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Abstract— Massively Parallel Processing System on Chip
(MPPSoC) provides an interesting solution when high
performance is needed for embedded parallel applications. The
increasing amount of hardware resources in MPPSoC calls for
efficient design methodologies and tools to reduce its
development complexity.  This paper presents an MPPSoC
design flow, which uses the MARTE (Modeling and Analysis of
Real-Time and Embedded systems) standard profile for high-
level system specification. This flow is based on a Model-
Driven Engineering approach. It promotes separation of
concerns, reusability and automatic model refinement from
higher abstraction levels to executable VHDL description
facilitating the design space exploration.

. INTRODUCTION

Massively data-parallel applications are predominant in
several application domains such as mobile multimedia
processing, high-definition TV and radar/sonar signal
processing. They play an increasingly important role in
embedded systems. Parallel massive data processing is a key
feature in these applications. When dealing with massive
computation and data intensive processing, the use of
massively parallel architectures is very useful. An MPPSoC
system is a generic massively parallel embedded architecture
designed for data-parallel applications. MPPSoC has a
SIMD (Single Instruction Multiple Data) [1] parallel
architecture that results from an assembly of different
components and may be implemented on a single chip. In
addition, MPPSoC proves very fruitful in massively parallel
applications  domain. However, the design and
implementation of such systems become critical due to their
long design and development cycles. In fact, the MPPSoC’s
design is facing today a strong pressure on reducing time-to-
market while the complexity of this system has been
increasing. Changing a SoC configuration may also
necessitate extensive redesign. Design abstraction offers a
possible solution to address the above issues concerning the
time-to-market and complexity dilemma. It is in the context
of improving the primary productivity of MPPSoC, that our
work finds its proper place. This work is part of the
MPPSoC project which consists in defining and designing a
programmable and flexible SIMD SoC, called Massively
Parallel Processing System-on-Chip, that can be simulated
and prototyped on FPGA (Field Programmable Gate Arrays)

devices. To facilitate and accelerate the design of an
MPPSoC configuration dedicated to a given parallel
application, our contribution consists in proposing an
MPPSoC framework. This framework uses the MARTE [2]
profile for high level specifications of SoC applications and
architectures and it is based on Model Driven Engineering
[3]. This methodology is based on two concepts: model and
transformation. Data and their structures are represented in
models, while the computation is done by transformations
and enables to target different execution platforms for
automatic generation of the respective code. A model
basically highlights the intention of a system without
describing the implementation details. UML is a model
specification language [6], which proposes general concepts
allowing one to express both behavioral and structural
aspects of a system. The UML/MDE-based systems’ design
is a very young discipline [10]. In fact, UML and MDE have
been adopted in co-design methods [11], [12], [13], [14] in
the last years with success. Abstract models favor an
efficient design reuse, typically through different
refinements from higher level models to lower level models.
Different approaches to high-level synthesis are currently
being studied for different specification languages. Among
the proposed approaches, we can mention a transformation
tool, called MODCO [16], which takes a UML state diagram
as input and generates HDL output suitable for use in FPGA
circuit design. A HW/SW co-design is performed based on
the MDA approach. XML is used to generate HDL from
high-level UML diagrams. In [15], an approach using
VHDL synthesis from UML behavioral models is presented.
The UML models are first translated into textual code in a
language called SMDL. This latter can be then compiled into
a target language as VHDL. The translation from UML
models to SMDL is performed using the aUML toolkit. In
the preceding works, only state machines HW designs are
described. In [17], the UML based design and
implementation of an H.264 video decoder core is presented.
The FalconML tool is used to directly generate the System C
and VHDL code targeting ASIC technology. According to
these various research works, there is no focus on designing
parallel processing systems and proposing dedicated
frameworks able to accelerate their design.

This works proposes a design flow to automatically
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Fig. 1. MPPSoC configuration.
generate VHDL executable code for an MPPSoC

configuration. The flow transforms MPPSoC meta-model to
synthesizable VHDL code which can be then simulated or
prototyped on any FPGA technology in order to measure
performances. These steps help the designer to evaluate the
generated SIMD configuration and choose the adequate one
for a given application. Thus, our framework facilitates the
design space exploration.

