
A model-driven based framework for rapid parallel
SoC FPGA prototyping

Mouna Baklouti†*, Manel Ammar†, Philippe Marquet∗, Mohamed Abid† and Jean-Luc Dekeyser∗
∗LIFL, Univ. Lille 1, INRIA Lille Nord Europe

UMR 8022, CNRS, F-59650, Villeneuve d’ascq, France
Email:{mouna.baklouti,philippe.marquet,jean-luc.dekeyser}@lifl.fr

†CES Laboratory, Univ. Sfax, ENIS School
BP 1173, Sfax 3038, Tunisia

Email:manel.ammar@ceslab.org, mohamed.abid@enis.rnu.tn

Abstract—Model-Driven Engineering (MDE) based approaches
have been proposed as a solution to cope with the inefficiency of
current design methods. In this context, this paper presents an
MDE-based framework for rapid SIMD (Single Instruction Mul-
tiple Data) parametric parallel SoC (System-on-Chip) prototyp-
ing to deal with the ever-growing complexity of such embedded
systems design process. The design flow covers the design phases
from system-level modeling to FPGA prototyping. The proposed
framework allows the designer to easily and automatically gener-
ate a VHDL parallel SoC configuration from a high-level system
specification model using the MARTE (Modeling and Analysis of
Real-Time and Embedded systems) standard profile. It is based
on an IP (Intellectual Property) library and a basic parallel SoC
model. The generated parallel configuration can be adapted to
the data-parallel application requirements. In an experimental
setting, four steps are needed to generate a parallel SoC: data-
parallel programming, SoC modeling, deployment and generation
process. Experimental results for a video application validate
the approach and demonstrate that the proposed framework
facilitates the parallel SoC exploration.

I. INTRODUCTION

With the rising complexity of multimedia and radar/sonar
signal processing applications, parallel programming tech-
niques and multi-core Systems-on-Chip (SoC) are more and
more used. Single Instruction Multiple Data (SIMD) systems
have shown to be powerful executers for data-intensive appli-
cations [1], especially in pixel processing domain [2]. Many
SIMD on-chip architectures, in particular based on FPGA
(Field Programmable Gate Arrays) devices, have emerged to
accelerate specific applications [3]–[6]. Compared to ASIC
(Application Specific Integrated Circuit), FPGA devices are
characterized by an increased capacity, smaller non-recurring
engineering costs, and programmability [7]. Dealing with the
ever-growing challenge of parallel SoC design, most of the
proposed SIMD solutions are application-specific SoC which
lack flexibility: changing a SoC configuration may necessitate
extensive redesign. While these specific systems provide good
performances, they require long design cycles. The size of a
parallel SoC and the complexity involved in its design are
continuously outpacing the designer productivity. An impor-
tant challenge is to find adequate design methodologies that

efficiently address the issues about large and complex SoC.
Nowadays, Computer-Aided Design tools are imperative

to automate complex SoC design and reduce the time-to-
market. Two approaches have been proposed to cope with this
problem. Firstly, IP (Intellectual Property) reuse and platform-
based design [8] are used to maximize the reuse of pre-
designed components and to allow the customization of the
system according to system requirements. Secondly, Model-
Driven Engineering (MDE) [9] approach has been introduced
to raise the design abstraction level and to reduce design
complexity. It stresses the use of models in the embedded
systems development life cycle and argues automation via
model transformation and code generation techniques. Com-
plex systems can be easily understood thanks to such abstract
and simplified representations. Approaches based on MDE
have been proposed as an efficient methodology for embedded
systems design [10], [11]. An interesting model specification
language is UML (Unified Modeling Language) [12], which
proposes general concepts allowing expressing both behavioral
and structural aspects of a system. The latest release of UML
(2.0) has support for profiles that enable the language to
be applied on particular application and platform domains
with sophisticated extension mechanisms. As an example, the
MARTE (Modeling and Analysis of Real-Time and Embedded
systems) standard profile [13] is proposed by the OMG to add
capabilities to UML for model-driven development of real-
time and embedded systems. The MARTE profile enhances
possibility to model SW, HW and relations between them.

Using the proposed framework, the designer focuses on
modeling his needed SIMD configuration and not on how
implementing it, since the system modeling is independent
of any implementation detail. Specifying a model is written
based on unified language. The presented design flow is a
library-based method that hides unnecessary details from high-
level design phases and provides an automated path from UML
design entry to FPGA prototyping. So, it can be easily used
by non-HW experts of on-chip systems implementation. This
makes our approach better than using some clever VHDL
coding.

