
Sommaire 
INTRODUCTION.............................................................................................................................- 1 - 

CHAPITRE 1: SYSTEMES TEMPS REEL...................................................................................- 4 - 

1. Introduction ............................................................................................................. - 5 - 
2. Définition d’un Système Temps Réel ..................................................................... - 5 - 
3. Applications Temps réel.......................................................................................... - 6 - 

3.1. Applications concurrentes..................................................................................... - 6 - 
3.2. Notion de Tâche.................................................................................................... - 6 - 
3.3. Interaction entre les tâches.................................................................................... - 7 - 

4. Architecture des Systèmes Temps Réel .................................................................. - 7 - 
4.1. Architecture matérielle.......................................................................................... - 8 - 
4.2. Architecture logicielle........................................................................................... - 9 - 

5. Quantification du temps ........................................................................................ - 11 - 
5.1. Les Tâches en Temps Réel ................................................................................. - 12 - 

5.1.1. Tâche périodique ......................................................................................... - 12 - 
5.1.2. Tâche apériodique ....................................................................................... - 13 - 

5.2. Qualité de service................................................................................................ - 13 - 
5.3. Ordonnancement et validation ............................................................................ - 14 - 

6. Conclusion............................................................................................................. - 15 - 
CHAPITRE 2: APPROCHES DE MODELISATION DES SYSTEMES TEMPS REEL.......- 16 - 

1. Introduction. .......................................................................................................... - 17 - 
2. ROOM................................................................................................................... - 17 - 
3. SDL ....................................................................................................................... - 18 - 
4. Réseaux de Pétri .................................................................................................... - 19 - 
5. ADL....................................................................................................................... - 20 - 
6. UML et le temps réel............................................................................................. - 22 - 

6.1. Modélisation comportementale avec UML ........................................................ - 22 - 
6.1.1. Les diagrammes d’activité .......................................................................... - 22 - 
6.1.2. Les machines d’états ................................................................................... - 22 - 
6.1.3. Le langage d’action ..................................................................................... - 24 - 
6.1.4. Diagramme de séquence.............................................................................. - 26 - 

6.2. Profil UML.......................................................................................................... - 26 - 
6.2.1. ROPES ........................................................................................................ - 28 - 
6.2.2. OMEGA ...................................................................................................... - 29 - 
6.2.3. SPT.............................................................................................................. - 30 - 
6.2.4. GASPARD .................................................................................................. - 31 - 
6.2.5. Profil QoS & FT.......................................................................................... - 32 - 
6.2.6. Profil MARTES........................................................................................... - 33 - 
6.2.7. ACCORD/UML .......................................................................................... - 33 - 

6.3. OCL et le temps réel ........................................................................................... - 34 - 
7. Discussion ............................................................................................................. - 34 - 
8. Conclusion............................................................................................................. - 36 - 

CHAPITRE 3: INGENIERIE DIRIGEE PAR LES MODELES ...............................................- 37 - 

1. Introduction ........................................................................................................... - 38 - 
2. L’architecture MDA de l’OMG ............................................................................ - 38 - 
3. Principes de base ................................................................................................... - 41 - 



4. Les standards MDA............................................................................................... - 43 - 
4.1. Les profils UML ................................................................................................. - 43 - 
4.2. MOF (Meta Object Facility) ............................................................................... - 44 - 
4.3. XMI (XML Metadata Interchange) .................................................................... - 44 - 
4.4. CWM (Common Warehouse Metamodel):......................................................... - 45 - 

5. Modélisation/Méta-modélisation .......................................................................... - 45 - 
5.1. Langages de méta-modélisation :........................................................................ - 47 - 
5.2. Transformation des modèles ............................................................................... - 48 - 

5.2.1. Caractéristiques : ......................................................................................... - 49 - 
5.2.2. Langages de transformation ........................................................................ - 50 - 
5.2.3. Le langage ATL .......................................................................................... - 51 - 

6. Conclusion............................................................................................................. - 54 - 
CHAPITRE 4: DEMARCHE DE CONCEPTION PROPOSEE................................................- 55 - 

1. Introduction ........................................................................................................... - 56 - 
2. Identification des besoins ...................................................................................... - 56 - 
3. Démarche proposée ............................................................................................... - 57 - 
4. Modélisation de la structure d’un RTOS............................................................... - 59 - 

4.1. Modèle statique................................................................................................... - 61 - 
4.2. Modèle dynamique.............................................................................................. - 64 - 

4.2.1. Modélisation du comportement d’une tâche ............................................... - 65 - 
4.2.2. Définition de la sémantique opérationnelle................................................. - 66 - 

5. Modélisation de l’Ordonnanceur........................................................................... - 66 - 
5.1. Définition de l’Ordonnanceur ............................................................................. - 67 - 
5.2. Modélisation d’un algorithme d’ordonnancement.............................................. - 68 - 

6. Modèles proposés.................................................................................................. - 71 - 
6.2. Modèle associé la structure d’un exécutif temps réel ......................................... - 72 - 
6.3. Modèle associé à l’ordonnanceur........................................................................ - 75 - 

7. Conclusion............................................................................................................. - 75 - 
CHAPITRE 5: IMPLANTATION DES STATECHARTS ET GENERATION DE CODE....- 76 - 

1. Introduction ........................................................................................................... - 77 - 
2. Modélisation des variations sémantiques.............................................................. - 77 - 

2.1. OCL pour qualifier les points de variation sémantique ...................................... - 80 - 
2.2. Un Profil UML pour spécifier les choix sémantiques ........................................ - 81 - 

3. Implantations des statecharts................................................................................. - 81 - 
3.1. Techniques d’implantation des statecharts ......................................................... - 82 - 

3.1.1. Enumération des états et des événements ................................................... - 82 - 
3.1.2. Réification des événements......................................................................... - 82 - 
3.1.3. Réification des états .................................................................................... - 83 - 
3.1.4. Réification des états et des évènements ...................................................... - 84 - 

3.2. Progression de l’automate................................................................................... - 85 - 
3.3. Modèle final ........................................................................................................ - 86 - 

4. Génération de Code............................................................................................... - 87 - 
4.1 Modèle source...................................................................................................... - 88 - 
4.2 Modèle cible......................................................................................................... - 91 - 

5. Conclusion............................................................................................................. - 92 - 
CONCLUSION................................................................................................................................- 94 - 

REFERENCES ................................................................................................................................- 96 - 



Liste des figures 
Figure 1 : Interprétation de la pile de modélisation multi-niveau de l’OMG ..................... - 39 - 

Figure 2: La transformation de modèles basée sur les méta-modèles................................. - 41 - 

Figure 3 : Notions de base en technologie des objets [P1].................................................. - 42 - 

Figure 4: Notions de base en ingénierie des modèles [P2] ................................................. - 42 - 

Figure 5 : Modèles, langages, méta-modèles et métalangages ........................................... - 46 - 

Figure 6 : L’organisation 3+1 du MDA .............................................................................. - 46 - 

Figure 7 : Automatisation des transformations ................................................................... - 49 - 

Figure 8 : Syntaxe de l’en-tête ............................................................................................ - 52 - 

Figure 9 : Forme d’une méthode dans ATL........................................................................ - 53 - 

Figure 10 : Matched rules.................................................................................................... - 53 - 

Figure 11 : Démarche proposée .......................................................................................... - 59 - 

Figure 12: Diagramme de classe correspondant à la structure de l’RTOS OSEK.............. - 61 - 

Figure 13: Bibliothèque d’objets VxWorks ........................................................................ - 64 - 

Figure 14: Conception de la variation de l’état d’une tâche à l’aide des FSM ................... - 65 - 

Figure 15: Modèle étendu pour la définition de la sémantique opérationnelle ................... - 66 - 

Figure 16: Diagramme de classe correspondant à la définition de l’Ordonnanceur ........... - 68 - 

Figure 17 : Diagramme de Séquence illustrant l’algorithme d’Ordonnancement Rate 

Monotonic ........................................................................................................................... - 70 - 

Figure 18 : Modèle statique de la définition de la structure de l’RTOS proposé................ - 73 - 

Figure 19: Diagramme d’états transitions relatif à l’entité tâche annoté avec des contraintes 

OCL..................................................................................................................................... - 74 - 

Figure 20 : Récapitulatif des différents points de variations [FRA04] ............................... - 79 - 

Figure 21: La procédure Step en pseudo-code[FRA04]...................................................... - 80 - 

Figure 22 : Contraintes OCL sur la gestion des évènements .............................................. - 80 - 

Figure 23 : Profil UML pour préciser les choix sémantiques associés aux statecharts [FRA04]- 

81 - 

Figure 24 : Application du pattern command sur l’entité Task........................................... - 83 - 

Figure 25 : Application du pattern State sur l’entité Task .................................................. - 84 - 

Figure 26 : Application du pattern state et du pattern Command sur l’entité Task ............ - 85 - 

Figure 27 : Application du pattern Active Object sur l’entité Task .................................... - 86 - 

Figure 28 : Modèle d’ordonnancement issu de l’implémentation des statecharts .............. - 87 - 

Figure 29 : Modèle source en XMI ..................................................................................... - 89 - 



Figure 30 : Méta-modèle source en KM3 ........................................................................... - 91 - 

Figure 31 : Méta-modèle cible en KM3 .............................................................................. - 92 - 

Figure 32 : Règle en ATL ................................................................................................... - 92 - 



Liste des Tableaux 

 

 

Tableau 1: Exemple de spécification d’événements temporels. ......................................... - 24 - 

Tableau 2: Comparaison entre les profils SPT et QoS........................................................ - 32 - 

Tableau 3: Principe [P1] et [P2].......................................................................................... - 41 - 

Tableau 4 : Bilan récapitulatif des différentes approches de modélisation des RTOS ....... - 72 - 

Tableau 5 : Récapitulatif des différents points de variations [FRA04]............................... - 78 - 

 

 

 

 



Introduction   

 - 1 -

Introduction 
Les systèmes embarqués envahissent de plus en plus notre vie quotidienne. D’une grande 

diversité, ces systèmes occupent une place prépondérante dans plusieurs domaines de l’industrie 

comme la télécommunication, l’automobile, l’avionique ou encore l’aérospatial. Ces systèmes 

sont composés d’une partie matérielle et d’une autre logicielle et possèdent la particularité d’être 

enfouis dans un milieu avec lequel ils sont en interaction permanente. Cette interaction avec le 

milieu s’effectue le plus souvent en temps réel. Les systèmes embarqués doivent donc être des 

systèmes temps réel [REAL03]. 

La conception de ces systèmes devient de plus en plus complexe, du fait de l'hétérogénéité 

grandissante des applications (traitement de signal multimédia, communication, sécurité) ainsi 

que les architectures de déploiement (processeurs multicores et architectures dédies, systèmes sur 

puce (SoCs)). Face à cette complexité, ces systèmes se trouvent alors difficiles à spécifier et les 

possibilités d'erreurs sont de plus en plus nombreuses. Leur disfonctionnement, à cause de la 

surcharge ou de la terminaison de quelques services après un délai imposé, peut avoir de graves 

conséquences (économiques, judiciaires, humaines, etc.). De ce fait, plusieurs contraintes 

s’imposent lors de la conception de ces systèmes, essentiellement celles temps réels. La 

vérification des propriétés du système pour une étape préliminaire pourrait diminuer la dimension 

du problème. 

Actuellement, la modélisation orientée objets soutenue par le standard UML (Unified Modeling 

Language) apporte des solutions efficaces à de tels problèmes, ceci est réalisé via l’extension 

et/ou la restriction de ce langage par l’intermédiaire de profil [UML04]. Cependant, les capacités 

de spécification du comportement temps réel d'une application ne sont pas encore complètement 

satisfaisantes. En effet, ces méthodes, récemment industrialisées, fournissent des solutions en 

terme de spécification de la concurrence d'une application, mais restent insuffisantes notamment, 

pour l’expression des contraintes non fonctionnelles d'une application et pour l’intégration de la 

modélisation de l’RTOS (Real Time Operating System) [VIV02] lors de la conception du 

système. 



Introduction   

 - 2 -

Ainsi, pour remédier à ces problèmes, nous essayons dans ce mémoire de Mastère de modéliser 

un RTOS tout en définissant les sémantiques temporelles [ARN07]. Pour cela, nous définissons 

un nouveau modèle relatif à un RTOS. Ce modèle tient compte explicitement des instructions 

conditionnelles présentes dans le code des tâches et permet ainsi de prendre en compte 

l’ensemble des durées d’exécution des tâches et le comportement réel de l’application vis à vis de 

la gestion des ressources. Nous sommes alors amenés à définir le problème de l’ordonnancement 

[YVO05] en définissant les variations sémantiques aux statecharts associées à l’état d’un 

processus. Enfin, après l’implantation des statecharts et à l’aide de l’ingénierie dirigée par les 

modèles nous montrons comment nous pouvons générer automatiquement le code relatif à un 

RTOS. 

Pour ce faire, nous avons divisé ce document en cinq chapitres : 

Dans le premier chapitre, nous rappellerons les principes fondamentaux liés à notre travail. Nous 

présenterons tout d'abord un aperçu sur la notion de système temps réel et en particulier son 

architecture. Nous détaillerons ensuite les caractéristiques de l’exécutif temps réel. 

Dans le deuxième chapitre, nous effectuerons une étude des travaux menés dans divers projets 

liés au domaine de conception des systèmes temps réel. Nous étudierons plus en détail la notion 

de profil UML, et nous nous attacherons à synthétiser les caractéristiques de quelques profils. 

Dans le troisième chapitre, nous présenterons les concepts liés à l'ingénierie dirigée par les 

modèles (IDM) tout en insistant sur l’approche MDA (Model Driven Architecture). De plus, une 

attention est mise sur l’architecture, les principes et les standards de cette approche en mettant 

l’accent sur la transformation des modèles 

Le quatrième chapitre expose notre solution conceptuelle pour la mise en oeuvre de la 

modélisation de l’RTOS lors de la modélisation d’un système temps réel, notamment en adoptant 

la démarche dirigée par les modèles. Nous expliquerons les choix qui nous ont menés au modèle 

de l’RTOS, et nous détaillerons chacune de ses composantes. 

Le dernier chapitre constitue une partie plus applicative, puisqu'il consiste à présenter les 

expérimentations que nous avons menées en parallèle à notre étude. Nous montrerons les 

différentes solutions techniques que nous avons exploité pour implanter les statecharts et générer 

automatiquement le code. 



Introduction   

 - 3 -

En conclusion générale, nous résumons la démarche qui nous a amené à la modélisation du 

processus de développement dirigé par les modèles pour la spécification et la mise en oeuvre de 

l’exécutif temps réel. Nous terminons enfin en exposant les perspectives liées à ce travail, tant du 

point de vue de la modélisation que de la réalisation. 
 



