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Abstract— Implementing an algorithm into hardware platforms 

is generally not an easy task. The algorithm, typically described 

in a high-level specification language, must be translated into a 

low-level HDL language. The difference between models of 

computation (sequential versus fine-grained parallel) limits the 

efficiency of automatic translation. On the other hand, manual 

implementation is time-consuming, because the designer must 

take care of low-level details, and write test benches to test the 

implementation’s behaviour. This paper presents a global design 

method, from high level description to implementation. The first 

step consists of the description of an algorithm as a dataflow 

program using RVC-CAL language. The next step is the 

functional verification of this description using a software 

framework. The final step consists of an automatic generation of 

an efficient hardware implementation from the dataflow 

program. The objective is to spend the greater part of the 

conception time in an open source software platform. We use this 

method to quickly prototype and generate hardware 

implementation of a baseline part of the LAR coder, from an 

RVC-CAL description. 

Keywords- Dataflow programming, RVC CAL language, LAR 

coder, fast hardware implementation, Orcc 

I.  INTRODUCTION 

The complexity of signal processing algorithms is continually 

increasing, which involves a very long description code. For 

designers this code is very hard to implement on hardware 

platforms. Hardware implementation requires the description 

of the process using an HDL language like VHDL or Verilog. 

These dataflow designs are not easy to develop and especially 

not to validate. The validation of a dataflow design requires 

the development of stimulus codes, such as a VHDL test 

bench, and the use of simulation tools. This explains the gap 

between validating and implementing a process. Therefore 

designers can hardly satisfy the time-to-market constraints. To 

solve this problem, designers tend to design solutions to 

describe the process in at a higher level. In the video coding 

field, a new high level description language for dataflow 

applications, called RVC-CAL (Reconfigurable Video 

Coding) [1], was standardised by the MPEG community 

through the MPEG-RVC standard [2]. This standard provides 

a framework to define different codecs by combining 

communicating blocks developed in RVC-CAL. 

The objective of our work is to provide a hardware 

implementation generated from a high level description using 

the RVC-CAL programming language [3]. We use an efficient 

hardware generator from RVC-CAL called Cal2HDL [4], [5]. 

It uses an intermediate representation of the OpenDF project 

[6]. Cal2HDL supports all the structures of the RVC-CAL 

language except the multi token and some loop structures. 

Consequently, we have to manually change these structures to 

their equivalents supported by the tool, which involves a new 

code and thus an additional verification step. 

In this paper, we introduce an original global approach to 

expedite the validation of an RVC-CAL design and 

consequently the dataflow generation. This approach was 

applied to the LAR (Locally Adaptive Resolution) image 

coder [7] to provide a realistic application context. The current 

design does not contain the full LAR coder, but we already 

achieved some of the main parts of the LAR baseline with an 

RVC-CAL description. 

In Section II, we present the method and the languages and 

frameworks used. In Section III, the LAR coding principle is 

detailed. Finally Section IV shows an application of the 

method on the LAR coder baseline and also provides some 

implementation results. 

II. DATAFLOW PROGRAMMING FOR HARDWARE 

IMPLEMENTATION 

The purpose of this work is to more rapidly obtain a dataflow 

description from an RVC-CAL design. In the following, we 

present a new global method for the functional verification of 

an RVC-CAL code. As presented in Figure 1, the design is 

described at a high level with RVC-CAL language. Then a 

software platform is used for functional validation and FIFO 

sizing. Once the code is correct, it undergoes a modification to 

be synthesisable with Cal2HDL by unrolling the loops and the 

repeat structures. The validation of this code is realised with 

the same software platform. The implementation is finally 

insured by using a hardware synthesis and prototyping 

platform. 
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Figure 1.  Method overview 

 

A. Dataflow programming with RVC-CAL language 

MPEG RVC is under development as part of the MPEG-B 

standard [3], which defines the framework and the language 

used to describe components. RVC-CAL [3] is a textual and 

domain specific language for writing dataflow models (Figure 

2), more precisely for defining actors of a dataflow model in a 

high level description. An actor represents an autonomous 

entity and a composition of actors explicitly describes the 

concurrency of an application. The RVC-CAL Actor 

Language has been defined to be platform independent and 

retargetable to a rich variety of platforms. 