System concerns are represented in separated dimensions:

978-1-4577-0660-8/11/$26.00 c© 2011 IEEE

data-parallel coding, SoC modeling, IP selection and imple-
mentation. The implementation is performed via the generation
tool based on a model-to-text transformation using Acceleo
[14]. The framework uses an IP library with various com-
ponents (processors, memories, interconnection networks...)
that can be selected in the deployment process to generate
the needed SIMD configuration. The modeled SoC has to be
conform to a basic parallel SoC model which is parametric,
flexible and programmable, proposed in previous work [15].

In an experimental setting that validates our approach,
we consider a video color conversion application where we
explore different parallel system configurations and decide the
best one to run the application. Experimental results show that
the proposed framework considerably reduces design costs and
facilitates modifying the system model and regenerating the
implementation without relying on costly re-implementation
cycles. Using the framework, we can create SIMD implemen-
tations that are fast enough to meet demanding processing
requirements, are automatically generated from a high-level
specification model to reach the time-to-market and can easily
be updated to provide a different functionality.

The remaining of this paper is organized as follows. Section
2 discusses related work on model-based approaches to gen-
erate on-chip multi-processor or massively parallel systems.
Section 3 presents the proposed MDE framework.A case study,
which illustrates and validates the framework, is described in
Section 4. The FPGA platform is chosen as a target platform
since it is a better alternative to test and implement various
parallel SoC configurations. Finally, Section 5 draws main
conclusions and proposes future research directions.

II. RELATED WORK

The high-level SoC design methodology is a rapid emerging
research area. There are many recent research efforts on
embedded systems design using an MDE approach. In this
context, different high-level synthesis approaches are currently
being studied for different specification languages. For exam-
ple, xtUML [11] defines an executable and translatable UML
subset for embedded real time systems, allowing the simula-
tion of UML models and the code generation for C oriented to
different microcontroller platforms. In [16], an approach using
VHDL synthesis from UML behavioral models is presented.
The UML models are first translated into textual code in a
language called SMDL. This latter can be then compiled into a
target language as VHDL. The translation from UML models
to SMDL is performed using the aUML toolkit. In [17], a
transformation tool, called MODCO, which takes a UML state
diagram as input and generates HDL output suitable for use
in FPGA circuit design, is presented. A HW/SW co-design
is performed based on the MDA approach. XML is used to
generate HDL from high-level UML diagrams. In these two
works, only state machines HW designs are described. In [18],
a UML-based multiprocessor SoC design framework, called
Koski, is described. An automated architecture exploration
based on the system models in UML, as well as the automatic
back and forward annotation of information in the design flow
could be performed. The proposed design flow provides an

Execution orders

ACU

PE0 PE1

PE2 PE3

PEM0 PEM1

PEM2 PEM3

Processing ElementsMemACU

InstACU

mpNoCsw
itch

e
s sw

it
ch
e
s

PE2 PE3

I/O

Device
Neighboring link

mpNoC link

Control

Crossbar

Switch

Fig. 1. Parallel SIMD SoC configuration: 4 PEs, a 2D mesh neighboring
network and a crossbar based mpNoC

automated path from UML design entry to FPGA prototyping.
The final implementation is application-specific. The proposed
approach is based on synthesizable library components that are
automatically tuned for specific application according to the
results of the architecture exploration.

Our approach is related to the design of massively parallel
SoC and covers the design phases from system-level modeling
and parallel programming to FPGA prototyping using the no-
tion of transformations between models. The DaRT [10] (Data
Parallelism to Real Time) project also proposes an MDA-
based approach for SoC design that has many similarities
with our approach in terms of the use of meta-modeling
concepts. The DaRT work defines MOF-based meta-models to
specify application, architecture, and SW/HW association and
uses transformations between models as code transformations
to optimize an association model. In DaRT, no data-parallel
coding is specified and the code generation for RT (Register
Transfer) levels is dedicated to specific HW accelerators.

The proposed framework, presented in this paper, takes
advantage of the MDE notion of transformation between
models to generate a complete SIMD parallel SoC at RT
level dedicated to compute data-intensive applications. Our ap-
proach is based on synthesizable library components and few
model transformations to generate the synthesizable VHDL
code of the modeled SIMD SoC.

