Validation

Objectifs des Travaux

Les innovations technologiques et l’évolution des formes de communication n’ont pas cessé d’ouvrir de nouvelles perspectives pour guider l’utilisation des applications habituelles. En outre, l’apparition de nouveaux médias et le débarquement des récents moyens de communication, associés au progrès des réseaux, les circonstances d’utilisation des logiciels varient constamment à l’instar des compétences et les préférences des utilisateurs qui les exploitent. Ce ne sont pas seulement des ressources d’interaction qui peuvent paraitre et disparaitre, mais également les objectifs de l’utilisateur. Il est considéré comme mobile, évoluant dans un environnement varié et recourant, de manière opportuniste, à des plates-formes d’interaction diverses. De ce fait, les notions du conservatisme du lieu d’interaction et l’unicité de la plateforme d’exécution ne tiennent plus. C’est ce qui nous amène à constater que les IHMs ont évolué d’une façon opportuniste.

Elles ne sont plus des IHMs centralisées mais plutôt distribuées (la télécommande universelle développée dans Pebbles [Myers, 2001]). De même, aujourd’hui, elles sont devenues exotiques dans les dispositifs d’entrée et de sortie tandis qu’elles étaient classique auparavant (AmbientRoom [Ishii et al, 1998]).

Dans le même volet des évolutions, les IHMs de nos jours ont la capacité de changer du monomodal au multimodal et du sédentaire au nomade [Calvary et al., 2006]. En fait, tout cela a créé de nouvelles considérations et de nouveaux enjeux à satisfaire. Or, la personnalisation et l’ajustement sur mesure de l’information sont devenus des exigences fortes, voire des revendications, de l’utilisateur : le tout dans des situations et des environnements variés et dynamiques.
L’informatique pervasive laisse envisager une nouvelle génération de systèmes interactifs, et nécessite de nouvelles modalités d’interaction homme-machine. Les systèmes interactifs doivent désormais s’adapter à leur contexte d’usage. En effet, la variation permanente du contexte d’usage, séduit du point de vue usage mais, elle impose de nouveaux défis à l’ingénierie de l’Interaction Homme-Machine (IHM) car malheureusement les méthodes et les outils actuels n’ont pas été conçus pour tenir en compte de telles situations. C’est que du point de vue de l’interaction Homme-Machine, l’informatique ubiquitaire pose la question du délicat équilibre entre interaction implicite et interaction explicite, entre autonomie des systèmes et maîtrise laissée à l’utilisateur, entre « simple » usager obligé de se conformer à une interface utilisateur imposée et l’utilisateur créatif qui façonne son espace interactif de manière à inventer de nouveaux services. Ainsi, la nature des interfaces utilisateur s’en trouve radicalement changée.
Cette percée des nouvelles technologies de l'information et de la communication a contribué au lancement de recherches sur une nouvelle génération de systèmes interactifs : l’IHM doit être adaptée à son contexte d’usage, tout en faisant en sorte que cette opération n’engendre pas des besoins de re-conception et ré-implémentation coûteuses et des coûts de développement et maintenance importants lors de chaque adaptation. Celle-ci consiste à prendre en considération des informations relatives à la plate-forme, à l’utilisateur et à l’environnement d’utilisation, en préservant l’utilisabilité de l’IHM [Nielsen, 1994], [Seffah et al., 2004], [Bastien et al., 1993].

De ce fait, et étant donné la variabilité des exigences fonctionnelles et non fonctionnelles, il s’avère nécessaire de réviser les savoir-faire en IHM qui étaient souvent un résultat de transformations mentales. D’où, notre travail de recherche, nous permettra de tirer profit des intérêts de l’ingénierie dirigée par les modèles (IDM) qui, et malgré sa récence, a suscité un grand intérêt dans le développement de divers systèmes. En effet, l’IDM considère les modèles, sur lesquels le programmeur (ou concepteur su système) raisonne, comme faisant partie à part entière de la définition du logiciel. Actuellement, l’IDM, adopté par l’OMG, marque un nouveau paradigme pour le déploiement des IHMs. Aujourd’hui, l’IHM (Interface Homme Machine) voit en l’IDM (Ingénierie dirigée par les modèles) une approche prometteuse par son savoir-faire et qui consiste à adapter au contexte des systèmes interactifs les travaux menés depuis cette dernière décade sur le domaine de l’ingénierie dirigée par les modèles.

L’IHM et l’IDM se marient alors pour l’ingénierie d’IHM avancées. En effet, Sottet, et dans un objectif de normalisation, a été le premier qui a reproduit des travaux à base de modèles en se basant sur l’IDM [Sottet et al., 2005]. Et pour illustrer notre problématique, nous nous sommes orientés dans la même direction que Sottet.
En effet c’est l’IDM, qui va permettre de mettre en évidence l’idée d’abaisser la frontière entre conception, exécution et évaluation : les modèles ayant présidé à la conception sont embarqués dans les systèmes interactifs eux-mêmes. Ils sont vivants à l’exécution et peuvent, en conséquence, soutenir l’évaluation (semi-)automatique de l’IHM.

Les modèles sont conformes à des métamodèles explicites permettant en conséquence leur transformation à l’exécution. Ainsi, l’adaptation des IHM au contexte d’usage ("si la batterie faiblit alors migrer vers la plate-forme la plus proche") est transformation de modèles. Elle s’appuie, dans ses notations, sur l'architecture pyramidale de l'OMG (Object Management Group) qui distingue les niveaux modèles (M1) et métamodèles (M2). Des métamodèles sont prévus pour chaque notion clé de l’IHM : les transformations, exigences (contexte d’usage, propriétés, domaine) et étapes de conception.
Au fil de la conception, les exigences peuvent être révisées pour s’accommoder d’incompatibilités. Toute transformation (de production d’IHM, par exemple, domaine vers IHM abstraite ; de correspondance dans l’IHM, par exemple, tel interacteur correspond à telle tâche ; de changement de contexte d’usage, par exemple, migration de l’IHM d’un PC vers un PDA) est conforme à un métamodèle de transformation. Dans cette vision, l’IHM est à l’exécution une toile de modèles (ceux qui ont présidé à sa conception). Elle embarque son rationnel, devenant ainsi auto-explicative. Elle raconte le contexte d’usage qu’elle est capable de couvrir, les propriétés qu’elle garantit, la tâche utilisateur qu’elle permet, etc. La vision est dressée, mais la route est encore longue.