An RVC-CAL actor is a computational entity with input 

ports, output ports, states and parameters. An actor 

communicates with other actors by sending and receiving 

tokens (atomic pieces of data) through its ports. An actor can 

contain several actions. An action defines a computation, 

which consumes sequences of tokens from input ports and 

produces sequences of tokens to output ports. Actions have 

data-dependent conditions for their execution. The execution 

of an action may change the actor’s internal state, so that the 

produced output sequences are functions of the consumed 

input sequences and of the current actor state. RVC-CAL 

supports higher-level constructs such as multiple-token 

reads/writes and list generators. 

  

Figure 2. CAL dataflow model 

. 

B. Functional verification on a software platform 

CAL code validation is usually based on the OpenDF 

simulator. It has to be stimulated with manually given tokens 

via data generation and data display actors. The result is a set 

of values that have to be verified. The originality of our 

approach is to realise the CAL validation step using an Open 

RVC-CAL Compiler (Orcc) [8]. Orcc is an open source 

software (http://sourceforge.net/projects/Orcc/), developed at 

the IETR laboratory of the INSA of Rennes. Orcc is a source-

to-source compiler that compiles RVC-CAL dataflow 

programs to a target language. It is composed of 3 main parts:  

1- The front-end that parses the code into an Abstract 

syntax tree. 

2- The middle-end which analyses the behaviour of actors. 

3- The back-end that generates the target language through 

predefines templates. Available target languages are C, C++, 

Xlim, Promela, Java, LLVM and VHDL. 

In our work, we use the C backend of Orcc. This choice is 

explained by the fact that C language is the most used 

language in software programming. After compilation, we can 

easily assign a video or an image as an input and visualise the 

output. It is very important to mention that Orcc compilation, 

video processing and display using the C compiler, are very 

fast steps. In addition, the software debug is less time 

consuming than hardware one. Consequently, the CAL errors 

are more easily detected and corrected faster. Moreover, we 

can use Orcc to define the optimal FIFO sizes for lower 

memory consumption in the hardware implementation. 

 

C. HDL generation 

We used Cal2HDL for dataflow generation. This tool parses 

the CAL code, generates an XML representation for each actor 

and synthesises the static single assignment (SSA) threads into 

circuits based on basic operators. The final description is made 

up of a Verilog file for each actor and a VHDL file for the top: 

the highest hierarchical representation of the design 

connections. The connection between the actors is insured by 

synchronous or asynchronous FIFO buffers. 

Currently, Cal2HDL does not support all the structures 

used in a RVC-CAL description such as repeats and loops. 

These structures have to be manually modified into several 

actions managed by a finite state machine. Figure 3 shows an 

example of an action writing the 16 values of a buffer named 

"tab" in the output port called "OUT". The instruction "repeat 

16" enables access to the first 16 values of the buffer "tab". 

 

 

Figure 3. High level RVC-CAL example 

This action has to be modified in the code presented in Figure 

4. The modifications consist of deleting the "repeat" structure 

to have an action that only produces one token and repeats the 

basic action 16 times. The repetition process starts by 

executing the "write" action until the "write_done" action is 

validated. Everything has to be managed by a finite state 

machine defined by the structure "schedule fsm" in Figure 4. 
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Figure 4. Low level RVC-CAL example 

After this transformation we obtain a synthesizable code and 

Cal2HDL can generate the adequate hardware description.  

 

III. THE LAR CODER 

To apply and validate the global method introduced, we chose 

the LAR image coder. This coder is developed at the IETR/ 

INSA of Rennes laboratory. It is based on the idea that spatial 

coding can be locally dependent on the activity in the image. 

Thus, the higher the activity the lower is the resolution. This 

activity is dependent from the variation or the uniformity of 

the local luminance, which can be detected using a 

morphological gradient that will be further explained. Another 

aspect of LAR coding is based on considering the fact that an 

image is a superposition of a global information image (mean 

blocks image), and the local texture image, which is given by 

the difference between the original image and the global one. 

This principle is modelled by (1) where I is the original image, 

I’ is the global information image and (I-I’) is the error image. 

The dynamic range of the error image is consequently 

dependent on the local activity. In uniform regions, I’ values 

are close or equal to I consequently (I-I’) values are around 

zero with a low dynamic range. 

