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Abstract—In this paper, a comparison between PI and sliding
mode control is proposed for the control for flexible joint
manipulator driving by Brushless DC motor (BDCM)to improve
the performance in the presence of errors in the parameters
identification. First, the model of flexible joint manipulator
was presented. Then, a PI control is studied and designed for
tracking problem of the single flexible joint manipulator. Besides,
sliding mode control is studied and designed also for the same
problem. Finally, those strategies of control are implemented in
the Matlab-Simulink environment to show the high performances
and a comparative study of the different strategies of PI and
sliding mode controllers was achieved. Although the presence
of flexibility in the joint, the simulation results show the high
performances of sliding mode controller by converging the error
to zero and guaranteeing stability of the robot.

Keywords—Control, PI controller, Sliding Mode , Flexible Joint
Manipulator, Brushless DC Motor(BDCM).

I. INTRODUCTION

Brushless DC motors(BDCM) have achieved a big
breakthrough along the last decades in multiple applications
such as aeronautics, food and chemical industries, electric
vehicles, medical instruments, computer peripherals and
especially robotics. Thanks to his control simplicity, the
BDCM is considered as the most suitable actuator for a robot
manipulator. Putting into consideration that a fast and precise
movements are necessary to provide to the robot manipulator
an excellent dynamic response, it has been shown necessary
to require a high dynamic performance of the motor providing
in this case a high electromagnetic torque. For this reason, we
can not discarded the use of a transmission gearbox system
[1]. Similarly, the selection of the control system depend on
the characteristics of the motor, as well as the reduction ratio
of the gearbox system. The most common control reported in
the literature regarding the association of the robot equipped
with a brushless motor and high torque gearbox combination
is based on tracking trajectories. It is based on the generation
of the trajectories which describe the evolution in time of each
joint. These trajectories must comply with specific constraints
such as joint limits of the robot, the feasibility with respect
to engine power, etc..Also, joint flexibility represents one of
the most important approaches to enhance the performance of
the control. This latter has received a conscientious attention

thanks to its high speed, low cost and weight, small size
and wide number of applications [2], [3], [4]. However, the
complexity of model and control increases. So, a robust
strategy of control is required. For this reason, we have opted
the PI control representing an essential classical linear control
methods developed for flexible robotic manipulators to benefit
from its design simplicity and robustness [5]. In other hand,
we have opted the sliding mode control which has proved its
effectiveness through reported theoretical studies particularly
in the areas of robotics and motors. Thanks to its insensitivity
to the variation of internal and external parameters and its
adaptation to little known system due to the identification
problems in system parameters and model simplification, the
sliding mode control represents one of the most efficient in
variable structure control [6], [7].

To evaluate the performance of the control strategy algo-
rithm based on PI and sliding mode controllers for flexible
joint manipulator driving by Brushless DC motor in this paper,
we should go through the simulation. In the first part, we
will describe the model of our system. In the second part,
the strategy of PI controller will be designed. In the third
part, the strategy of sliding mode controller will be treated
by synthesizing the surface sliding and giving the control
law. Finally and in the fourth part, we will implement the
strategy of control previously described for PI and sliding
mode controllers in the matlab-simulink environment and a
comparison between them will be done.

II. MODEL OF THE SYSTEM

A. Model of Flexible Joint Manipulator

A flexible element may be represented by multiple rigid
elements connected by springs such as shown in the figure 1.

Referring to Lagrange equation, the model of n flexible
joints robot can be expressed as follows [4], [6], [8]:

A(q)q̈ + C(q, q̇)q̇ + G(q) + K(q − θ

η N
) = 0 (1)

Jθ̈ − K(q − θ

η N
) = Γ (2)
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Fig. 1. Manipulator with flexible joint

where:

• q is the n link angular position vector,

• q̇ is the n link angular speed vector,

• q̈ is the n link angular acceleration vector,

• A(q) is the nxn positive inertia symmetric matrix,

• C(q, q̇)q̇ represents the centrifugal and Coriolis forces
matrix,

• G(q) represents the gravity torque vector,

• J is the matrix inertia,

• K represents joint stiffness,

• θ is the motor angle vector,

• Γ is the torque vector applied to the n axes of the
robot,

In the following, we consider that: q = q1, q̇ = q̇1, q̈ =
q̈1, θ = θ1 and Γ = Γ1 represent the different parameters
previously defined for a single flexible joint.