Pour ce faire, nous avons dressé un état de l’art tout au long duquel nous avons fait un tour d’horizon autour des approches à base de modèles pour la plasticité des IHMs. En effet, sans souci d’exhaustivité, nous avons essayé de passer en revue quelques exemples représentatifs des approches à base de modèles qui visent la spécification et la génération d’IHM multiplateforme et/ou adaptables au contexte d’utilisation.
En effet, ces approches montrent comment construire progressivement les différents modèles jusqu'à définir l'ensemble des caractéristiques nécessaires à la construction d’interfaces finales. La distinction entre niveaux d’abstraction d’interface permet particulièrement d'intégrer les contraintes de la conception multi-contextes aux modèles qui définissent le système interactif. Cette prise en considération favorise l’adaptation de l’ensemble du système interactif et influe en dernière étape sur le modèle de la présentation.

Chaque approche possède un certain nombre de modèles qui couvrent le cycle de développement d’IHM plastique et elle met en avant un certain nombre de modèles tout en visant l’adaptation au contexte ou à des sous parties du contexte en employant différentes méthodologies d’adaptation. Par exemple le modèle d’interface concrète est construit à partir du modèle d’interface abstraite avec des spécifications concernant le contexte d’usage. Ainsi, nous constatons que certaines approches se concentrent sur le modèle de tâche (Ex : Teresa) comme modèle, central pour l’adaptation, et d’autres font collaborer le modèle de tâche avec d’autres modèles (tel que le modèle de dialogue par exemple) jusqu’à un certain niveau.
En effet, pendant le cycle de développement de Teresa, les tâches doivent être filtrées selon la plate-forme cible afin d’avoir des tâches exécutables sur la plate-forme considérée.
En outre, certaines approches proposent un support à part pour chaque modèle (ex : UsiXML) accompagné d’une gamme d’outils pour relier ces modèles. UsiXML est très intéressant dans la mesure où il permet aux développeurs de systèmes sensibles au contexte, de s’intégrer à n’importe quelle étape de la méthode et d’utiliser les outils existants ou de développer des nouveaux outils.
Les langages sont figés par les outils, soit à cause d’une vision spécifique soit par nécessité. Il apparait donc nécessaire d’ouvrir à l’édition l’ensemble des éléments couvrant la génération automatique, à savoir : les langages, transformations et même les modèles des outils.

D’autres approches, préfèrent encapsuler la description des modèles dans un composant (ex : Comets) en le dotant ainsi de capacités d’auto description d’adaptation.
Et dans un objectif de normalisation, des travaux considérables sont menés pour reproduire les approches à base de modèles sur l’architecture MDA (Model Driven Architecture) [Sottet et al., 2005].

Néanmoins, la possibilité d’évoluer et d’améliorer la qualité des réactions d’adaptation est absente dans les approches présentées ; de plus le changement contextuel oblige l’IHM à être transformée à la conception pour appliquer l’adaptation pré-calculée (statique), sauf la Comet qui permet de passer d’une présentation prédéfinie à l’autre, à l’exécution, sous réserve de trouver des descriptions de l’adaptation demandée pour le changement au contexte détecté (application dynamique de l’adaptation statique).
En outre, nous avons décrit l’approche d’appui sur laquelle nous allons essayer de présenter nos contributions à la plasticité des IHMs.

A la lumière de notre état de l’art, nous avons constaté que l’adaptation doit être intégrée tout au long du processus de conception et de construction des systèmes interactifs, et non se faire lors de la finalisation de la présentation. En effet, il ne s’agit pas seulement de l’externalisation des informations et des services, mais aussi de leur sélection et de l’élaboration de l’interface en fonction de la situation d’utilisation en général et du contexte environnemental en particulier.

En effet, nous nous plaçons en continuité aux travaux de Bouchelligua [Bouchelligua, 2010] et nous suivrons le même chemin adopté par les travaux de mastère de Mezhoudi [Mezhoudi, 2009]. De ce fait, nous allons essayer d’exposer notre métamodèle, relatif à la dimension environnementale, tout en révélant les différentes contributions. Comme nous allons essayer de détailler le processus d’adaptation des IHMs déployé au cours de nos travaux.

Résultat atteints

L’adaptation des systèmes interactifs à leur environnement d’utilisation devient de plus en plus un vrai axe de recherche. Cependant, l’exploitation des données liées à l’environnement et celles de la plateforme sont souvent mal distinguées dans la littérature. Nous présentons un métamodèle de l’environnement générique qui englobera le maximum de facettes reliées au contexte environnemental.

Et en guise de continuité aux travaux de Bouchelligua [Bouchelligua et al., 2010], nous allons essayer de raffiner quelques métamodèles existants (le métamodèle de l’interface abstraite et le métamodèle de l’interface concrète) afin d’aboutir à automatiser la génération le processus de génération de l’interface.

Tout au long nos recherches, nous nous focalisons sur une approche centrée utilisateur : c’est le noyau dur de toutes les applications.

En fait, nous nous sommes orientés dans ce sens là, c'est-à-dire on a favorisé l’utilisateur, car ce dernier est au centre de toutes les discussions. En effet, l’utilisateur est au cœur de toute la problématique des IHM et tout gravite autour de lui. En outre, c’est la seule entité qui peut juger une IHM et a l’aptitude d’interpréter correctement les différents éléments constitutifs de l’interface.

