

‗

Abstract— Massively Parallel Processing System on Chip

(MPPSoC) provides an interesting solution when high

performance is needed for embedded parallel applications. The

increasing amount of hardware resources in MPPSoC calls for

efficient design methodologies and tools to reduce its

development complexity. This paper presents an MPPSoC

design flow, which uses the MARTE (Modeling and Analysis of

Real-Time and Embedded systems) standard profile for high-

level system specification. This flow is based on a Model-

Driven Engineering approach. It promotes separation of

concerns, reusability and automatic model refinement from

higher abstraction levels to executable VHDL description

facilitating the design space exploration.

I. INTRODUCTION

Massively data-parallel applications are predominant in

several application domains such as mobile multimedia

processing, high-definition TV and radar/sonar signal

processing. They play an increasingly important role in

embedded systems. Parallel massive data processing is a key

feature in these applications. When dealing with massive

computation and data intensive processing, the use of

massively parallel architectures is very useful. An MPPSoC

system is a generic massively parallel embedded architecture

designed for data-parallel applications. MPPSoC has a

SIMD (Single Instruction Multiple Data) [1] parallel

architecture that results from an assembly of different

components and may be implemented on a single chip. In

addition, MPPSoC proves very fruitful in massively parallel

applications domain. However, the design and

implementation of such systems become critical due to their

long design and development cycles. In fact, the MPPSoC‘s

design is facing today a strong pressure on reducing time-to-

market while the complexity of this system has been

increasing. Changing a SoC configuration may also

necessitate extensive redesign. Design abstraction offers a

possible solution to address the above issues concerning the

time-to-market and complexity dilemma. It is in the context

of improving the primary productivity of MPPSoC, that our

work finds its proper place. This work is part of the

MPPSoC project which consists in defining and designing a

programmable and flexible SIMD SoC, called Massively

Parallel Processing System-on-Chip, that can be simulated

and prototyped on FPGA (Field Programmable Gate Arrays)

devices. To facilitate and accelerate the design of an

MPPSoC configuration dedicated to a given parallel

application, our contribution consists in proposing an

MPPSoC framework. This framework uses the MARTE [2]

profile for high level specifications of SoC applications and

architectures and it is based on Model Driven Engineering

[3]. This methodology is based on two concepts: model and

transformation. Data and their structures are represented in

models, while the computation is done by transformations

and enables to target different execution platforms for

automatic generation of the respective code. A model

basically highlights the intention of a system without

describing the implementation details. UML is a model

specification language [6], which proposes general concepts

allowing one to express both behavioral and structural

aspects of a system. The UML/MDE-based systems‘ design

is a very young discipline [10]. In fact, UML and MDE have

been adopted in co-design methods [11], [12], [13], [14] in

the last years with success. Abstract models favor an

efficient design reuse, typically through different

refinements from higher level models to lower level models.

Different approaches to high-level synthesis are currently

being studied for different specification languages. Among

the proposed approaches, we can mention a transformation

tool, called MODCO [16], which takes a UML state diagram

as input and generates HDL output suitable for use in FPGA

circuit design. A HW/SW co-design is performed based on

the MDA approach. XML is used to generate HDL from

high-level UML diagrams. In [15], an approach using

VHDL synthesis from UML behavioral models is presented.

The UML models are first translated into textual code in a

language called SMDL. This latter can be then compiled into

a target language as VHDL. The translation from UML

models to SMDL is performed using the aUML toolkit. In

the preceding works, only state machines HW designs are

described. In [17], the UML based design and

implementation of an H.264 video decoder core is presented.

The FalconML tool is used to directly generate the System C

and VHDL code targeting ASIC technology. According to

these various research works, there is no focus on designing

parallel processing systems and proposing dedicated

frameworks able to accelerate their design.

This works proposes a design flow to automatically

A Model Driven Engineering design approach to generate VHDL for

MPPSoC

M. Ammar
1
, M. Baklouti

1,2
, Ph. Marquet

2
, M. Abid

1
 and JL. Dekeyser

2

1
CES, National Engineering School of Sfax, Sfax, Tunisia

2
Univ. Lille, F-59044, Villeneuve d’ascq, France

LIFL, Univ. Lille1, F-59650, Villeneuve d’ascq, France

INRIA Lille Nord Europe, F-59650, Villeneuve d’ascq, France

UMR 8022, CNRS, F-59650, Villeneuve d’ascq, France

 manel.ammar@ceslab.org, mouna.baklouti@ieee.org

mailto:manel.ammar@ceslab.org
mailto:mouna.baklouti@ieee.org

generate VHDL executable code for an MPPSoC

configuration. The flow transforms MPPSoC meta-model to

synthesizable VHDL code which can be then simulated or

prototyped on any FPGA technology in order to measure

performances. These steps help the designer to evaluate the

generated SIMD configuration and choose the adequate one

for a given application. Thus, our framework facilitates the

design space exploration.