III. SIMD FRAMEWORK

The proposed framework is dedicated to generate different
SIMD configurations derived form the based parallel SoC
model [15]. These configurations can be then directly simu-
lated using available simulation tools or prototyped on FPGA
devices using appropriate synthesis tools. Figure 1 illustrates a
SIMD parallel SoC configuration composed of four Processing
Elements (PE) connected in a 2D mesh topology. To handle
parallel I/O transfers and point-to-point communications, a
crossbar based mpNoC (massively parallel Network on Chip)
[19] is integrated. To accelerate and facilitate a SIMD con-
figuration design, a model-driven framework is proposed. The
framework allows the designer to model his needed configu-
ration derived from the basic provided SIMD SoC model. He

data-parallel

program

UML-MARTE

SIMD SoC

model

Deployment

Basic

Parallel

model

Data-

parallel

Instruction

set

IP

library

VHDL parallel

configuration

Generation chain

Synthesis Simulation

Fig. 2. Framework concepts

has to specify the system’s parameters (number of PE, memory
size, neighboring topology) and the different components that
will be integrated (mpNoC, neighborhood network, devices).
The designer has also to code his data-parallel program using
the specified data-parallel instruction set depending on the
chosen processor IP. A help manual is in fact provided to the
designer to facilitate the parallel programming and describe the
different instructions to use according to the chosen processor.

The framework, in particular the deployment phase, is based
on an IP library which contains dedicated IP that can be
directly integrated in the system. Providing an extensive library
requires a significant effort. Currently, the IP library contains
processors (MIPS, OpenRisc, NIOS II), networks (crossbar,
shared bus and multi-stage networks), memories and some
devices. To add new IP resources, the IP provider must
adapt the IP to the architecture dedicated specific interface
(described in the help manual). Thus, a new component can be
put into the library by following the requirements for interfaces
formats. To assemble processors in the SIMD design, we
distinguish two methodologies: reduction and replication. The
reduction consists on reducing an available processor in order
to build a PE with a small reduced size that can be fitted
in large quantities into an FPGA device. The replication
consists on implementing the ACU as well as the PE by
the same processor IP so that the design process is faster.
We clearly notice that there is a compromise between the
design time and the number of integrated PEs in the SIMD
configuration depending on the applied design methodology.
The designer can select the suitable methodology according
to his application constraints. The three processors of the IP
library are provided with the two methodologies.

At this step, the designer can generate different implemen-
tations while integrating different IPs. The deployment is also
responsible of loading the binary data-parallel program in the
ACU instruction memory. The SIMD generation approach is
depicted in Figure 2. This approach allows a flexible and rapid
platform development and platform end-user productivity.

To generate SIMD configuration at RT level, an MDE based
design flow, presented in Figure 3, is developed. The proposed
flow uses two meta-models: the MARTE meta-model and the
Deployed meta-model. All meta-model concepts are specified
as UML classes and then converted into Eclipse/EMF models
[20]. The generation process is based on model transforma-

UML Model

VHDL code

Deployed Model

UML and MARTE profile

DeployedMARTE Meta-model

SIMD SoC Config.

UML2MARTE

MARTE2VHDL

executed by

executed byA
bs

tra
ct

io
n

le
ve

l

conformed to

conformed to

conformed to

Fig. 3. MDE-based design flow

tions implemented as QVT (Query, Views, Transformations)
resources, standardized by OMG.

The designer can generate a SIMD massively parallel SoC
configuration in four steps: data-parallel programming, SoC
modeling, deployment and then implementation generation.

A. Data-parallel programming

The designer has to write his data-parallel program using
the provided data-parallel instruction set. Based on available
processor compilers (miniMIPS, OpenRisc 1200 and NIOS II)
in the IP library and the developed special parallel instructions,
the designer can generate his parallel program’s binary. For
the miniMIPS processor, an extended parallel MIPS assembler
language [21] is developed. For the OpenRisc and NIOS
processors, high-level asm macros are defined and they can be
used in any C program for control and communication instruc-
tions. The NIOSII IDE (Integrated Development Environment)
and the OR1Ksim [22] tools are used respectively with the
NIOS and OpenRisc processors. The developed SW chain is
a multi-compiler chain that is responsible of generating the
SW code depending on the specified target processor.

Some particular instructions are specified to be used in the
programs as delimiters for parallel and sequential code. Table I
shows three examples of instructions from the provided data-
parallel instruction set. It is clearly that these instructions
depend on the processor instruction set. At this step, a SW
library is provided. It includes pre-implemented application
algorithms such as matrices multiplication, FIR (Finite Im-
pulse Response) filter, reduction algorithm, image rotation,
color conversion (RGB to YIQ, RGB to CMYK), etc.