De ce fait, notre approche ambitionne, en premier lieu, à satisfaire l’utilisateur face à une IHM en tant que manipulateur principal de chaque interface et c’est à lui de valoriser (réciproquement dévaloriser) les moyens qui lui sont fournis afin d’atteindre ses buts. De plus, nous devons donner une vision selon les préférences de l’utilisateur du système modélisé et couvrir le maximum de ses besoins.

En guise de récapitulation, les interfaces que nous proposons apportent les moyens de mettre en œuvre, de manière souple et adaptée, la plasticité à l’utilisateur, en tant qu’entité primaire, afin de réaliser sa tâche avec efficience, efficacité et satisfaction et ceci dans le cadre du respect du contexte de ses préférences. Ce qui en résulte, comme étant une première conséquence, une génération d’une première interface concrète adaptée aux préférences de l’utilisateur ayant reçu les informations appropriés à lui et les répercutant sur cette interface intermédiaire.

Dans un deuxième volet, nous nous intéressons, à l’injection des caractéristiques de la plateforme utilisée afin d’assurer la plasticité vis-à-vis ce contexte. En effet, nous avons opté à choisir cet ordre d’injection des caractéristiques pour des raisons multiples.

D’une part, c’est autour de l’utilisateur que gravite tout et ce sont ses caractéristiques qui vont imposer le choix de la plateforme. C’est lui qui décide quel est le dispositif sur lequel il souhaite voire afficher l’information. En effet, cette variation va exiger l’apparition et la disparition d’autres dispositifs d’interaction. De plus, c’est selon ses préférences que va se faire le choix de la modalité : graphique, auditive ou même olfactive. Alors, en cas de changement au niveau de l’une des dimensions contextuelles, une adaptation est lancée afin de préserver l’utilisabilité. Certes, les propriétés spécifiques et les caractéristiques capacitaires du dispositif cible doivent satisfaire les revendications de l’utilisateur.

Désormais, et suite à la généralisation des systèmes informatiques embarqués et nomades, l'utilisateur peut accéder à de multiples sources d'information à tout moment et quel que soit l'endroit où il se trouve. En effet, avec tout cela, l’utilisateur est considéré comme mobile, évoluant dans un environnement varié et recourant, de manière opportuniste, à des plates-formes d’interaction diverses. Ainsi, après avoir fixé et adapté les caractéristiques de la plateforme cible à ses propres motivations intentions, l’utilisateur n’a maintenant que choisir l’environnement qui va accueillir l’application. En fait, cette variante environnementale, doit être conforme aux caractéristiques de l’utilisateur et la plateforme cible. C’est le profil de l’utilisateur, défini comme étant une entité première pour le processus d’adaptation, ainsi que ces intentions accompagnées, bien évidemment, des symptomatiques de la plateforme vont déterminer les aspects environnementaux qui vont être mis en œuvre lors du processus d’adaptation afin d’aboutir à générer une IHM plastique tout en tenant compte des trois allures du contexte.

[image: image1.jpg]IUA

/\f> «Paramirée par »

Utilisateur

«Paramirée par »

Plate-forme

Environnement

lucs

|

Figure1: La transformation paramétrée et la plasticité de l’IHM
D’où, et en appliquant le principe de transformation paramétrée [Vale et al., 2008], nous allons injecter les propriétés environnementales après avoir subi ce même principe de transformation. En effet, la figure 1 clarifie ce que nous tentons proposer et explicite le principe de la transformation paramétrée dans notre cas.

De ce fait, la génération de l’interface concrète (IUC) se fait sur trois phases, nos contributions se concentrent sur la troisième phase d’injection. Pour ce faire, nous devons établir le métamodèle de l’environnement et ceci moyennant ainsi à mettre en œuvre le principe de la transformation pour illustrer le processus d’adaptation. En effet, cette transformation nécessite un triplet de modèles « Source, Cible, Paramètre ».
Cependant, la description fonctionnelle est présentée à travers le modèle source et le modèle cible : ce sont les modèles initiaux. Tant que le modèle paramètre « Le modèle de l’environnement» sert pour la contextualisation du modèle cible.

1 Métamodèle de l’environnement
Dans ce métamodèle, figure 2, nous essayons d’englober toutes les facettes du contexte environnemental susceptible de réagir directement ou indirectement sur le système interactif. En fait, nous allons essayer de tenir en compte le maximum d’aspects environnementaux afin de combler les manques cités précédemment.

Dans notre métamodèle d’environnement, nous essayons de présenter le maximum de caractéristiques. De ce fait, notre métamodèle est composé de quatre classes qui exposent les caractéristiques générales.

La première classe caractérise l’environnement ambiant qui entoure le système interactif « AmbiantEnvironment ». Or avec l’invasion de l’informatique ubiquitaire, les conditions ambiantes sont changeables d’un instant à un autre. Avec cette classe, nous désirons exposer tous les aspects qui entourent le système interactif. A cet effet, nous voyons que cette de classe héritent trois sous classes : « ClimaticEnvironment », « LuminousEnvironment » et « SonorousEnvironment ».
· La classe « ClimaticEnvironment » spécifie les conditions climatiques susceptibles d’agir sur le système interactif. Pour cela, nous trouvons les attributs suivants :

· « precipitation » et « humidity » qui sont de type booléen pour dire qu’il existe des précipitations et de l’humidité ou non ;

· « sunIntensity », « windIntensity» pour bien spécifier le degré d’intensité du soleil et du vent. Cet attribut est de type « Level » qui est une énumération que nous avons définit. Cette énumération comporte trois valeurs différentes : « high », « medium » et « low ». Alors, le degré du soleil, réciproquement le degré du vent, peut être soit élevé, soit moyen ou bien faible ;
· « season » : chaque climat diffère d’une saison à une autre, d’où vient la nécessité de définir une énumération comportant les quatre saisons pour bien spécifier la saison au cours de laquelle l’application s’achève ;
· La classe « SonorousEnvironment » indique l’état sonore régnant autour du système interactif. Cette classe contient un seul attribut « noiseIntensity» de type « Level » (cité dans la section précédente) pour décrire le niveau de bruit.

