
Volume 1, Number 1, December 2010 Journal of Convergence

Copyright ⓒ 2010 Future Technology Research Association International 85

Automatic Method For Efficient Hardware

Implementation From RVC-CAL Dataflow: A LAR

Coder baseline Case Study

Khaled Jerbi, Matthieu Wipliez, Mickaël Raulet,

Marie Babel, Olivier Déforges

INSA of Rennes UMR CNRS 6164

IETR Group

Rennes, France

khaled.jerbi@insa-rennes.fr

Mohamed Abid

National school of engineers of Sfax

CES Lab

Sfax, Tunisia

mohamed.abid@enis.rnu.tn

`

Abstract— Implementing an algorithm into hardware platforms

is generally not an easy task. The algorithm, typically described

in a high-level specification language, must be translated into a

low-level HDL language. The difference between models of

computation (sequential versus fine-grained parallel) limits the

efficiency of automatic translation. On the other hand, manual

implementation is time-consuming, because the designer must

take care of low-level details, and write test benches to test the

implementation’s behaviour. This paper presents a global design

method, from high level description to implementation. The first

step consists of the description of an algorithm as a dataflow

program using RVC-CAL language. The next step is the

functional verification of this description using a software

framework. The final step consists of an automatic generation of

an efficient hardware implementation from the dataflow

program. The objective is to spend the greater part of the

conception time in an open source software platform. We use this

method to quickly prototype and generate hardware

implementation of a baseline part of the LAR coder, from an

RVC-CAL description.

Keywords- Dataflow programming, RVC CAL language, LAR

coder, fast hardware implementation, Orcc

I. INTRODUCTION

The complexity of signal processing algorithms is continually

increasing, which involves a very long description code. For

designers this code is very hard to implement on hardware

platforms. Hardware implementation requires the description

of the process using an HDL language like VHDL or Verilog.

These dataflow designs are not easy to develop and especially

not to validate. The validation of a dataflow design requires

the development of stimulus codes, such as a VHDL test

bench, and the use of simulation tools. This explains the gap

between validating and implementing a process. Therefore

designers can hardly satisfy the time-to-market constraints. To

solve this problem, designers tend to design solutions to

describe the process in at a higher level. In the video coding

field, a new high level description language for dataflow

applications, called RVC-CAL (Reconfigurable Video

Coding) [1], was standardised by the MPEG community

through the MPEG-RVC standard [2]. This standard provides

a framework to define different codecs by combining

communicating blocks developed in RVC-CAL.

The objective of our work is to provide a hardware

implementation generated from a high level description using

the RVC-CAL programming language [3]. We use an efficient

hardware generator from RVC-CAL called Cal2HDL [4], [5].

It uses an intermediate representation of the OpenDF project

[6]. Cal2HDL supports all the structures of the RVC-CAL

language except the multi token and some loop structures.

Consequently, we have to manually change these structures to

their equivalents supported by the tool, which involves a new

code and thus an additional verification step.

In this paper, we introduce an original global approach to

expedite the validation of an RVC-CAL design and

consequently the dataflow generation. This approach was

applied to the LAR (Locally Adaptive Resolution) image

coder [7] to provide a realistic application context. The current

design does not contain the full LAR coder, but we already

achieved some of the main parts of the LAR baseline with an

RVC-CAL description.

In Section II, we present the method and the languages and

frameworks used. In Section III, the LAR coding principle is

detailed. Finally Section IV shows an application of the

method on the LAR coder baseline and also provides some

implementation results.

II. DATAFLOW PROGRAMMING FOR HARDWARE

IMPLEMENTATION

The purpose of this work is to more rapidly obtain a dataflow

description from an RVC-CAL design. In the following, we

present a new global method for the functional verification of

an RVC-CAL code. As presented in Figure 1, the design is

described at a high level with RVC-CAL language. Then a

software platform is used for functional validation and FIFO

sizing. Once the code is correct, it undergoes a modification to

be synthesisable with Cal2HDL by unrolling the loops and the

repeat structures. The validation of this code is realised with

the same software platform. The implementation is finally

insured by using a hardware synthesis and prototyping

platform.