The remainder of this paper is organized as follows:
Section 2 introduces the MPPSoC with focus on its
flexibility and parametricity. The MPPSoC UML/MARTE
model is addressed in Section 3 and the code generation
approach is highlighted in Section 4. Finally, Section 5 gives
concluding remarks.

Il. MPPSOC ARCHITECTURE’S OVERVIEW

MPPSoC is an IP-based massively parallel architecture [4].
It (figure 1) is composed of a number of processing elements
(the PEs) working in perfect synchronization. A small
amount of local and private memory is attached to each PE.
Every PE is potentially connected to its neighbors via a
regular network. The whole system is controlled by an Array
Controller Unit (ACU).

The configurable neighborhood interconnection network is
implemented to assure inter-PE communications depending
on its configurable topology (Mesh, Torus, Xnet, Linear
array and Ring), as illustrated in the Figure 2. Furthermore,
each PE is connected to an entry of mpNoC, a massively
parallel Network on Chip that potentially connects each PE
to one another, performing efficient irregular
communications. The mpNoC is integrated to manage point
to point communications through different types of
connections. In fact, the mpNoC includes a configurable
router which can be of different types (Shared Bus,
Crossbar, Delta MIN (omega, baseline and butterfly)). The

mpNoC can perform different communication modes (PE-
PE, PE-ACU, PE-Device) since it contains a mode manager.
This latter is implemented by two switches responsible of
connecting the required sources and destinations
respectively. The designer can choose to integrate none, one
or both MPPSoC networks (neighborhood/mpNoC) to build
a given SIMD configuration. The MPPSoC system can be
customized to target diverse applications [8]. In fact, our
design approach aims to define an MPPSoC configuration
adapted to a given application. This customization is
achieved with the parameterization as well as the
extensibility and the configurability of the architecture. In
fact, MPPSoC is parametric in terms of the number of PEs
as well as the memories’ sizes. It has three configurable
aspects: processor design methodology, the integrated
neighboring network’s  topology and the mpNoC
interconnection network’s type.

The processor design methodology is the manner to
assemble processor IPs to build the SIMD system. We
distinguish two methodologies: processor reduction and
processor replication. The former consists on reducing an
available open core processor in order to build a processing
element with a small reduced size. The PE can be then fitted
in large quantities into an FPGA device. In this case, it is
only responsible of executing micro-instructions (decoded
instructions) broadcasted from the ACU. This methodology
allows putting a large number of PEs on a single chip;
however it necessitates a long development cycle. Whereas
the replication methodology consists on implementing the
ACU as well as the PE by the same processor IP so that the
designing process is faster. The criterion to choose this
methodology on a SIMD on chip architecture is to use a
smaller processor so that a big number can be put on the
FPGA device. We clearly notice that there is a compromise
between the development time and the number of integrated
PEs in the MPPSoC configuration for the two proposed
processor design methodologies. The designer can select the
suitable methodology according to his application
constraints.

We have briefly demonstrated that the MPPSoC is
implemented as a flexible, parametric and configurable
architecture. The designer can model an MPPSoC
configuration suited to a given data parallel application. The
MPPSoC models are explained in the following section.

I1l. MPPSOC MODELS

An MDE approach to design MPPSoC is developed. This
approach allows the designer to automatically select an
MPPSoC configuration at a very early design stage, before
system synthesis and code generation have been performed.
Our MPPSoC’s modeling methodology relies on the
MARTE profile. MARTE has been recently standardized for
the modeling of real-time embedded systems. Subsets of the
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profile allow describing the MPPSoC HW components in a
structural way. Our modeling methodology leverages from
this profile the Hardware Resource Modeling (HRM), the
Repetitive Structure Modeling (RSM) and the Generic
Component Model (GCM) packages.

The designed SIMD architecture is also configurable and
parametric; so that the designer can choose different
configurations depending on the application requirements.
UML2 templates [6] support mechanisms to express such
characteristic. They are used, in this case, to easily define
MPPSoC parameters.

