
 1

Abstract—A large part of real time embedded systems RTES
has to satisfy real time constraints and it usually employs Real
Time Operating System RTOS. In order to decrease the design
complexity of such systems, they need methods and tools based
on high abstraction layers.

Currently, UML profiles are found to be an effective solution
for the automatic RTES design. Unfortunately, they are poor in
integrating RTOS modeling.

In the present work, a methodology based on model driven
engineering MDE for RTOS design is introduced. The proposed
approach aims at defining a platform independent model of
RTOS. It suggests the implementation of statecharts relating to
the process states, whose real time constraints can be checked by
defining their semantic variants. The ultimate goal is the
automatic generation of the code related to the scheduler.

Keywords— RTOS modeling, semantic variants, statecharts

implementation, MDE, automatic code generation

I. INTRODUCTION
Designing ERTS has always been a challenge. Indeed,

standards to facilitate the checking of system properties at a
preliminary stage are progressing well based on different
abstraction layers. With regard to the bottom layers, there
exists many synthetic tools; the only problem relates to the
CAD (Computer Aiding Design) of the highest level which is
the concern of this work.

At present, UML (Unified Modeling Language) is having a
growing interest in the software and hardware development. It
represents a viable solution to decrease the complexity of
ERTS design via UML profile. The ERTS complexity
depends on the architecture deployment and requires runtime
guarantees. Although ERTS requires a real time operating
system, the existing profiles do not integrate the notion of
RTOS modeling during the ERTS design, since they just focus
on architecture and application modeling.

This paper presents our contribution to the RTOS modeling,
based on model driven engineering. In fact, the mains goals
are the definition of a platform independent model of RTOS
and the automatic generation of the code related to the
scheduler. It suggests the implementation of statecharts
relating to process states.

For the suggested models, the structure of the RTOS is
described through a class diagram which includes the
definition of operational semantics. Then, the behaviour of a
task which constitutes the core of the RTOS is defined in
order to ensure coherence between various diagrams UML.
The temporal and transitional semantics of the statecharts
relative to the various states of a real time process is defined
in order to reach the model of task scheduling. These two
independent platform models are integrated in MDE process
to generate the code related to the scheduler.

This paper starts by providing a brief discussion about some
related work in section two. Then, the proposed design
methodology is described in section three, in which the
models of the RTOS structure and the scheduler are
introduced through the implementation of statecharts. The
experimental results of an application example are provided in
section four. At the end, some final conclusions with some
future work are given.

II. RELATED WORK
After examining the specificity of each UML profile such

as SPT (Scheduling, Performance and Timing) [15, 12],
QoS/FT (Quality of Services & Faults Tolerance) [15] and
MARTES (Modeling and Analysis of Real-Time and
Embedded systems) [13], it is concluded that the focus was on
the description of the material architecture and the application.
These profiles are founded on an abstraction level higher than
other approaches like ROOM, SDL, ADL, Petri Net. They
also aim at the applications to data flow predominance rather
than those to control. Even though these works briefly tackle
the temporal aspect, they cannot cover the RTOS modeling.
They are criticized for the lack of temporal and transitional
semantics common to the models as well as the absence of
tools which support them. In reality, these works have not
enabled us to guarantee the reliability of the system yet; i.e.,
its determinism aspect. These models do not support the
integration of real time characteristics sufficiently and
therefore they do not consider the RTOS related to a specific
architecture and application. The simulation approaches need
a simulation time long enough to give a relatively reliable

MDE benefits for Real Time Operating
Systems modeling

Yessine Hadj kacem1, Adel Mahfoudhi1, 2, Mohamed Abid1

1 National Engineering School of Sfax Road Soukra km 3,5
Computer & Embedded Systems Laboratory (CES)

B.P. : w -- 3038 Sfax TUNISIA
2 Department of Computer Science, Science Faculty of Sfax

Road Soukra km 3,5 BP : 1171 -- 3000 Sfax TUNISIA
adel.mahfoudhi@fss.rnu.tn
mohamed.abid@enis.rnu.tn

 2

sight of operation.
According to [16], RTOS modeling is based on two

independent class diagrams: a diagram describing the structure
and another describing the scheduler. They suffer from major
limitations, namely the coherence between the used diagrams
and the lack of temporal semantics definition. In fact, because
it can not cover the temporal behaviour of the RTOS, the
diagram used to characterize the scheduler is a static one. It
must also be complementary to the structure model via a good
expression of the follow-up of the real time process evolution.
Therefore, a methodology assuring the coherence between the
used diagrams and the support of scheduling model is
important.