Journal of Convergence Volume 1, Number 1, December 2010

86 Copyright ⓒ 2010 Future Technology Research Association International

High level

RVC-CAL

Low level

RVC-CAL
C

Orcc

C Compiler

Debug

Errors

High level OK

Code

modification

Cal2HDL

VHDL/ Verilog

Hardware

sythesis tool

Results

Software validation Hardware synthesis

Low level OK

Cal2HDL feedback

Figure 1. Method overview

A. Dataflow programming with RVC-CAL language

MPEG RVC is under development as part of the MPEG-B

standard [3], which defines the framework and the language

used to describe components. RVC-CAL [3] is a textual and

domain specific language for writing dataflow models (Figure

2), more precisely for defining actors of a dataflow model in a

high level description. An actor represents an autonomous

entity and a composition of actors explicitly describes the

concurrency of an application. The RVC-CAL Actor

Language has been defined to be platform independent and

retargetable to a rich variety of platforms.

An RVC-CAL actor is a computational entity with input

ports, output ports, states and parameters. An actor

communicates with other actors by sending and receiving

tokens (atomic pieces of data) through its ports. An actor can

contain several actions. An action defines a computation,

which consumes sequences of tokens from input ports and

produces sequences of tokens to output ports. Actions have

data-dependent conditions for their execution. The execution

of an action may change the actor’s internal state, so that the

produced output sequences are functions of the consumed

input sequences and of the current actor state. RVC-CAL

supports higher-level constructs such as multiple-token

reads/writes and list generators.

Figure 2. CAL dataflow model

.

B. Functional verification on a software platform

CAL code validation is usually based on the OpenDF

simulator. It has to be stimulated with manually given tokens

via data generation and data display actors. The result is a set

of values that have to be verified. The originality of our

approach is to realise the CAL validation step using an Open

RVC-CAL Compiler (Orcc) [8]. Orcc is an open source

software (http://sourceforge.net/projects/Orcc/), developed at

the IETR laboratory of the INSA of Rennes. Orcc is a source-

to-source compiler that compiles RVC-CAL dataflow

programs to a target language. It is composed of 3 main parts:

1- The front-end that parses the code into an Abstract

syntax tree.

2- The middle-end which analyses the behaviour of actors.

3- The back-end that generates the target language through

predefines templates. Available target languages are C, C++,

Xlim, Promela, Java, LLVM and VHDL.

In our work, we use the C backend of Orcc. This choice is

explained by the fact that C language is the most used

language in software programming. After compilation, we can

easily assign a video or an image as an input and visualise the

output. It is very important to mention that Orcc compilation,

video processing and display using the C compiler, are very

fast steps. In addition, the software debug is less time

consuming than hardware one. Consequently, the CAL errors

are more easily detected and corrected faster. Moreover, we

can use Orcc to define the optimal FIFO sizes for lower

memory consumption in the hardware implementation.

C. HDL generation

We used Cal2HDL for dataflow generation. This tool parses

the CAL code, generates an XML representation for each actor

and synthesises the static single assignment (SSA) threads into

circuits based on basic operators. The final description is made

up of a Verilog file for each actor and a VHDL file for the top:

the highest hierarchical representation of the design

connections. The connection between the actors is insured by

synchronous or asynchronous FIFO buffers.

Currently, Cal2HDL does not support all the structures

used in a RVC-CAL description such as repeats and loops.

These structures have to be manually modified into several

actions managed by a finite state machine. Figure 3 shows an

example of an action writing the 16 values of a buffer named

"tab" in the output port called "OUT". The instruction "repeat

16" enables access to the first 16 values of the buffer "tab".

Figure 3. High level RVC-CAL example

This action has to be modified in the code presented in Figure

4. The modifications consist of deleting the "repeat" structure

to have an action that only produces one token and repeats the

basic action 16 times. The repetition process starts by

executing the "write" action until the "write_done" action is

validated. Everything has to be managed by a finite state

machine defined by the structure "schedule fsm" in Figure 4.

Volume 1, Number 1, December 2010 Journal of Convergence

Copyright ⓒ 2010 Future Technology Research Association International 87

Figure 4. Low level RVC-CAL example

After this transformation we obtain a synthesizable code and

Cal2HDL can generate the adequate hardware description.

III. THE LAR CODER

To apply and validate the global method introduced, we chose

the LAR image coder. This coder is developed at the IETR/

INSA of Rennes laboratory. It is based on the idea that spatial

coding can be locally dependent on the activity in the image.