For single flexible joint, the model of manipulator can be
expressed as follows [3]:

J1q̈ +m1gl1 sin(q) + K(q − θ

η N
) = 0 (3)

Jmθ̈ − K(q − θ

η N
) = Γ (4)

where:

• J1 is the link inertia of the first articulation,

• Jm is the motor inertia of the first articulation,

• m1 is the mass of the first articulation,

• l1 is the length of the first articulation,

where N is the reduction report , η is the efficiency of the
gearbox and the gravity constant g is equal to 9.81 m.s−2.

B. Model of Brushless DC Motor(BDCM)

The Brushless DC motor can be written by the following
equations:

dΩm

dt
= − f

Jm
Ωm +

Cem − Cm

Jm
(5)

dI

dt
= −R

L
I +

V − E

L
(6)

where :

• Cem and Cm are the Electromagnetic and load torque
of the motor respectively,

• f represents the friction,

• Jm is the inertia of the motor,

• Ωm is the velocity of the motor,

• KE et Kt are constants,

• E is the electromotive force,

• I is the current in the phases of motor,

• V is the tension in the phases of motor,

• L is the inductance of the motor,

• R is the resistance of the motor.

with, E = KEΩm and Cem = KtI .

C. Trajectory Generation

The trajectory generation is part of the control system
which imposes setpoints’movement to be followed by moving
in a direction towards an end position. Such instructions can
be sent directly to the actuators or control loops. The typical
movement instructions contain the definition of displacement,
kinematic constraints that the robot must respect, the execution
time, etc.. So, the movement generation must produce a
uniform trajectory without velocity discontinuities. For this,
it suffices to impose a rotation angle of the load, it is an angle
corresponding to a requested move along a desired speed for
an articulated arm.

The problem resides in trajectory calculation generation
of the reference position, speed and acceleration instructions
which are functions of time and ensure the passage of the robot
with a desired path, defined by a sequence of the situations of
organ terminal or joint configuration. To obtain the desired
displacement, we are interested in the shape of the velocity as
a function of time. So, the engine will be stopped when the
desired position at the final instant is obtained.

In order to control the movements of the robot, slaving
techniques include using information provided by the position
sensor. A control law permit to follow the desired speed path
which is described as [9] :

Ωref = 6
(qf − qi) t

t2f
− 6

(qf − qi) t
2

t3f
(7)

where :

• Ωref is the reference speed,

• qf is the desired position,

• qi is the initial position,

• tf is the time required to achieve the desired position.,

• t is the time,

Similarly, the equations of the the desired position and accel-
eration can be rewritten as follows:

qref = qi + 3
(qf − qi) t

2

t2f
− 2

(qf − qi) t
3

t3f
(8)



γref = 6
(qf − qi)

t2f
− 12

(qf − qi) t

t3f
(9)

with :

• qref is the reference position,

• γref is the reference acceleration.

In the following part, we will explain the strategy of PI
and sliding mode controllers.