After generating the executable SW, the second step consists
on modeling the HW system.

B. SoC modeling

The designer must specify the architecture models using any
UML 2.0 compliant tool with applying the MARTE profile.
The most important UML diagrams used in our approach to
specify the system are Class, Structure composite and Deploy-
ment diagrams. The modeling of SIMD SoC configurations
relies on the use of UML and the MARTE profile. Three
MARTE packages are used: the Hardware Resource Modeling
(HRM), the Repetitive Structure Modeling (RSM) and the
Generic Component Model (GCM) packages [23]. The HRM
intends to describe the HW platform by specifying its different
elements. At the end, the HW modeled resources present the
whole system. In our approach, only the HRM HW Logical

TABLE I
SIMD PARALLEL MACROS

ASM Macro Description Coding
miniMIPS OpenRisc NIOS

P REG SEND Neighboring SEND: send data (in reg) from source p addi r1,r0,dir l.addi r1,r0,dir IOWR (WRP B,addr, data)
(reg,dir,dis,adr) to destination via the neighboring network. p addi r1,r1,dis l.addi r1,r1,dis Where: addr(11)=’0’ and addr(10:3)=dis

p addi r1,r1,adr l.addi r1,r1,adr and addr(2:0)=dir.
p SW reg,0(r1) l.sw 0x0(r1),reg

P REG REC Neighboring RECEIVE: receive data (in reg) p addi r1,r0,dir l.addi r1,r0,dir data=IORD (WRP B,addr)
(reg,dir,dis,adr) from the source. p addi r1,r1,dis l.addi r1,r1,dis Where: addr(11)=’0’ and

p addi r1,r1,adr l.addi r1,r1,adr addr(10:3)=dis and addr(2:0)=dir.
p LW reg,0(r1) l.lwz reg,0x0(r1)

P GET IDENT read identity p lui r1,0x2 l.movhi r1,0x2 NIOS2 READ CPUID(id)
(reg) p ori r1,r1,0 l.lwz reg,0x0(r1)

p LW reg,0(r1)

:Local_memory [1] :Elementary_processor [1]

elementary_processor local_memory

PU

West

East

<<flowPort>>

<<flowPort>>

mpNoC_in mpNoC_out ACU<<flowPort>> <<flowPort>> <<flowPort>>

Fig. 4. PU modeling in the case of a linear configuration

sub-package is used. It allows to describe information about
the kind of components (HwRAM, HwProcessor, HwBus,
etc.), their characteristics, and how they are connected to
each other. The architecture is graphically specified at a high
abstraction level with HRM. Multidimensional data arrays and
powerful constructs of data dependencies are managed thanks
to the use of the RSM package. It defines stereotypes and
notations to describe in a compact way the regularity of a
system’s structure or topology. The structures considered are
composed of repetitions of structural elements interconnected
via a regular connection pattern. It provides the designer a way
to efficiently and explicitly express models with a high number
of identical components. The concepts found in this package
allow to concisely model large regular HW architectures as
multi-processor architectures. Finally, the GCM package is
used to specify the nature of flow-oriented communication
paradigm between SoC components.

The modeling process is done in an incremental way. The
designer begins by modeling the elementary components: PE,
ACU, memories, mpNoC and I/O device. Then, the whole
configuration is modeled through successive compositions.
Figure 4 illustrates the elementary processing unit (PU). It
is composed of a PE and its local data memory. The class
named ”Elementary processor” is stereotyped HwResource in
the case of the reduction methodology or HwProcessor in the
case of the replication methodology. It has a bidirectional port
stereotyped FlowPort to connect the data memory. The class
”Local memory” is stereotyped hwMemory with a paramet-
ric tagged value adressSize. In the same manner, the ACU
memories have a parametric size. The PU has one port to
communicate with the ACU and a number of neighboring ports
equal to the number of its neighboring connections. In Figure
4, it has two neighboring ports since each PE can communicate
with its neighbor in the east or west directions. If the designer

:ACU_data_memory [1] :ACU [1]

:ACU_Instruction_memory [1]

« shaped »
:PU

Main_architecture

ACU

InstMem

Data_mem

Inst_mem

mpNoc_in mpNoC_out

PU

West

ACU
East

mpNoC_out mpNoC_in

« InterRepetition »

« reshape »

:mpNoC_router [1] :Device [1]

InstMem

ACU_in

ACU_out

PU_out PU_in

Device_in

Device_out

mpNoC_in

mpNoC_out

« reshape » « reshape »

Fig. 5. 1D configuration modeling

chooses to integrate the mpNoC in the SIMD configuration, he
must add two ports ”mpNoC in” and ”mpNoC out” to assure
the communications through the mpNoC.