Thus, the higher the activity the lower is the resolution. This

activity is dependent from the variation or the uniformity of

the local luminance, which can be detected using a

morphological gradient that will be further explained. Another

aspect of LAR coding is based on considering the fact that an

image is a superposition of a global information image (mean

blocks image), and the local texture image, which is given by

the difference between the original image and the global one.

This principle is modelled by (1) where I is the original image,

I’ is the global information image and (I-I’) is the error image.

The dynamic range of the error image is consequently

dependent on the local activity. In uniform regions, I’ values

are close or equal to I consequently (I-I’) values are around

zero with a low dynamic range.

 I = I’ + (I-I’) (1)

Considering these principles, the LAR coder concept

(Figure 5) is composed of two parts: the FLAT LAR [9] which

is the part insuring the global information coding, and the

spectral part which is the error spectral coder.
 Different profiles have been designed to fit different types

of application. In this paper, we focus on the baseline coder. Its
mechanisms are detailed in this section

Original
image

Low
resolution

image

FLAT
decoder

FLAT
coder

Spectral
decoder

Spectral
coder

Middle/high
resolution

image

transmission

transmission

Figure 5. LAR concept

A. FLAT LAR

The Flat LAR is composed of 3 main parts: the partitioning,

the block mean value computation and the DPCM

(Differential Pulse Coding Modulation).

1) Partitioning: In this part, a Quad-Tree partitioning is

applied to the image pixels. The principle is to consider the

lowest block size (2x2) then to compare the difference

between the maximum (MAX) and the minimum (MIN)

values of the block with a threshold (THD) defined as a

generic variable for the design. If (MAX - MIN) > THD then

the actual block size is considered. In the other case, the (Nx2)

x (Nx2) size block is required. This process is recursively

applied to the whole image blocks. The overall output is the

block size image.

2) Block mean values computation process: This process

is based on the Quad-Tree output image. For each block of the

variable size image, a mean value is placed on the block, as

presented in the example shown in Figure 6.

Figure 6. Block mean value process example

3) The DPCM: The DPCM process is based on the

prediction of neighbour values and the quantisation of the

block mean value image. The observation that a pixel value is

mostly equal to a neighbouring one led to the following

Journal of Convergence Volume 1, Number 1, December 2010

88 Copyright ⓒ 2010 Future Technology Research Association International

estimation algorithm. If we consider the pixels in Figure 7, X

value is estimated with the algorithm: If |B-C| < |A-B| then X

= A else X = C

Figure 7. DPCM prediction of neighbouring pixels

B. Spectral coder: the Hadamard transform

The spectral coder, also called the texture coder, is composed

of a variable block size Hadamard transform [10] and the

Golomb-Rice [11] [12] entropy coder.

The Hadamard transform derives from a generalised class

of the Fourier transform. It consists of a multiplication of a 2
m

x2
m

 matrix by an Hadamard matrix (H
m

) of the same size. The

transform is defined as follows:

H
0
 is the identity matrix so H

0
=1. For any m>0, H

m
 is then

deducted recursively by (2).

 (2)

Here are examples of Hadamard matrices:

IV. HARDWARE IMPLEMENTATION OF THE LAR CODER

BASELINE

We have already developed and implemented a subset of the

Flat LAR coder using RVC-CAL in previous work as

described in [13]. Therefore, from this preliminary

implementation we would almost achieve the implementation

of the whole LAR codec following MPEG-RVC standard

recommendations.

This Section explains the mechanisms of the Hadamard

transform and the Quad-Tree used in the implementation.

Dataflow implementation and synthesis results are also

presented and discussed.

A. Hardware implementation

The LAR coding is dependent on the content of the image. It

applies to the Quad-Tree a morphological gradient to extract

information about local activity on the image. The output is

the block size image represented by variable size blocks: 2x2,

4x4 or 8x8. Using the block size image, the Hadamard

transform applies the adequate transform onto the

corresponding block. It means that if we have a block size of

2X2 in the size image this block will undergo a 2X2

Hadamard (H
1
) and normalisation specific to the 2X2 blocks.

This process is identically applied for 4X4 and 8X8 blocks. A

quantisation step, adapted to the current block size, is applied

on the Hadamard output image. For each block size, a

quantisation matrix is pre-defined. In practice the

normalisation during the Hadamard transform is postponed to

be achieved with the quantisation step so to decrease the noise

due to successive divisions. The implemented LAR is

presented in Figure 8.

