Volume 1, Number 1, December 2010

Journal of Convergence

Automatic Method For Efficient Hardware
Implementation From RVC-CAL Dataflow: A LAR
Coder baseline Case Study

Khaled Jerbi, Matthieu Wipliez, Mickaél Raulet,
Marie Babel, Olivier Déforges

INSA of Rennes UMR CNRS 6164
IETR Group
Rennes, France
khaled.jerbi@insa-rennes.fr

Abstract— Implementing an algorithm into hardware platforms
is generally not an easy task. The algorithm, typically described
in a high-level specification language, must be translated into a
low-level HDL language. The difference between models of
computation (sequential versus fine-grained parallel) limits the
efficiency of automatic translation. On the other hand, manual
implementation is time-consuming, because the designer must
take care of low-level details, and write test benches to test the
implementation’s behaviour. This paper presents a global design
method, from high level description to implementation. The first
step consists of the description of an algorithm as a dataflow
program using RVC-CAL language. The next step is the
functional verification of this description using a software
framework. The final step consists of an automatic generation of
an efficient hardware implementation from the dataflow
program. The objective is to spend the greater part of the
conception time in an open source software platform. We use this
method to quickly prototype and generate hardware
implementation of a baseline part of the LAR coder, from an
RVC-CAL description.

Keywords- Dataflow programming, RVC CAL language, LAR
coder, fast hardware implementation, Orcc

. INTRODUCTION

The complexity of signal processing algorithms is continually
increasing, which involves a very long description code. For
designers this code is very hard to implement on hardware
platforms. Hardware implementation requires the description
of the process using an HDL language like VHDL or Verilog.
These dataflow designs are not easy to develop and especially
not to validate. The validation of a dataflow design requires
the development of stimulus codes, such as a VHDL test
bench, and the use of simulation tools. This explains the gap
between validating and implementing a process. Therefore
designers can hardly satisfy the time-to-market constraints. To
solve this problem, designers tend to design solutions to
describe the process in at a higher level. In the video coding
field, a new high level description language for dataflow
applications, called RVC-CAL (Reconfigurable Video
Coding) [1], was standardised by the MPEG community
through the MPEG-RVC standard [2]. This standard provides

FTRA Copyright (© 2010 Future Technology Research Association International

Mohamed Abid

National school of engineers of Sfax
CES Lab
Sfax, Tunisia
mohamed.abid@enis.rnu.tn

a framework to define different codecs by combining
communicating blocks developed in RVC-CAL.

The objective of our work is to provide a hardware
implementation generated from a high level description using
the RVC-CAL programming language [3]. We use an efficient
hardware generator from RVC-CAL called Cal2HDL [4], [5].
It uses an intermediate representation of the OpenDF project
[6]. Cal2HDL supports all the structures of the RVC-CAL
language except the multi token and some loop structures.
Consequently, we have to manually change these structures to
their equivalents supported by the tool, which involves a new
code and thus an additional verification step.

In this paper, we introduce an original global approach to
expedite the validation of an RVC-CAL design and
consequently the dataflow generation. This approach was
applied to the LAR (Locally Adaptive Resolution) image
coder [7] to provide a realistic application context. The current
design does not contain the full LAR coder, but we already
achieved some of the main parts of the LAR baseline with an
RVC-CAL description.

In Section 11, we present the method and the languages and
frameworks used. In Section Ill, the LAR coding principle is
detailed. Finally Section IV shows an application of the
method on the LAR coder baseline and also provides some
implementation results.

II. DATAFLOW PROGRAMMING FOR HARDWARE
IMPLEMENTATION

The purpose of this work is to more rapidly obtain a dataflow
description from an RVC-CAL design. In the following, we
present a new global method for the functional verification of
an RVC-CAL code. As presented in Figure 1, the design is
described at a high level with RVC-CAL language. Then a
software platform is used for functional validation and FIFO
sizing. Once the code is correct, it undergoes a modification to
be synthesisable with Cal2HDL by unrolling the loops and the
repeat structures. The validation of this code is realised with
the same software platform. The implementation is finally
insured by using a hardware synthesis and prototyping
platform.