 

                              I = I’ + (I-I’)                        (1) 

 

Considering these principles, the LAR coder concept 

(Figure 5) is composed of two parts: the FLAT LAR [9] which 

is the part insuring the global information coding, and the 

spectral part which is the error spectral coder. 
 Different profiles have been designed to fit different types 

of application. In this paper, we focus on the baseline coder. Its 
mechanisms are detailed in this section 
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Figure 5.  LAR concept 

A. FLAT LAR 

The Flat LAR is composed of 3 main parts: the partitioning, 

the block mean value computation and the DPCM 

(Differential Pulse Coding Modulation). 

1) Partitioning:  In this part, a Quad-Tree partitioning is 

applied to the image pixels. The principle is to consider the 

lowest block size (2x2) then to compare the difference 

between the maximum (MAX) and the minimum (MIN) 

values of the block with a threshold (THD) defined as a 

generic variable for the design. If (MAX - MIN) > THD then 

the actual block size is considered. In the other case, the (Nx2) 

x (Nx2) size block is required. This process is recursively 

applied to the whole image blocks. The overall output is the 

block size image. 

2) Block mean values computation process: This process 

is based on the Quad-Tree output image. For each block of the 

variable size image, a mean value is placed on the block, as 

presented in the example shown in Figure 6. 

 

 
 

Figure 6. Block mean value process example 

 

3) The DPCM: The DPCM process is based on the 

prediction of neighbour values and the quantisation of the 

block mean value image. The observation that a pixel value is 

mostly equal to a neighbouring one led to the following 
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estimation algorithm. If we consider the pixels in Figure 7, X 

value is estimated with the algorithm: If |B-C| < |A-B| then X 

= A else X = C  

 
 

Figure 7.     DPCM prediction of neighbouring pixels 

 

B. Spectral coder: the Hadamard transform 

 

The spectral coder, also called the texture coder, is composed 

of a variable block size Hadamard transform [10] and the 

Golomb-Rice [11] [12] entropy coder.  

The Hadamard transform derives from a generalised class 

of the Fourier transform. It consists of a multiplication of a 2
m

x2
m

 matrix by an Hadamard matrix (H
m

) of the same size. The 

transform is defined as follows: 

H
0
 is the identity matrix so H

0
=1. For any m>0, H

m
 is then 

deducted recursively by (2). 

 

  (2) 

 

Here are examples of Hadamard matrices: 

  

 
 

IV. HARDWARE IMPLEMENTATION OF THE LAR CODER 

BASELINE 

We have already developed and implemented a subset of the 

Flat LAR coder using RVC-CAL in previous work as 

described in [13]. Therefore, from this preliminary 

implementation we would almost achieve the implementation 

of the whole LAR codec following MPEG-RVC standard 

recommendations. 

This Section explains the mechanisms of the Hadamard 

transform and the Quad-Tree used in the implementation. 

Dataflow implementation and synthesis results are also 

presented and discussed. 

A. Hardware implementation 

The LAR coding is dependent on the content of the image. It 

applies to the Quad-Tree a morphological gradient to extract 

information about local activity on the image. The output is 

the block size image represented by variable size blocks: 2x2, 

4x4 or 8x8. Using the block size image, the Hadamard 

transform applies the adequate transform onto the 

corresponding block. It means that if we have a block size of 

2X2 in the size image this block will undergo a 2X2 

Hadamard (H
1
) and normalisation specific to the 2X2 blocks. 

This process is identically applied for 4X4 and 8X8 blocks. A 

quantisation step, adapted to the current block size, is applied 

on the Hadamard output image. For each block size, a 

quantisation matrix is pre-defined. In practice the 

normalisation during the Hadamard transform is postponed to 

be achieved with the quantisation step so to decrease the noise 

due to successive divisions. The implemented LAR is 

presented in Figure 8. 
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Figure 8. LAR baseline developed model 

As a first step, the memory management block stores the pixel 

values of the original image line by line. Once an 8x8 block is 

obtained, the actor divides it into sixteen 2x2 blocks and sends 

them in a specific order as presented in Figure 10. 

This order is very important to improve the performance of 

the remaining actors. In fact, considering Figure 10, when the 

tokens are so ordered the first 4 tokens correspond to the first 

2x2 block, the first 16 tokens to the first 4x4 block, etc. 

Consequently, and as presented in Figure 8, the output of H1 

is automatically the input of H2 and the output of H2 is 

automatically the input of H3. 