H1 H2 H3

Quad tree

Memory

management

Block size

Image

2x2

blocks

H2 input

Memory

Management

H1 H1
H2 output

Memory

management

H3 output

Memory

management

H3 input

Memory

management

Norm.

&

Quant.

Figure 8. LAR baseline developed model

As a first step, the memory management block stores the pixel

values of the original image line by line. Once an 8x8 block is

obtained, the actor divides it into sixteen 2x2 blocks and sends

them in a specific order as presented in Figure 10.

This order is very important to improve the performance of

the remaining actors. In fact, considering Figure 10, when the

tokens are so ordered the first 4 tokens correspond to the first

2x2 block, the first 16 tokens to the first 4x4 block, etc.

Consequently, and as presented in Figure 8, the output of H1

is automatically the input of H2 and the output of H2 is

automatically the input of H3.

In the Quad-Tree, this order is also crucial. As presented in

Figure 9, the superposition of the same actor (max for

example) three times provides in the output of the first actor

the maximum values of 2x2 blocks, in the output of the second

actor the maximum values of 4x4 blocks and finally the

maximum values of 8x8 blocks in the output of the third one.

Using the maximum and minimum values the morphological

gradient in the Gradstep actors can be processed to extract the

block size image. The same idea is used to calculate the block

sums with three superposed sum actors. The block mean value

Volume 1, Number 1, December 2010 Journal of Convergence

Copyright ⓒ 2010 Future Technology Research Association International 89

actor considers the sums and the sizes to build the block mean

value image

Max
2x2

Max
8x8

Max
4x4

Min
2x2

Min
8x8

Min
4x4

Sum
2x2

Sum
8x8

Sum
4x4

Gradstep
process

Block mean
value process

Input
image

Block mean
size image

Figure 9. Quad-Tree design

We also notice that an (H
2
) transform can be achieved using

the (H
1
) results of the four 2X2 blocks constituting the 4X4

block. The same observation can be made for (H
3
) . This

ascertainment is very important in order to decrease the

complexity of the process. In fact, the Hadamard transform of

the LAR applies an (H
1
) transform for the whole image, then

it applies the (H
2
) transform only for the 4X4 and 8X8 blocks,

and the (H
3
) transform only for the 8X8 blocks. (H

2
) and (H

3
)

transforms are different from the full transforms as they are

much less complex. Consequently, as shown in Figure 8, we

designed the H2 and the H3 using H1 actors associated with

memory management units. They sort tokens into an adequate

order and, considering the block size, determine whether the

block is going to undergo the transform or not.

It is very important to mention that almost all actors have

been developed with generic variables for memory sizes or

gradsteps, which means that the design are flexible for easy

transformation from one image size to another, or for adding

higher Hadamard processes (H4, H5 ...).

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

2x2 Block

Figure 10. Memory management unit output order

The different actors of the LAR baseline coder have first been

developed with a high level RVC-CAL description for a

352x288 image size. To optimise the transform, we added a

ping-pong data management algorithm. The principle of this

algorithm is to avoid the repetitive latency caused by data

storage while reading tokens, by combining the tokens’

reading and writing in the same action. The idea is to write the

input data in half of a memory size and then to use this data

while writing in the other half. Finally we just have to switch

the reading and the writing pointers to the opposite parts of the

memory. An example of ping-pong memory management of a

4 buffers memory is presented in Figure 1.

Data1

Data1 Data2

Data1 Data2 Data3

Data1 Data2 Data3 Data4

1st clock event

Storage of the 1st token in the 1st buffer

2nd clock event

Storage of the 2ond token in the 2nd buffer

3rd clock event

Storage of the 3rd token in the 3rd buffer & use of data1 and data2

4th clock event

Storage of the 4th token in the 4th buffer & use of data1 and data2

Data5 Data2 Data3 Data45th clock event

Storage of the 5th token in the 1st buffer & use of data3 and data4

Figure 11. Ping pong example of a 4-buffer size memory management

In RVC-CAL language, the solution is to use pointer functions,

as ra() and wa() in the example in figure Figure 12. After

reading and filling the half of the memory, a boolean flag half

changes the read and the write pointers represented by ra() and

wa(). Thus, an alternation of read and write is created in the

action gradient. Consequently, while writing tokens, that actor

is reading new ones for the next process which considerably

decreases the processing time.