Chapitre 1: Systèmes temps réel   

 - 4 -

C H A P I T R E   
 

          1 
 

 

 

 

 

 

 

Systèmes temps réel 
 



Chapitre 1: Systèmes temps réel   

 - 5 -

1. Introduction 

L'objectif de ce chapitre est de présenter le contexte scientifique dans lequel est réalisée ce travail 

de Mastère. Les notions mises en avant sont celles qui ont été retenues pour la réalisation de notre 

étude, et ne constituent pas une étude exhaustive. Cette présentation du contexte scientifique 

s'articule autour du domaine des systèmes temps réel, couvrant les aspects architecturaux, 

techniques et conceptuels sur lesquels sont bâtis notre travail.  

Nous présentons de manière générale les systèmes temps réels. Nous rappelons leurs 

architectures et nous focalisons sur les caractéristiques d’un système d’exploitation temps réel. 

Nous en synthétisons ensuite les principales fonctionnalités. 

2. Définition d’un Système Temps Réel 

Il existe de nombreuses définitions des Systèmes Temps Réel. Une première définition tirée de 

[STA88], décrit un système Temps Réel comme: «tout système informatique dont le bon 

fonctionnement ne dépend pas uniquement de la correction algorithmique et logique mais 

également des dates d’arrivée des résultats». Contrairement à la notion de correction temporelle 

qui est bien mise en évidence, le caractère réactif est loin d’être explicitement défini. Une 

deuxième approche qualifie les systèmes Temps Réel comme étant : «des systèmes ouverts 

répondant constamment aux sollicitations de leur environnement en produisant des actions sur 

celui-ci». Cette définition insiste sur la notion de servitude vis à vis du procédé contrôlé mais 

sans évoquer l’aspect temporel. C’est au CNRS [CNR88] que nous pouvons enfin trouver la 

définition suivante qui concilie entre les deux paradigmes primordiaux des Systèmes Temps   

Réel : «Peut être qualifiée de temps réel toute application mettant en oeuvre un système 

informatique dont le fonctionnement est assujetti à l’évolution dynamique de l’état d’un 

environnement (procédé) qui lui est connecté et dont il doit contrôler le comportement». 

Dans le but d’affiner cette définition, par le biais d’introduction des notions de critères temporels, 

nous pouvons nous référer à la définition donnée par [ALA92] :«Une application temps réel 

constitue un système de traitement de l’information ayant pour but de commander un 

environnement imposé en respectant les contraintes de temps et de débit (temps de réponse à un 

stimulus, taux de perte d’information toléré par entrée) qui sont imposées à ses interfaces avec cet 

environnement». 



Chapitre 1: Systèmes temps réel   

 - 6 -

Ainsi, les systèmes temps réel [REAL03] se distingue par leur capacité permettant aux 

applications qu’ils gèrent (nommées : applications temps réel) de réagir à des événements et/ou 

d’atteindre des résultats selon des contraintes de temps fixées antérieurement. Ils sont notamment  

susceptibles de disposer de mécanisme de contrôle des automates, des robots, des chaînes de 

production, des véhicules, des centrales nucléaires… 

3. Applications Temps réel 

Les définitions présentées précédemment des Systèmes Temps Réel ont mis l’accent sur deux 

éléments distincts : une ou plusieurs entités physiques constituant le procédé, dont le rôle est 

d’agir et de détecter, et un contrôle informatique, nommé contrôleur ou application temps réel qui 

est le décideur des actions (ou réactions) du procédé. Le contrôleur reçoit des informations sur le 

milieu du procédé à l’aide de capteurs et commande les changements d’état du procédé à travers 

des actionneurs.  

3.1. Applications concurrentes 

La dynamique des périphériques (ou interfaces) du procédé et de son environnement détermine 

celle de l’interaction entre le procédé et le contrôleur. De la même façon que l’environnement 

connaît des transformations en parallèle avec les périphériques du système, le contrôleur, c’est à 

dire l’application temps réel, est censé de refléter ce parallélisme. 

Pour gérer toutes ces entités interagissantes, il est donc indispensable de développer des 

techniques logicielles capables de traiter les informations reçues des capteurs sur l’unité de calcul 

pour fournir les actions appropriées. 

3.2. Notion de Tâche 

La notion de capteurs et d’actionneurs introduit implicitement, en terme logiciel, l’utilisation de 

différentes tâches permettant de les piloter. Ce sont des programmes séquentiels dédiés au 

traitement d’un des composants du système Temps Réel. A titre d’exemple, un programme 

Temps Réel peut être constitué d’un ensemble de tâches tels que : 

 des exécutions périodiques de mesures de différentes grandeurs physiques (pression, 

température, accélération, etc.). Ces valeurs peuvent être comparées à des valeurs de 

consignes liées au cahier des charges du procédé  



Chapitre 1: Systèmes temps réel   

 - 7 -

 des traitements à intervalles réguliers ou programmés  

  des traitements en réaction à des évènements internes ou externes : dans ce cas les tâches 

doivent être aptes à accepter et à analyser en accord avec la dynamique du système, les 

requêtes liées à ces évènements. Nous considérons ainsi, une Application Temps Réel 

comme étant une application multitâches. 

3.3. Interaction entre les tâches 

Les tâches, dont les comportements sont séquentiels, peuvent interagir entre elles pour garantir le 

bon fonctionnement global de l’application que le système commande. Il est donc nécessaire de 

fournir parallèlement à ces tâches des moyens de communication et de synchronisation 

susceptibles de gérer tous les problèmes liés aux accès à des ressources communes comme par 

exemple les périphériques (mémoires, imprimantes, etc.), ou l’exécution des tâches ordonnées par 

des critères de précédence. 

Dans le cas du partage de ressources, certaines d’entre elles peuvent être bornées en nombre 

d’accès simultanés. Dans ce cas, nous évoquons la notion de ressources critiques. Pour assurer un 

bon fonctionnement de l’application, il est nécessaire de mettre l’accès à ces ressources en 

exclusion mutuelle. Il faut s’assurer qu’il y ait bien au plus le nombre maximum autorisé de 

tâches simultanément en section critique, c’est à dire qui utilisent simultanément la ressource. De 

plus, il convient de garantir la non préemption des ressources en cours d’utilisation. L’accès à ces 

ressources peut de plus s’effectuer en mode lecture ou écriture, chacun possédant son propre 

nombre d’accès simultanés autorisés. 

Les critères de précédence des tâches sont souvent issus soit d’un désir d’échange de données 

entre deux tâches, soit de la volonté de synchroniser deux tâches pour que la suite de leur 

exécution se fait en parallèle par un mécanisme de Rendez-Vous. Dans le premier cas, nous 

parlons d’une tâche émettrice et d’une tâche réceptrice. 

Nous identifions le concept de tâches indépendantes lorsque l’application n’utilise ni ressources 

critiques, ni synchronisation. 

4. Architecture des Systèmes Temps Réel 

Un système temps réel est formé de deux composantes : une matérielle et une autre logicielle. 



Chapitre 1: Systèmes temps réel   

 - 8 -

Dans cette partie, on ne parle pas de la cible architecturale à générer à un niveau d’abstraction 

dans le cadre de la conception des circuits intégrés (CI) ou encore dans le cadre du co design. On 

se place plutôt dans le cadre du génie logiciel en parlant d’une architecture matérielle qui est à 

base de processeurs et d’une architecture logicielle mettant l’accent sur la structure et 

l’agencement des composantes logicielles qui forment l’application à concevoir. 

4.1. Architecture matérielle 

Les systèmes temps réel peuvent être classés selon leur couplage avec des éléments matériels 

avec lesquels ils sont en interaction. Ainsi, l’application concurrente et le système d’exploitation 

qui lui est associé peuvent se trouver : 

 soit directement dans le procédé contrôlé : dans ce cas, il s’agit des systèmes embarqués. 

Le procédé est pour la plupart très spécialisé et fortement dépendant du calculateur. Les 

exemples de systèmes embarqués sont nombreux : contrôle d’injection automobile, 

stabilisation d’avion, électroménager... C’est le domaine des systèmes spécifiques 

intégrant des logiciels sécurisés optimisés en encombrement et en temps de réponse. 

 soit le calculateur est détaché du procédé : c’est souvent le cas lorsque le procédé ne peut 

être physiquement couplé avec le système ou dans le cas général des contrôle/commandes 

de processus industriels. Dans ce cas, les applications utilisent généralement des 

calculateurs industriels munis de systèmes d’exploitation standards ou des automates 

programmables industriels comme dans les chaînes de montage industrielles par exemple. 

En intégrant la notion de calculateur ou de processeur, nous distinguons trois grandes catégories 

d’architecture matérielle pour les Systèmes Temps Réel en fonction de leur richesse en terme de 

nombre de cartes d’entrée/sortie, de mémoires, de processeurs et de la présence de réseaux. 

 L’architecture monoprocesseur : un unique processeur exécute toutes les tâches de 

l’application concurrente. Dans ce cas, la notion de parallélisme n’a plus vraiment de sens 

puisque le temps processeur est partagé entre toutes les tâches. Nous parlons plutôt de 

pseudo-parallélisme ou d’entrelacement des exécutions. En effet, le parallélisme des 

tâches semble réel à l’échelle de l’utilisateur mais le traitement sur l’unique processeur 

s’opère de façon séquentielle. 



Chapitre 1: Systèmes temps réel   

 - 9 -

 L’architecture multiprocesseurs : l’exécution de toutes les tâches est ici répartie sur n 

processeurs partageant une unique mémoire centrale. La coopération entre tâches se fait 

par partage des informations placées en mémoire. Le traitement est donc ici réellement 

parallélisé. 

 L’architecture distribuée : c’est le cas des architectures multiprocesseurs ne partageant pas 

de mémoire centrale. Ces processeurs sont reliés entre eux par l’intermédiaire de réseaux 

permettant d’assurer les communications entre les différentes tâches. Une ferme 

d’ordinateurs est un exemple typique de cette architecture. La coopération se fait ici par 

communication par réseau. 

Par la suite nous nous placerons dans le cas des architectures monoprocesseur dans toutes les 

parties de notre travail. 

4.2. Architecture logicielle 

L’architecture logicielle d’un système Temps réel est divisée en deux couches. La première 

consiste en une application concurrente composée d’un ensemble de tâches. Nous utilisons 

également le terme d’applications multitâches. La deuxième, de plus bas niveau, joue le rôle d’un 

système d’exploitation minimal chargé de faire le lien entre le procédé physique et l’application 

multitâches. 

Ce système d’exploitation, appelé exécutif Temps Réel, de par la considération de 

l’asynchronisme, est dirigé par les évènements, ceux-ci pouvant provenir de différentes sources : 

 du procédé physique par l’intermédiaire d’interruptions matérielles associées à chaque 

évènement. 

 du temps : chaque système est muni d’une horloge Temps Réel pouvant générer des 

interruptions. 

 de l’application multitâche lorsque par exemple l’exécution d’une tâche est conditionnée 

par l’exécution d’autres tâches. Dans ce cas il faut que l’exécutif retarde l’exécution de 

cette tâche pour permettre au préalable au processeur d’exécuter les autres. 



Chapitre 1: Systèmes temps réel   

 - 10 -

L’exécutif temps réel propose différents services et garanties facilitant l’exécution et la 

communication des tâches. Ces services appelés primitives temps réel peuvent être directement 

utilisés dans les tâches et sont de différentes natures :  

 Gestion des tâches : Celles ci changent d’état au cours de leur utilisation dans le système. 

Elles sont toutes initialement inexistantes dans le système. Elles sont alors “créées” puis 

réveillées ce qui les positionnent dans l’état “prête”. Un mécanisme logiciel de choix 

décide alors d’élire une tâche parmi celles dans l’état “prête” pour que le processeur la 

traite. Dans ce cas l’état de la tâche passe à “exécutée”. De cet état, une tâche peut soit 

être préemptée par une autre tâche, dans ce cas elle retourne dans l’état “prêt”, soit être 

bloquée par une synchronisation, ce qui la fait passer à l’état “attente”, soit enfin elle 

termine son exécution et passe dans l’état “terminée” avant de disparaître du système 

 Gestion des ressources partagées : Nous avons vu que certaines ressources peuvent être 

critiques et qu’elles doivent alors être utilisées en exclusion mutuelle. L’utilisation de ces 

ressources nécessite des techniques permettant de garantir le respect de l’exclusion 

mutuelle. Par exemple, la plus simple consiste à masquer les interruptions durant 

l’utilisation des ressources, ce qui empêche l’exécutif temps réel de traiter les nouvelles 

demandes d’accès à une ressource et résout du même coup les problèmes d’exclusion 

mutuelle. Toutefois, cette technique montre vite ses limites puisque l’utilisation d’une 

ressource peut être relativement longue et il n’est pas toujours souhaitable d’interdire la 

préemption (conséquence du masquage des interruptions) sur une telle durée. C’est 

pourquoi on lui préfère le plus souvent l’utilisation de sémaphores, qui permettent 

d’implémenter toutes sortes de politique d’accès à une ressource comme par exemple la 

politique FIFO (First In First Out) ou encore la politique de priorités fixes. Une fois 

l’exclusion assurée, il reste à la charge de l’exécutif temps réel de vérifier qu’il n’y a pas 

de phénomène d’interblocage 

 Gestion du temps : Le temps est utilisé ici comme une horloge absolue pour cadencer le 

système. Nous utilisons traditionnellement une discrétisation du temps permettant au 

processeur d’effectuer une action atomique minimale au vu des instructions de 

l’application. La notion de temps intégrée dans un exécutif Temps Réel doit ainsi 

permettre de satisfaire plusieurs exigences [BUR90] : 



Chapitre 1: Systèmes temps réel   

 - 11 -

– l’accessibilité du temps courant pour permettre la mesure du temps écoulé. 

– la mise en attente d’une tâche pendant une durée finie. 

– la définition d’une minuterie ou timer pour la détection par exemple de la non 

occurrence d’un évènement attendu. 

 Gestion des interruptions et de la mémoire : La gestion des interruptions doit permettre 

de tenir compte toutes les sollicitations matérielles et logicielles. Nous utilisons un service 

de routines d’interruption (ISR) permettant d’associer un traitement à chaque exécution. 

La durée de chaque routine doit être la plus courte possible puisque les routines 

s’exécutent de manière atomique (les interruptions sont masquées durant leurs 

exécutions). La gestion de la mémoire peut être faite suivant deux modèles : soit 

l’exécutif et les tâches ont chacun une zone de mémoire réservée, soit chaque tâche ainsi 

que l’exécutif possèdent une zone mémoire séparée et protégée. 