In [14], the author’s work consists in developing a
middleware in order to implement scheduling algorithms on a
real platform. It just focuses on mapping and ordering tasks
dynamically for platforms using a middleware layer between
the application and the RTOS.

In [10], a model driven approach aims at proposing generic
RTOS APIs (Application Programming Interfaces) and
generating a fully-functional code by transforming generic
RTOS APIs into RTOS specific APIs. This proposition can
describe most of typical RTOS services but does not support
real time task scheduling.

III. RTOS MODELING
The proposed methodology presents a step ensuring

coherence between the various used UML diagrams and
covering the behavioral aspect of the system as real time
constraints. First, the model of the RTOS structure is defined.
Then, a statechart diagram related to the state of a real time
task is specified. After that, the temporal semantics presented
by the statecharts [1] is given. While defining the semantic
variation points of the statecharts, some techniques such as the
reification and enumeration of the states and the events are
applied. The model related to the RTOS structure corresponds
to the source model during the stage of model transformation.
During this stage, the scheduling model represents the target
model.

After defining the RTOS models, temporal constraints such
as deadline, duration, etc are specified using Object Constraint
Language (OCL).

A. RTOS structure model
 A class diagram is proposed for the description of the
RTOS structure. It describes the major components of the
RTOS.
The class diagram which is presented by Figure 1 is
characterized by the following entities:

 Task: It is the most important component of the
RTOS. A task must acquire a great number of
information in order to manage their scheduling

 Event: It causes the change of a task state
 ISR: Interrupt Server Routine: It is the routine in

charge of the interruption processing. In this context,

it makes the relay between the material interruption
mechanism and the software one

 Alarm: Based on a meter, an alarm could activate a
task, impose an event or activate an alarmCallBack

 Counter: It presents a software/ hardware source for
an alarm. It is an object intended for the recording of
"ticks" coming from a timer

 Resource: This entity is used to coordinate the
concurrent accesses to shared resources. It is similar
to semaphores. It is also used for explaining resource
management.

 MeanOfCommunication: It is an abstract interface
which manages data between active objects [4]. The
class ProtectedVar, which implements this interface,
associates a mechanism of data protection
(semaphore). In addition, LettreBox uses a file of
messages. Besides, the read and write methods of this
interface can update or get the value of the
protectedVar class. This entity ensures data
protection

 Watchdog: The ISR contains one or more watchdog
timers. The watchdog could possibly provide
debugging information

 Precedes: It illustrates the dependence of a task on
another. It includes the definition of operational
semantics [2].

Before presenting the scheduling model, it should be born
in mind that each state of a running task on RTOS can take
only one of the following values: {Waiting, Running, Ready,
Suspended, Created}. As for the event, it has these values :{
terminate, activate, start, wait, preempt, release, create}.

B. RTOS scheduling model based on statecharts implantation
The structure of the statecharts diagram is, nonetheless,

given a precise specification [17]. It can not easily be
understood. So, UML 2.0 Statecharts present some semantic
variation points. These variation points [9] concern,
principally, three aspects: the time management, event
selection policy, and transition selection policy.

A set of approaches [8, 11] was proposed in the literature in
order to define these semantics and implement the statecharts.
The present work adopts the approach proposed by [6], whose
technique is based on the enumeration and reification

The reification consists in the transformation of states into
specific class hierarchy through the application of the design
patterns.

A solution to separate the behaviour related to a state in an
object, is to reify states through the use of the state pattern [7].
To reify and select the right transition events, the command
pattern [7] is applied to the entity Task (See Figure 2). In
order to ensure the progression of the automat, it is necessary
to focus on the deterministic aspect of the system. It is also
essential to determine the state running of the automat and the
behavior to be adopted according to the event which has
occurred.

 3

Figure 1: Static Model of the RTOS Structure

Regarding the enumeration of the states and the events, the

code reacting the progression of the automat is localized in
the method processEvent(). As for the enumeration of the
states and the reification of the events, the code will be set out
again between the method processEvent() and execute() of
each class. As far as the reification of the states and the
enumeration of the events are concerned, the code will be
distributed between the method processEvent() and the
method processEventPlay() of each class state. Finally, when
the states and the events are reified, the code is distributed
between the method processEvent() principal class, the
processEvent() methods of the state class and the execute()
methods of the class called event.