In the Quad-Tree, this order is also crucial. As presented in 

Figure 9, the superposition of the same actor (max for 

example) three times provides in the output of the first actor 

the maximum values of 2x2 blocks, in the output of the second 

actor the maximum values of 4x4 blocks and finally the 

maximum values of 8x8 blocks in the output of the third one. 

Using the maximum and minimum values the morphological 

gradient in the Gradstep actors can be processed to extract the 

block size image. The same idea is used to calculate the block 

sums with three superposed sum actors. The block mean value 
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actor considers the sums and the sizes to build the block mean 

value image 
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Figure 9. Quad-Tree design 

We also notice that an (H
2
) transform can be achieved using 

the (H
1
) results of the four 2X2 blocks constituting the 4X4 

block. The same observation can be made for (H
3
) . This 

ascertainment is very important in order to decrease the 

complexity of the process. In fact, the Hadamard transform of 

the LAR applies an (H
1
) transform for the whole image, then 

it applies the (H
2
) transform only for the 4X4 and 8X8 blocks, 

and the (H
3
) transform only for the 8X8 blocks. (H

2
) and (H

3
) 

transforms are different from the full transforms as they are 

much less complex. Consequently, as shown in Figure 8, we 

designed the H2 and the H3 using H1 actors associated with 

memory management units. They sort tokens into an adequate 

order and, considering the block size, determine whether the 

block is going to undergo the transform or not. 

It is very important to mention that almost all actors have 

been developed with generic variables for memory sizes or 

gradsteps, which means that the design are flexible for easy 

transformation from one image size to another, or for adding 

higher Hadamard processes (H4, H5 ...). 

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

2x2 Block

 

Figure 10. Memory management unit output order 

The different actors of the LAR baseline coder have first been 

developed with a high level RVC-CAL description for a 

352x288 image size. To optimise the transform, we added a 

ping-pong data management algorithm. The principle of this 

algorithm is to avoid the repetitive latency caused by data 

storage while reading tokens, by combining the tokens’ 

reading and writing in the same action. The idea is to write the 

input data in half of a memory size and then to use this data 

while writing in the other half. Finally we just have to switch 

the reading and the writing pointers to the opposite parts of the 

memory. An example of ping-pong memory management of a 

4 buffers memory is presented in Figure 1. 

Data1

Data1 Data2

Data1 Data2 Data3

Data1 Data2 Data3 Data4

1st clock event

Storage of the 1st token in the 1st buffer

2nd clock event

Storage of the 2ond token in the 2nd buffer

3rd clock event

Storage of the 3rd token in the 3rd buffer & use of data1 and data2

4th clock event

Storage of the 4th token in the 4th buffer & use of data1 and data2

Data5 Data2 Data3 Data45th clock event

Storage of the 5th token in the 1st buffer & use of data3 and data4

Figure 11. Ping pong example of a 4-buffer size memory management 

In RVC-CAL language, the solution is to use pointer functions, 

as ra() and wa() in the example in figure Figure 12. After 

reading and filling the half of the memory, a boolean flag half 

changes the read and the write pointers represented by ra() and 

wa(). Thus, an alternation of read and write is created in the 

action gradient. Consequently, while writing tokens, that actor 

is reading new ones for the next process which considerably 

decreases the processing time. 

Timing performances have then increased considerably. Other 

optimisations can be added by treatment anticipation, but they 

have not been added in this case because the design would be 

a low level one.  

A reverse Hadamard block was added for validation. The 

whole design was compiled with Orcc to obtain the C code of 

the actors. C code was compiled with a C compiler. To test the 

design we applied images and videos in the inputs. The 

objective was to obtain an output exactly equal to the input, as 

presented in Figure 1. 
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Figure 12. Ping-Pong memory management example 

 

 

Figure 13. Software validation 

Once the required pixel values are obtained the design is 

validated and consequently so is the RVC-CAL code. At this 

level, the VHDL/Verilog generation is not possible since 

Cal2HDL cannot generate code from the high level RVC-CAL. 

It was necessary to change the RVC-CAL code into another 

low level code synthesisable with Cal2HDL, as explained in 

Section II. Figure 14 shows the example of a “max 2x2” actor 

in a high level description with “repeat” and the “foreach” 

loops. This actor is translated to a low level one as presented 

in Figure 15. 