Timing performances have then increased considerably. Other

optimisations can be added by treatment anticipation, but they

have not been added in this case because the design would be

a low level one.

A reverse Hadamard block was added for validation. The

whole design was compiled with Orcc to obtain the C code of

the actors. C code was compiled with a C compiler. To test the

design we applied images and videos in the inputs. The

objective was to obtain an output exactly equal to the input, as

presented in Figure 1.

Journal of Convergence Volume 1, Number 1, December 2010

90 Copyright ⓒ 2010 Future Technology Research Association International

Figure 12. Ping-Pong memory management example

Figure 13. Software validation

Once the required pixel values are obtained the design is

validated and consequently so is the RVC-CAL code. At this

level, the VHDL/Verilog generation is not possible since

Cal2HDL cannot generate code from the high level RVC-CAL.

It was necessary to change the RVC-CAL code into another

low level code synthesisable with Cal2HDL, as explained in

Section II. Figure 14 shows the example of a “max 2x2” actor

in a high level description with “repeat” and the “foreach”

loops. This actor is translated to a low level one as presented

in Figure 15.

Figure 14. High level RVC-CAL example

Figure 15. Low level RVC-CAL example

Thus, we obtained a dataflow implementation of the LAR

baseline.

With our approach, the OpenDF validation of the classic

method was avoided. In that classic method, we used to

develop the RVC-CAL code and add actors for data

generation and display: The actor of data generation is

composed of a table containing the input image pixel values

and some actions to consecutively put these values in the input

port of the design. The design output data can be displayed

using the “println()” function. Validation is consequently a

tough and relentless value comparison process. The use of C

compilers allows us to use images and videos for the test and

we are able to have more information about an error when we

have both the data values and image display.

Volume 1, Number 1, December 2010 Journal of Convergence

Copyright ⓒ 2010 Future Technology Research Association International 91

B. Results

The HDL project manager environment used is Xilinx ISE

Foundation 11.1 and the hardware simulation tool is ISE

simulator (Full version). We manually developed the test

bench by initialising the different signals and generating the

stimulus values for the inputs.

After compilation, simulation, RTL synthesis and place

and route on an FPGA: family=virtex4; device=xc4vsx35;

Package=FF668; speed = -12, we obtain the area consumption

results presented in Table I.

TABLE I. AREA CONSUMPTION FOR 352X288 IMAGE SIZE

Criterion value

Slice Flip Flops 1.437/30.720 (4%)

Occupied Slices 2.027/15.360 (13%)

4 input LUTs 3.637/30.720 (11%)

FIFO16/RAMB16s 26/3192 (13%)
Bonded IOBs 99/448 (22%)

The time synthesis performances are mentioned in Table II

TABLE II. TIMING RESULTS

Criterion 352x288

Output frequency(MHz) 22.4
maximum frequency(MHz) 81.4

Latency(μs) 132.79

processing time(ms) 5.8

Minimum input arrival

time before clock(ns) 12.134

Maximum output required
time after clock(ns) 8.188

Maximum combinational

path delay(ns) 5.083

Optimisation solutions are in development to decrease the

latency and consequently increase the frequency. In terms of

development time, the whole design took about 70 days to be

achieved. It is very important to mention that over 90% of the

conception time was achieved in the open source software

platform where the debug and validation are easier and faster.

The most complex and time consuming part of the flow was

the manual transformation of the RVC-CAL from high to low

level. This can be explained by the fact that the code is longer

and consequently harder to debug because of the inaccurate

feedback of Cal2HDL. We are currently looking for solutions

to automate this step. This task may be achieved by improving

Cal2HDL Java source code or by using an intermediate

representation of Orcc. The second case seems to be more

feasible. However, this global framework introducing a

software functional checking before synthesis process is

significantly faster than a hardware implementation directly

from the RVC-CAL description.

V. CONCLUSION

This paper presented a method to automatically generate an

efficient functional hardware implementation from an RVC-

CAL dataflow program. The method presented was used to

obtain a hardware implementation of a LAR coder baseline.

This transform implementation is a part of our work to achieve

the implementation of the whole LAR image codec. We

believe that frequency can be increased, and latency decreased,

by further optimisation of memory management actors.