The last solutions based on enumeration and reification do

not allow the representation of the concept of file messages
related to the automat progression. Time is not taken into
account. To overcome this problem, the use of the Active-
Object pattern is, therefore, essential since it is effective for
the achievement of the various policies of parallelism as
shown in Figure 2.

Following the reification application of the states and
events, as well as the evolution illustration of the automat, the
final model represented in Figure 2 will be considered as the
target model during the transformation process.

 4

Figure 2: RTOS scheduler model

C. Specifying temporal constraints
In order to focus on software correction quality during

model transformation, OCL is used to explain temporal
constraints such as deadline and duration. Let us take the
example of the attribute progress of the Task entity, whose
value must always be lower than the deadline. This constraint
is translated into OCL as shown in Figure 3.

Figure 3: Example of Temporal constraints specified with

OCL

IV. CASE STUDY
The objective of this step consists in transforming an XML

(Extensible Markup Language) source model obtained
automatically from an UML source model to an XML target
model. The model transformation is based on ATL (ATLAS
Transformation Language) [5]. To describe the model
transformation, the KM3 (Kernel MetaMetaModel) language
is used. It makes it possible to define models according to
meta-model MOF (Meta Object Facility) in a textual form.

The source model transformed corresponds to the diagram
of class presented by Figure 1. The code corresponding to
XMI (XML Metadata Interchange) based on XML offers a
tree structure to our model by presenting the classes and the
attributes in textual format.
To do these transformations, four tasks are taken with various
characteristics. The scheduling of these tasks is made
according to the scheduling algorithm Rate Monotonic [3].

 5

The four tasks are specified in ecore format as shown in
Figure 4.

Figure 4: Tasks example

The model transformation consists of the following three
major stages:

 Stage 1 (Scheduling analysis): It checks the
schedulability conditions

 Stage 2 (Initialisation): It puts all task instances in the
event pool and initializes the tasks and events states

 Stage 3 (Scheduling): It ensures tasks scheduling
through time progressing

A. Scheduling Analysis
 The basic schedulability conditions for Rate Monotonic
were derived from a set of n independent periodic tasks with a
fixed priority. A set of tasks is schedulable by the RM
algorithm if (1) is verified where Ti is the task period, n is the
number of tasks and Ci is the worst case execution time.

)12(
1

1
−≤=∑

=

n
n

i i

i n
T
CU

 (1)

Using ATL, Equation (1) is specified as shown in Figure 5:

Figure 5: Schedulability conditions explained with ATL

B. Initialization
After checking schedulability condition, it is important to

take instances of all classes of target model. The rule called
Task2Task aims to transform Task source model elements to
Task target model elements. It is described by Figure 6:

Figure 6: Tasks initialization

After transforming all instances of the task source model

into the target model one, it is important to use a helper named
isCreate which selects all tasks with created state. In the same
way, four other helpers are implemented in order to cover the
other task states. IsCreate helper is represented by Figure 7.

Figure 7: isCreate Helper

The previous helper is used via a rule called

Task2CreateState. The rules «task2WaitState»,
«task2RunningState », « task2StopState », «task2ReadyState
» are implemented with the same manner as shown in Figure
8.

Figure 8: Task2WaitState helper

After initializing all the tasks and putting them in the

eventPool, the four tasks must be scheduled using Rate
Monotonic algorithm with a fixed priority. These tasks are
scheduled according to each time unit. To do that, it is
important to follow the following steps:

For each moment, the file message Eventpool gives an idea
about the existing tasks, their current attributes, specially the
progress and the state ones.

C. Scheduling
According to Rate Monotonic, the task with the highest

priority is extracted from the event pool. To find the highest
priority, all the instances of this class are collected in a

 6

sequence. These instances are sorted using the instruction
asSet(). This operation returns a set containing the elements of
the self collection. Order is lost from a sequence or an ordered
set. The helper that defines the highest priority is shown by
Figure 9.

Figure 9: Extracting task with highest priority using ATL

During the last step, the task with the highest priority is

running while the other ones are waiting or blocked. So, the
class RunningState of the target model is instanced. Thus,
after selecting the highest priority, the concerned task is
defined via a helper called check2 and it is used in the
following rule and represented by Figure 10.