Toutes ces fonctions de l’exécutif Temps réel existent sous forme de primitives ou routines 

élémentaires dont la plupart possèdent des bribes atomiques, c’est à dire ne pouvant pas être 

interrompues par la gestion des interruptions matérielles. Ces portions ininterruptibles engendrent 

des retards dans la gestion des évènements qu’ils soient logiciels ou matériels. Pour assurer un 

service optimal aux traitements des tâches, il faut réduire ces portions au minimum. C’est 

justement l’un des critères d’évaluation des exécutifs Temps Réel du marché (ou RTOS), ce qui 

les différentient des systèmes d’exploitation classiques. Les RTOS assurent ainsi une borne 

temporelle pour chacune des primitives temps réel qu’elles proposent. Parmi ces RTOS 

[YVO05], nous pouvons citer par exemple Osek/VDX, Vxworks, RTEMS,  Linux RT. 

5. Quantification du temps 

L’architecture logicielle des applications temps réel permet d’identifier le traitement d’un 

évènement à une tâche. Nous avons vu que ce traitement doit intervenir dans des délais 

appropriés. Il faut donc être à même de vérifier que le respect des contraintes temporelles est bien 

assurée. Pour cela, nous devons introduire des indications temporelles quantitatives permettant 

par exemple d’exprimer les délais à respecter. Ceci est mis en oeuvre par la modélisation 

temporelle des tâches. De plus, il est nécessaire de préciser la façon dont ces délais doivent être 



Chapitre 1: Systèmes temps réel   

 - 12 -

pris en compte. Nous devons, en d’autres termes, préciser la qualité de service attendue pour 

l’évaluation de l’application temps réel. 

5.1. Les Tâches en Temps Réel 

Il existe trois types de tâches en Temps Réel qui diffèrent par leurs caractéristiques temporelles. 

Les tâches dites Périodiques sont la plupart du temps stimulées par l’Horloge Temps Réel (HTR) 

de l’exécutif temps réel de façon à assurer une activité régulière, par exemple lors de l’acquisition 

de données (comme dans le cas d’une lecture échantillonnée d’un signal continu) ou la génération 

périodique d’évènements. Les tâches apériodiques sont quant à elles activées de façon aléatoire 

en fonction par exemple d’évènement aléatoire. 

Nous pouvons noter qu’il existe une sous famille de ce type de tâches qui est la famille des tâches 

sporadiques pour lesquelles une durée minimale sépare deux occurrences successives de 

l’évènement déclencheur. Enfin les tâches cycliques [HAN95] sont très proches des tâches 

périodiques à la différence prêt que leur activation n’est pas liée à l’Horloge Temps Réel, ce qui 

induit une périodicité approximative. La durée séparant deux activations successives d’une tâche 

périodique est constante alors qu’elle appartient à un intervalle [Pmin, Pmax] pour les tâches 

cycliques. Nous ne nous intéresserons par la suite qu’aux tâches périodiques et apériodiques. 

Nous utiliserons le terme de tâche pour désigner le programme informatique compilé qui sera 

exécuté sur le processeur du système. 

5.1.1. Tâche périodique 

Le modèle de tâche périodique représente les tâches activées à intervalles réguliers (constants).  

Soit une tâche périodique Ti alors Ti est modélisée par les quatre paramètres temporels : 

 Ri la date à laquelle la première instance de Ti est activée 

 Ci la pire durée d’exécution (ou charge maximale) de Ti 

 Di le délai critique (ou échéance relative) associé à Ti  

 Pi la période de la tâche Ti. 



Chapitre 1: Systèmes temps réel   

 - 13 -

5.1.2. Tâche apériodique 

Les tâches apériodiques ont pour origine des activations de deux types : elles peuvent provenir 

d’une intervention extérieure inattendue (comme une intervention humaine sur le procédé par 

exemple), ou provenir de l’application elle-même lorsque par exemple une tâche périodique 

chargée de faire de l’acquisition détecte une valeur inattendue nécessitant un traitement ponctuel 

spécifique. Leur importance dépend de la criticité de l’information qu’elles doivent traiter. 

Les évènements déclencheurs étant en tout état de cause imprévisibles, les tâches apériodiques 

sont des tâches dont la fréquence d’activation est totalement aléatoire. Les paramètres du modèle 

précédent comme les dates de réveil et périodes n’ont par conséquent plus lieu d’être ici. Par 

contre, une tâche apériodique possède bien une durée d’exécution bornée par un WCET (Worst-

Case Execution Time) Ci et éventuellement un délai critique Di pour s’assurer de son exécution 

dans un temps borné. 

Les tâches sporadiques possèdent un paramètre supplémentaire permettant de définir un intervalle 

minimal entre deux activations successives Cet intervalle minimal est généralement assimilé à 

son délai critique. Il existe de nombreuses définitions et particularités sur ce type de tâches. 

Soit une tâche Ti. 

 Si Ti est une tâche apériodique, alors Ti est modélisée par un unique paramètre temporel : 

Ci sa pire durée d’exécution. 

 Si Ti est une tâche sporadique, alors Ti est modélisée dans le cas général par :(Ci, Di, Tsi) 

où Tsi correspond à l’intervalle de temps minimum séparant deux activations successives 

et Di au délai critique.  

5.2. Qualité de service 

Dans le paragraphe précédent, nous avons défini les paramètres temporels accordés à une tâche. 

Nous indiquons maintenant la nature des contraintes qu’ils engendrent. 

En effet, les systèmes temps Réel n’ont pas tous le même degré d’exigence vis à vis de ces 

critères. Si nous considérons un système critique embarqué dans un avion, il est vital que les 

tâches d’un tel système aient des temps de réponse rigoureusement contrôlés, inférieurs 

systématiquement à une borne fixée (exprimée par le délai critique des tâches). Au contraire, un 



Chapitre 1: Systèmes temps réel   

 - 14 -

attardement de réaction (par rapport aux bornes fixées par les concepteurs qui correspondent à un 

fonctionnement optimal) lors de la compression vidéo n’entraîne aucune catastrophe, ni même de 

perturbation sensible si ce retard n’intervient pas trop souvent. Cette constatation permet de 

définir des classes de systèmes temps réel suivant le degré de criticité de leur qualité de service. 

On distingue ainsi 3 familles de systèmes temps réel suivant la rigidité des contraintes 

temporelles qui leurs sont imposées :  

 Les Systèmes Temps Réel à Contraintes Strictes. Ce type de système impose que toutes 

les contraintes temporelles soient impérativement respectées  

 Les Systèmes Temps Réel à Contraintes Souples. À l’opposé de la classe précédente, un 

non respect d’une échéance n’entraîne pas la défaillance du système. Ces dépassements 

sont donc tolérés mais entraîne des perturbations qu’il faudra alors minimiser. 

 Les Systèmes Temps Réel à Contraintes Mixtes. Ces derniers sont soumis à la fois aux 

exigences des systèmes à contraintes strictes pour certaines tâches et à celles des systèmes 

à contraintes souples pour d’autres. 

5.3. Ordonnancement et validation 

L’exécutif temps réel est constitué d'une base communément appelée ordonnanceur, encapsulé 

par des agences qui offrent aux tâches les services requis pour leurs synchronisations, 

communications, temporisations… 

Le problème de l’ordonnancement, sur lequel repose la validation de l’application, consiste à 

définir une politique d’attribution du processeur (et des ressources) qui assure qu’aucune faute 

temporelle ne sera commise, c'est-à-dire qu’aucune tâche ne terminera l’une quelconque de ses 

instances après l’échéance de celle-ci. 

 L’ordonnancement en ligne, où un algorithme est implanté au niveau de l’ordonnanceur, 

les décisions d’ordonnancement étant prises au cours de l’exécution de l’application 

chaque fois qu’une nouvelle instance de tâches est activée ou qu’une instance termine.  

 L’ordonnancement hors ligne , qui est calculé sur l’ensemble des tâches avant l’exécution 

effective de l’application, la séquence ainsi produite est chargée dans une table qui sera 

utilisée par le répartiteur. Notons que l’utilisation d’un ordonnancement hors ligne permet 

d’éviter la surcharge processeur liée à l’exécution de l’algorithme d’ordonnancement. En 



Chapitre 1: Systèmes temps réel   

 - 15 -

contre partie, un ordonnancement en ligne est plus souple, en particulier en cas de 

reconfiguration de l’application, ou en cas de prise en compte de tâches sporadiques ou 

apériodiques. 

6. Conclusion 

L'objectif de ce chapitre était de présenter le cadre scientifique sur lequel nous nous sommes 

reposés pour mener notre travail. Nous avons vu la spécificité des systèmes temps réel vis à vis 

des systèmes informatiques classiques. Nous avons mis en évidence l’importance de la 

quantification du temps dans les applications temps réel et nous avons alors exhibé les différents 

modèles temporels de tâches qui les composent ainsi que les différentes mesures pouvant être 

associées aux tâches. Nous nous sommes ensuite intéressés aux problèmes de l’ordonnancement 

de tâches et avons énuméré les classes de problèmes d’ordonnancement les plus importants. Nous 

avons ainsi pu mettre en évidence les difficultés d’ordonnançabilité que peut engendrer un 

modèle. Enfin et face à la montée croissante des systèmes temps réel, notamment avec le 

développement des systèmes temps réel et des systèmes sur puces appelés SoC, de nouveaux 

besoins sont apparus : des exigences de sûreté de fonctionnement peuvent être exigées lors de 

l'exécution des applications, dans des domaines aussi divers que l’automobile, l’avionique, 

l'armement, et la transmission de flux multimédias. Pour répondre à ces besoins des approches 

formelles sont apparues pour spécifier ces systèmes. Nous présenterons en détail ces méthodes 

dans le chapitre suivant. 



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 16 -

C H A P I T R E   
 

          2 
 

 

 

 

 

 

 

Approches de modélisation 

des Systèmes temps réel 



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 17 -

1. Introduction. 

L’étude des approches de modélisation des STRE (Système temps réel embarqués ou RTES : 

Real Time Embeded System) est faite selon des niveaux d’abstraction plus au moins variés. 

Certains travaux montrent qu’on peut appliquer des techniques de génie logiciel que nous 

présentons au cours de ce chapitre. Nous nous intéressons plus particulièrement à la dimension 

temporelle de ces méthodes. Cette présentation est centrée d'avantage sur des aspects conceptuels 

plutôt que sur des aspects techniques de codage. Nous citons ROOM (Real-Time Object-Oriented 

Modeling), SDL (Specification and Description Language), ADL (Architecture Description 

Language) et l’approche orientée objet, et plus précisément la notion de profil UML [UML04] où 

l’accent a été mise. 

La plupart des profils UML souffre de deux limitations majeures : ils ne prennent pas en charge 

intrinsèquement la modélisation de l’RTOS, et leurs performances peuvent s'en trouver 

détériorées en faveur de la modularité de leur conception. Ces limitations pourraient laisser 

penser qu’il est peu envisageable de construire des applications ayant des contraintes temporelles. 

2. ROOM 

Il s’agit d’un langage de modélisation visuel associé à une sémantique formelle [ROO96], Il a été 

développé par la société ObjecTime. Il est optimisé pour la spécification, la visualisation, la 

documentation, l’automatisation et la construction de systèmes temps réels potentiellement 

distribués, complexes et « orientés-événement ». 

ROOM n’est pas aussi générique de façon qu’il soit parfois utilisable dans certaines 

problématiques tandis que pour d’autres, il est préférable d’utiliser d’autres méthodes. 

ROOM travaille essentiellement avec des Interfaces. Celles-ci sont réifiées dans des classes Port 

et l’interaction complexe entre les objets est transposée dans des classes Protocol qui permettent 

d’arbitrer le comportement entre Ports. A l’inverse des interfaces UML, les classes 

L’un des bénéfices les plus intéressants de ROOM est qu’il modélise les deux côtés d’une 

interface, tant le client que le serveur. Par ailleurs, l’utilisation de classes Port, Connector et 

Protocol permet une très bonne définition des interfaces complexes. Les classes Protocol sont 

quasi exclusivement modélisées par des statecharts, ce qui facilite l’utilisation des pré et post 



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 18 -

conditions des services. De plus, le fait que l’on puisse abstraire les interfaces (UML) en Port et 

classes Protocol, permet de leur donner un état et des attributs, ce qui les rend donc plus 

puissants. 

Toutefois, les associations entre les classes sémantiques (Capsules) passent par l’intermédiaire 

d’un ensemble d’autres classes. Une telle structure peut compliquer inutilement les relations entre 

classes ayant une sémantique simple. Aussi, l’usage de ROOM doit être circonstancié. Il peut être 

utilisé lorsque des classes ont une sémantique qui est relativement importante et complexe. 

ROOM est particulièrement approprié quand l’interaction de quelques objets importants est 

complexe et requiert des significations spéciales pour contrôler et arbitrer des choix. 

3. SDL 

Les systèmes temps réel s’appuient sur un système d’exploitation temps réel (RTOS) dont 

l’élément structurant de base est la tâche. Plusieurs tâches s’exécutent en parallèle pour réaliser 

les fonctions de base qui sont regroupées ensuite pour réaliser les fonctions les plus complexes et 

ainsi de suite jusqu’à couvrir toute l’application. Il est rapidement apparu que le langage SDL 

[SDL04], qui permet d’organiser son application en regroupant les tâches en blocs fonctionnels 

qui, eux-mêmes, peuvent être regroupés en blocs de plus haut niveau, il est considéré comme un 

bon moyen de représenter graphiquement l’architecture de n’importe quel système temps réel. 

D’un point de vue statique, une interface se définit par un format d’échanges basé sur des 

données structurées tant dis que d’un point de vue dynamique et en particulier par l’écriture d’un 

scénario qui décrit le séquencement des échanges. Pour la représentation de ces interfaces, le 

SDL est relativement bien adapté. En effet, les signaux SDL accompagnés de paramètres typés 

basés sur les données du langage (appelées Types de données abstraits ou ADT, Abstract data 

types) permettent une description complète d’une interface statique. 

D’un autre point important: les systèmes temps réel sont basés sur l’exécution en parallèle de 

tâches indépendantes. Il est donc important dans ce contexte de ne pas gaspiller du temps CPU 

(Central Processing Unit) lorsqu’une tâche n’a rien à faire. Ceci a conduit la plupart des 

applications temps réel à se baser sur des machines à états finis, dans lesquelles le principe de 

base est de se mettre en attente sur un objet de l’RTOS, comme une file d’attente de messages, 

dès que la tâche a terminé son action. Ici, les machines à états finis du langage SDL sont parfaites 



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 19 -

pour représenter graphiquement ce type de comportement. Enfin, depuis sa version 92, le SDL est 

orienté objet à tous les niveaux de la représentation graphique, ce qui permet de construire des 

librairies de composants logiciels spécialisés, adaptés au marché du temps réel. Le SDL a dû 

s’adapter aux contraintes du temps réel. Sur le papier, le SDL apparaît donc comme un langage 

parfait pour la spécification et la conception des systèmes temps réel. Alors que la réalité 

technique est tout autre : Comme premier problème, les ADT ne sont pas adaptés aux impératifs 

de la conception d’un système temps réel. En effet, leur syntaxe de manipulation a été définie 

pour signaler des protocoles, non pour les concevoir. Les développeurs sont alors frustrés de ne 

pas avoir la précision qu’ils avaient avec des langages de programmation classique comme le C. 