We distinguish between 1D and 2D mppSoC configurations.
They differ in the modeling of the interconnections between
PUs. In the case of 1D configuration, the number of PEs is
equal to the tagged value Shape of the stereotype Shaped
applied on the PU class. To model a linear neighboring
network, the interconnection link between the East and West
ports is stereotyped InterRepetition. Since the PU on the edge
is not connected to the PU on the opposite edge, the tagged
value isModulo is set to false. The repetitionSpaceDependence
attribute is used to specify the neighbor position of the element
on which the inter-repetition dependency is defined. In this
case, its value is equal to {1} since each PE[i] is connected to
PE[i+1]. Figure 5 shows the mppSoC configuration modeling
integrating a linear neighboring network and the mpNoC. The
link connector, stereotyped Reshape, between the PU and the
ACU shows that each PU is connected to the ACU in order to
receive the execution orders. To connect PUs with the mpNoC,
two Reshape connectors are expressed between the two ports
of the PU and the corresponding ports of the mpNoC. This
latter has a multiplicity equal to 1. The repetitionSpace tag is
equal to the number of PEs. The patternShape tag is equal to 1
indicating that the mpNoC port is distributed among the ports
of the PEs. The same modeling is followed in the case of a
ring neighboring network. The only difference is the modulo
tagged value which is set to true.

In the same manner, we can model a 2D SIMD configura-
tion. We need just to know how to model the neighboring links
based on the MARTE profile. Figure 6 presents a configuration

:ACU_data_memory [1] :ACU [1]

:ACU_Instruction_memory [1]

« shaped »
:PU

Main_architecture

ACU

InstMem

Data_mem

Inst_mem

mpNoc_in mpNoC_out

PU

West

ACU
East

mpNoC_out mpNoC_in

« InterRepetition »

« reshape »

North

South

:mpNoC_router [1] :Device [1]

InstMem

ACU_in

ACU_out

PU_out PU_in

Device_in

Device_out

mpNoC_in

mpNoC_out

« reshape » « reshape »
« InterRepetition »

Fig. 6. 2D configuration modeling (with a mesh neighboring network)

modeling integrating a 2D mesh neighboring network. We
notice that the PU class is modeled with 4 ports dedicated
to inter-PE communications in east, west, north and south
directions. In this case, the repetitionSpaceDependence tagged
value is equal to {1,0} indicating that each PE[i,j] is connected
to its neighbor PE[i+1,j] to assure east and west links. In
addition, this tagged value is equal to {0,1} for north and south
links to assure that each PE[i,j] is connected to its neighbor
PE[i,j+1]. For a mesh topology the tagged value isModulo
is set to false since there are no connections on the edges.
However, it is set to true in the case of a torus topology. The
Xnet network is modeled like the 2D mesh. The designer has
just to model the links on the diagonals.

C. Deployment

As described in the previous subsection, a SIMD configu-
ration can be modeled at a high abstraction level. To generate
an executable low level model, the elementary modeled com-
ponents should be associated with an existing implementation
based on the provided IP library. The deployment allows to
move from a general platform (Platform Independent Model)
to a specific platform (Platform Specific Model) according to
the MDA approach. At this step, the designer can generate and
evaluate different configurations. In fact, the deployment en-
ables to precise a specific implementation for each elementary
concept among a set of possibilities. It concerns the processor
IP, the instruction memory, the mpNoC interconnection net-
work and the I/O device IP if it exists. At this stage the binary
data-parallel program is specified as the memory initialisation
file of the main instruction memory. In fact, in our case we
deal with a single data-parallel program (one of the advantages
of a SIMD architecture) so no mapping of tasks needs to
be performed. Thus, the mapping of the application to the
hardware architecture is systematic. Figure 7 expresses the
deployment of a ”hardwareIP” on the ”Elementary processor”.
The concept of codeFile is used to specify the code.

A final transformation chain MARTE2VHDL is developed
to generate the synthesizable VHDL implementation of the
modeled SIMD configuration.