The remainder of this paper is organized as follows:

Section 2 introduces the MPPSoC with focus on its

flexibility and parametricity. The MPPSoC UML/MARTE

model is addressed in Section 3 and the code generation

approach is highlighted in Section 4. Finally, Section 5 gives

concluding remarks.

II. MPPSOC ARCHITECTURE‘S OVERVIEW

MPPSoC is an IP-based massively parallel architecture [4].

It (figure 1) is composed of a number of processing elements

(the PEs) working in perfect synchronization. A small

amount of local and private memory is attached to each PE.

Every PE is potentially connected to its neighbors via a

regular network. The whole system is controlled by an Array

Controller Unit (ACU).

The configurable neighborhood interconnection network is

implemented to assure inter-PE communications depending

on its configurable topology (Mesh, Torus, Xnet, Linear

array and Ring), as illustrated in the Figure 2. Furthermore,

each PE is connected to an entry of mpNoC, a massively

parallel Network on Chip that potentially connects each PE

to one another, performing efficient irregular

communications. The mpNoC is integrated to manage point

to point communications through different types of

connections. In fact, the mpNoC includes a configurable

router which can be of different types (Shared Bus,

Crossbar, Delta MIN (omega, baseline and butterfly)). The

mpNoC can perform different communication modes (PE-

PE, PE-ACU, PE-Device) since it contains a mode manager.

This latter is implemented by two switches responsible of

connecting the required sources and destinations

respectively. The designer can choose to integrate none, one

or both MPPSoC networks (neighborhood/mpNoC) to build

a given SIMD configuration. The MPPSoC system can be

customized to target diverse applications [8]. In fact, our

design approach aims to define an MPPSoC configuration

adapted to a given application. This customization is

achieved with the parameterization as well as the

extensibility and the configurability of the architecture. In

fact, MPPSoC is parametric in terms of the number of PEs

as well as the memories‘ sizes. It has three configurable

aspects: processor design methodology, the integrated

neighboring network‘s topology and the mpNoC

interconnection network‘s type.

The processor design methodology is the manner to

assemble processor IPs to build the SIMD system. We

distinguish two methodologies: processor reduction and

processor replication. The former consists on reducing an

available open core processor in order to build a processing

element with a small reduced size. The PE can be then fitted

in large quantities into an FPGA device. In this case, it is

only responsible of executing micro-instructions (decoded

instructions) broadcasted from the ACU. This methodology

allows putting a large number of PEs on a single chip;

however it necessitates a long development cycle. Whereas

the replication methodology consists on implementing the

ACU as well as the PE by the same processor IP so that the

designing process is faster. The criterion to choose this

methodology on a SIMD on chip architecture is to use a

smaller processor so that a big number can be put on the

FPGA device. We clearly notice that there is a compromise

between the development time and the number of integrated

PEs in the MPPSoC configuration for the two proposed

processor design methodologies. The designer can select the

suitable methodology according to his application

constraints.

We have briefly demonstrated that the MPPSoC is

implemented as a flexible, parametric and configurable

architecture. The designer can model an MPPSoC

configuration suited to a given data parallel application. The

MPPSoC models are explained in the following section.

III. MPPSOC MODELS

An MDE approach to design MPPSoC is developed. This

approach allows the designer to automatically select an

MPPSoC configuration at a very early design stage, before

system synthesis and code generation have been performed.

Our MPPSoC‘s modeling methodology relies on the

MARTE profile. MARTE has been recently standardized for

the modeling of real-time embedded systems. Subsets of the

Fig. 1. MPPSoC configuration.

profile allow describing the MPPSoC HW components in a

structural way. Our modeling methodology leverages from

this profile the Hardware Resource Modeling (HRM), the

Repetitive Structure Modeling (RSM) and the Generic

Component Model (GCM) packages.

The designed SIMD architecture is also configurable and

parametric; so that the designer can choose different

configurations depending on the application requirements.