De plus, l’intégration de code existant est difficile car il faut réaliser une passerelle entre les types 

de données SDL et les types de données C ou C++. Autre difficulté, il n’existe pas de 

compilateur SDL natif ou croisé sur le marché. Par conséquent, une phase intermédiaire de 

génération de code en C serait nécessaire pour implémenter le système SDL sur cible. 

4. Réseaux de Pétri 

Les réseaux de Petri permettent d’étudier des systèmes dynamiques complexes quoiqu’ils  restent 

autonomes de l’architecture du système. Ils ont été proposés en 1962 par Carl Adam PETRI 

[PET62]. Ils sont maintenant utilisés pour spécifier, modéliser et comprendre les systèmes (au 

sens informatique) dans lesquels plusieurs processus sont interdépendants. Ils constituent un outil 

graphique et mathématique de modélisation. Dans le cas des STRE, ils restent restreints pour la 

modélisation de l’aspect concurrence et ordonnancement des tâches. 

[DEL03] présente l'approche UML/PNO (Unified Modelling Language with Petri Net Objects) 

pour la spécification de systèmes temps réel. La méthode propose d'enrichir la description semi-

formelle UML du système par une modélisation formelle basée sur les réseaux de Petri. Les 

concepts UML de sous-systèmes et d'interfaces ont été étendus afin d’améliorer la description de 

la vue système en termes de structuration, gestion de projets et organisation de la modélisation. 

L’objectif est également d’adapter la méthode de modélisation système à une approche « orientée 

composant » pour le temps réel. Le concept « d’objet composé » permet d’intégrer des 

spécificités temps réel au sein du composant (protocole de communication, contrainte temporelle, 

effet observable). 



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 20 -

Le comportement des objets est spécifié à l’aide des réseaux de Petri à places et transitions 

stochastiques temporelles afin de permettre la validation et la vérification du système en cours de 

spécification. L’approche de validation propose des traductions semi-automatiques des 

diagrammes UML en réseaux de Petri. Les techniques classiques de simulation et d'évaluation de 

performances peuvent alors être appliquées. Ces traductions dévoilent l'avantage de rassembler, 

sur un même modèle à réseau de Petri, tous les aspects dynamiques du composant apparaissant 

dans différents diagrammes UML et d’examiner de ce fait la cohérence de son comportement et 

de son utilisation. La vérification utilise les techniques d'analyse formelle, basées sur l'utilisation 

conjointe du graphe de classes et de la logique linéaire. 

Pour [PAI06], il considère le problème de l’ordonnancement hors ligne d’applications Temps 

Réel multitâches dans le contexte où les tâches peuvent comporter des instructions 

conditionnelles. Il redéfinit le modèle temporel de tâches pour prendre en compte explicitement 

les instructions conditionnelles. Il reformule le problème de l’ordonnançabilité pour des tâches 

indépendantes et met en évidence l’ordonnançabilité globale et locale. Il étudie l’impact de la 

présence d’instructions conditionnelles sur les durées nécessaires de simulation. Il propose une 

méthode d’analyse d’ordonnançabilité fondée sur une modélisation par réseaux de Petri. L’ajout 

de tâches conditionnelles dans cette modélisation permet d’intégrer explicitement les différents 

comportements d’exécution des tâches et de prendre en charge l’activation des tâches 

sporadiques.  

5. ADL 

Le domaine des systèmes temps réel affiche des besoins qui justifient actuellement une réelle 

réflexion sur l’approche de conception architecturale : organisation complexe (présence de 

fonctionnalités multiples interdépendantes), architectures matérielles réparties, présence de 

contraintes non-fonctionnelles qui lient intimement éléments logiciels et matériels, utilisation 

optimisée des ressources, reconfigurabilité dynamique, prédictibilité et donc nécessité de 

vérification a priori et au plus vite dans le processus de développement, etc. De plus, la 

généralisation de l’utilisation des systèmes temps réel embarqués dans des domaines comme 

l’automobile ou l’avionique (où les produits sont déclinés en gamme et sont construits par 

assemblage de sous-systèmes fournis par différents équipementiers) fait émerger des exigences 

nouvelles de flexibilité, réutilisabilité, portabilité, interopérabilité, etc. Les ADLs [ANN05] 



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 21 -

constituent une classe de langages offrant des abstractions pour la description « gros grain » des 

systèmes logiciels. De multiples langages appartiennent à cette catégorie, langages qui, pour 

certains, diffèrent de manière majeure ne serait-ce que par leur syntaxe, leur sémantique, leur 

expressivité et les buts qu’ils visent. En proposant une définition unique, précise et consensuelle 

est alors un problème délicat.  

L’objectif d’un langage de description d’architecture est avant tout d’exprimer les relations entre 

les composants de l’application. Ces interactions deviennent rapidement un point dur du 

développement dans le cadre d’applications réparties ou modulaires car elles sont construites par 

assemblage de composants dont les interfaces doivent être compatibles. C’est pour cette raison 

que le développement de l’avionique modulaire a conduit à la définition d’un langage de 

description d’architecture AADL appelé initialement (Avionics Architecture Description 

Language) et ensuite renommé Architecture Analysis & Design Language, il est particulièrement 

précis sur la définition de l’interface entre les composants de l’application, mais également sur la 

description de l’environnement cible et de la manière dont les composants sont déployés. Cet 

AADL émergeant est un ADL développé pour répondre aux besoins spéciaux des systèmes 

embarqués temps-réel, il évoque explicitement des points méthodologiques comme la génération 

automatique de code. L’objectif du code produit est double : relier entre eux les composants de la 

spécification en fonction de leur interface et déployer ces composants sur un environnement 

d’exécution cible. AADL constitue une approche orientée avant tout sur le déploiement et la 

spécification de l’architecture de l’application afin de permettre une expression claire des liens de 

communications entre ses composants. Seules les interfaces des différents modules sont 

spécifiées. Les aspects comportementaux ou liés au contenu des données échangés sont décorélés 

de la spécification AADL et traités dans un autre formalisme. Cette ouverture vers d’autres 

formalismes de spécification est une fonctionnalité très intéressante. Ainsi AADL propose un 

mécanisme d’extension du langage par un système d’annexes, et la possibilité de relier entre eux 

des composants écrits dans d’autres langages. Ainsi chaque composant peut être développé dans 

le formalisme le plus adapté, et intégré à l’application en décrivant son interface en AADL. 

Dans les ADL les interfaces des composants sont décrites de manière syntaxique, avec très peu 

de sémantique associée. On reproche alors aux ADL le manque de sémantique commune des 

modèles et leurs objectifs de conception différents qui limitent les capacités d'interaction des 

langages et de leurs outils. 



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 22 -

6. UML et le temps réel 

UML fournit les fondements pour spécifier, construire, visualiser et décrire les artefacts d’un 

système logiciel. Pour cela, UML se base sur une sémantique précise et sur une notation 

graphique expressive. Il définit des concepts de base et offre également des mécanismes 

d’extension de ces concepts. 

6.1. Modélisation comportementale avec UML 

Du point de vue comportemental, UML propose principalement trois constructions : les machines 

d’états, les diagrammes d’activité et un langage d’action (Action). 

6.1.1. Les diagrammes d’activité 

Les diagrammes d’activité servent à faciliter la modélisation de traitements complexes en termes 

de flots de contrôle et de flots d’objets entre les différents constituants de l’activité. 

La sémantique associée aux diagrammes d’activité repose sur une circulation de jetons, proche de 

celle rencontré dans les réseaux de Pétri. Un jeton modélise une donnée ou un objet. Sa 

circulation dans le réseau est conditionnée par les éléments de contrôle (arcs ou noeuds). Ces 

éléments permettent d’exprimer des notions de parallélisme et de synchronisation. 

On distingue trois types de noeuds. Les noeuds d’action transforment les flux de 

données/contrôle d’entrée en flux de données/contrôle de sortie. Ces derniers sont alors les  

entrées d’autres actions. Les noeuds de contrôle définissent les règles de circulation des jetons à 

travers le graphe. Les noeuds objets servent à stocker temporairement des données ou des objets. 

Pour connecter ces noeuds, il existe deux types d’arcs : les arcs de flux de contrôle et les arcs de 

flux d’objet. Les premiers synchronisent le début d’une action (destination de l’arc) avec la fin 

d’une autre action (origine de l’arc). Les arcs de flux d’objet permettent de faire passer des 

valeurs entre deux noeuds. 

6.1.2. Les machines d’états 

Attaché à une classe ou à un cas d'utilisation, le diagramme d’états transitions présente une classe 

par rapport à ses états possibles et aux transitions qui le font évoluer. Il permet de spécifier ce que 

doit faire l’objet en réponse aux événements (ou traitements) qui lui sont appliqués. 



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 23 -

Les machines d’états offrent de nombreux concepts, tels que la notion d’état hiérarchique, 

composite, historique et organisé par noeuds de branches qui, combinés, couvrent la plupart des 

formalismes sur la notion d’état. La description de la sémantique des machines d’états [NIZ06] 

est de type opérationnel et repose sur une machine d’exécution hypothétique qui présente les trois 

caractéristiques suivantes : 

 une file d’attente d’événements qui sert à stocker les instances d’événements entrantes en 

attendant de les consommer. 

 une politique de choix des événements qui détermine l’ordre d’extraction des occurrences 

d’événement contenues dans la file d’attente : Lors d’une exécution, une machine à états 

accède à un pool d’évènements géré par l’objet contexte de la machine. En fonction de 

l’état courant de la machine et de l’ensemble d’évènements pertinents contenus dans le 

pool (c'est-à-dire ceux pouvant déclencher une transition à partir de l’état courant), la 

politique de sélection des évènements détermine un ordre pour l’extraction des 

évènements du pool, et offre la possibilité de mettre en œuvre différentes politiques de 

gestion des priorités 

 un processeur à événement qui exécute les traitements associés aux événements en 

respectant la sémantique des machines d’états transitions de UML et, en particulier, 

l’hypothèse d’exécution (Run-to-Completion). Les événements sont dépilés un par un et 

consommés par une machine d’états transitions. L’ordre dans lequel ils sont dépilés n’est 

pas précisé dans UML, cela constitue un point de variation sémantique. La sémantique 

d’exécution des événements est basée sur l’hypothèse dite de (Run-to-Completion). Cela 

signifie qu’un événement ne peut être dépilé puis consommé que lorsque le traitement de 

l’événement précédent est achevé. 

Une machine à états possède une ou plusieurs régions, elles-mêmes composées de sommets (états 

ou pseudo-états) et de transitions reliant ces sommets. Les transitions sont gardées par une 

contrainte, et déclenchées par un trigger référençant un évènement déclencheur. Tirer une 

transition provoque l’exécution du comportement (potentiellement) associé, et la modification de 

l’état courant de la région, de l’état source à l’état cible de la transition. 



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 24 -

Pour la modélisation du temps au niveau du diagramme d’états transitions, UML définit un 

événement spécifique appelé TimeEvent. Il sert à modéliser l’expiration d’une échéance qui peut 

être relative ou absolue : 

 un événement dénotant le passage d’une quantité de temps suite à l’entrée dans l’état 

contenant la transition est noté avec le mot-clé after suivi d’une expression de type 

TimeExpression qui donne la valeur temporelle de l’événement. 

 un événement dénotant l’occurrence d’une date absolue est noté via le mot-clé when suivi 

d’une date absolue de type Time. 

Le tableau 1 décrit trois extraits de machine à états transitions illustrant l’utilisation possible des 

événements temporels de UML. Dans les trois cas, lorsque le temporisateur armé arrive à 

échéance, il génère un événement qui est stocké comme tout autre événement dans la file 

d’attente associée à la machine d’états. Si celle-ci est dans l’état S 

Modélisation des évènements temporels Description 

 

 

L’évènement est généré 10 ms après la date 

d’entrée dans l’état S. 

 

 

L’évènement est généré 10 ms après la date de 

sortie de l’état S. 

 

 

L’évènement est généré le 1er Janvier 2000 à 

0h00. 

Tableau 1: Exemple de spécification d’événements temporels. 

6.1.3. Le langage d’action 

UML définit le concept d’Action comme étant l’unité fondamentale de spécification 

comportementale permettant à des modèles UML d’être complètement exécutable. Le principe 

repose sur le fait que les actions échangent des flux de contrôle et de données via des fiches 

d’entrée et de sortie. 

En effet, UML2.0 définit un package particulier appelé Actions [DUB05] qui définit en détails 

comment modéliser toutes les actions d’une application afin d’obtenir un modèle exécutable. Les 

actions sont les entités comportementales de base permettant la spécification de modèles UML 

After (10ms)  /’procedure’  S …… 

’Procédure’ 

after(10 ms after the exit of S2) S ……

’Procédure’ 

When (1er Janvier 2000, 0h00) S ……



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 25 -

exécutables. Les actions échangent des flots de contrôle et des flots de données à travers des 

InputPins et des OutputPins. Le standard UML s’attache à définir la sémantique des actions en 

les regroupant en quatre paquetages 

 Le paquetage BasicActions définit les actions d’appel d’opérations, d’envois de signaux 

et d’invocation de comportements. 

 Le paquetage IntermediateActions définit des actions d’invocations (diffusion de signaux 

et envois d’objets qui ne sont pas des signaux), des actions de lecture et d’écriture 

d’objets, de caractéristiques structurelles et de liens.  

 Le paquetage CompleteActions définit des actions traitant de la relation entre les objets, 

les classes et les liens d’objets ainsi que des actions de gestion des événements tels que les 

acceptations d’appels d’opération. 

 Le paquetage StructuredActions définit les actions opérant dans le cadre d’activités. Ces 

actions concernent la manipulation de variables et la gestion des exceptions. 

Au travers des précédents sous paquetages, le standard UML2.0 s’est uniquement attaché à 

définir une syntaxe abstraite et une sémantique pour le Langage d’Action UML. Mais, cette 

norme est inutilisable telle quelle est, car aucun langage de surface (ou syntaxe concrète) n’est 

proposée qui satisfasse la sémantique. 

Le modèle d’activités de UML 2.0 est organisé en différents paquetages reflétant les différents 

niveaux de sémantique offerts : 

 Le paquetage FundamentalActivities définit les activités comme noeuds contenant des 

actions. Ce niveau sémantique est partagé par les activités basiques (basic activities) et les 

activités structurées (structured activities). 