· La classe « LuminousEnvironment » : l’environnement lumineux décrit dans cette classe est déterminé par l’intensité de la lumière qui peut être forte, moyenne ou bien faible. Pour cela, nous avons défini un attribut « lightIntensity » de type « Level ».

La deuxième classe composant notre métamodèle est la classe « TemporalEnvironment ».

Dans cette classe, nous avons spécifié deux attributs ; le premier est « date » et il est de type « Month ». Quant au deuxième attribut « time», il est de type « Time ». En fait, nous avons défini une énumération nommée « Month » et une autre nommée« Time ». Les valeurs de la première énumération sont les douze mois de l’année. En fait, nous avons opté à cette définition là, var nous jugeons que le mois de l’année a le plus d’impact sur l’état climatique. En ce qui concerne la deuxième énumération définie à ce niveau, elle comporte deux valeurs « night » et « daytime », et ceci afin de dire si nous utilisons cette interface pendant la nuit ou bien au cours de la journée.

Touchant la troisième classe, nommée « SocialEnvironment », elle caractérise l’environnement social accueillant le système interactif. Cette classe est ornée d’un seul attribut : « atmosphere» de type « Atmosphere », qui est une énumération comportant cinq valeurs. En fait, l’utilisateur du système peut se trouver dans une atmosphère religieuse, culturelle, scientifique, de loisir ou bien de travail.

Afin de spécifier le lieu accueillant l’application, nous nous sommes servis d’une quatrième classe nommée « SpatialEnvironment ». En effet, cette classe informe sur la localisation géographique du système interactif. Pour cela, nous avons opté à ajouter un attribut « adress » de type « EString ». De plus, cette classe a été décorée par deux autres attributs qui sont « type » et « particularity » de type respectivement « Type » et « Particularity ».

Ces deux énumérations nous indiquent le type et la particularité de l’environnement physique accueillant le système. Alors, un lieu peut être de type privé « private » ou bien publique « public ». De même, la particularité de l’espace peut être individuelle « individual » ou bien commune « commun ».

De cette classe dérive deux sous classes :

· « InDoorEnvironment » : cette classe regroupe tous les endroits « fermés ». Elle est caractérisée par un seul attribut qui renseigne sur le type de cet espace. Pour se faire, nous avons défini une énumération « InDoorType » dans laquelle nous avons essayé de citer le maximum des endroits fermés vu la mobilité incessante de l’utilisateur qui peut accéder à l’application n’importe où.

 A titre d’exemple, nous citons « home », « factory », « library », « church »…
· « OutDoorEnvironment » : dans cette classe, nous exhibons le maximum des endroits extérieurs. Tout comme l’autre classe, cette classe est dotée d’un seul attribut « outDoorType » qui signale dans quel endroit nous nous situons. Dans le même sens que « InDoorType », nous avons déterminé une autre énumération « OutDoorType ». Parmi les valeurs que peut avoir l’attribut « outDoorType», nous mentionnons « street », « park », « station », «buildingSite » …
[image: image2.png]& £ore Diagram ; ErwironmentMeta-Model / EnvironmentMeta-mode)

<enumeraton>s | [<<enumeration>> socialEnviranmen
nDoorType [rype G SpatialEnvironmen
~ home, = pnﬁt: = adress - Estring 1 spaﬂa\En\/wunmi G Envionmen] Erar
- - pu S
offce - o e :Tyve & atmosphere : Atmosphere.
= factory W 5 particularity_: Particularity [} ——————
= iibrary evel —
- church ~low
- mosque o e [temporalEntiranmen
- Yac'u\'v - high 1 [TemporalEnvironmen
o e omeordEnvronmen |
erumeratin = date :Monih
= restaurant [t " [__© mDoorEnvironmer _| date
articularity || OutDoorEnvironmer__| = inDsorType : InDoorType £, tme :Time
- supermarket ~ indvidual | | £ 0utdoortype - OutDoorTye E———— 1 1| aubisnenvionmen
= fedl - common
- meansOfTransport —
[Renmersionss | ‘AmbiantEnvironmer
<<enumeration>> | [Zenumeration>> <§::ﬁ’“mm”>> - gl
Dutboortype | lamosphere
- strest ~ cultural BT ,) ,
- buildingSite || - scientiic - february climater, 1 {lumincusem, sanorausem
= march
- park - religious
= GEm o TR april @ ClimaticEnvironmen @ LuminousEnvironmen ® SonorousEnvironmen
~ cupenvariet || - work - may = sunintensity :Level . lightintensiy Level = noiseintensity : Level
- beach = June & windintensity : Level
- . - july . season - Season
<erumeration>> | [<<emmeraions> | | _ :
o [ane 5 numidty -Eaoolean
e Y septern £, precipiation : EBoolean
~ aclober
- autumn ~ night
~ november
= winler
- december
- spiing

Figure2:Le métamodèle de l’environnement
Comme nous l'avons déjà mentionné, ce modèle est pris comme paramètre pour l'adaptation. Comme exemple concret, nous donnons dans la Figure suivante, la description XML d’un type d’environnement qui est caractérisé par un volume sonore faible et qui se déroule pendant le mois de janvier et tout au long la nuit.