85

Journal of Convergence

Volume 1, Number 1, December 2010

Results
Hardware
sythesis tool
VHDL/ Verilog

High level
RVC-CAL

Low level
RVC-CAL
Code
modification

C Compiler

Errors

High level OK

Low level OK

Cal2HDL Cal2HDL feedback

Software validation Hardware synthesis

Figure 1. Method overview

A. Dataflow programming with RVC-CAL language

MPEG RVC is under development as part of the MPEG-B
standard [3], which defines the framework and the language
used to describe components. RVC-CAL [3] is a textual and
domain specific language for writing dataflow models (Figure
2), more precisely for defining actors of a dataflow model in a
high level description. An actor represents an autonomous
entity and a composition of actors explicitly describes the
concurrency of an application. The RVC-CAL Actor
Language has been defined to be platform independent and
retargetable to a rich variety of platforms.

An RVC-CAL actor is a computational entity with input
ports, output ports, states and parameters. An actor
communicates with other actors by sending and receiving
tokens (atomic pieces of data) through its ports. An actor can
contain several actions. An action defines a computation,
which consumes sequences of tokens from input ports and
produces sequences of tokens to output ports. Actions have
data-dependent conditions for their execution. The execution
of an action may change the actor’s internal state, so that the
produced output sequences are functions of the consumed
input sequences and of the current actor state. RVC-CAL
supports higher-level constructs such as multiple-token
reads/writes and list generators.

—p | FIFO

Sl

Consume/produce tokens
and medify mternal states

Figure 2. CAL dataflow model

86

B. Functional verification on a software platform

CAL code validation is usually based on the OpenDF
simulator. It has to be stimulated with manually given tokens
via data generation and data display actors. The result is a set
of values that have to be verified. The originality of our
approach is to realise the CAL validation step using an Open
RVC-CAL Compiler (Orcc) [8]. Orcc is an open source
software (http://sourceforge.net/projects/Orcc/), developed at
the IETR laboratory of the INSA of Rennes. Orcc is a source-
to-source compiler that compiles RVC-CAL dataflow
programs to a target language. It is composed of 3 main parts:

1- The front-end that parses the code into an Abstract
syntax tree.

2- The middle-end which analyses the behaviour of actors.

3- The back-end that generates the target language through
predefines templates. Available target languages are C, C++,
Xlim, Promela, Java, LLVM and VHDL.

In our work, we use the C backend of Orcc. This choice is
explained by the fact that C language is the most used
language in software programming. After compilation, we can
easily assign a video or an image as an input and visualise the
output. It is very important to mention that Orcc compilation,
video processing and display using the C compiler, are very
fast steps. In addition, the software debug is less time
consuming than hardware one. Consequently, the CAL errors
are more easily detected and corrected faster. Moreover, we
can use Orcc to define the optimal FIFO sizes for lower
memory consumption in the hardware implementation.

C. HDL generation

We used Cal2HDL for dataflow generation. This tool parses
the CAL code, generates an XML representation for each actor
and synthesises the static single assignment (SSA) threads into
circuits based on basic operators. The final description is made
up of a Verilog file for each actor and a VHDL file for the top:
the highest hierarchical representation of the design
connections. The connection between the actors is insured by
synchronous or asynchronous FIFO buffers.

Currently, Cal2HDL does not support all the structures
used in a RVC-CAL description such as repeats and loops.
These structures have to be manually modified into several
actions managed by a finite state machine. Figure 3 shows an
example of an action writing the 16 values of a buffer named
"tab" in the output port called "OUT". The instruction "repeat
16" enables access to the first 16 values of the buffer "tab".
OUT: [tab] repeat 16

write: action ==

end

Figure 3. High level RVC-CAL example

This action has to be modified in the code presented in Figure
4. The modifications consist of deleting the "repeat™ structure
to have an action that only produces one token and repeats the
basic action 16 times. The repetition process starts by
executing the "write" action until the "write_done" action is
validated. Everything has to be managed by a finite state
machine defined by the structure "schedule fsm" in Figure 4.