 Le paquetage BasicActivities offre la spécification des activités avec des flots de contrôle 

et de données entre les actions. 

 Le paquetage IntermediateActivities définit les activités offrants les flots de contrôle et de 

données concurrents. Ce niveau de sémantique permet la modélisation de réseaux de Pétri 

classiques. 



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 26 -

 Le paquetage CompleteActivities permet la définition d’activités avec des constructions 

évoluées telles que les transitions pondérées ou encore le « streaming » de données. 

 Le paquetage StructuredActivities permet la définition d’activités constituées de 

constructions classiques de programmation structurée comme les boucles ou les 

branchements conditionnels. 

 Le paquetage CompleteStructuredActivities permet la définition d’activités avec des flots 

de données en sortie des boucles ou des branchements conditionnels. 

 Le paquetage ExtraStructuredActivities permet la définition d’activités contenant des 

exceptions ou des invocations de comportement sur des ensembles de valeurs. 

6.1.4. Diagramme de séquence 

Le diagramme de séquence permet de décrire une interaction qui est elle-même un ensemble de 

messages entre des instances en vue de réaliser l’opération ou le résultat désiré. 

Le diagramme de séquence associe à chacun des objets impliqués dans une interaction une ligne 

de vie verticale représentant le temps (le temps s’écoule de haut en bas) et permettant d’identifier 

explicitement la séquence et l’ordre des messages émis et reçus par les objets. L’ordre est partiel 

par rapport à tout le système. Lorsqu’on désire indiquer qu’un message déclenche un traitement 

particulier dans l’objet, on représente ce traitement avec un petit rectangle vertical le long de sa 

ligne de vie. 

6.2. Profil UML 

A sa création, UML avait pour ambition de se positionner comme langage de modélisation 

couvrant l’ensemble des domaines du logiciel, comme les bases de données, les systèmes 

embarqués ou les systèmes de gestion. UML s’est ainsi imposé sur certains de ces domaines et 

continue sa pénétration dans les autres, même si parfois des difficultés sont rencontrées. De plus, 

au fur et à mesure de l’adoption de UML, son champ d’investigation s’est ouvert à d’autres 

domaines tels que l’électronique et, plus généralement, à l’ingénierie système.  

Parce qu’un même et unique langage ne pourrait pas répondre à toutes les spécificités de chaque 

domaine, UML propose des possibilités de spécialisation permettant d’adapter le langage à des 

besoins particuliers. Cet objectif peut être atteint principalement par deux moyens : les points 



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 27 -

ouverts de variation sémantique et les mécanismes d’extension. Les mécanismes d’extension 

visent à adapter UML à des besoins spécifiques. Cela peut se faire via trois concepts particuliers 

de UML : les stéréotypes, les valeurs étiquetées «Tagged values» et les contraintes. L’adjonction 

d’un stéréotype peut être vue comme l’ajout d’une nouvelle méta classe au méta-modèle de 

UML, c’est-à-dire comme l’ajout d’un nouveau mot au vocabulaire de base proposé par UML. 

Un stéréotype est défini dans le contexte d’un élément existant du méta-modèle de UML et « 

hérite » ainsi de ses caractéristiques (attributs, opérations, relations, …). Lors de la définition 

d’un stéréotype, une nouvelle représentation graphique peut lui être attachée si besoin est. 

Associées à un stéréotype, il est également possible de définir des valeurs étiquetées. Celles-ci 

peuvent être vues comme étant de nouveaux méta attributs liées à un stéréotype ; elles permettent 

ainsi d’en définir des nouvelles caractéristiques. De même, il peut être utile de définir un 

ensemble de contraintes qui, associées à un stéréotype, clarifieront la sémantique de façon 

formelle, en utilisant par exemple le langage Object Constraint Language(OCL). En vue 

d’organiser l’éventuelle prolifération de stéréotypes, valeurs étiquetées et autres contraintes, le 

concept de profil [UML04] a été introduit afin de regrouper sous une même bannière un 

ensemble d’extensions de UML défini de façon à faciliter la modélisation d’un problème 

particulier. 

Face à des contraintes de productivité et de concurrence de plus en plus forte, les industriels du 

secteur des systèmes embarqués temps réel se sont tournés vers les technologies orientées objets 

et/ou composants. Ils sont ainsi naturellement arrivés à adopter UML et l'ingénierie dirigée par 

les modèles (IDM) parce que :  

 La spécification des systèmes temps réel embarqués implique différents points de vue 

(ex. fonctionnel, temps réel, tolérance aux fautes…) et il est difficile de distinguer les 

aspects génériques des produits des aspects particuliers de leur implantation. En effet, 

les contraintes de réalisation de telles applications, souvent dictées par les limites des 

ressources disponibles, sont telles qu’il est difficile d’en faire abstraction lors de la 

spécification d’une application. 

 Les options d’implantation visées peuvent varier considérablement ; différents modèles 

d’exécution peuvent être envisagés pour un même modèle en fonction des contraintes de 

réalisation particulières (ex. modèle multi-tâches avec Real Time Operating System, 



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 28 -

modèles d’exécution synchrone…). De plus, les options d’implantation peuvent 

également reposer sur des solutions propriétaires compliquant les éventuels portages 

vers d’autres cibles matérielles. 

 La performance de tels systèmes est un problème critique qui va souvent à l’encontre 

des techniques standards d’encapsulation logicielle. Les optimisations peuvent alors 

mener à des entrelacements du code fonctionnel et temps réel qui devient alors un 

facteur pénalisant en terme de maintenabilité des applications. 

 Le test et la validation des applications temps réel embarquées sont des activités 

critiques qui nécessitent la mise en place de modèles et d’outils d’analyse sophistiqués 

spécifiques. 

 Enfin le domaine du développement temps réel embarqué nécessite des développeurs à 

haut niveau d’expertise en conception, implantation et validation. 

Pour répondre aux problèmes très spécifiques du domaine temps réel, nous présente les profils 

UML suivants : le profil « Rapid Object-Oriented Process for Embedded Systems » (ROPES ), le 

profil OMEGA, le profil « Scheduling, Performance and Timing » (SPT) et le profil «Quality of 

Services & Faults Tholérance» (QoS&FT), le profil ACCORD /UML, le profil GASPARD 

(Graphical Array Specification for Parallel and Distributed Computing) et le profil Modeling and 

Analysis of Real-Time and Embedded systems (MARTES). 

6.2.1. ROPES 

Le processus ROPES [ROP04] est basé sur un cycle de vie du développement itératif qui utilise 

le standard UML et qui encourage la génération automatique de code et ce afin de parvenir 

rapidement à des prototypes à valider. 

Ce processus de développement est divisé en quatre grandes phases : 

 Analyse : Cette phase permet d’identifier toutes les caractéristiques du système à 

développer. Celle-ci peut être découpée en trois sous-phases qui ont chacune leurs 

spécificités. Les diagrammes utilisés pour cette phase peuvent donc être choisis parmi les 

propositions suivantes : texte en langue naturelle, diagrammes de Use Case, Diagrammes 

de séquences, Diagrammes d’états 



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 29 -

 Design : Tandis que la phase d’analyse identifie la logique d’un système, le design 

propose une solution particulière unique optimale. Trois sous-phases composent cette 

étape : 

– Le design architectural définit les décisions stratégiques du design qui affecteront 

les composants software tel que le modèle de concurrence, la distribution des 

composants. 

– Le design mécaniste ajoute la liaison entre les composants. 

– Le design détaillé définit la structure interne et le comportement de chaque classe, 

composant, ... 

La phase de design consiste majoritairement en l’application de « design patterns » au 

modèle logique établi à la fin de l’étape d’analyse 

 Implémentation : Le passage de modèles conceptuels successivement affinés à du code 

concret et efficient caractérise cette phase. ROPES impose aussi qu’à ce stade des unités 

de test soient développées de manière à pouvoir valider chaque ensemble cohérent de 

code exécutable 

 Test : Cette phase intègre tant les tests d’intégration que ceux de validation. Il est 

important de concevoir ces tests pour obtenir des résultats observables 

6.2.2. OMEGA 

Le profil OMEGA [OME05] spécialise une partie du profil dans le but de raffiner la description 

de contraintes temporelles sur le comportement du système et de formaliser la relation entre ces 

contraintes (annotations) et la sémantique du modèle fonctionnel. Il offre des moyens et une 

syntaxe concrète pour exprimer les contraintes temporelles à la fois de manière opérationnelle et 

de manière déclarative.  

Les Concepts temporels opérationnels définis par le profil sont :  

 Le temps courant a la même valeur partout dans le système et que cette valeur peut être 

accédée explicitement dans le langage d’actions, à travers l’expression now.  

 Les temporisations sont des instances (d’une classe prédéfinie « Timer ») qui permettent 

de compter la progression du temps. Une temporisation peut être armée pour compter le 



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 30 -

temps correspondant à une durée et elle génère un événement « TimeOut » après 

l’écoulement de la durée spécifiée, qui peut être utilisé pour déclencher une transition 

dans l’objet qui le détient.  

 Les horloges (instances d’une classe prédéfinie « Clock ») sont des concepts empruntés 

aux automates temporisés. Ils permettent de mesurer et de consulter le temps écoulé 

depuis leur dernier démarrage.  

Les concepts couverts par le profil OMEGA sont :  

 La description de la structure, faite à travers des diagrammes de classes, incluant des 

relations d’héritage et d’associations.  

 Un modèle particulier de concurrence, défini à partir des notions de classes actives et 

passives. Les primitives de communication entre objets sont les signaux asynchrones et 

les appels d’opérations. 

 La description du comportement, faite à l’aide de machines à états (associées aux classes) 

et d’opérations. On distingue deux types d’opérations, les unes (primitives) décrites par 

une méthode, les autres « triggered » décrites par la machine à états de la classe.  

 Les actions des transitions et des méthodes sont décrites dans un langage d’actions 

impératif conforme à la sémantique d’actions d’UML  

Certes le profil OMEGA est très riche en termes de définition de propriétés non fonctionnelles du 

système mais présente un manque au niveau de définition d’un modèle d’ordonnancement et de 

vérification et de validation d’ordonnançabilité.  

6.2.3. SPT  

Il s’agit d’un profil UML concernant le temps, l’ordonnançabilité, et le temps. Ce profil [SPT02] 

a pour objectif d’augmenter la capacité de modélisation de la qualité de services liée au temps 

(échéance et durée). De plus, ce profil est capable de définir un système temps réel sous formes 

de ressources, de définir leurs propriétés temporelles et de modéliser leur déploiement sur une 

architecture cible. Pour la modélisation de ses contraintes, des stéréotypes sont mis en place 

comme par exemple deadline pour représenter une échéance simple. Ce profil est utilisé par 

Rashbody et son couplage à l’outil de validation RapidRMA qui permet l’analyse de 



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 31 -

l’ordonnonçabilité du système. L’avantage du SPT est d’avoir été adopté par l’OMG  et d’être 

capable de spécifier directement en UML des informations quantitatives. 

Ce profil vise alors à définir un ensemble minimal de concepts nécessaires à la modélisation des 

aspects temps réel d’un système. Les concepts doivent aboutir à la description de modèles à partir 

desquels on doit être capable soit de produire une implantation ou des supports d’implantation, 

soit d’analyser le comportement temps réel d’une application. Pour ce faire, le profil SPT est 

constitué de deux sous-ensembles (paquetages) principaux : le paquetage des ressources 

générales et le paquetage d’analyse comportementale temps réel. 

Au coeur du premier paquetage, on trouve les concepts de ressource et de qualité de service. Ce 

concept de qualité de service fournit une base pour la définition de contraintes temps réel 

qualitatives tels que : échéance, débit, temps d’exécution maximale, etc. Le paquetage d’analyse 

du profil SPT propose trois sous profils dédiés respectivement à l’ordonnançabilité classique, à 

l’étude de performance et à l’analyse d’ordonnançabilité dans le contexte de RT-CORBA mais 

non pas dans le contexte d’un RTOS. 

6.2.4. GASPARD 

Le profil GASPARD (Graphical Array Specification for Parallel and Distributed Computing) 

[GAS06] est un environnement intégré de développement pour la conception des SoC, et comme 

son nom  l’indique, il est  principalement destiné à la spécification des applications de traitement 

des signaux intensifs. Gaspard permet une modélisation de haut niveau pour la conception du 

logiciel et du matériel.  Ce niveau d'abstraction permet l'utilisation des techniques de vérification 

avant tout prototypage. Il permet aussi de produire automatiquement une distribution et un 

ordonnancement de l'application sur l'architecture avec génération du code. Cet environnement 

assure donc la modélisation, la simulation, le test ainsi que la génération du code pour les SoC.  

Gaspard  est basé sur plusieurs niveaux d’abstractions. Dans le niveau le plus haut, le designer 

décrit son application logicielle et l’architecture matérielle sur laquelle va tourner l’application 

appropriée. IL s’étale sur six packages : 

 package « component » 

 package « factorization » 

 package «  application  » 



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 32 -

 package « hardwareArchitecture » 

 package « association » 

 package « control » 

6.2.5. Profil QoS & FT 

Le profil UML QoS & FT [QOS01] a une portée plus large que le profil SPT. Il permet à 

l'utilisateur de définir une variété plus large d’exigences de QoS et des propriétés (performance et 

tolérance aux pannes). La framework de ce profil supporte une catégorisation générale des 

différentes sortes de QoS. L'inclusion de la QoS  est fixée lors de la conception et sera gérée 

dynamiquement. En outre, ce profil supporte l'intégration des différentes catégories de QoS pour 

modéliser la QoS des aspects du système. 

Le framework de ce QoS fournit un méta-modèle pour définir les concepts de domaine et pour 

construire le profil QoS et un dépôt de spécifications QoS (nommé le Catalogue QoS). 

Le tableau ci dessous présente une comparaison entre les deux profiles QoS&FT et SPT 

Exigence Profil SPT Profil QoS 

Annotation des processus Faible Bien défini 

Permission à l’utilisateur 

d’ajouter des mesures 

Non (mesures prédéfinies) oui 

Type pour des valeurs 

concernant le temps  

Valeurs temps réel aucun 

Expressions pour définir des 

propriétés non fonctionnelles 

(NFPs)  quantitatives 

Partie du langage TVL non 

Expressions pour définir des 

contraintes 

Limité Riche avec OCL 

Tableau 2: Comparaison entre les profils SPT et QoS 



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 33 -

6.2.6. Profil MARTES 

MARTE (Modeling and Analysis of Real-Time and Embedded Systems) [MAR06] vient des 

deux profils existants: SPT et QoS&FT. Ce profil permet la modélisation de systèmes embarqués 

réactifs, de contrôle/commande et leurs flux de données intensifs ainsi que leurs aspects logiciels 

et matériels. Ce profil assure la conformité avec le Profil QoS &FT pour modéliser la Qualité de 

Service et la tolérance aux pannes, il permet ainsi la spécification de contraintes non seulement 

en temps réel mais aussi d'autres caractéristiques QoS incorporées comme la consommation 

électrique et la taille de mémoire. MARTES offre aussi la possibilité de modélisation et d'analyse 

d'architectures à base de composants. Il possède la capacité de modéliser le temps 

asynchrone/causal, synchrone/horloge et réelle/Continue. 