UML2 templates [6] support mechanisms to express such

characteristic. They are used, in this case, to easily define

MPPSoC parameters.

A. Hardware architecture modeling

The HRM sub-package is used to specify the detailed

platform architecture‘s elements. Its purpose is to describe

HW execution supports with different details‘ levels and

views essential to fulfill the application specification. The

HRM [2] consists of two views, a logical view and a

physical view. In our work we have used logical view that

classifies HW resources based on functional properties. To

specify the flow-oriented communication paradigm nature

between MPPSoC components, we have taken advantage of

the GCM package. A flow port may handle incoming,

outgoing or bidirectional flows.

Figure 3 shows the ACU as component of the

Reduction_processing_unit_master class depending on the

reduction methodology

(Replication_processing_unit_master class in the case of

replication). The ACU has three ports in order to be

connected to the PEs (parallel µ-instructions (in the case of

reduction) or instructions (in the case of replication)

broadcast) on the one hand and to the mpNoC input and

output ports on the other hand.

Figure 4 depicts the processing unit component‘s model. It

is composed of a slave processor (PE) and its data memory.

The connector between the Data_memory port of the

Slave_processor and the Slave_processor port of the data

memory specifies how each PE communicates with its local

memory. The HW architecture‘s modeling is also described

using the repetitive concepts of the MARTE RSM package

[2]. It proposes concepts to handle multidimensional

structures. The considered structures are composed of

repetitions of structural elements interconnected via a

Fig. 3. The ACU architecture modeling in the case of the reduction
methodology.

Fig. 2. Neighborhood network configurations.

Fig. 4. Processing unit architecture modeling.

 Fig. 5. The 2D mesh network architecture modeling.

Fig. 6. Two dimension reduction grid model.

regular connection pattern. It provides the designer with a

way to efficiently and explicitly express models with a high

number of identical components. RSM is originally inspired

by the Array-OL (Array Oriented Language) language [5]

dedicated to intensive multidimensional signal processing.

To illustrate this package‘s use, we present in the figure 5

the architecture of a 2D regular communication network

based on mesh routers.

The ―shaped‖ stereotype is used to model the two

dimensions grid of mesh routers. The ―Shaped‖ stereotype‘s

tagged values specify the number of mesh routers in each

dimension. An ―interRepetation‖ stereotype specifies

dependencies between the repetitions of a given repeated

structural element. This connector links a pattern of a

repeated structural element with another pattern of the same

repeated structural element. It is used to model the links‘

topology between the routers, as illustrated in the figure 5. In

fact, each mesh router is connected to its neighbors in the

four directions: North, South, West and East. Here, the value

of the tagged value ―isModulo‖ is equal to false because the

routers in the grid‘s edges are not connected to each other.

The ―Tiler‖ connector expresses how a multidimensional

array is tiled by patterns. It connects an array to the patterns

of a repeated structural element as illustrated in Figure 5. In

this example, Processing_unit_slave is the port of the

Mesh_network structural element. It represents the

multidimensional array of Mesh_network. The port

Mesh_network represents the pattern of the Mesh_router

repeated structural element. Each mesh router is connected

to one mesh network‘s port.

Figure 6 delineates a reduction methodology‘s model using

stereotypes that are previously described. The architecture

consists of a mesh network (figure 5) and a repetition of the

processing unit. The interconnection topology is modeled

thanks to four ―Tiler‖ connectors. One connector specifies

that each potential instance of the Processing_unit_slave is

connected to one Mesh_network component‘s port. The

other three connectors stipulate how the

Processing_unit_slave is connected to the reduction grid.

The Processing_unit_slave [i,j] is connected to three ports:

Processing_unit_master, mpNoc_in [i,j] and mpNoc_out

[i,j].

The replication methodology has the same components

shown in the Figure 6 except the type of the port named

Processing_unit_master. In fact, this port communicates

instructions, instead of µ-instructions between the

replication grid and the processing unit master.

B. UML2 templates to express MPPSoC parameterization

A template is a model element parameterized by other

model elements. These elements can be classifiers, packages

or operations. Classifier and package template elements are

respectively called Classifier Templates and Package

Templates. For parameterization specification, a template

Fig. 7. Processor IP selection.

 Fig. 8. Modeling of generic regular components.

Fig. 9. Parametric PE number selection.