 

 

Figure 14. High level RVC-CAL example 

 

 

Figure 15. Low level RVC-CAL example 

Thus, we obtained a dataflow implementation of the LAR 

baseline. 

With our approach, the OpenDF validation of the classic 

method was avoided. In that classic method, we used to 

develop the RVC-CAL code and add actors for data 

generation and display: The actor of data generation is 

composed of a table containing the input image pixel values 

and some actions to consecutively put these values in the input 

port of the design. The design output data can be displayed 

using the “println()” function. Validation is consequently a 

tough and relentless value comparison process. The use of C 

compilers allows us to use images and videos for the test and 

we are able to have more information about an error when we 

have both the data values and image display. 
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B. Results 

The HDL project manager environment used is Xilinx ISE 

Foundation 11.1 and the hardware simulation tool is ISE 

simulator (Full version). We manually developed the test 

bench by initialising the different signals and generating the 

stimulus values for the inputs. 

After compilation, simulation, RTL synthesis and place 

and route on an FPGA: family=virtex4; device=xc4vsx35; 

Package=FF668; speed = -12, we obtain the area consumption 

results presented in Table I. 

TABLE I.  AREA CONSUMPTION FOR 352X288 IMAGE SIZE  

Criterion value 

Slice Flip Flops 1.437/30.720 (4%) 

Occupied Slices 2.027/15.360 (13%) 

4 input LUTs 3.637/30.720 (11%) 

FIFO16/RAMB16s 26/3192 (13%) 
Bonded IOBs 99/448 (22%) 

  

The time synthesis performances are mentioned in Table II  

TABLE II.  TIMING RESULTS 

Criterion 352x288 

Output frequency(MHz) 22.4 
maximum frequency(MHz) 81.4 

Latency(μs) 132.79 

processing time(ms) 5.8 

Minimum input arrival  

time before clock(ns) 12.134 

Maximum output required  
time after clock(ns) 8.188 

Maximum combinational  

path delay(ns) 5.083 

Optimisation solutions are in development to decrease the 

latency and consequently increase the frequency. In terms of 

development time, the whole design took about 70 days to be 

achieved. It is very important to mention that over 90% of the 

conception time was achieved in the open source software 

platform where the debug and validation are easier and faster. 

The most complex and time consuming part of the flow was 

the manual transformation of the RVC-CAL from high to low 

level. This can be explained by the fact that the code is longer 

and consequently harder to debug because of the inaccurate 

feedback of Cal2HDL. We are currently looking for solutions 

to automate this step. This task may be achieved by improving 

Cal2HDL Java source code or by using an intermediate 

representation of Orcc. The second case seems to be more 

feasible. However, this global framework introducing a 

software functional checking before synthesis process is 

significantly faster than a hardware implementation directly 

from the RVC-CAL description. 

V. CONCLUSION 

This paper presented a method to automatically generate an 

efficient functional hardware implementation from an RVC-

CAL dataflow program. The method presented was used to 

obtain a hardware implementation of a LAR coder baseline. 

This transform implementation is a part of our work to achieve 

the implementation of the whole LAR image codec. We 

believe that frequency can be increased, and latency decreased, 

by further optimisation of memory management actors. 

With our method, the design cycle of hardware 

implementation consists in carrying out the functional 

verification in a software environment, and testing the 

hardware implementation once the program is correct. The 

validation in the software platform is very fast and allows for 

huge data testing, notably images and videos with 

visualisation rather than using hardware simulators at every 

design step. We used Orcc to generate C code from RVC-CAL 

descriptions and to fix the optimal FIFO sizes. The C code 

was then compiled and run to test the program behaviour. The 

hardware implementation was obtained by automatically 

transforming the RVC-CAL descriptions with Cal2HDL. 

Cal2HDL generates a valuable but low level and hardly-

understandable Verilog code. Concurrently, as presented 

recently in [14], Nicolas Siret et al. are using the IR of Orcc to 

generate a high level VHDL backend. Code generation with 

this backend is clearly faster than Cal2HDL, especially for 

high complexity designs, but it has not been sufficiently tested. 

Later this tool would be an alternative to Cal2HDL. Currently, 

high-level RVC-CAL descriptions must be manually 

transformed to lower-level code for Cal2HDL to be able to 

synthesise it. Automating this transformation will considerably 

reduce design time. Indeed, we are already starting working on 

this automatic transformation of the IR of Orcc. 
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