6.2.7. ACCORD/UML 

Accord|UML est à la fois un cadre conceptuel et une méthodologie qui a pour but d’assister le 

développement d’applications temps réel en masquant le plus possible les aspects d’implantation 

pour permettre au développeur de se concentrer sur les aspects métiers du système 

(fonctionnalités, contraintes de performance…). Pour atteindre ce but, Accord|UML se place dans 

un contexte d’ingénierie des modèles, et s’appuie très largement sur des modèles 

UML et des transformations automatiques pour le raffinement et l’enrichissement de ces 

modèles, ainsi que pour les aspects méthodologiques. 

ACCORD/UML propose essentiellement deux concepts dédiés: 

 Le stéréotype « RealTimeObject » (ou « RTO ») supportant la modélisation d’entités 

concurrentes et encapsulant les contrôles de concurrence et d’états. Il s'agit d'une 

extension de celui d'objet actif où il est possible d'attacher des contraintes temps réel aux 

traitements des messages effectués par les objets actifs de l'application. L’objet temps réel 

peut ainsi être vu comme un serveur de tâches. Chaque demande d’exécution d’une de ses 

opérations (un service) correspond alors à l’activation d’une tâche temps réel dans 

l’application. Un objet temps réel est capable de recevoir et d’émettre des messages qui 

peuvent être de deux natures différentes : un signal ou un appel d’opération. 

 Un stéréotype « RealTimeFeature » (ou « RTF ») réifiant le concept de qualité de service 

du SPT pour le besoin de modélisation de contrainte temps-réel. Les différentes valeurs 



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 34 -

étiquetées associées à ce concept permettant ainsi de modéliser des caractéristiques 

qualitatives temps réel telles que échéances, périodes, temps de début… 

6.3. OCL et le temps réel 

Le langage de contrainte d'objets [OCL04] a été présenté pour supporter la spécification de 

contraintes pour des diagrammes UML et est principalement employé pour formuler des 

invariants et des opérations pré et des post conditions. Bien que OCL soit également appliqué 

dans les diagrammes comportementaux, par exemple, le diagramme d'états transitions, ce n'est 

pas actuellement possible d’indiquer des contraintes au sujet des propriétés dynamiques de 

comportement et de synchronisation de tels diagrammes.  

Le travail issu de [STE04] présente une extension de OCL avec des spécifications des contraintes 

états orientés temps délimités, de façon que OCL supporte non seulement des propriétés 

fonctionnelles du système mais aussi d’autres non fonctionnelles 

7. Discussion 

Il est clair d’après la description de la spécificité de chaque profil présenté précédemment, que 

l’accent est mis sur la description de l’architecture matérielle et de l’application. Ces profils sont 

fondés sur un niveau d’abstraction plus élevé que d’autres approches, ils visent également les 

applications à dominance flot de données et non pas celui de contrôle. Même dans le cas où ces 

travaux touchent l’aspect temporel, ils ne peuvent pas couvrir la modélisation de l’RTOS. On leur 

reproche ainsi le manque de sémantique temporelle et transitionnelle commune des modèles ainsi 

que la non disponibilité des outils qui les supportent. 

En effet, ces travaux ne nous permettent pas encore de garantir la sûreté de fonctionnement du 

système, en d’autre terme son aspect déterminisme. Le modèle d'application n'est pas associé 

avec le modèle d'analyse et la liaison entre deux modèles doit être encore effectuée manuellement 

avec de nombreuses itérations. Ces modèles ne supportent pas suffisamment l'intégration des 

caractérisations temps réelles comme le temps d'exécution et les contraintes temps réelles et par 

conséquent ils ne tiennent pas compte de l’RTOS relatif à l’architecture et l’application 

considérées. Malgré cette absence d’intégration  de l’RTOS dans les modèles, des travaux tels 

que [IME05] et [SAM06] ont démarré pour toucher cet aspect quoiqu’ils restent superficiels. 



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 35 -

Les approches liées à la simulation ont besoin d’un temps de simulation assez long pour donner 

une vue de fonctionnement relativement fiable. Par ailleurs, les travaux basés sur l'exécution 

numérique impliquent toujours l'explosion combinatoire des états du système. 

On a donc besoin dans un premier temps d'une méthodologie servant à spécifier le système et 

essentiellement ses propriétés non fonctionnelles et également à valider l'ordonnançabilité de ces 

systèmes temps réels.  

Ensuite, pour amortir cette difficulté de conception, le recours à des CAD (Computer Aiding 

Design) TOOLS est une solution plus au moins efficace. Mais, abstraire le plus possible se voit 

une solution plus évidente. Ce ci pourrait être réalisé à travers le recours à une approche de méta-

modélisation dans le but de modéliser les trois composantes principales du système : 

l’application, le modèle d’architecture et le système d’exploitation temps réel (RTOS). A partir 

du méta-modèle composé, on pourra vérifier formellement le comportement temporel du 

système.  

L’approche MDA œuvre dans ce sens. En effet, l’approche MDA amène à un niveau 

d’abstraction encore plus haut à travers le principe de développement à base de modèles visant à 

promouvoir la conception de système indépendamment de toute plate-forme technologique 

logicielle. De plus, elle permet aussi la division orthogonale du système en plusieurs modèles de 

domaines, augmentant ainsi encore plus le niveau de réutilisation. Le « Plateforme Independant 

Model » (PIM) est le point de départ du processus MDA. Combiner une version spécifique de 

ciblage du cadre en temps réel avec une technologie de génération de code puissante et 

personnalisable est une façon très efficace et souple de traduire un PIM en PSM (Plateforme 

Specific Model). Cette façon permet également de recibler facilement le PIM vers un  PSM  

différent. Cette méthode fournit un avantage en permettant de tester et de déboguer l'application 

au niveau de la conception ou du PIM sur l'hôte tout en prenant en compte les concepts et 

ressources de planification utilisés dans les environnements embarqués typiques ciblant soit un 

RTOS commercial soit un environnement de planification exclusif.  

Pour résoudre tous ces problèmes, dans le travail du mastère, nous proposons une démarche 

offrant la possibilité de modéliser  et de valider le système MDA sur les RTOS.   

Les propriétés temps réels qui doivent être vérifiées lors de la modélisation  sont : 

 Le comportement dépendant du temps  



Chapitre 2 : Approches de modélisation des Systèmes temps réel  

 - 36 -

 La prétention relative au temps sur l’environnement externe système comme le temps de 

réponse et le temps d’exécution d’une action 

 Condition relative au temps tel que la date limite d’une action et la durée entre deux 

évènements. 

8. Conclusion 

Nous avons présenté dans ce chapitre une synthèse des approches de conception des systèmes 

temps réel. Nous avons notamment choisi d'étudier en détail des approches issues des ateliers de 

génie logiciel essentiellement les profils UML dédiés à la modélisation des STRE. Quelque soit 

le profil, nous avons pu identifier des caractéristiques communes : Manque de garantie de sûreté 

de fonctionnement  et d’intégration de l’RTOS.  

Toutefois, notre but n'est pas de recréer une nouvelle manière de modéliser des STRE, ni de 

proposer de solutions techniques pour les implémenter. Notre objectif est d'avantage l'intégration 

de la modélisation d’un RTOS avec l’application et l’architecture, notamment en se référant à 

l'ingénierie dirigée par les modèles. 

En se basant sur des standards liés à la modélisation et aux transformations de modèles que nous 

allons présenter dans le chapitre suivant. Les chapitres 4 et 5 exposent nos travaux sur le 

développement d’un RTOS, en s'appuyant sur les concepts présentés dans les chapitres 1 et 3. 

 

 

 

 



Chapitre 3 : Ingénierie Dirigée par les modèles   

 - 37 -

C H A P I T R E   
 

          3 
 

 

 

 

 

 

 

Ingénierie Dirigée par les 

modèles 



Chapitre 3 : Ingénierie Dirigée par les modèles   

 - 38 -

1. Introduction 

Une nouvelle manière d'envisager la production et la maintenance des systèmes logiciels consiste 

à s'appuyer essentiellement sur les modèles, qui sont alors considérés comme entités de première 

classe. Il s'agit de l'ingénierie des modèles (ou IDM), qui est une branche de l'ingénierie des 

langages. Les modèles sont maintenant représentés à l'aide de formats précis dont la manipulation 

peut être automatisée. Chacun de ces modèles est défini en utilisant un langage spécifiant un 

ensemble de concepts et leurs relations. Chaque langage a généralement aussi une syntaxe 

concrète, par exemple textuelle ou visuelle, permettant de représenter les modèles. 

L'IDM vise à définir un système logiciel à l'aide d'un ensemble de modèles utilisant différents 

langages. L'un des intérêts de l'IDM est de pouvoir considérer les modèles sur lesquels le 

programmeur raisonne comme faisant partie à part entière de la définition du logiciel.  

L'IDM est connue sous différents noms. Une de ses appellations en langue anglaise est MDE 

(Model Driven Engineering pour ingénierie dirigée par les modèles). Les principes du MDE sont 

appliqués dans différents standards. 

L'approche MDA (Model Driven Architecture ou architecture dirigée par les modèles) est un 

exemple d'application du MDE. Le MDA est recommandé par l'OMG (Objet Management 

Group) et est basé sur d'autres recommandations de ce même organisme. L'automatisation de la 

manipulation des modèles est donc réalisée par des opérations sur ces modèles. 

2.  L’architecture MDA de l’OMG 

En novembre 2000, l’OMG annonçait son initiative MDA. Le consensus sur UML a été essentiel 

dans cette transition des techniques de production de logiciel basées sur le code vers des 

techniques de production basées sur les modèles. Un rôle clef est maintenant joué par le concept 

de méta-modèle. Mais ceci n’est pas suffisant.  

Le MOF [MOF03] (Object Management Group, 1997) est issu de la reconnaissance qu’UML 

était un méta-modèle possible dans le domaine du développement logiciel, mais n’était pas le 

seul. Devant le danger de voir se développer et évoluer indépendamment une grande variété de 

méta-modèles différents et incompatibles (data warehouse, workflow, software process, etc.), il y 



Chapitre 3 : Ingénierie Dirigée par les modèles   

 - 39 -

avait un besoin urgent de fournir un cadre global d’intégration pour tous les méta-modèles dans le 

domaine de l’ingénierie du logiciel, des systèmes et des données.  

La réponse logique était donc d’offrir un langage de définition de méta-modèles, c’est-à-dire un 

méta-méta-modèle, chaque méta-modèle définissant lui-même un langage pour décrire un 

domaine spécifique d’intérêt. Par exemple UML permet de décrire les artefacts d’un logiciel à 

objets.  

D’autres méta-modèles adressent des domaines différents comme le « legacy » (existant logiciel), 

les processus logiciels, l’organisation, les tests, la qualité de service, etc. Leur nombre est 

important et croissant. Ils sont définis comme des composants séparés et de nombreuses relations 

existent entre eux. 

 

 

 

 
 

 

Figure 1 : Interprétation de la pile de modélisation multi-niveau de l’OMG 

Le changement réel en ingénierie des modèles est intervenu lorsque ces modèles ont commencé à 

être utilisés directement dans les chaînes de production de logiciel. Bien que cette possibilité ait 



Chapitre 3 : Ingénierie Dirigée par les modèles   

 - 40 -

souvent été considérée et partiellement appliquée, il est maintenant possible d’envisager son 

déploiement industriel à grande échelle (Greenfield et al., 2003).  

Jusqu’à présent les modèles d’analyse et de conception ont principalement été utilisés pour 

documenter les systèmes logiciels.  Les analystes et les concepteurs ont produit des modèles 

souvent fournis aux programmeurs comme du matériau d’inspiration, pour faciliter la production 

de logiciel. Le passage de cette période « contemplative » à une nouvelle situation où les outils de 

production seront dirigés par les modèles a été facilité par l’introduction de standards du MDA 

comme la recommandation XML [XML01] (Object Management Group, 1998). 

La question de la transformation de modèles se situe aussi au centre de l’approche MDA (figure 

Une suggestion initiale de recherche avait initialement été faite en (Lemesle, 1998) et un appel à 

proposition industriel (RFP MOF/QVT) est actuellement en cours (Object Management Group, 

2002) pour définir une sorte de langage unifié de transformation ou plutôt une famille 

coordonnée de tels langages. Ceci permettra de transformer un modèle Ma en un autre modèle 

Mb, indépendamment du fait que les méta-modèles MMa et MMb de Ma et Mb soient identiques 

ou différents. De plus le programme de transformation, par exemple écrit en langage ATL 

(Bézivin et al., 2004) - un langage de la famille QVT - doit lui-même être considéré comme un 

modèle Mt. En conséquence il sera conforme à un méta-modèle MMt, une définition abstraite de 

ce langage de transformation. Ces éléments constituent donc les briques de base de ce que l’on 

appelle l’architecture MDA de l’OMG. Ils évoluent rapidement, donnant lieu à la réalisation 

d’outils industriels applicables et parfois appliqués à certains domaines spécifiques. 

Cependant, la communauté de recherche est elle-même impliquée dans la compréhension en 

profondeur des concepts et des principes régissant cette approche industrielle du MDA.  



Chapitre 3 : Ingénierie Dirigée par les modèles   

 - 41 -

 

 

Figure 2: La transformation de modèles basée sur les méta-modèles 

3. Principes de base 

En technologie des objets, un principe de base (« Tout est objet », [P1]) a été très utile lors de 

l’apparition de la technologie sur la scène industrielle dans les années 1980 pour la pousser dans 

la direction de la simplicité, de la généralité et de la puissance d’intégration. De façon similaire, 

en ingénierie des modèles, le principe de base « Tout est modèle » [P2] possède plusieurs 

propriétés intéressantes. 

Tout est objet [P1] 

Tout est modèle [P2] 

Tableau 3: Principe [P1] et [P2] 

L’approche MDA n’est pas basée sur une idée unique. Parmi les objectifs poursuivis on peut 

mentionner la séparation de descriptions métier neutres d’avec les aspects liés à la plateforme, 



Chapitre 3 : Ingénierie Dirigée par les modèles   

 - 42 -

l’expression séparée des aspects d’un système en cours de développement par des langages 

spécifiques de domaines, l’établissement de relations précises entre ces différents langages dans 

un cadre global et en particulier la possibilité d’exprimer des transformations précises entre eux, 

etc. 