D. Implementation generation

The MARTE2VHDL transformation is based on the De-
ployed model and the IP library to generate the corresponding

Elementary_processor

local_memory

« virtualIP »
VPE

« implements »

« implements »

« hardwareIP »
PEImplem

« implements »

Fig. 7. Deployment of the PE

synthesizable VHDL implementation depending on the mod-
eled configuration. A model conformed to the Deployed meta-
model is generated via the transformation UML2MARTE. This
model is then analysed in order to deduce the specified pa-
rameters. The number of PEs, memory size, processor design
methodology and the topology of the neighboring network are
extracted from the UML diagrams. The other configurable
components (processor IP, mpNoC interconnection network,
etc.) are specified from the deployment step. The developed
transformation model-to-text is based on templates. It uses the
Acceleo tool [14] which is part of the Eclipse Model to Text
project and provides an implementation of the MOF Model to
Text OMG standard. The following code example illustrates
how to deduce the type of the processor (getPeCodeFile) in
the generation step:
[query public getPECodeFile (m:Model):CodeFile=self.ownedElement->select
(oclIsKindOf(CodeFile) and name=’PEImpl codefile’)->asOrderedSet()->first()]

Using an MDE based framework, the SIMD SoC design is
accelerated. The VHDL implementation can be automatically
generated based on model transformations. The SoC model is
independent of any implementation detail making the design
flow easy to use. The proposed framework also facilitates SoC
exploration and helps the user choose the best configuration
for a given application. The next section illustrates the use of
this framework in a real application context.

IV. CASE STUDY

A color conversion RGB to CMYK application widely
used in color printers, extracted from the EEMBC benchmark
[24] has been developed based on the provided data-parallel
instruction set. The program is written using high-level macros
(table I). The binary is then generated depending on the used
processor by selecting the corresponding compiler. The pro-
posed framework allowed to generate different SIMD suitable
configurations. An FPGA is used to do real experimentations.

A. HW platform

The used development board is the Altera D2-70 [25]
equipped with a CycloneII EP2C70F896C6 FPGA which has
68416 Logic Elements (LEs) and 250 M4K RAM blocks. The
used SW tools are the Quartus II V9.0 that allows synthesizing

TABLE II
SYNTHESIS RESULTS

PE IP Proc. LEs Memory
design (%) ACU PE %

(bytes) (bytes)
8 miniMIPS rep. 71 4096 1024 18
32 miniMIPS red. 93 4096 2048 66
8 OpenRisc rep. 91 4096 1024 22
16 OpenRisc red. 98 4096 4096 36
48 NIOS rep. 79 8192 512 87

and prototyping the design on the FPGA, and the ModelSim-
Altera v.6.4a that allows simulating and debugging the design.
To test the color-conversion application, two peripherals are
used: a 1M pixel camera TRDB D5M and a 800×RGB×480
pixel TRDB LTM LCD displayer. The two external SDRAM
and SRAM memories are also used. In fact, the implemented
VHDL camera driver directly stores the captured data to the
SDRAM to be read by PEs as required. A VHDL SRAM
controller is implemented. It allows to store the processed data
in the SRAM and fetches it as it is required by the LCD.

B. SIMD configurations

For the tested application, only the mpNoC has been
integrated in the system model (no neighboring network)
since we need to assure parallel data transfers: all PEs need
to read data from the SDRAM and then write data to the
SRAM. In this example, each pixel processing should not
exceed 10.42 Ns in order to assure real-time processing.
Therefore, a 800×480 pixel frame must be processed within
4 Ms. The same system model is used for all implementation
generations. It is described in composite structure diagram as
illustrated in Figure 8. It models all hardware components
composing the system as well as their connections. Only
the deployment diagram changes from one configuration to
another in order to use different processors, memories and
interconnection networks. The modification from one SIMD
configuration to a new one just needs few milliseconds and
the re-generation process is rapidly performed. The low-level
synthesizable models from the IP library are used for the
final implementation. The generated configurations could be
directly simulated to measure execution time and decide the
performance of the SIMD modeled systems.

Table II shows the obtained synthesis results varying the
SIMD parameters and components while integrating the max-
imum number of PEs targeting the Cyclone II FPGA. All
these configurations integrate a crossbar based mpNoC since
the crossbar allows fast and non-blocking parallel data trans-
fers, necessary for real-time image processing applications.
We clearly notice that the reduction methodology allows
integrating a bigger number of PEs on the chip than the
replication methodology. Since the miniMIPS is smaller than
the OpenRisc, we can reach 32 PEs on the FPGA compared
to 16 PEs when using the OpenRisc IP. The implementation
results prove that the NIOS processor is optimized for the
Altera FPGA. We can integrate more than 48 PEs on the chip.