A. Hardware architecture modeling

The HRM sub-package is used to specify the detailed
platform architecture’s elements. Its purpose is to describe
HW execution supports with different details’ levels and
views essential to fulfill the application specification. The
HRM [2] consists of two views, a logical view and a
physical view. In our work we have used logical view that
classifies HW resources based on functional properties. To
specify the flow-oriented communication paradigm nature
between MPPSoC components, we have taken advantage of
the GCM package. A flow port may handle incoming,
outgoing or bidirectional flows.

Figure 3 shows the ACU as component of the
Reduction_processing_unit_master class depending on the
reduction methodology
(Replication_processing_unit_master class in the case of
replication). The ACU has three ports in order to be
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Fig. 3. The ACU architecture modeling in the case of the reduction
methodology.

connected to the PEs (parallel p-instructions (in the case of
reduction) or instructions (in the case of replication)
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broadcast) on the one hand and to the mpNoC input and
output ports on the other hand.

Figure 4 depicts the processing unit component’s model. It
is composed of a slave processor (PE) and its data memory.
The connector between the Data_memory port of the
Slave_processor and the Slave_processor port of the data
memory specifies how each PE communicates with its local
memory. The HW architecture’s modeling is also described
using the repetitive concepts of the MARTE RSM package
[2]. 1t proposes concepts to handle multidimensional
structures. The considered structures are composed of
repetitions of structural elements interconnected via a



regular connection pattern. It provides the designer with a
way to efficiently and explicitly express models with a high
number of identical components. RSM is originally inspired
by the Array-OL (Array Oriented Language) language [5]
dedicated to intensive multidimensional signal processing.

To illustrate this package’s use, we present in the figure 5
the architecture of a 2D regular communication network
based on mesh routers.

The “shaped” stereotype is used to model the two
dimensions grid of mesh routers. The “Shaped” stereotype’s
tagged values specify the number of mesh routers in each
dimension. An “interRepetation” stereotype specifies
dependencies between the repetitions of a given repeated
structural element. This connector links a pattern of a
repeated structural element with another pattern of the same
repeated structural element. It is used to model the links’
topology between the routers, as illustrated in the figure 5. In
fact, each mesh router is connected to its neighbors in the
four directions: North, South, West and East. Here, the value
of the tagged value “isModulo” is equal to false because the
routers in the grid’s edges are not connected to each other.

The “Tiler” connector expresses how a multidimensional
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array is tiled by patterns. It connects an array to the patterns
of a repeated structural element as illustrated in Figure 5. In
this example, Processing_unit_slave is the port of the
Mesh_network structural element. It represents the
multidimensional array of Mesh_network. The port
Mesh_network represents the pattern of the Mesh_router
repeated structural element. Each mesh router is connected
to one mesh network’s port.

Figure 6 delineates a reduction methodology’s model using
stereotypes that are previously described. The architecture
consists of a mesh network (figure 5) and a repetition of the
processing unit. The interconnection topology is modeled
thanks to four “Tiler” connectors. One connector specifies
that each potential instance of the Processing_unit_slave is
connected to one Mesh_network component’s port. The

other three connectors stipulate how the
Processing_unit_slave is connected to the reduction grid.
The Processing_unit_slave [i,j] is connected to three ports:
Processing_unit_master, mpNoc_in [i,j] and mpNoc_out
[i.j].

The replication methodology has the same components
shown in the Figure 6 except the type of the port named
Processing_unit_master. In fact, this port communicates
instructions, instead of p-instructions between the
replication grid and the processing unit master.
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B. UML2 templates to express MPPSoC parameterization

A template is a model element parameterized by other
model elements. These elements can be classifiers, packages
or operations. Classifier and package template elements are
respectively called Classifier Templates and Package
Templates. For parameterization specification, a template



element owns a Template Signature relating to a list of
formal Template Parameters. In this list, each parameter
chooses an element that is part of the template. Using the
template, binding relationship links a “bound” element to the
signature of a target template. This causes a set of template
parameter substitution in which formal template parameters
are replaced by actual parameters. The MPPSoC generic
characteristic is easily defined using templates. This
methodology is used to define all MPPSoC configurable
components.