Comme suggéré par les figures 3 et 4, les outils conceptuels qui étaient les plus utilisés dans les 

années 1980 sont en cours de renouvellement. Au début de la période de déploiement industriel 

de la technologie des objets, ce qui était important était qu’un objet soit instance d’une classe et 

qu’une classe puisse hériter d’une autre classe. Ceci peut être vu comme une définition minimale 

correspondant au principe [P1]. Nous appelons ces deux relations instanceOf et inheritsFrom.  

De façon très différente, ce qui semble être important aujourd’hui est qu’une vue particulière (un 

aspect) d’un système soit capturé par un modèle et que chaque modèle soit écrit dans le langage 

de son méta-modèle. Ceci peut être vu comme une définition minimale correspondant au principe 

[P2]. Nous appelons les deux relations de base representedBy et conformsTo. 

 

 

 

 

 

 

Figure 3 : Notions de base en technologie des objets [P1] 

 

 

 

 

 

 

Figure 4: Notions de base en ingénierie des modèles [P2] 

Inherits 

Super-Class 

class Instance 
InstanceOf 

Conforms to 

Meta- Model 

Model System 
Represented By 



Chapitre 3 : Ingénierie Dirigée par les modèles   

 - 43 -

Lorsque l’on considère un système donné, on peut travailler avec différentes vues de ce système, 

chacune de celles-ci étant caractérisée de façon précise par un méta-modèle donné. Quand 

plusieurs modèles différents ont été extraits du même système à l’aide de méta-modèles 

différents, ces modèles restent liés et pourront être, recomposés par la suite. Pour que ceci puisse 

être largement appliqué, il est nécessaire de pouvoir disposer d’une organisation régulière des 

modèles composites. Il s’agit d’une organisation pragmatique similaire à l’organisation des 

langages de programmation déjà présentée dans la partie droite de la figure 1. 

Récemment des sociétés comme Microsoft ou IBM ont défini leurs positions à ce sujet. Dans le « 

manifeste MDA » (Booch et al., 2004) d’IBM les principes de base sont au nombre de trois : 

 La représentation directe : c’est-à-dire la nécessité de disposer de familles de langages 

de domaines (DSL) permettant de prendre en compte chacune des situations et des 

communautés corporatives 

 L’automatisation : permettant les traitements de mise en correspondance automatique 

des modèles conformes aux différents langages de domaines 

 Les standards ouverts : permettant l’émergence rapide d’écosystèmes d’industriels 

utilisateurs et fournisseurs d’outils et de chercheurs appliqués autour de plateformes de 

logiciel libre utilisant ces standards, par exemple ceux basés sur MOF ou sur XML. 

4.  Les standards MDA 

Au cœur du MDA, se trouvent plusieurs standards importants : UML [UML01], XMI [XML01], 

MOF [MOF03] et le CWM [CWM01]. 

4.1. Les profils UML 

Le MDA préconise fortement l’utilisation d’UML pour l’élaboration de PIMs et de la plupart des 

PSMs: les spécificités de chaque plate-forme peuvent être modélisées grâce aux mécanismes 

d’extension d’UML (stéréotypes, valeurs marquées, contraintes). En fait, on peut définir pour 

chaque système un profil qui regroupe les éléments nécessaires à ses caractéristiques. Nous 

voyons en détail la notion de profil au niveau du chapitre suivant. 

Dans le cadre du MDA, les profils UML s’intègrent parfaitement car ils tirent partis des 

informations de sémantiques portées par le modèle PIM pour générer automatiquement les 



Chapitre 3 : Ingénierie Dirigée par les modèles   

 - 44 -

classes et le framework  associés au domaine cible. Outre l’interopérabilité plus aisée entre les 

applications tirant parties de ces frameworks, les profils UML permettent de gagner du temps de 

minimiser les risques lors de l’élaboration d’un logiciel. 

4.2. MOF (Meta Object Facility) 

Le langage MOF est le standard de l’OMG qui permettait l’élaboration de méta-modèles. Il est 

une extension du modèle objet, qui permet à celui-ci de représenter non plus des entités du monde 

réel, mais des entités de description de modèles. Le MOF est donc un langage de description des 

langages de modélisation (ou méta-modèles). En utilisant des éléments du MOF, on peut décrire 

un langage tel que UML, le langage de description des bases de données relationnelles, XML, ou 

encore le MOF lui-même. Ce langage permet d’abord de faire une représentation graphique d’un 

langage de modélisation particulier. Mais surtout il définit une grammaire selon laquelle un 

programme peut reconnaître et traiter des éléments d’un modèle décrit dans le langage spécifié. 

Dans les diagrammes MOF, les classes (que l’on appelle des méta classes) représentent les 

concepts à définir et les associations (que l’on appelle des méta associations) représentent les 

relations entre ces concepts. Les méta classes et les méta associations sont contenues dans des 

packages. Un intérêt du MOF est qu’il permet de faire interopérer des méta-modèles différents. 

Une application MOF peut manipuler un modèle à l’aide d’opérations génériques sans 

connaissances du domaine. 

4.3. XMI (XML Metadata Interchange) 

XMI est le standard de l’OMG qui fait la jonction entre le monde des modèles et le monde XML 

de W3C (World Wide Web Consortium). XMI a été mis en place en 2000 pour permettre la 

sérialisation des modèles, afin de rendre possible l’échange de modèles entre différents logiciels 

(de modélisation, de développement). XMI offre ainsi une solution pour représenter des objets et 

leurs associations sous forme textuelle. De plus, puisque XMI est basé sur XML, les métadonnées 

(tags) et les instances (elements) sont regroupées dans le même document, ce qui permet à une 

application de comprendre les instances grâce à leurs métadonnées. De plus, la possibilité 

d’imbrication des balises permet de représenter l’imbrication entre éléments dans un méta-

modèle, comme par exemple entre une classe et ses attributs. 



Chapitre 3 : Ingénierie Dirigée par les modèles   

 - 45 -

Le standard XMI, est actuellement utilisé, sous de nombreuses variantes par des plateformes de 

modélisation et de développement logiciel, notamment Poseïdon, NetBeans et Eclipse, pour 

permettre la transmission de modèles entre ces plateformes. 

Le standard XMI permet de décrire une instance du MOF sous forme textuelle, grâce au langage 

XML en définissant la manière d’utilisation de ses balises. Il permet la génération de DTDs 

(Document Type Definitions) et de schémas XML à partir de méta-modèles MOF. Les modèles 

sont alors traduits dans des documents XML conformes à leurs DTD correspondantes. 

Néanmoins, l’application la plus connue de XMI est celle qui a permis la construction de la DTD 

UML. Cette DTD UML permet la représentation des modèles UML sous forme de documents 

XML et assure ainsi les échanges de modèles UML entre les différents outils du marché. Le 

standard XMI de sérialisation des modèles compatibles à MOF est en cours de stabilisation et son 

utilisation devient incontournable dans les outils industriels. 

4.4. CWM (Common Warehouse Metamodel): 

Le CWM est le standard de l’OMG pour les techniques liées aux entrepôts de données. Il couvre 

le cycle de vie complet de modélisation, construction et gestion des entrepôts de données. Le 

CWM définit un méta-modèle qui représente les méta données aussi bien métiers que techniques 

qui sont le plus souvent trouvées dans les entrepôts de données. Il est utilisé à la base des 

échanges de méta données entre systèmes hétérogènes. 

5. Modélisation/Méta-modélisation 

Un modèle représente un système réel en se basant sur la sémantique et les règles qui 

conditionnent ses éléments; en d’autres termes il ne doit en aucun cas briser la structure ou les 

contraintes que les éléments du système réel respectent. 

En conséquence, les éléments du langage d’expression d’un modèle doivent satisfaire un 

ensemble de règles qui leur permet de former un modèle qu’on appelle méta-modèle. Le langage 

est alors dit un langage bien défini et on peut ne plus faire la distinction entre le méta-modèle et 

le langage qu’il définit (voir figure 5) 

 

 



Chapitre 3 : Ingénierie Dirigée par les modèles   

 - 46 -

 

 

 

 

 

 

 

 

Figure 5 : Modèles, langages, méta-modèles et métalangages 

De même, un méta-modèle est écrit dans un langage appelé métalangage et il est instance d’un 

métaméta-modèle qui définit les éléments du métalangage. 

On peut même dire qu’un langage est écrit (défini) par un métalangage. Le métalangage doit être 

écrit encore par un méta métalangage et ainsi de suite.  

La figure 6 illustre les 4 niveaux de modélisation : 

 

 

 

 

 

 

 

 

 

 

Figure 6 : L’organisation 3+1 du MDA 

Is written in 

Is defined by 

Méta-Model 

Model 
Language 

Meta-
Language 

Is written in 

Meta-Model 

Model 

Meta-Meta-Model 

System 

Conforms to 

M3 

Conforms to 

Conforms to 

M2 

M1 

M0 

Represented by 

Le m
onde des 

m
odèles 

Le m
onde réel 



Chapitre 3 : Ingénierie Dirigée par les modèles   

 - 47 -

 On distingue alors selon la normalisation de l’OMG quatre couches de modélisation : 

 m0 :C’est la première couche correspondant à un système en exécution (running). 

m0 contient des instances d’objets en cours de traitement par le logiciel. 

 m1 :C’est la couche du modèle exécutable renfermant la structure et le 

comportement du système. C’est à ce niveau que se situent généralement les 

modèles que nous manipulons quotidiennement dans nos activités de 

développement de logiciel. 

 m2 : C’est la troisième couche de modèles appelés méta-modèle, et dont les 

instances sont des modèles de la couche m1.  

 m3 : C’est un niveau d’abstraction encore plus élevé, où l’instance d’un modèle de 

cette couche donne un modèle de la couche m2. Un modèle de m3 donnera une 

syntaxe d’écriture de méta-modèle. 

OMG arrête cette suite d’abstraction au niveau 4 en définissant les éléments de m3 comme 

instances de concepts de la même couche m3. C’est à dire que m3 est définie d’une façon auto 

descriptive. 

On rappelle que le méta-modèle est conforme à lui-même. 

5.1. Langages de méta-modélisation :  

Il existe de nombreux langages de méta-modélisation tels que MOF 1.4, EMOF 2.0 [KMM05], 

Ecore, etc. La plupart de ces langages utilisent les concepts de classe, attribut et association ou 

référence. Cependant, ils sont incompatibles puisqu'un méta-modèle conforme à l'un d'entre eux 

ne peut généralement pas être conforme à un autre. Ils n'ont pas non plus de définition formelle. 

De plus, certains de ces langages possèdent des concepts dépassant le domaine de la méta-

modélisation. C'est notamment le cas de Ecore qui permet par exemple d'annoter un méta-modèle 

avec des directives pour la génération de code Java. Par ailleurs, il n'existe que peu d'outils pour 

la création ou la manipulation des méta-modèles définis dans ces langages. 

On s’intéresse dans notre mémoire au langage de méta-modélisation KM3 [KMM05] (Kernel 

MetaMetaModel ou métaméta-modèle noyau) qui a une définition formelle basée sur la logique 

du premier ordre. Ce langage est une simplification des langages existants dans ce domaine et 



Chapitre 3 : Ingénierie Dirigée par les modèles   

 - 48 -

plus particulièrement de MOF 1.4, EMOF 2.0 et Ecore. Il est donc possible de traduire n'importe 

quel méta-modèle KM3 vers un de ces langages. Les méta-modèles définis en KM3 peuvent ainsi 

être utilisés avec différents systèmes de manipulation de modèles basés sur ces métaméta-modèle 

(e.g. Netbeans/MDR et Eclipse/EMF). Par ailleurs, afin d'offrir une alternative à l'utilisation des 

quelques éditeurs graphiques de méta-modèles, une syntaxe concrète textuelle a été définie pour 

KM3. 

L'objectif de KM3 est de fournir une solution relativement simple à la définition du méta-modèle 

de définition du domaine (ou DDMM pour Domain Definition MetaModel) d'un DSL. KM3 est 

donc un DSL pour la définition des méta-modèles tout comme EBNF est un DSL de définition de 

grammaires : 

 Méta-modèle de définition du domaine : Le DDMM de KM3 est un métaméta-modèle 

auquel les autres DDMMs sont conformes. Ce DDMM est défini en KM3, de la même 

manière que la syntaxe EBNF peut être décrite en EBNF en quelques lignes.  

KM3 utilise les concepts de classe (Class), attribut (Attribute), référence (Reference), etc. Sa 

structure est proche d’EMOF 2.0  et d’Ecore. 

 Syntaxe concrète : La syntaxe par défaut de KM3 est textuelle .Ceci permet la définition 

simple de méta-modèles avec n'importe quel éditeur textuel. 

 Sémantique : La sémantique de KM3 permet la définition de méta-modèles et de 

modèles. Une définition conceptuelle précise de KM3 est présentée ci après.  

Des transformations vers et depuis MOF 1.4 et Ecore ont notamment été définies en ATL 

[BEZ03]. KM3 est de ce fait utilisable avec des outils tels qu'Eclipse EMF et Netbeans MDR. 

En tant que métaméta-modèle, KM3 est plus simple que MOF 1.4, MOF 2.0 ou encore Ecore. Il 

ne contient que 14 classes là où Ecore en a 18 et MOF 1.4 en a 28. Seuls les concepts essentiels 

de ces autres métaméta-modèles ont été retenus dans KM3. 

5.2. Transformation des modèles 

La principale opération dans MDA est la transformation de modèles qui consiste à créer de 

nouveaux modèles à partir de modèles existants. La transformation n'est alors plus limitée à la 

traduction du code source mais peut opérer sur tous les modèles décrivant un système. De plus, 



Chapitre 3 : Ingénierie Dirigée par les modèles   

 - 49 -

les modèles créés par transformation ne sont pas nécessairement du code exécutable mais peuvent 

être très variés. Dans son approche MDA, l'OMG recommande QVT [MOF03] (Query / View / 

Transformation ou requête / vue / transformation) qui propose une famille de langages de 

transformation. 

5.2.1. Caractéristiques : 

La transformation de modèles est formée d’un ensemble de règles et doit être écrite dans un 

langage bien défini qu’un outil pourra compiler et exécuter. Cette automatisation sous-entend que 

les modèles doivent être écrits dans un langage traitable par les machines. La figure 7 illustre ceci 

tout en utilisant la notion de langage d’écriture de modèle qu’on a examiné dans la section II. 