[image: image3.jpg]@ platform:/resource/FirstTransformation/model/Environmentlxmi
% Environment
4 SpatislEnvironment Sfax
4 Tempors! Environment january
< Social Environment cultural
< Ambiant Environment
% Sonorous Emvronment low
4 Luminous Enviranment low
4 Climatic Emironmentlow

[image: image4.jpg]Bibliothéque Volume faible

-2

Lumiére Faible

[image: image5.jpg][£. Problems [@ Javadoc ([&) Dectaration [B Console (] Birdview | = Properties 53 ¥} EMF registered packages

Property Value
Date
Time.

Figure 4:Modèle de l’environnement
La maitrise des aspects non fonctionnels dans un système interactif retient de plus en plus d’attention. En effet, les exigences des contraintes temporelles ne cessent d’augmenter et les problèmes ne cessent de se manifester.
Les transformations de modèles sont au cœur du processus méthodologique de création d'applications : elles permettent d'adapter les modèles à l'infrastructure technique réelle dans laquelle les applications vont être utilisées.

Les transformations de modèles peuvent s'appuyer sur une base générique, elles doivent être adaptées à chaque environnement de conception d'applications et donc à chaque entreprise.
Ceci facilite la maintenance et l'évolution dans le temps en permettant de prendre en compte de nouveaux environnements techniques ou de nouvelles contraintes techniques et/ou fonctionnelles.
Si le pouvoir d'adapter les IHMs au contexte environnemental représente un axe séduisant en matière d'expressivité des modèles, tout n'est pas parfait et il existe un certain nombre de contraintes et de limites qu'il est important de présenter. En effet, et dans le but d’offrir des constructions parfaitement adaptées à la vérification structurelles des modèles, nous avons opté à définir quelques contraintes pour valider les actions des transformations pendant la phase d’exécution.
Dans le cadre de l’informatique ambiante, le fait que les utilisateurs soient mobiles et puissent utiliser de nombreuses plateformes techniques différentes pour accéder à l'information entraîne un certain nombre de contraintes au niveau du développement d'applications que nous devons tenir en compte.

En effet, en se référant à notre métamodèle (figure 34), nous cernons quelques contraintes qui doivent être prise en considération afin de présenter un modèle sain et valide.

Ainsi la faisabilité de transformation paramétrée prétend à vérifier un ensemble de contraintes. Dans le cadre de nos travaux, et en nous basant sur ces différentes constatations, nous avons souligné quelques contraintes qui s’imposent lors de la phase d’exécution et ceci vu le débarquement immense de l’informatique pervasive.

A titre d’exemple, nous pouvons remarquer, si le type de l’environnement choisi est un environnement intérieur alors il est nécessaire que la valeur de l’attribut « precipitation » de la classe « ClimaticEnvironment » vaut « false ». Autrement dit, si « Precipitation=true », alors nous sommes dans un environnement extérieur «OutDoorEnvironment ».

Cependant, chaque atmosphère a sa particularité et ses propres « normes». En effet, si l’environnement lumineux qui domine l’espace est faible « lightIntensity=low», alors l’environnement temporel en ce moment est « night ». En outre, si nous nous plaçons dans une mosquée ou une église (« inDoorType=moske » ou « inDoorType=church »), alors l’atmosphère dominant ne peut être qu’une atmosphère religieuse (« atmospher=religious ») non pas un autre type d’atmosphère, ce qui en résulte que le niveau de bruit doit être minimal (« noiseIntensity=low »).

Toutefois, les quatre saisons de l’année se prolongent sur des mois spécifiques à elles. Par exemple, si on est pendant le mois de janvier alors, on ne peut être que pendant l’hiver et non pas une autre saison. Pour cela, le concepteur du système interactif doit bien cerner ces contraintes qui doivent être tenues en compte lors la phase de transformation et ceci afin de conserver l’utilisabilité du système et illustrer la plasticité de l’IHM. En conséquence, le modèle doit satisfaire un ensemble de règles pour générer la transformation du modèle cible en œuvrant à ne pas briser aucune contrainte mentionnées ci-dessus.

Finalement, la construction d’un modèle exécutable s’établit tout en précisant les contraintes exigées et nécessaires. La section suivante décrit notre vision, basée sur le principe remémoré par Vale, pour générer des interfaces multicibles.
context Environment inv:
self.ambientenvironment.climatenv.precipitation implies self.spatialEnvironment->forAll(s | s. oclIsKindOf(OutDoorEnvironment)
2 Transformation IUC2TOIUC3 paramétrée par l’environnement

En s’inscrivant dans le cadre d'une approche de modélisation dirigée par les modèles, la question qui se pose est de savoir comment prendre en compte le contexte plus précisément la variante environnementale; c'est-à-dire, comment le rendre suffisamment concret pour qu'il puisse être utilisé.