Copyright © 2010 Future Technology Research Association International FTRA

Volume 1, Number 1, December 2010

Journal of Convergence

write: action ==> OUT: [out]
do
out := tab[counter];
counter := counter + 1;

end

write_done: action ==

guard
counter = 16
do
counter := 0;
end

schedule fsm write:
write (write) ——> write;

write (write_done) —> nextstate;

end
Figure 4. Low level RVC-CAL example

After this transformation we obtain a synthesizable code and
Cal2HDL can generate the adequate hardware description.

I1l. THE LAR CODER

To apply and validate the global method introduced, we chose
the LAR image coder. This coder is developed at the IETR/
INSA of Rennes laboratory. It is based on the idea that spatial
coding can be locally dependent on the activity in the image.
Thus, the higher the activity the lower is the resolution. This
activity is dependent from the variation or the uniformity of
the local luminance, which can be detected using a
morphological gradient that will be further explained. Another
aspect of LAR coding is based on considering the fact that an
image is a superposition of a global information image (mean
blocks image), and the local texture image, which is given by
the difference between the original image and the global one.
This principle is modelled by (1) where I is the original image,
I’ is the global information image and (I-I’) is the error image.
The dynamic range of the error image is consequently
dependent on the local activity. In uniform regions, I’ values
are close or equal to | consequently (I-I’) values are around
zero with a low dynamic range.

=1+ (1) (1)

Considering these principles, the LAR coder concept
(Figure 5) is composed of two parts: the FLAT LAR [9] which
is the part insuring the global information coding, and the
spectral part which is the error spectral coder.

Different profiles have been designed to fit different types
of application. In this paper, we focus on the baseline coder. Its
mechanisms are detailed in this section

FTRA Copyright (© 2010 Future Technology Research Association International

Original FLAT | | FLAT | resgcl’::ion
image coder |- jdecoder .
image
transmission
| Spectral | Spectral | |
coder |- decoder
transmission |
Middle/high
resolution
image
Figure 5. LAR concept

A. FLAT LAR

The Flat LAR is composed of 3 main parts: the partitioning,
the block mean value computation and the DPCM
(Differential Pulse Coding Modulation).

1) Partitioning: In this part, a Quad-Tree partitioning is
applied to the image pixels. The principle is to consider the
lowest block size (2x2) then to compare the difference
between the maximum (MAX) and the minimum (MIN)
values of the block with a threshold (THD) defined as a
generic variable for the design. If (MAX - MIN) > THD then
the actual block size is considered. In the other case, the (Nx2)
X (Nx2) size block is required. This process is recursively
applied to the whole image blocks. The overall output is the
block size image.

2) Block mean values computation process: This process
is based on the Quad-Tree output image. For each block of the
variable size image, a mean value is placed on the block, as
presented in the example shown in Figure 6.

1110, |. [25]|25|2930 2 (20202122 |2 |a
e | |. [26]27]36]a0 2 (2021222 |2 |
39 394120 202021021122 |2 |4

25 20|23 (30 2z 1212122 [a]

Quad-Tree X514 [4 (4 |2 |2 |2 |2

a a4 fafal2a]2]2]2

a lafafalz]2]z]2

a2 lafafal2a]|2]2]2

Criginal image Block size image
10|10 . . 3131|3131
10|10|. . 3131|3131

31(31(31 31
Block mean value :
process r; :

31(31(31 31
S/

Black mean value image
Figure 6. Block mean value process example

3) The DPCM: The DPCM process is based on the
prediction of neighbour values and the quantisation of the
block mean value image. The observation that a pixel value is
mostly equal to a neighbouring one led to the following

87

Journal of Convergence

Volume 1, Number 1, December 2010

estimation algorithm. If we consider the pixels in Figure 7, X
value is estimated with the algorithm: If |B-C| < |A-B| then X
=Aelse X=C

o
O

Figure 7. DPCM prediction of neighbouring pixels

B. Spectral coder: the Hadamard transform

The spectral coder, also called the texture coder, is composed
of a variable block size Hadamard transform [10] and the
Golomb-Rice [11] [12] entropy coder.

The Hadamard transform derives from a generalised class

of the Fourier transform. It consists of a multiplication of a 2™
x2™ matrix by an Hadamard matrix (Hm) of the same size. The

transform is defined as follows:
Ho is the identity matrix so HO:1. For any m>0, Hm is then

deducted recursively by (2).