III. PI CONTROLLER

The PID regulator (Proportional, Integral, Derivative) is
still widely used in the industrial environment, despite the
appearance of other methods of regulation. The regulator is
based on a very simple structure whose operation depends
only on three coefficients, which are the gain applied to the
proportional signal (Kp), integral time constant (Ti) and the
derivative time constant (Td)[10]. It allows the cancelation of
a static error while allowing the performance of speed higher
than a PI controller. The transfer function in the complex
domain of Laplace is given by:

C(p) = Kp(1 +
1

Tip
+ Tdp) (10)

The functional diagram corresponding to the control of
flexible joint manipulator by PI controller is illustrated in
Figure 2 as follows:

Fig. 2. Diagram of the PI Control block for flexible joint manipulator

IV. SLIDING MODE CONTROLLER

The sliding mode control consists to evolve the sliding
surface with a certain dynamic to the point of equilibrium.
A sliding surface S is a surface on which the system will
follow the desired changes. When the state is maintained on
the surface, the system is called sliding regime. Thus, as the
sliding conditions are ensured, the dynamics of the system
is insensitive to variations in process parameters to modeling
errors and some disturbances [11], [12], [13]. The purpose of
the sliding mode control is:

* synthesize a surface S(x) = 0, such that all trajecto-
ries of the system follow a desired behavior tracking,
regulation and stability.

* Determine a control law that is able to attract all
trajectories of state to the sliding surface S(x) = 0
and keep them on the surface.

The design of the sliding mode control relates mainly to
determining two steps:

1) The choice of the surface.
2) The determination of the control law.

A. The choice of the sliding surface

Generally, for a system defined by the following equation
of state:

ẋ(t) = f(x, t) + g(x, t)u(t) (11)

where:

• x is the state variables vector,

• f is the function describing the evolution of the system
over time,

• g is the input function,

• u is the vector control.

The convergence conditions or attractiveness allow dynamic
system to converge to the sliding surface and independently
remain the disturbance. The Lyapunov function proves the
existence condition of sliding surface which is expressed as
follows:

V =
1

2
.S2 > 0 (12)

The sufficient condition to guarantee the stability of the system
is:

V̇ =
1

2
.
∂

∂t
(S2) ≤ −η. | S |< 0 =⇒ S(x).Ṡ(x) < 0 (13)

with: η > 0.

The equation 12 explains that the square of the distance to
the measured surface by S2 decreases all the time, forcing the
trajectory of the system to move towards the surface in both
sides.

The choice of sliding surface affects not only the necessary
number of these surfaces but also their shape depending on
the application and the desired target.

Fig. 3. Sliding phenomenon

The sliding surface is given by the following equation:

S = G.x (14)

with

G = [K1 1] (15)



x = [x1 x2]
T = [erθ erΩ]

T (16)

where:

erθ = θref − θ (17)

erΩ = Ωref − Ω (18)

B. Calculation of the control law

Once the sliding surface is chosen, it remains to determine
the necessary control to bring the variable control to the
surface and then to the point of equilibrium by maintaining the
condition of existence of the sliding mode. One of the essential
assumptions in the design of systems with variable structure
controlled by sliding mode is that the command should switch
between umin and umax instantaneously (infinite frequency),
depending on the sign of the sliding surface. In this case,
high-frequency oscillations appear in the sliding mode. During
sliding mode, the objective is to force the system dynamics
to correspond to the sliding surface S(x) by means of the
following equation of command:

u(t) = ueq(t) + us (19)

where:

• u: represents the control vector which includes two
terms:

• ueq: represents the equivalent part of the sliding
mode. It is calculated by knowing the behavior of the
system during the description of the sliding model by
Ṡ(x) = 0. It is obtained with the conditions of the
surface invariance given by equation: S(x, t) = 0 and
Ṡ(x, t) = 0.

• us: represents the discontinuous part. It is determined
to guarantee the variable attractiveness for monitoring
towards the sliding surface and satisfy the convergence
condition. It ensures insensitivity of the system to
changes in parameters.