Fig. 10. Parametric memory size selection.

element owns a Template Signature relating to a list of

formal Template Parameters. In this list, each parameter

chooses an element that is part of the template. Using the

template, binding relationship links a ―bound‖ element to the

signature of a target template. This causes a set of template

parameter substitution in which formal template parameters

are replaced by actual parameters. The MPPSoC generic

characteristic is easily defined using templates. This

methodology is used to define all MPPSoC configurable

components.

The methodology followed to choose one MPPSoC

configuration through the developed UML/MARTE model

can be divided in different steps:

- Select the used processor: the ―hwISA‖ stereotype is

used to model the processor IP‘s type to be implemented,

chosen among three provided processors (see figure 7);

- Choose the processor design methodology: Targeting

this configurable aspect in figure 8, we have defined the

template package mppSoc_regular__components with

template parameter Regular_components. This means that

when an actual value for this template parameter is specified

(reduction or replication), the Regular_components class

acquires this value indicating the chosen design

methodology;

- Fix the parametric number of PEs: introduce the value

for the template parameter number_pe (see figure 9);

- Set the ACU memory address width and the PE memory

address width: use the tagged value ―adressSize‖ provided

with the stereotype ―hwMemory‖ (see figure 10);

- Choose the PE arrangement: the template parameter

Replication_grid class is bound to the

One_dimension_replication_grid (see figure 11) or to the

Two_dimension_replication_grid if the designer choose the

replication design methodology;

- Select the regular network to be integrated: as illustrated

in the figure 12, the parameter exposing the

One_dimension_regular_network class has been bound to

the Linear_network class. As a result, a linear topology

based neighborhood network is integrated in the MPPSoC

configuration;

- Choose the mpNoC type: the generic package

mppSoc_irregular_components (see figure 13) exposes a

class as a parameter. This class presents the mpNoC router‘s

type. The template binding relationship substitutes the

parameter with the value representing one of the types

illustrated in the package Generic_mpNoc.

IV. CODE GENERATOR

In this section we will give an overview of our

transformation chain‘s implementation which is depicted in

figure 14. In order to generate code, our transformation

chain takes an MPPSoC configuration‘s model as input and

produces text as output. Such transformation is called

model-to-text transformation. As transformation chain‘s

output, the user expects executable code which can be used

in already available tools. The target is a synthesizable

VHDL description for the MPPSoC architecture. After

modeling MPPSoC configurations, we have taken advantage

of the various tools offered by Acceleo [7] to generate the

corresponding VHDL code.

To generate the VHDL MPPSoC code using the proposed

Fig. 11. Processor design methodology selection.

Fig. 12. Regular network topology selection.

Fig. 13. Generic irregular components‘ modeling.

framework, the designer has to choose the appropriate

MPPSoC configuration based on the UML model as we have

explained in section 3. Then, he can automatically generate

the synthesizable code based on the modeled configuration

and using our MPPSoC chain. To this end, we have realized

an Acceleo module in order to browse UML diagrams and

find out the MPPSoC configuration‘s parameters. The used

processor, the processor design methodology, the number of

PEs, the PE arrangement, the regular network to be

integrated and the mpNoC‘s type are extracted from the

template binding relationships. The ACU memory address

width and the PE memory address width are deduced from

the tagged value ―adressSize‖ of the stereotype

―hwMemory‖. The following code example illustrates how

to deduce the data instruction memory‘s address size:

<%getStereotypeApplications().adressSize.put("MS_@_width")%>

According to these parameters, basics IPs will be chosen

from the MPPSoCLib library and VHDL code will be

automatically generated. MPPSoCLib contains different

elementary IPs needed to construct an mppSoC

configuration such as memory IPs, processor IPs, etc.

V. CONCLUSION

In this paper, we have presented an approach to design

Massively Parallel Processing System on Chip. The

proposed design flow aims at raising the specification

abstraction level. This abstraction level is achieved by using

MDA, which has proved its capabilities in accelerating

embedded software development. The proposed approach

allows to automatically generate a suitable MPPSoC code

using three dedicated tools: UML2, MARTE profile and

Acceleo. The MPPSoC framework offers several

advantages: an efficient high level parallelism‗s

representation, reusability and a complete generation of the

hardware VHDL code. All these features strongly contribute

to the increase of the designer‘s productivity. Thanks to the

MPPSoC framework, the user is able to choose the

appropriate MPPSoC configuration satisfying his needs and

meeting performance requirements. In the presented work,

the designer can just select the provided IPs from the

MPPSoC provided HW library to generate a given MPPSoC

configuration.