Dans le cadre de nos recherches, nous avons constaté que les effets de la dimension environnementale sont aperçus essentiellement dans l’interface finale, c'est-à-dire lors de la personnalisation des contenus. Tous les facteurs qui concernent les caractéristiques et propriétés des contenus permettant de définir comment l'information peut être personnalisée.
Dans le but de combler ce manque, nous nous sommes dirigées vers la notion de service dans le cadre de la concrétisation de l’interface. En effet, un service regroupe un ensemble de processus qui permettent à l'utilisateur de réaliser un ou plusieurs buts. Un service est soit obligatoire soit optionnel. Dans le cas d'un service obligatoire, celui-ci est disponible pour l'utilisateur dans un contexte fonctionnel et environnemental particulier et l'utilisateur ne peut pas le rendre indisponible. S'il est optionnel, il est aussi disponible pour l'utilisateur dans un contexte fonctionnel et environnemental particulier, mais l'utilisateur peut choisir de ne pas y avoir accès à travers son IHM. En outre, un service peut être implicite (est rendu disponible par le système, mais l'utilisateur ne peut pas y accéder directement) ou explicite (il est directement accessible pour l'utilisateur). Un service fonctionnel représente une fonctionnalité métier qu'il est possible d'appeler à n’importe quel niveau sans en connaître le fonctionnement propre. Pour donner un exemple, l'adaptation des éléments d'interaction au niveau de la luminosité, est un service fonctionnel qui peut être utilisé. Ainsi, au niveau de la modélisation conceptuelle d'une application, il n'est pas important, du point de vue métier, de savoir comment fonctionne cette adaptation lumineuse mais d'indiquer dans quel processus métier elle sera utilisée. De cette manière, il devient possible de simplifier les modèles en permettant aux personnes en charge de la modélisation de se concentrer uniquement sur les buts et processus métier. En conséquence, le service est un ensemble de traitements permettant d'exécuter une opération précise sur l'élément auquel il est relié. Par exemple, si on associe le service fonctionnel d'adaptation lumineuse des éléments d'interaction à un élément, l'adaptation ne sera effectuée que pour ce composant.
Dans le but de visualiser l’impact environnemental sur la concrétisation de l’interface, la présente transformation décrit le passage d'une spécification concrète vers une autre de même type : c’est une transformation endogène. Ce module de transformation, illustrée par la figure suivante, consiste à générer automatiquement l'Interface Utilisateur Concrète « CUI3 » à partir d’une Interface Utilisateur concrète « CUI2 ». Celle-ci présente le modèle source de la transformation.
[image: image6.jpg]Méta-modele de IUCT ?f‘é'a? e Méta-modele de 1UC2
‘'environnement
\ i P
X £ /

84 /

& 4

- v

/
H o 3
H Modéle de Fenvironnement P4 H
g 4 g 4
: /
\ Te Vg
e £ /
9 s
«source » «cible »
Modgle de UC > > Modsle de IUC2

Moteur d

Sindnriston

Figure 5: IUC2TOIUC3 paramétré par l’environnement
Avant de créer ce module de transformation, il est nécessaire de mentionner que le modèle source a été, à son tour, un modèle cible d’une transformation antérieure paramétrée par le contexte relatif à la plate-forme.

La figure suivante présente le code Kermeta contenant la classe « CUI2CUI », ses propriétés et l'opération « transform » qui constitue le point d'entrée de la transformation. Nous avons défini dans la classe « CUI2CUI » une référence appelée « CUI2CUI » qui va être utilisée pour stoker les correspondances entre les modèles sources et le modèle cible en utilisant la classe générique « Trace ». Nous avons défini aussi l'opération « transform » qui représente le point d'entrée de la transformation. Elle se compose d'un bloc d'initialisation et une phase de transformation. Dans le bloc d'initialisation, nous avons crée une instance de la classe CUI2CUI et initialisé le résultat. La phase de transformation fait appel à la méthode « Transform ».
D’une manière synthétique, il est important de noter ici que la définition et la création de services fonctionnels ne sont pas obligatoires dans le cadre de la plasticité des IHMs. En effet, ces services:

· Favorisent, par leur principe même de réutilisation, la fiabilité des modèles : un service fonctionnel testé et validé dans le cadre d'une première application peut être directement utilisé dans une deuxième application sans avoir à subir une phase de test et de validation importante.

· Favorisent la maintenance des applications : un service fonctionnel étant défini à un seul endroit, toute modification de ce service fonctionnel est automatiquement prise en compte par l'ensemble des applications qui l'utilisent.
Validation

Nous avons proposé antérieurement une démarche de génération d’IHM plastique dans le cadre de l’IDM. La présente section se charge d’illustrer la mise en œuvre de cette démarche. Ainsi, nous allons valider et implémenter notre méthodologie en l’appliquant un cas d’études de cas de système interactif plastique, destiné à un environnement d’utilisation spécifique. En fait, nous scrutons comme cas d’étude un système d’information typique. Nous mettons l’accent sur les différentes transformations menant à la génération de l’IHM.

3 Cas d’étude

Comme nous l’avons mentionné, nous nous plaçons en continuité par rapport aux travaux de Bouchelligua [Boucheligua, 2010]. En effet, l’approche proposée par Bouchelligua, vise la génération des Interfaces Utilisateurs pour système d’information à base de workflow. Elle part d’un modèle de workflow pour extraire les modèles de tâche qui vont alimenter le processus de génération de l’IHM. Conformément au cadre Caméléon, la figure suivante montre le modèle de workflow associé au processus métier d’octroi d’une carte bancaire.

[image: image7.emf]
Figure 6: Modèle de workflow pour l'octroi d'une carte bancaire.
En utilisant la notation BPMN, le workflow est présenté sous forme d'un ensemble d'activités qui peuvent être des processus, des sous-processus ou des tâches élémentaires. L'ensemble d'activités est organisé sous forme des conteneurs qui représentent des partitions du processus montrant une répartition des activités par intervenant (un acteur ou une entité organisationnelle particulière).
Ce processus métier présente un parmi plusieurs processus métiers pouvant être utilisés dans une banque. Ce workflow fait intervenir quatre acteurs :
· Le client : un client de la banque demandant une carte bancaire ;
· Le responsable client : l'administrateur du système ;
· Le responsable service : l'agent de la banque ;
· L'analyste : l'analyste _nancier de la banque.

L'octroi d'une carte bancaire nécessite quatre modules, à savoir :
· Un module de création d'une nouvelle demande : ce module permet au client de commander une carte bancaire en ligne.
· Un module de vérification des données : ce module permet au responsable client de vérifier les conformités des informations du client.
· Un module de gestion du système : ce module permet au responsable service de gérer la base des règles ainsi que les caractéristiques des cartes bancaires.
· Un module d'évaluation : ce module permet à l'analyste d'évaluer les demandes afin de donner un score à la demande.
· Tous ces modules exigent une authentification par les utilisateurs du système par mesure de sécurité.