With our method, the design cycle of hardware

implementation consists in carrying out the functional

verification in a software environment, and testing the

hardware implementation once the program is correct. The

validation in the software platform is very fast and allows for

huge data testing, notably images and videos with

visualisation rather than using hardware simulators at every

design step. We used Orcc to generate C code from RVC-CAL

descriptions and to fix the optimal FIFO sizes. The C code

was then compiled and run to test the program behaviour. The

hardware implementation was obtained by automatically

transforming the RVC-CAL descriptions with Cal2HDL.

Cal2HDL generates a valuable but low level and hardly-

understandable Verilog code. Concurrently, as presented

recently in [14], Nicolas Siret et al. are using the IR of Orcc to

generate a high level VHDL backend. Code generation with

this backend is clearly faster than Cal2HDL, especially for

high complexity designs, but it has not been sufficiently tested.

Later this tool would be an alternative to Cal2HDL. Currently,

high-level RVC-CAL descriptions must be manually

transformed to lower-level code for Cal2HDL to be able to

synthesise it. Automating this transformation will considerably

reduce design time. Indeed, we are already starting working on

this automatic transformation of the IR of Orcc.

REFERENCES

[1] J. Eker and J. Janneck, “CAL Language Report,” Tech. Rep. ERL

Technical Memo UCB/ERL M03/48, University of California at
Berkeley, Dec. 2003.

[2] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mattavelli,

and M. Raulet, “Overview of the MPEG reconfigurable video coding
framework,” Journal of Signal Processing Systems, 2009,

dOI:10.1007/s11265-009-0399-3.

[3] ISO/IEC FDIS 23001-4: 2009, “Information Technology - MPEG
systems technologies - Part 4: Codec Configuration Representation,”

2009.

[4] R. Gu, J. W. Janneck, S. S. Bhattacharyya, M. Raulet, M. Wipliez, and
W. Plishker, “Exploring the concurrency of an MPEG RVC decoder

based on dataflow program analysis,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 19, no. 11, pp. 1646–1657,
2009.

[5] “Cal2HDL-openforge source” Available from::

http://openforge.sourceforge.net. [Accessed: December 2010]
[6] S. Bhattacharyya, G. Brebner, J. Eker, J. Janneck, M. Mattavelli,

C. von Platen, and M. Raulet, “OpenDF - A Dataflow Toolset for
Reconfigurable Hardware and Multicore Systems,” First Swedish

Workshop on Multi-Core Computing, MCC , Ronneby, Sweden,

November 27-28, 2008.
[7] O. Déforges, M. Babel, L. Bédat, and J. Ronsin, “Color LAR Codec: A

Color Image Representation and Compression Scheme Based on Local

Resolution Adjustment and Self-Extracting Region Representation,”
IEEE Trans. Circuits Syst. Video Techn., vol. 17, no. 8, pp. 974–987,

2007.

[8] J. W. Janneck, M. Mattavelli, M. Raulet, and M. Wipliez,
“Reconfigurable video coding: a stream programming approach to the

specification of new video coding standards,” in MMSys ’10:

Proceedings of the first annual ACM SIGMM conference on
Multimedia systems. New York, USA: ACM, pp. 223–234, 2010.

[9] O. Deforges and M. Babek, “Lar method: from algorithm to synthesis

for an embedded low complexity image coder,” IEEE 3rd International
Design and Test Workshop, 2008.

[10] J. Poncin, “Utilisation de la transformation de hadamard pour le codage

et la compression de signaux d’images,” in Springer-Annals of
telecommunications, pp. 235–252, 1971.

[11] S. W. Golomb, “Run length codings,” IEEE Transactions on

Information Theory, vol. 12 no. 7, pp. 399–401, 1966.

Journal of Convergence Volume 1, Number 1, December 2010

92 Copyright ⓒ 2010 Future Technology Research Association International

[12] R. F. Rice, “Some practical universal noiseless coding techniques,”

Technical Report 79-22, 1979.

[13] K. Jerbi, M. Raulet, O. Déforges, and M. Abid, “Design of an

Embedded Low Complexity Image Coder using CAL language,”
DASIP 2009 proceeding, September 2009.

[14] N. Siret, M. Wipliez, J.F. Nezan, and A. Rhatay, “Hardware code

generation from dataflow programs,” DASIP 2010.