E{m—l
Eﬂn—l

Eﬂn—l

“Iim—1

Hm:%

@

Here are examples of Hadamard matrices:

Ho=1,
1
_ 1
Hi=1751 1'
11
T B
1 -
H2=pl 0 1 a4 oo
I

IV. HARDWARE IMPLEMENTATION OF THE LAR CODER
BASELINE

We have already developed and implemented a subset of the
Flat LAR coder using RVC-CAL in previous work as
described in [13]. Therefore, from this preliminary
implementation we would almost achieve the implementation
of the whole LAR codec following MPEG-RVC standard
recommendations.

This Section explains the mechanisms of the Hadamard
transform and the Quad-Tree used in the implementation.
Dataflow implementation and synthesis results are also
presented and discussed.

88

A. Hardware implementation

The LAR coding is dependent on the content of the image. It
applies to the Quad-Tree a morphological gradient to extract
information about local activity on the image. The output is
the block size image represented by variable size blocks: 2x2,
4x4 or 8x8. Using the block size image, the Hadamard
transform applies the adequate transform onto the
corresponding block. It means that if we have a block size of
2X2 in the size image this block will undergo a 2X2
Hadamard (Hl) and normalisation specific to the 2X2 blocks.

This process is identically applied for 4X4 and 8X8 blocks. A
quantisation step, adapted to the current block size, is applied
on the Hadamard output image. For each block size, a
quantisation matrix is pre-defined. In practice the
normalisation during the Hadamard transform is postponed to
be achieved with the quantisation step so to decrease the noise
due to successive divisions. The implemented LAR is
presented in Figure 8.

Block size

Quad tree

Memaory
management

(Norm.
H1 — H2 — H3 &

2x2
blocks

Quant.

H2 input Hl
Memory H2 output

Management MIETER)
management

H1
H3 input H3 output
Memory

Memory
management management

Figure 8. LAR baseline developed model

As a first step, the memory management block stores the pixel
values of the original image line by line. Once an 8x8 block is
obtained, the actor divides it into sixteen 2x2 blocks and sends
them in a specific order as presented in Figure 10.

This order is very important to improve the performance of
the remaining actors. In fact, considering Figure 10, when the
tokens are so ordered the first 4 tokens correspond to the first
2x2 block, the first 16 tokens to the first 4x4 block, etc.
Consequently, and as presented in Figure 8, the output of H1
is automatically the input of H2 and the output of H2 is
automatically the input of H3.

In the Quad-Tree, this order is also crucial. As presented in
Figure 9, the superposition of the same actor (max for
example) three times provides in the output of the first actor
the maximum values of 2x2 blocks, in the output of the second
actor the maximum values of 4x4 blocks and finally the
maximum values of 8x8 blocks in the output of the third one.
Using the maximum and minimum values the morphological
gradient in the Gradstep actors can be processed to extract the
block size image. The same idea is used to calculate the block
sums with three superposed sum actors. The block mean value

Copyright © 2010 Future Technology Research Association International FTRA

Volume 1, Number 1, December 2010

Journal of Convergence

actor considers the sums and the sizes to build the block mean
value image

| Max <{ Max Max
2x2 ||| 4xa 8x8
< Y
Gradstep
process
e~

[o
{32 N

Min .
4x4

Sum
4x4

Block mean
value process

Figure 9. Quad-Tree design

We also notice that an (H2) transform can be achieved using
the (Hl) results of the four 2X2 blocks constituting the 4X4
block. The same observation can be made for (H3). This

ascertainment is very important in order to decrease the
complexity of the process. In fact, the Hadamard transform of
the LAR applies an (Hl) transform for the whole image, then

it applies the (H2) transform only for the 4X4 and 8X8 blocks,
and the (H3) transform only for the 8X8 blocks. (H2) and (H3)

transforms are different from the full transforms as they are
much less complex. Consequently, as shown in Figure 8, we
designed the H2 and the H3 using H1 actors associated with
memory management units. They sort tokens into an adequate
order and, considering the block size, determine whether the
block is going to undergo the transform or not.

It is very important to mention that almost all actors have
been developed with generic variables for memory sizes or
gradsteps, which means that the design are flexible for easy
transformation from one image size to another, or for adding
higher Hadamard processes (H4, H5 ...).