Finally, after executing all the necessary rules, the target
model is written in ecore format. It contains the four tasks
scheduled according to Rate Monotonic algorithm. This file
can be translated to any specific platform, i.e., to any
computer programming language.

Figure 10: Instantiation of RunningState class

V. CONCLUSION
MDE is a well-known technique that has been successfully

applied in ERTS design, especially for hardware and
application modeling. In this paper, the mentioned technique
is used for integrating RTOS modeling in high abstraction
level. At this level, concepts undergo abstraction and are

independent of realisation and specific platform execution.
The major contributions are the definition of independent
platform RTOS models and the production of the code that
ensures tasks scheduling.

MDA pattern based on statecharts implementation
technique is very effective since it leads to the creation of
scheduling model. During model transformation, scheduling
model is considered as the target model while the structure
model is the source one. The proposed approach is validated
through a case study on Rate Monotonic algorithm.

Future work includes the focus on annotating used UML
diagrams with reliability attributes to identify and recover
system from failures.

REFERENCES
[1] A. Cuccuru, C. Mraidha, F. Terrier, S. Gérard. Templatable

Metamodels for Semantic Variation Points. ECMDA-FA 2007:
68-82

[2] B. Combemale, S.Rougemaille, X. Crégut, F. Migeon, M. Pantel,
C. Maurel. Expérience pour décrire la sémantique en Ingénierie
des modèles. IDM6 LILE 26 28 juin 2006

[3] C. L. Liu , James W. Layland, Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment, Journal
of the ACM (JACM), v.20 n.1, p.46-61, Jan. 1973

[4] D. Thomas, C. Baron, B. Tondu. Ingénierie dirigée par les
modèles appliquée à la conception d’un contrôleur de robot de
service. IDM6 LILE 26 28 juin 2006.

[5] Frédéric Jouault, Ivan Kurtev: Transforming Models with ATL.
MoDELS Satellite Events 2005: 128-138

[6] F. Chauvel and J. Jézéquel. Code generation from UML models
with semantic variation points. In S. Kent L. Briand, editor,
Proceedings of MODELS/UML'2005, volume 3713 of LNCS,
pages --, Montego Bay, Jamaica, October 2005. Springer

[7] Gamma, Erich, Helm, Richard, Johnson, Ralph, and Vlissides,
John. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Longman Publishing Co., Inc., 1995.

[8] G. Pinter and I. Majzik. Impact of Statechart Implementation
Techniques on the Effectiveness of Fault Detection
Mechanisms, Proceedings of the 30th EUROMICRO
Conference (EUROMICRO’04). 1089-6503/04 IEEE

[9] Harel, David and Naamad, Amnon. The STATEMATE
Semantics of Statecharts. ACM Transactions on Software
Engineering and Methodology, 5(4):293–333, October 1996.

[10] Ji Chan Maeng, Dongjin Na, Yongsoon Lee, Minsoo Ryu:
Model-Driven Development of RTOS-Based Embedded
Software. ISCIS 2006: 687-696

[11] L. Gomes, A. Costa. From Use Cases to System
Implementation: Statechart Based Co-design, Proceedings of the
First ACM and IEEE International Conference on Formal
Methods and Models for Co-Design (MEMOCODE’03). ISBN
0-7695-1923-7/03 2003 IEEE.

[12] M. Cruz Valiente, G. Genova, J. Carretero. UML 2.0 Notation
for Modeling Real Time Task Scheduling. Carlos III University
of Madrid JOURNAL

[13] OMG Document Number: ptc/07-08-04. A UML Profile for
MARTE, Beta 1 OMG Adopted Specification, August 2007

[14] Peng Yang, Francky Catthoor: Dynamic Mapping and Ordering
Tasks of Embedded Real-Time Systems on Multiprocessor
Platforms. SCOPES 2004: 167-181

 7

[15] S. Bernardi and D. Petriu. Comparing UML Profiles for Non-
functional. Requirement Annotations: the SPT and QoS Profiles,
SVERTS 2004

[16] Shourong Lu; Halang, W.A.; Gumzej, R. Towards platform
independent models of real time operating systems. Industrial

Informatics, 2004. INDIN '04. 2004 2nd IEEE International
Conference on Date: 26-26 June 2004, Pages: 249 - 254

[17] S. Kholgade, J.White, H. Reza: Comparing the Specification of
a Near-Real Time Commanding System Using Statecharts and
AADL. ITNG 2007: 355-360

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

