, P. Soulard. Mopcom/marte
process applied to a cognitive radio system design and analysis.
In proceeding of the Model Driven Architecture, Foundations
and Applications (2009).

[15] OMG: Mda guide version 1.0.1. Technical report, Object
Management Group (2003).

[16] OMG, Systems Modeling Language version 1.3, formal/2012-
06-01, 2012

[17] F. Thomas, J. Delatour, F. Terrier, and S. Gerard. Toward
a framework for explicit platform-based transformations. In
Proceeding of the 11th IEEE Symposium on Object Oriented
Real-Time Distributed Computing (ISORC). Orlondo, Florida,
USA, May 2008.

[18] J. Almeida, Model-driven design of distributed applications,
in On the Move to Meaningful Internet Systems 2004: OTM
2004 Workshops. Springer, 2004, pp. 854865.