2x2 Block
1 -2 | -5
3——4 | 78
«5_/;@ ~134-14
11+12 | 15116

Figure 10. Memory management unit output order

FTRA Copyright (© 2010 Future Technology Research Association International

The different actors of the LAR baseline coder have first been
developed with a high level RVC-CAL description for a
352x288 image size. To optimise the transform, we added a
ping-pong data management algorithm. The principle of this
algorithm is to avoid the repetitive latency caused by data
storage while reading tokens, by combining the tokens’
reading and writing in the same action. The idea is to write the
input data in half of a memory size and then to use this data
while writing in the other half. Finally we just have to switch
the reading and the writing pointers to the opposite parts of the
memory. An example of ping-pong memory management of a
4 buffers memory is presented in Figure 1.

1st clock event [Datal ‘ ‘ ‘

Storage of the 1st token in the 1st buffer

2nd clock event [Datal ‘ Data2 ‘ ‘

Storage of the 2ond token in the 2nd buffer

3rd clock event [Datal ‘ Data2 ‘ Data3 ‘

\

Storage of the 3rd token in the 3rd buffer & use of datal and data2

4th clock event [Datal ‘ Data2 ‘ Data3 ‘ Data4

\

Storage of the 4th token in the 4th buffer & use of datal and data2

5th clock event [Data5 ‘ Data2 ‘ Data3 ‘ Data4

\

Storage of the 5th token in the 1st buffer & use of data3 and datad

Figure 11. Ping pong example of a 4-buffer size memory management

In RVC-CAL language, the solution is to use pointer functions,
as ra() and wa() in the example in figure Figure 12. After
reading and filling the half of the memory, a boolean flag half
changes the read and the write pointers represented by ra() and
wa(). Thus, an alternation of read and write is created in the
action gradient. Consequently, while writing tokens, that actor
is reading new ones for the next process which considerably
decreases the processing time.

Timing performances have then increased considerably. Other
optimisations can be added by treatment anticipation, but they
have not been added in this case because the design would be
a low level one.

A reverse Hadamard block was added for validation. The
whole design was compiled with Orcc to obtain the C code of
the actors. C code was compiled with a C compiler. To test the
design we applied images and videos in the inputs. The
objective was to obtain an output exactly equal to the input, as
presented in Figure 1.

89

Journal of Convergence

Volume 1, Number 1, December 2010

bocl half := false;

function wal) int :

bitor{ bitand{cnt,BLK_S5IZ+BLE_SZI-1),

if half then BLE_ SZ-BLE_S5Z else 0 end)
end
function raf) int :

bitor{ bitand{cnt,BLK _SZ+<BLE_SZ-1),

if half then 0 else BLE_S5Z+BLE_5E end)
end

ead_bloc_size : action BLK_SE_IN: [size_in]

L H

o
2z in[ent]:=size_in;

cnt:=cnt+1;

end

done : action MAX: [max], MIN: [min]
guard cnt= BLE_SZ+BLEK S5I

do
max_tmp:=-max;
min_tmp:=min;

half : half;
cnt:=0;
end
gradient : action BLE_SI_IN:[size_in BLE_SZ OUT: [out]
var
int out

do

=zz_in[wa ()] zize_in;
if (max_tmp min_tmp<GRADSTEP) then
out:=BLE_S5E;
else
out:=zz_in[ra()];
end
cnt :=cnt+1;
end
sches
rea read;
rear read write;
rea: read_write;
real read_write;
end

priority
done read_bloc_size;
done gradient;

end

Figure 12. Ping-Pong memory management example

Hadamard l:>‘lnverse Hadamard

Figure 13. Software validation

Once the required pixel values are obtained the design is
validated and consequently so is the RVC-CAL code. At this
level, the VHDL/Verilog generation is not possible since
Cal2HDL cannot generate code from the high level RVC-CAL.
It was necessary to change the RVC-CAL code into another
low level code synthesisable with Cal2HDL, as explained in
Section Il. Figure 14 shows the example of a “max 2x2” actor
in a high level description with “repeat” and the “foreach”
loops. This actor is translated to a low level one as presented
in Figure 15.