Le modèle BPMN présente le flux de travail entre les différents acteurs du système. Le client envoie une demande de carte bancaire au responsable client "Demander une carte bancaire".

Cette demande décrit :
· Son type (particulier, entreprise),
· Ses informations (Numéro de compte, Numéro pièce d'identité, Nom, Prénom . . .),
· Et le type de carte souhaitée.

Le responsable client vérifie les informations saisies par le client "Vérifier les informations saisies par le client" et envoi à l'analyste les demandes vérifiées "Envoyer la demande vérifiée".

L'analyste évalue la demande en notant les informations pertinentes "Noter les informations pertinentes" et en lançant le calcul du score "Lancer calcul du score". Suite à cette évaluation, il recommande une carte au client "Recommander une carte". Le responsable client reçoit la recommandation et l'envoi au client "Informer le client". Le responsable système gère la base de règles de pondération "Gérer la base des règles", les types des cartes dans l'établissement bancaire "Gérer les cartes" et les utilisateurs "Gérer les utilisateurs". Chaque rectangle du modèle de workflow est considéré une tâche de haut niveau pour un modèle de tâche au sens IHM. Dans notre étude de cas, nous allons générer les interfaces propres au processus « Demander une carte bancaire ».

Les travaux de Bouchelligua [Bouchelligua et al., 2010], s’articulent sur trois phases. Ils commencent par une phase de méta-modélisation au cours de laquelle des nouveaux métamodèles sont proposés et d’autre sont raffinés. Pour la seconde étape, elle se concentre sur l’automatisation du processus de génération en développant les transformations entre les modèles. Ces travaux, finissent par la mise en œuvre de la plasticité lors de la troisième étape pour agréer une génération adaptable au contexte d’usage.

Ainsi, le scenario proposé dans [Bouchelligua et al., 2010], pour la génération se résume comme suit : ils partent de deux spécifications la première décrit une modélisation des tâches du cas d'étude et la deuxième présente un digramme des concepts modélisant de façon statique le système d'information. Ces deux modèles seront fusionnés via une étape d'annotation réalisée manuellement. L'annotation permet d'enrichir le modèle de tâches par les concepts, ce qui donne une présentation plus complète du système. Une fois annoté, le modèle des tâches subit une phase de transformation (MTa2IUA). En fait cette transformation a été réalisée pendant les travaux de mastère de Mezhoudi [Mezhoudi, 2010].

Ainsi une Interface Utilisateur Abstraite est produite. Cette dernière présente le modèle source d'une deuxième transformation paramétrée par le modèle d’adaptation décrivant l’utilisateur (IUA2IUC), qui a été réalisé par les travaux de mastère de BenAmmar [BenAmmar, 2010]. A son tour, cette Interface Utilisateur Concrète va alimenter un troisième module de transformation, mais cette fois, ce module de transformation sera paramétré par les caractéristiques de la plate-forme pour générer une Interface Utilisateur Concrète conforme aux préférences de l’utilisateur et les propriétés de la plate-forme d’interaction. De ce fait, se lance le processus d’adaptation relié au contexte environnemental pour aboutir à une Interface Utilisateur Concrète plastique et conforme aux trois dimensions du contexte d’usage.

Dans ce qui suit, nous étalons les phases optées par [Bouchelligua et al., 2010] pour générer une Interface Utilisateur plastique.

4 Modèle de tâche et les différentes transformations
Une fois le modèle de concepts de domaine est établi, le modèle des tâches est prêt pour subir une transformation. La figure suivante illustre le modèle de tâche initiale du cas d’étude Le modèle de tâche est édité par l'éditeur wysiwyg "Task Model Editor" développé pour l'approche [Lassoued et al., 2009]. Il est basé sur la méta-modélisation avec EMF (Eclipse Modeling Framework) et (GMF) (Graphical Modeling Framework) pour la génération d'éditeur visuel sous forme d'un "plugin Eclipse" pour un métamodèle. La tâche globale décrit la fonction visée par le système "Demande d'une Carte Bancaire". L'accomplissement de cette fonctionnalité nécessite quatre phase ; une phase d'authentification, une spécification de type clients, un choix de type-carte et une phase de remplissage du formulaire de la demande
 [image: image8.png](& Ask for a credit carc

Level1
Ak for a credit carc
@ Login
»! P Select customer type |
Level2
@ Login
@ L ety login | gt speciy password £ Valdats.] check valty
* Determine form
» (- Determine private individual lnrﬂ
. '@ system choice .
» (% Determine company lnrﬂ A
Level3_
@ Determine private individual form & Determine company form
(- Determine informatior (- Determine informatior) validate
/ Validate
O > »O O > »O
Level4

P BRI @ Determine information

(- Determine banking informatior
>
.
o0 6 0o Q
N

A
¥ Determine campany nformatio
(& Determine personnel informatioi
»

Levels
' Determine personnel information '~ Determine campany information
[Specify identity card numbet po.L./ Speify company name
2. Specify first name gL Specify commercial register,

gL Specify last name oL Specify legal representative name

[Specify adress

O ><o> gL Select gender

Ll Select marital status [Specify tumovel

1.1 specify email
> @ Determine banking information

/| Select card type
-1 Specify phone number > P

b4
A
O Q

. Specify account numbe

Figure 7: Modèle de tâche « Demande d'une Carte Bancaire »