Figure 9 shows the execution time results obtained when
prototyping the generated configurations on the CycloneII

6000

8000

10000

12000

14000

16000

18000

Execution time results (μs)

RGB to CMYK

0

2000

4000

6000 RGB to CMYK

Fig. 9. Execution times for different SIMD configurations

TABLE III
DIFFERENCES BETWEEN TWO DESIGN SOLUTIONS

SIMD Generic implem. with Generic implem. with
config. a reduced processor a replicated processor

Design time 15 minutes 40 seconds
using the framework
Design time without 1 month 7 days
using the framework

FPGA. So, these times are measured running the color-
conversion application on parallel FPGA based configurations.
The different SIMD SoC configurations perform good results
while increasing the number of PEs working in parallel.
The performance of the system is also closely related to the
processor type and the design methodology. The experimental
results show that a SIMD configuration composed of more
than 8 PEs is needed to assure real-time processing. Accord-
ing to these results, we can choose the best configuration.
The proposed approach easily allows exploration of several
platform architecture alternatives.

In order to illustrate the efficiency of the model-based
framework, Table III compares the implementation design time
using the framework with results obtained from a conventional
manual implementation method done by the same designer
without using any framework. The measured design time for
the second configuration (using replication methodology) is
just the time needed to modify the first configuration (with
reduction methodology). The results in Table III show that
the proposed framework is a better solution to accelerate
the design of specific SIMD parallel SoC according to the
estimated design time compared to a manual design. Two
months were necessary to reduce an open-source processor to
obtain a small PE (with only execution units) [21]. Observing
the results, we can conclude that the model-based design
framework allows a very fast SIMD implementation.

This case study illustrates a design framework which fa-
cilitates SIMD SoC implementation to run data-parallel ap-
plications. Through the Model-Driven Engineering approach
for parallel SoC design presented in this work, a designer can
specify the needed SIMD configuration using UML models
and the MARTE profile at high abstraction level and automat-
ically generate its implementation at RT level. The designer
can easily and rapidly generate different SoC configurations

Main_architecture

 : ACU_memory [1]

 InstMem

 : ACU [1]

 Data_mem

 Inst_mem PU

 mpNoc_in mpNoC_out

 : mpNoC_router [1]
 PU_out PU_in

«shaped»
 : PU

 ACU
 mpNoC_in mpNoC_out

 ACU_in

 ACU_out

 Device_in

 Device_out

 device: Device [1]

 mpNoC_out

 mpNoC_in

 Device2_out Device2_in

 device2: Device2 [1]

 mpnoc_out mpnoc_in

«reshape»

«reshape» «reshape»

Fig. 8. SIMD configuration composite structure diagram

to look for the best alternative for a given application.

V. CONCLUSIONS AND FUTURE WORK

A Model-Driven Engineering (MDE) approach for SIMD
SoC design was presented. The proposed flow design is
composed of four steps: application programming, system
modeling, deployment and then implementation generation.
The MDE fundamental notion of transformation between mod-
els is used to generate a SIMD configuration at register transfer
level from its model at a high abstraction level. The framework
facilitates the exploration by rapidly generating different SoC
configurations in order to choose the most adequate one
that better fulfills the application requirements. Experimental
results show that the proposed framework strongly contributes
to the increase of the designer’s productivity. The case study
with a video processing application proved that the presented
design flow can facilitate the design of parallel SIMD SoC
systems. The design flow allows reducing implementation
costs. Besides, the use of UML and MDE promotes the
reusability of application and system high-level models.

One of the future directions to be considered is the modeling
of a data-parallel application. We also intend to develop a
high-level exploration step to automatically generate the most
suitable application-specific SIMD SoC configuration.

REFERENCES

[1] W. C. Meilander, J. W. Baker, and M. Jin, “Importance of SIMD
Computation Reconsidered,” in International Parallel and Distributed
Processing Symposium, 2003.

[2] R. Kleihorst and al., “An SIMD smart camera architecture for real-time
face recognition,” in Abstracts of the SAFE & ProRISC/IEEE Workshops
on Semiconductors, Circuits and Systems and Signal Processing, 2003.

[3] R. Rosas, A. de Luca, and F. Santillan, “SIMD Architecture for Image
Segmentation using Sobel Operators Implemented in FPGA Technol-
ogy,” in Proc. of the 2nd International Conference on Electrical and
Electronics Engineering ((ICEEE’05), 2005.