actor max2x2() wuint(size=8) IN - uint (size=8) OUT:
max2x2: action IN:[input] repeat 4 - QUT: [out]
VAr
int out:= 0
do

foreach int i1 in Integers(0, 3) do
out:= if input[i]>out then input[i] else cut end;
end
end

Figure 14. High level RVC-CAL example

actor maxZx2 () int (size=9) IN - int (size=9) OUT:
int (size=5) cpt: 0;

int (size=9) max: 0;

init: action IN: [in(0]
do
max:

end

in0 ;

compare action IN: [in0Q]
do
if max < in0 then
max:=1in0;
end
cpt:
end

cpt+1;

send : acticon - QUT: [max]
guard cpt 3

do

cpt - o ;

end

schedule fsm init
init { init)
compare { compare)
compare (send)
end

- Ccompare;
- Ccompare;
init;

pricrity
send>compare ;
end

Figure 15. Low level RVC-CAL example

Thus, we obtained a dataflow implementation of the LAR
baseline.

With our approach, the OpenDF validation of the classic
method was avoided. In that classic method, we used to
develop the RVC-CAL code and add actors for data
generation and display: The actor of data generation is
composed of a table containing the input image pixel values
and some actions to consecutively put these values in the input
port of the design. The design output data can be displayed
using the “println()” function. Validation is consequently a
tough and relentless value comparison process. The use of C
compilers allows us to use images and videos for the test and
we are able to have more information about an error when we
have both the data values and image display.

90 Copyright © 2010 Future Technology Research Association International FTRA

Volume 1, Number 1, December 2010

Journal of Convergence

B. Results

The HDL project manager environment used is Xilinx ISE
Foundation 11.1 and the hardware simulation tool is ISE
simulator (Full version). We manually developed the test
bench by initialising the different signals and generating the
stimulus values for the inputs.

After compilation, simulation, RTL synthesis and place
and route on an FPGA: family=virtex4; device=xc4vsx35;
Package=FF668; speed = -12, we obtain the area consumption
results presented in Table 1.

TABLE I. AREA CONSUMPTION FOR 352X288 IMAGE SIZE
Criterion value
Slice Flip Flops 1.437/30.720 (4%)
Occupied Slices 2.027/15.360 (13%)
4 input LUTs 3.637/30.720 (11%)
FIFO16/RAMB16s 26/3192 (13%)
Bonded 10Bs 99/448 (22%)

The time synthesis performances are mentioned in Table 11

TABLE II. TIMING RESULTS
Criterion 352x288
Output frequency(MHz) 22.4
maximum frequency(MHz) 81.4
Latency(ps) 132.79
processing time(ms) 5.8
Minimum input arrival
time before clock(ns) 12.134
Maximum output required
time after clock(ns) 8.188
Maximum combinational
path delay(ns) 5.083

Optimisation solutions are in development to decrease the
latency and consequently increase the frequency. In terms of
development time, the whole design took about 70 days to be
achieved. It is very important to mention that over 90% of the
conception time was achieved in the open source software
platform where the debug and validation are easier and faster.
The most complex and time consuming part of the flow was
the manual transformation of the RVC-CAL from high to low
level. This can be explained by the fact that the code is longer
and consequently harder to debug because of the inaccurate
feedback of Cal2HDL. We are currently looking for solutions
to automate this step. This task may be achieved by improving
Cal2HDL Java source code or by using an intermediate
representation of Orcc. The second case seems to be more
feasible. However, this global framework introducing a
software functional checking before synthesis process is
significantly faster than a hardware implementation directly
from the RVC-CAL description.

V. CONCLUSION

This paper presented a method to automatically generate an
efficient functional hardware implementation from an RVC-
CAL dataflow program. The method presented was used to
obtain a hardware implementation of a LAR coder baseline.
This transform implementation is a part of our work to achieve
the implementation of the whole LAR image codec. We

FTRA Copyright (© 2010 Future Technology Research Association International

believe that frequency can be increased, and latency decreased,
by further optimisation of memory management actors.