We have also,

Ṡ(x, t) =
dS

dt
=

∂S

∂x
.
∂x

∂t
=

∂S

∂x
.ẋ (20)

So,

Ṡ(x, t) =
∂S

∂x
.[f(x, t) + g(x, t)ueq] (21)

In sliding mode, the trajectory will remain on the switching
surface S(x) = 0, ie, its derivative will be null Ṡ(x) = 0 and
us = 0. So,

ueq(t) = −[
∂S

∂x
f(x, t)].[

∂S

∂x
g(x, t)]−1 (22)

The popular solution is to choose us as relay. In this case,
the command is written as follows:

us = −Ks.sign(S(x)) (23)

where, the positive gain Ks is chosen to satisfy the condition
in the equation (23).

The scheme bloc of flexible joint manipulator controlled
by sliding mode controller is represented by the figure 4.

Fig. 4. Diagram of the sliding mode Control block for flexible joint
manipulator

V. SIMULATION RESULTS AND ANALYSIS

A. Description of Simulation

The performances of the sliding mode control strategy
for flexible joint robot driving by brushless DC motor have
been evaluated through simulation works carried out in the
MATLAB-SIMULINK environment. Indeed, we adopt the
expression of the dynamic model which must be applied to
the motor, taking into account the reduction in the yield.

Cm =
Γ

ηN
(24)

Our manipulator is a second order system. So, we have a state
vector with two variables: x = [erθ erΩ],
where:

• erθ is the error of the angular position (rad),

• erΩ is the error of the angular speed (rpm),

The simulation stage includes two steps:

* In the first step, we have studied the PI controller.

* In the second step, we have studied the sliding mode
controller where the sliding surface is described as
S = Gx with x = [erθ erΩ] representing the state
vector.

The figures 5, 6, 7, 8 and 9 represent respectively the evolution
of speed, position, position error, speed error and electromag-
netic torque for the two cases of controllers.
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Fig. 5. Evolution curves of the speed, Legend: (left side): PI controller and (right side): Sliding Mode Controller.
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Fig. 6. Evolution curves of the position, Legend: (left side): PI controller and (right side): Sliding Mode Controller.
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Fig. 7. Evolution curves of the position error, Legend: (left side): PI controller and (right side): Sliding Mode Controller.
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Fig. 8. Evolution curves of the speed error, Legend: (left side): PI controller and (right side): Sliding Mode Controller.
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Fig. 9. Evolution curves of the electromagnetic torque, Legend: (left side): PI controller and (right side): Sliding Mode Controller.



B. Analysis

Following the analysis of Figures 5, 6, 7, 8 and 9, it is to
be noted that:

• The flexible joint manipulator follows its desired tra-
jectory with a static error near to zero. This confirms
the robustness of the PI and sliding mode controller
forcing the joint to converge to a desired position with
a definite speed for the sliding surface vector choice,

• The simulation shows that the system output for
sliding mode controller reaches its desired value with
more precision than the PI controller where we ob-
serve the presence of the oscillations. Moreover, the
errors in positions and speeds are more near to zero in
the case of sliding mode controller than PI controller.

The parameters of the system used for simulation are given
in table I.

TABLE I. PARAMETERS OF SYSTEM

R = 0.625Ω L = 1.595e − 3 H Jm = 1e − 5Kg.m2

m1 = 0.8619Kg l1 = 0.3m J1 = 0.0065N.m2

N = 74 η = 0.72m f=1.164e-3Kg.m2.s−1
Kt = 0.0382 KE = 0.0382m

VI. CONCLUSION

A sliding mode control for manipulator driving by brush-
less DC motor was developed in this paper to guarantee both
stability and robustness of the system in presence of joint
flexibility. So, the fundamentals of modelization of flexible
joint manipulator and BDCM motor were firstly recalled. Then,
a PI controller was designed in a second step. A sliding mode
control strategy was proposed in a third step by giving both
of sliding surface and control law. Finally and in a fourth
step, the PI and sliding mode control strategies considering
a sliding surface vector with two state variable vector: x =
[erθ erΩ] previously described have been implemented in
matlab simulink environment. Simulation results have shown
that those control strategies lead to high performance. The
simulation results have shown also that the reduction of
oscillations is influenced by the sliding mode controller.
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