The methodology followed to choose one MPPSoC
configuration through the developed UML/MARTE model
can be divided in different steps:

- Select the used processor: the “hwISA” stereotype  is
used to model the processor IP’s type to be implemented,
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chosen among three provided processors (see figure 7);

- Choose the processor design methodology: Targeting
this configurable aspect in figure 8, we have defined the
template package mppSoc_regular__components  with
template parameter Regular_components. This means that
when an actual value for this template parameter is specified
(reduction or replication), the Regular_components class
acquires this value indicating the chosen design
methodology;

- Fix the parametric number of PEs: introduce the value
for the template parameter number_pe (see figure 9);

- Set the ACU memory address width and the PE memory
address width: use the tagged value “adressSize” provided
with the stereotype “hwMemory” (see figure 10);

- Choose the PE arrangement: the template parameter
Replication_grid class is bound to the
One_dimension_replication_grid (see figure 11) or to the
Two_dimension_replication_grid if the designer choose the
replication design methodology;

- Select the regular network to be integrated: as illustrated
in the figure 12, the parameter exposing the
One_dimension_regular_network class has been bound to
the Linear_network class. As a result, a linear topology
based neighborhood network is integrated in the MPPSoC
configuration;

- Choose the mpNoC type: the generic package
mppSoc_irregular_components (see figure 13) exposes a
class as a parameter. This class presents the mpNoC router’s
type. The template binding relationship substitutes the
parameter with the value representing one of the types
illustrated in the package Generic_mpNoc.

I\VV. CODE GENERATOR

In this section we will give an overview of our
transformation chain’s implementation which is depicted in
figure 14. In order to generate code, our transformation
chain takes an MPPSoC configuration’s model as input and
produces text as output. Such transformation is called
model-to-text transformation. As transformation chain’s
output, the user expects executable code which can be used
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in already available tools. The target is a synthesizable
VHDL description for the MPPSoC architecture. After
modeling MPPSoC configurations, we have taken advantage
of the various tools offered by Acceleo [7] to generate the
corresponding VHDL code.

To generate the VHDL MPPSoC code using the proposed
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framework, the designer has to choose the appropriate
MPPSoC configuration based on the UML model as we have
explained in section 3. Then, he can automatically generate
the synthesizable code based on the modeled configuration
and using our MPPSoC chain. To this end, we have realized
an Acceleo module in order to browse UML diagrams and
find out the MPPSoC configuration’s parameters. The used
processor, the processor design methodology, the number of
PEs, the PE arrangement, the regular network to be
integrated and the mpNoC’s type are extracted from the
template binding relationships. The ACU memory address
width and the PE memory address width are deduced from
the tagged value “adressSize” of the stereotype
“hwMemory”. The following code example illustrates how
to deduce the data instruction memory’s address size:

<%getStereotypeApplications().adressSize.put(*"MS_@_width™)%>

According to these parameters, basics IPs will be chosen
from the MPPSoCLib library and VHDL code will be
automatically generated. MPPSoCLib contains different
elementary IPs needed to construct an mppSoC
configuration such as memory IPs, processor IPs, etc.

V. CONCLUSION

In this paper, we have presented an approach to design
Massively Parallel Processing System on Chip. The
proposed design flow aims at raising the specification
abstraction level. This abstraction level is achieved by using
MDA, which has proved its capabilities in accelerating
embedded software development. The proposed approach
allows to automatically generate a suitable MPPSoC code
using three dedicated tools: UML2, MARTE profile and
Acceleo. The MPPSoC framework offers several
advantages: an efficient high level parallelism‘s
representation, reusability and a complete generation of the
hardware VHDL code. All these features strongly contribute
to the increase of the designer’s productivity. Thanks to the
MPPSoC framework, the user is able to choose the
appropriate MPPSoC configuration satisfying his needs and
meeting performance requirements. In the presented work,

the designer can just select the provided IPs from the
MPPSoC provided HW library to generate a given MPPSoC
configuration.

Future works aim at allowing the designer to integrate his
own chosen IP. The same issue will be also handled for SW
library. A high level exploration step will be integrated to
help the designer directly select the most suitable
application-specific MPPSoC configuration.
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