Maintenant, la première transformation est déclenchée pour générer l’Interface Utilisateur Abstraite. En effet, cette transformation a été réalisée par Mezhoudi [Mezhoudi, 2010]. Ce module s’identifie à travers le fichier « taskmodel.xmi » généré après annotation présente le modèle source de cette transformation. Une fois le modèle décoré, une première transformation vers une description conforme au métamodèle abstrait d'interface aura lieu. Le résultat de la transformation est un fichier ".xmi" décrivant l'interface abstraite associé au modèle de tâche. Le fichier généré peut être visualisé à l'aide d'un deuxième éditeur conçu pour la modélisation de l'interface abstraite conformément au métamodèle "AbstractUserInterfaceProcess". Ainsi un conteneur abstrait de type UIGroup "Demande Carte Bancaire" qui correspond à la tâche globale est crée. Au sein de ce conteneur abstrait les conteneurs abstraits et les composants individuels correspondants aux tâches abstraites et tâches élémentaires de niveaux sont identifiés.
· identification des deux conteneurs abstraits UIUnitSuit "s'authentifier" et "remplir formulaire" et les deux composants individuels CollapsedUIUnit "Saisir type de client" et «Saisir type carte".
Après, les composants abstraits étendus sont explorés de façon récursive.
La visualisation de l'interface utilisateur abstraite du cas d'étude se fait via l'éditeur "AbstractInterfaceEditor" basé GMFEclipse. La figure suivante montre la visualisation du modèle.

[image: image9.jpg](<< Annotation_Specify login >>

data login
dataType : EString

data : password
dataType : EString

‘<< Annotation_Specify password >>

UlUnitSuit_Login

Ulunit_Specty login

UIGroup_Check validity

Ulunit_Check validity.

UIGroup_AbstractUserinterface_Ask for a credit card

Ulunit_Detremine information

UISubUnit_Determine banking information

UISubUnit_Select card tyne

UlUnitSuit_Determine personnel information

UISubUnit_Sepecify identity card number

UISubUnit_Select gender

FHL

enumValues : private IndividualiCampany

UISubUnit_Selectmarital status.

UISubUnit_Specify email

(* UISubUnit_Specity phone number

-’

UlunitSuit_Determine private individual form

Ulunit_Validate

<< Annotation_Select card type >>
data: card type
dataType : Enumerator
enumnB :
enumValues : VisaMasterCard/American Express!
PayPaliGold MasterCard

<< Annotation_Specify account number >>
data : account number
dataType : Eint

<< Annotation_Specify identity card number >>
data: identity card number
dataType : Eint

<< Annotation_Specify first name >>
datafirst name
dataType : EString

<< Annotation_Specify last name >>
data: last name
dataType : EString

‘<< Annotation_Select gender >>

dataType : Enumerator
enumnB: 2
enumValues : MaleFemale

‘<< Annotation_Select marital status >>
data: marital status

enumValues : SingleMarried DivorcedWidowed

<< Annotation_Specify email >>
data : email
dataType : EString

<< Annotation_Specify phone number >>
data : phone number
dataType : Eint

Figure 8 : Interface Utilisateur Abstraite.
5 Conclusion
Nos travaux de recherche traitent la question de l’exécution des systèmes interactifs dans le cadre de l’informatique ubiquitaire. Dans ce cadre, la variabilité et l’imprévisibilité du contexte de l’interaction impliquent que les systèmes interactifs doivent s’adapter ou être adaptés à l’exécution afin de préserver leur utilisabilité. J’ai choisi d’aborder cette problématique de point de vue adaptation au contexte environnemental. Le sujet de ce mastère concerne donc l’étude du processus de génération de l’IHM adaptable à leur contexte d’usage tout en exposant les aspects généraux nécessaires à l’adaptation des interfaces Homme-Machine

Les objectifs de ces travaux de recherche sont :
De comprendre, la problématique de la plasticité des IHM à l’exécution, puis, pour traiter cette problématique, de proposer des bases générales qui permettent de garder la possibilité d’exploiter à l’exécution des modèles de haut niveau d’abstraction pour adapter les IHM sur des fondements sémantiques. Ceci va nous permettre de construire des systèmes interactifs dynamiquement adaptables.

L’étude de la problématique de la plasticité des IHM à l’exécution a débouché sur ma principale contribution. En effet, et dans le cadre d’une approche à base de modèle, nous œuvrons à l’adaptation des systèmes interactifs à la dimension environnementale qui présente un élément du triplet du contexte d’usage<utilisateur, plate-forme, environnement>.

Certes, l’état de l’art présenté pendant nos recherches a tracé quelques limites des approches de nos prédécesseurs. Pour combler ce manque, nous nous sommes focalisés, dans un troisième chapitre, à détailler nos moyens pour la mise en œuvre de la capacité des systèmes interactifs aux aspects de l’environnement qui les accueille. En fait, nous avons tenté présenter un métamodèle de l’environnement générique englobant le maximum des facettes environnementales. Pour capitaliser les savoir-faire nous avons conçu un ensemble de transformations de modèles. Les transformations factorisent les axes de remodelages et de redistributions. Ces transformations respectent des propriétés d’utilisabilité ; elles se veulent concises et manipulables.

En ce qui concerne le processus d’adaptation, nous avons opté à garnir les composants interactifs par des services fonctionnels. Ces services sont un ensemble de traitements permettant d'exécuter une opération précise sur l'élément auquel ils sont reliés. Un service fonctionnel représente une fonctionnalité métier qu'il est possible d'appeler à n’importe quel niveau sans en connaître le fonctionnement propre. Et pour valider nos contributions, un démonstrateur, a été développé. Ce démonstrateur s’appuie fortement sur les métamodèles que nous avons développés tout en se référant à notre approche de base.

Néanmoins, ce travail de recherches s’inscrivant dans le cadre de mon mastère, ouvre quelques perspectives.

6 Perspectives

Enfin pour l’IHM il est préférable d’améliorer les règles de transformations : avoir une base plus étoffée, une meilleure couverture des critères ergonomiques choisis et de nouvelles technologies. Il est primordial d’améliorer l’intégration de nouveaux critères et de références ergonomiques dans nos transformations. Ceci doit amener à trouver de nouvelles métriques plus ou moins ergonomiques sur les modèles et les relations entre modèles
24