[4] P. Bonnot, F. Lemonnier, G. Edelin, G. Gaillat, O. Ruch, and P. Gauget,
“Definition and SIMD implementation of a multi-processing architecture
approach on FPGA,” in Proc. of DATE, 2008.

[5] F. Schurz and D. Fey, “A Programmable Parallel Processor Architecture
in FPGA for Image Processing Sensors,” in Integrated Design and
Process Technology, IDPT, 2007.

[6] X. Xizhen and S. G. Ziavras, “H-SIMD machine: configurable parallel
computing for matrix multiplication,” in International Conf. on Com-
puter Design: VLSI in Computers and Processors, 2005, pp. 671–676.

[7] P. Paulin, “DATE panel: Chips of the future: soft, crunchy or hard?” in
Proc. Design, Automation and Test in Europe, 2004, pp. 844–849.

[8] A. Sangiovanni-Vincentelli, L. Carloni, F. D. Bernardinis, and M. Sgroi,
“Benefits and challenges for platform-based design,” in Proc. DAC,
2004, pp. 409–414.

[9] D. Schmidt, “Model-driven Engineering,” IEEE Computer, vol. 39,
no. 2, 2006.

[10] C. D. L. Bond and J.-L. Dekeyser, “Metamodels and MDA transforma-
tions for embedded systems,” in FDL04, Lille, France, 2004.

[11] S. Mellor and M. Balcer, Executable UML: A foundation for Model
Driven Architecture. Boston: Addison-Wesley, 2002.

[12] O. M. Group. (2004, october) Uml 2 superstructure (available
specification). [Online]. Available: http://www.omg.org/cgi-bin/doc?ptc

[13] L. Rioux, T. Saunier, S. Gerard, A. Radermacher, R. de Simone,
T. Gautier, Y. Sorel, J. Forget, J.-L. Dekeyser, A. Cuccuru, C. Dumoulin,
and C. Andre, “MARTE: A new profile RFP for the modeling and
analysis of real-time embedded systems,” in UML-SoC’05, DAC 2005
Workshop UML for SoC Design, Anaheim, CA, June 2005.

[14] Acceleo. (2009). [Online]. Available: http://www.acceleo.org
[15] M. Bakouti, P. Marquet, M. Abid, and J.-L. Dekeyser, “IP based

configurable SIMD massively parallel SoC,” in PhD Forum of 20th In-
ternational Conference on Field Programmable Logic and Applications
(FPL), Milano, Italy, August 2010.

[16] D. Bjorklund and J. Lilius, “From UML Behavioral Models to Efficient
Synthesizable VHDL,” in 20th IEEE NORCHIP Conference, Copen-
hagen, Denmark, November 2002.

[17] F. P. Coyle and M. A. Thornton, “From UML to HDL: a Model Driven
Architectural Approach to Hardware-Software Co-Design,” Information
Systems: New Generations Conference (ISNG), pp. 88–93, April 2005.

[18] T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M. Hannikainen, and
T. Hamalainen, “UML-based multiprocessor SoC design framework,”
ACM Trans. Embedded Computing Systems (TECS), vol. 5, no. 2, pp.
88–93, May 2006.

[19] M. Bakouti, Y. Aydi, P. Marquet, M. Abid, and J.-L. Dekeyser, “Scalable
mpNoC for Massively Parallel Systems - Design and Implementation on
FPGA,” Journal of Systems Architecture (JSA), vol. 56, pp. 278–292,
2010.

[20] EMF. Eclipse modeling framework. [Online]. Available: http://www.
eclipse.org/emf

[21] M. Bakouti, P. Marquet, M. Abid, and J.-L. Dekeyser, “A design and
an implementation of a parallel based SIMD architecture for SoC on
FPGA,” in Conference on Design and Architectures for Signal and Image
Processing DASIP’08, Bruxelles, Belgium, November 2008.

[22] OpenCores. Or1200 openrisc processor. [Online]. Available: http:
//opencores.org/openrisc,or1200

[23] O. M. Group. UML Profile for MARTE: Modeling and Analysis
of Real-Time Embedded Sys- tems, version 1.0. [Online]. Available:
http://www.omg.org/spec/MARTE/1.0/PDF/.

[24] EEMBC. (2010) The Embedded Microprocessor Benchmark
Consortium. [Online]. Available: http://www.eembc.org/home.php

[25] Terasic. (2010) Altera DE2-70 Board. [Online]. Available: http://www.
terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=226