Future works aim at allowing the designer to integrate his

own chosen IP. The same issue will be also handled for SW

library. A high level exploration step will be integrated to

help the designer directly select the most suitable

application-specific MPPSoC configuration.

REFERENCES

[1] Meilander, W. C., Baker, J. W. and Jin, M. 2003. Importance of SIMD

Computation Reconsidered. In International Parallel and Distributed
Processing Symposium, (2003).

[2] Object Management Group, Inc. (2009). UML Profile for MARTE V

1.0 Technical Report formal/2009-11-02.
[3] Object Management Group, Inc. (2003). MDA Guide V1.0.1

Technical Report omg/03-06-01.

[4] M. Baklouti, Ph. Marquet, M. Abid and JL. Dekeyser. A design and an
implementation of a parallel based SIMD architecture for SoC on

FPGA. In Proc. DASIP, (2008).

[5] Boulet. P. 2007. Array-OL revisited multidimensional intensive signal
processing specification. Research Report RR-6113, INRIA. (Feb.

2007).

[6] Object Management Group, Inc. (2005) UML Technical Report
formal/2005-07-04.

[7] Obeo. Acceleo Generator. (2010). http://www.acceleo.org.

[8] M. Baklouti, Ph. Marquet, M. Abid and JL. Dekeyser. IP based
configurable SIMD massively parallel SoC. In PhD Forum of 20th

international conference on Field Programmable Logic and

Applications (FPL), August (2010).
[9] R. J. Vidmar. (1992, August). On the use of atmospheric plasmas as

electromagnetic reflectors. IEEE Trans. Plasma Sci. [Online]. 21(3).

pp. 876—880. Available: http://www.halcyon.com/pub/journals/
21ps03-vidmar

[10] Jean-Luc Dekeyser, Abdoulaye Gamatié, Anne Etien, Rabie Ben

Atitallah, and Pierre Boulet. Using the UML Profile for MARTE to
MPSoC Co-Design. In First International Conference on Embedded

Systems & Critical Applications (ICESCA'08), Tunis, Tunisia, May

2008.
[11] T. Wang, X.-G. Zhou, B. Zhou, L. Liang, and C.-L. Peng, ―A MDA

based SoC Modeling Apporach using UML and SystemC,‖ in Pro-

ceedings of the sixth IEEE International Conference on Computer and
Information Technology (CIT‘06). IEEE Computer Society,september

2006, pp. 245–245.

[12] P. Kukkala, J. Riihimaki, M. Hannikainen, T. D. Hamalainen, and
K. Kronlof, ―Uml 2.0 profile for embedded system design,‖ in DATE

‘05: Proceedings of the conference on Design, Automation and Testin

Europe. Washington, DC, USA: IEEE Computer Society, 2005, pp.
710–715.

[13] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio, ―Designing a
Unified Process for Embedded Systems,‖ in Fourth International

Workshop on Model-Based Methodologies for Pervasive and

Embedded Software, (2007). IEEE Computer Science, mars 2007, pp.
77–90.

[14] M. Rieder, R. Steiner, C. Berthouzoz, F. Corthay, and T. Sterren,

―Synthesized uml, a practical approach to map uml to vhdl,‖ in RISE,
2005, pp. 203–217.

[15] Bjorklund, D. and Lilius, J. 2002. Proc. of 20th IEEE NORCHIP

Conference, (Copenhagen, Denmark, Nov. 2002) 11-12.
[16] Coyle, F. P. and Thornton, M. A. 2005. From UML to HDL: a Model

Driven Architectural Approach to Hardware-Software Co-Design.

Information Systems: New Generations Conference (ISNG), (Apr.
2005) 88-93.

[17] Thomson, R., Moyers, S., Mulvaney, D. and Chouliaras, V. 2008. The

UML-based design of a hardware H.264/MPEG 4 AVC video
decompression core. In the 5th International UML-SoC Workshop (in

conjunction with 45th DAC, Anaheim Convention Center, USA, Jun.

2008).

 Fig. 14. MPPSoC transformation chain

http://www.acceleo.org/
http://www.halcyon.com/pub/journals/
http://www.lifl.fr/west/publi/icesca08.pdf
http://www.lifl.fr/west/publi/icesca08.pdf
http://www.icesca08.com/
http://www.icesca08.com/