With our method, the design cycle of hardware
implementation consists in carrying out the functional
verification in a software environment, and testing the
hardware implementation once the program is correct. The
validation in the software platform is very fast and allows for
huge data testing, notably images and videos with
visualisation rather than using hardware simulators at every
design step. We used Orcc to generate C code from RVC-CAL
descriptions and to fix the optimal FIFO sizes. The C code
was then compiled and run to test the program behaviour. The
hardware implementation was obtained by automatically
transforming the RVC-CAL descriptions with Cal2HDL.
Cal2HDL generates a valuable but low level and hardly-
understandable Verilog code. Concurrently, as presented
recently in [14], Nicolas Siret et al. are using the IR of Orcc to
generate a high level VHDL backend. Code generation with
this backend is clearly faster than Cal2HDL, especially for
high complexity designs, but it has not been sufficiently tested.
Later this tool would be an alternative to Cal2HDL. Currently,
high-level RVC-CAL descriptions must be manually
transformed to lower-level code for Cal2HDL to be able to
synthesise it. Automating this transformation will considerably
reduce design time. Indeed, we are already starting working on
this automatic transformation of the IR of Orcc.

REFERENCES

[1] J. Eker and J. Janneck, “CAL Language Report,” Tech. Rep. ERL
Technical Memo UCB/ERL MO03/48, University of California at
Berkeley, Dec. 2003.

[2] S.S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mattavelli,
and M. Raulet, “Overview of the MPEG reconfigurable video coding
framework,” Journal of Signal Processing Systems, 2009,
dO1:10.1007/s11265-009-0399-3.

[3] ISO/IEC FDIS 23001-4: 2009, “Information Technology - MPEG
systems technologies - Part 4: Codec Configuration Representation,”
2009.

[4] R.Gu,J. W. Janneck, S. S. Bhattacharyya, M. Raulet, M. Wipliez, and
W. Plishker, “Exploring the concurrency of an MPEG RVC decoder
based on dataflow program analysis,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 19, no. 11, pp. 1646-1657,
20009.

[5] “Cal2HDL-openforge source” Available
http://openforge.sourceforge.net. [Accessed: December 2010]

[6] S.Bhattacharyya, G. Brebner, J.Eker, J.Janneck, M. Mattavelli,
C.von Platen, and M. Raulet, “OpenDF - A Dataflow Toolset for
Reconfigurable Hardware and Multicore Systems,” First Swedish
Workshop on Multi-Core Computing, MCC , Ronneby, Sweden,
November 27-28, 2008.

[7] ©O. Déforges, M. Babel, L. Bédat, and J. Ronsin, “Color LAR Codec: A
Color Image Representation and Compression Scheme Based on Local
Resolution Adjustment and Self-Extracting Region Representation,”
IEEE Trans. Circuits Syst. Video Techn., vol. 17, no. 8, pp. 974-987,
2007.

[8] J.W. Janneck, M. Mattavelli, M. Raulet, and M. Wipliez,
“Reconfigurable video coding: a stream programming approach to the
specification of new video coding standards,” in MMSys ’10:
Proceedings of the first annual ACM SIGMM conference on
Multimedia systems. New York, USA: ACM, pp. 223-234, 2010.

[91 O. Deforges and M. Babek, “Lar method: from algorithm to synthesis
for an embedded low complexity image coder,” |IEEE 3rd International
Design and Test Workshop, 2008.

[10] J. Poncin, “Utilisation de la transformation de hadamard pour le codage
et la compression de signaux d’images,” in Springer-Annals of
telecommunications, pp. 235-252, 1971.

[11] S.W. Golomb, “Run length codings,” IEEE Transactions on
Information Theory, vol. 12 no. 7, pp. 399-401, 1966.

from::

Journal of Convergence

Volume 1, Number 1, December 2010

[12] R.F. Rice, “Some practical universal noiseless coding techniques,”
Technical Report 79-22, 1979.

[13] K. Jerbi, M.Raulet, O.Déforges, and M. Abid, “Design of an
Embedded Low Complexity Image Coder using CAL language,”
DASIP 2009 proceeding, September 2009.

92

[14] N. Siret, M. Wipliez, J.F. Nezan, and A. Rhatay, “Hardware code
generation from dataflow programs,” DASIP 2010.

Copyright © 2010 Future Technology Research Association International FTRA