 

 

 

 

 

 

 

 

Figure 7 : Automatisation des transformations 

Une transformation se caractérise par la manière dont ses règles s’appliquent, d’où le besoin de 

distinguer les propriétés suivantes qui varient selon la définition de la transformation et le 

langage utilisé : 

 L’ordre d’application sur les fragments de modèle correspondant à une règle; 

 L’ordre dans lequel s’appliquent les différentes règles; 

 La possibilité de composition de règles; 

 La relation entre les modèles source et cible (même, différent); 

 La traçabilité (définie ci-après); 

Is written in 

Is used by 
Language 

Is written in 

PIM PSM 

 
Transformation Tool 

Transformation definition 

Language 



Chapitre 3 : Ingénierie Dirigée par les modèles   

 - 50 -

 La bidirectionnalité; 

 L’interactivité permettant la paramétrisation ; 

5.2.2. Langages de transformation 

Pour définir une transformation de modèles, on peut utiliser un langage non formel, un 

langage d’action pour représenter l’algorithme de la transformation, ou encore un langage bien 

défini de mapping de modèles. 

Le QVT RFP a déjà généré 8 propositions ainsi qu’un certain nombre d’initiatives indépendantes. 

Nous allons citer quelques-unes rapidement en insistant sur les langages s’avérant utiles à notre 

future contribution dans le domaine. De plus amples informations sur les outils d’implémentation 

seront données ultérieurement. 

 OpenQVT  [QVT03] : soumis par un groupe d’universités et de sociétés françaises en 

réponse au QVT RFP. Ce langage est à la base du développement de l’implémentation de 

la syntaxe ATL par un outil prometteur de transformation de modèles ADT qui est 

intégrable dans l’environnement de développement Eclipse 

 XMOF d’IBM et Compuware : Comparable à XSLT qui est un langage applicable pour 

exprimer des transformations de fichiers XML, XMOF est un langage déclaratif qui décrit 

les résultats voulus d’une transformation plutôt que les processus nécessaires à sa 

réalisation. 

 Le langage TRL  : Ce langage est une autre proposition en réponse au QVT RFP 

soumise par Alcatel Softeam, Thales, TNI-Valiosys et Codagen Technologies Corp, et 

supportée par France Telecom, INRIA/IRISA, Softeam, Université de Paris VI, 

Université de Nantes, LIFL, CEA.,TRL utilise les standards de l’OMG comme OCL, pour 

exprimer les contraintes et les queries de MOF. De plus, ce langage est basé sur une 

technique de méta-modélisation avec les deux approches déclarative et impérative. Il 

permet le marquage et la paramétrisation, et il accepte plus qu’un modèle d’entrée à la 

fois. 

 QVT Partners: Est une soumission de proposition QVT qui se distingue par la 

considération de l’aspect unidirectionnel et bidirectionnel des transformations. Ses LHS et 



Chapitre 3 : Ingénierie Dirigée par les modèles   

 - 51 -

RHS ressemblent à ceux d’UMLX, qu’on verra dans cette section, mais sans supporter les 

multiplicités. De plus ce langage compte sur l’expression textuelle de la relation entre 

LHS et RHS qui forme une contrainte qui doit être satisfaite après tout passage de LHS 

vers RHS. Ce langage utilise Action Semantics pour l’expression des mappings en plus 

d’OCL. 

 MOLA : Le laboratoire IMCS de l’université de Latvia a développé le Model 

Transformation Language (MOLA) comme une tentative de définition de transformations 

plus naturelles et lisibles. On a adopté des structures de contrôle itératives et simples 

plutôt que récursives puisées dans la programmation structurelle traditionnelle.,MOLA 

utilise l’approche de réécriture graphique utilisant les LHS et RHS avec une instruction 

essentielle ‘loop’ qui cherche tous les fragments de graphes coïncidant avec un LHS. 

 ATL [ATL05] : L’équipe ATLAS a proposé à la normalisation de l’OMG un langage de 

transformation de modèle nommé ATL (ATLAS Transformation Language) qui sera 

détaillé dans la section suivante. 

5.2.3. Le langage ATL 

ATL est un langage de transformation hybride, il contient un mélange de constructions 

déclaratives et impératives, cependant, l’utilisation du style déclaratif est encouragée.  Les 

transformations ATL sont unidirectionnelles et opèrent sur des modèles source en lecture seule et 

produisent des modèles cible en écriture seule Une transformation bidirectionnelle est 

typiquement implémentée par un couple de transformations : une pour chaque direction. 

Pendant l'exécution d'une transformation, les modèles source peuvent être navigués mais pas 

modifiés, alors que les modèles cible ne peuvent pas être navigués. Ces restrictions permettent de 

simplifier la sémantique d'exécution et notamment de garantir un résultat déterministe sans 

demander au développeur de définir explicitement un ordre d'exécution des règles. 

La structure d’ATL est comme suit : 

 L'en-tête : commence par le mot-clé module suivi du nom du module. Ensuite, les 

modèles source et cible sont déclarés comme des variables typées par leurs méta-modèles. 

Le mot-clé create indique les modèles cible. Le mot-clé from indique les modèles source. 



Chapitre 3 : Ingénierie Dirigée par les modèles   

 - 52 -

Le modèle cible est représenté par le variable OUT à partir du modèle source représenté 

par IN. 

 

 

Figure 8 : Syntaxe de l’en-tête 

 Helpers : Les fonctions ATL sont appelées helpers d'après le standard OCL sur lequel 

ATL se base. En ATL, un helper peut être spécifié dans le contexte d'un type OCL (par 

exemple String ou Integer) ou d'un type source (venant de l'un des méta-modèles source). 

OCL définit deux sortes de helpers : opération et attribut. 

 Les helpers opération : peuvent être utilisés pour définir des opérations dans   le 

contexte d'un élément de modèle ou du module de transformation. 

Le rôle principal des helpers opération est de réaliser la navigation des modèles source. Ils 

peuvent avoir des paramètres et peuvent utiliser la récursivité. Les helpers opération définis dans 

le contexte d'éléments de modèles permettent les appels polymorphiques. 

Puisque la navigation n'est autorisée que sur les modèles source en lecture seule, une opération 

retourne toujours la même valeur pour un contexte et un ensemble d'arguments donnés. 

 Les helpers attribut : sont utilisés pour associer des valeurs nommées en lecture 

seule sur les éléments de modèles source.  

Comme les opérations, ils ont un nom, un contexte et un type. La différence est qu'ils ne peuvent 

pas avoir de paramètres. Leur valeur est définie par une expression OCL.  

Comme les opérations, les attributs peuvent être définis récursivement avec les mêmes 

contraintes de terminaison et de cycles. 

Les helpers attribut sont pratiquement comme les propriétés dérivées de MOF 1.4 ou d’Ecore  

mais peuvent être associés à une transformation. Ils ne sont pas nécessairement liés à un méta-

modèle donné. Alors que dans EMF et MDR ils sont implémentés en Java, ils sont définis en 

OCL avec ATL. 



Chapitre 3 : Ingénierie Dirigée par les modèles   

 - 53 -

Les helpers attribut peuvent être considérés comme un moyen de décorer les modèles source 

avant l'exécution de la transformation. La décoration d'un élément de modèle peut dépendre de la 

déclaration d'autres éléments. De plus ils  peuvent aussi être utilisés pour établir des liens entre 

éléments de différents modèles source.  

Le type d'un attribut peut en effet être une classe provenant d'un méta-modèle différent du méta-

modèle de son contexte. Ceci correspond à une forme élémentaire de composition de modèle. 

La figure 3 donne la forme des helpers ATL : 

 

Figure 9 : Forme d’une méthode dans ATL 

 Règles de transformation : La règle de transformation est la construction élémentaire en 

ATL pour exprimer la logique de transformation. Les règles ATL peuvent être soit 

déclaratives soit impératives. 

 Règles déclaratives (matched rules) : Une matched rule est composée d'un pattern 

(motif) source et d'un pattern (motif)  cible, sa syntaxe est la suivante : 

 

Figure 10 : Matched rules 

 Règles impératives : on distingue : 

 Called rules : se sont des opérations au sens OCL et peuvent donc être 

appelé comme des fonctions dans les expressions. Ils ont des 

paramètres. 

 Action block : se sont des séquences d’instructions impératives qui 

peuvent être utilisées soit dans matched ou called rules. 



Chapitre 3 : Ingénierie Dirigée par les modèles   

 - 54 -

6.  Conclusion 

Nous avons étudié dans ce chapitre l'approche MDA qui base entièrement le processus de 

développement sur le concept des modèles à l’opposé des approches traditionnelles 

d'analyse/codage. La logique métier est conçue uniquement de manière abstraite, indépendante de 

toute technologie d'implémentation. Les différentes étapes de transformation et d'enrichissement 

apportant des propriétés non fonctionnelles au modèle de base amènent, de manière plus ou 

moins automatisée, à une application exécutable dans un environnement choisi. Cette méthode 

nous apparaît comme particulièrement intéressante dans nos travaux sur le développement 

d'applications à contraintes de temps réel en environnements embarqués. Elle sera développée 

utilisée tout au long des deux chapitres suivants, notamment pour répondre aux objectifs que nous 

nous sommes fixés. Ainsi nous étudierons, d'une part, comment la modélisation indépendante de 

la plate-forme peut servir de base pour la spécification de contraintes non fonctionnelles 

essentiellement celles temps réel, également indépendante de l'environnement cible. Puis nous 

présenterons, d'autre part, les processus de transformations, permettant de passer du niveau 

indépendant de la plate-forme vers un niveau plus spécifique, qui seront utilisés pour générer le 

code applicatif et le code en tenant compte de paramètres spécifiques à un environnement donné. 

 



Chapitre 4 : Démarche de conception proposée   

 - 55 -

C H A P I T R E   
 

          4 
 

 

 

 

 

 

 

Démarche de conception 

proposée 
 



Chapitre 4 : Démarche de conception proposée   

 - 56 -

1. Introduction 

Ce chapitre présente l’objectif de ce Mastère. Nous avons présenté dans le premier chapitre les 

STRE aux quels nous nous intéressons, en nous focalisant sur l’étude des RTOS. Dans le second 

chapitre, nous avons synthétisé les principales approches de modélisation de ces systèmes. Il 

ressort de cette synthèse une volonté d’intégration de l’RTOS lors de la modélisation d’un STRE, 

ainsi que la définition explicite de la sémantique temporelle et transitionnelle dans le but 

d’assurer le bon fonctionnement du système et de valider son ordonnançabilité. Il s'avère en 

réalité que les gains obtenus sont doubles : gain en terme de conception, de réutilisation, de 

maintenance; et gain en termes de qualité à l'exécution. Nous sommes donc confortés dans l'idée 

d’adopter la démarche MDA, pour étudier la modélisation de l’RTOS. 

Ce chapitre présente alors la contribution liée à la modélisation orientée objet de l’RTOS, en 

s'appuyant sur le niveau le plus haut des modèles MDA, et notamment en focalisant l’étude sur le 

niveau PIM, plus précisément en nous intéressons au modèle source lors de la phase de 

transformation de modèles. 

2. Identification des besoins 

Dans cette section, nous présentons notre étude sur la modélisation de l’RTOS en se basant sur 

l'approche dirigée par les modèles et sur les travaux de l'OMG. Comme nous l'avons décrit dans 

le troisième chapitre, MDA est une approche dirigée par les modèles qui propose des 

spécifications pour la création, la visualisation et l'échange de modèle logiciels. Deux niveaux de 

modèles coexistent : un niveau abstrait et indépendant de l'environnement d'exécution, nommé 

PIM et un niveau dépendant du support d'exécution, nommé PSM. Cette section s'attache à la 

description abstraite des RTOS, c'est-à-dire elle est attachée au premier niveau.  

Dans le contexte de notre travail, les profils UML existants, décrits dans le deuxième chapitre, 

s’intéressent uniquement à la description de l’architecture et de l’application d’un STRE. Ils ne 

supportent pas l’intégration d’une composante qui devient de plus en plus indispensable dans les 

nouveaux STRE à savoir l’RTOS. 

Le point fort de notre travail vient contredire la multiplicité des environnements et renforcer 

l’orientation d’unification dans le but d’avoir un profil unifié. Pour cela, nous avons essayé de 



Chapitre 4 : Démarche de conception proposée   

 - 57 -

partir des profils existants, de prendre en compte les exécutifs temps réel, et de définir des 

sémantiques temporelles et transitionnelles. 

Pour cela, les profils déjà identifiés vont nous apporter une base pour construire un profil UML 

orienté RTOS, et pour lequel nous nous sommes fixés les contraintes suivantes : 

 Créer un modèle d'un système d’exploitation temps réel, correspondant au niveau PIM de 

l’approche MDA afin de prendre en considération les caractéristiques communes d’un 

RTOS et les services génériques qu’il offre. 

 Garder à l'esprit le critère de l'indépendance vis-à-vis de la plate forme d’exécution. 

 Restreindre le modèle d’ordonnancement aux cas monoprocesseur. La possibilité de 

l’extension vers le multi processeurs reste valable. 

 Définir explicitement toutes les contraintes temporelles du système et mettre l’accent sur 

l’aspect déterminisme du système, il s’agit de définir un modèle d’ordonnancement. 

 Assurer la cohérence entre la vue statique et la vue dynamique des modèles: En effet, la 

construction d'un modèle d'application repose d'abord sur la vue statique, notamment par 

le biais du diagramme de classes. Les informations liées à l’RTOS décrites dans celui-ci 

servent donc de base par défaut pour l’intégration de l’exécutif temps réel lors de la 

modélisation d’un STRE. Les informations d'interactions décrites par le biais du 

diagramme d’états transitions viennent ensuite se greffer pour compléter, spécialiser et 

ordonnancer les tâches décrites dans le diagramme de classes. 

Nous proposons alors un modèle qui vient complémenter et enrichir ce qui existe, ce modèle doit 

spécifier  les contraintes d'exécution, en s'appuyant sur le vocabulaire habituellement employé 

dans les systèmes tels que l’allocation de ressources, les politiques d'ordonnancement, les délais 

d'invocation d'opérations, etc). En résumé, nous proposons une démarche qui part de la 

modélisation de la structure de l’RTOS jusqu’à la genèse du modèle d’ordonnancement. Une fois 

le modèle d’ordonnancement est obtenu, nous passons à la génération de code. 

3. Démarche proposée 

Certes, le diagramme de classe présente une vue statique d’un système, mais ne peut pas couvrir 

tout l’aspect comportemental du système. La séparation explicite lors de la modélisation de la 



Chapitre 4 : Démarche de conception proposée   

 - 58 -

structure de l’RTOS et de l’ordonnanceur et le manque de cohérence entre les différents 

diagrammes utilisés pourraient influer sur l’aspect comportemental du système.  

Notre approche présente une démarche assurant la cohérence entre les différents diagrammes 

UML utilisés et couvrant l’aspect comportemental du système ainsi que ses contraintes temps 

réel. Il s’agit de modéliser, dans un premier temps la structure de l’RTOS. Dans un deuxième 

temps, nous associons un digramme statecharts relatif à l’entité tâche la plus importante dans le 

modèle et ce tout en l’annotant avec des contraintes OCL. Nous définissons ensuite les variations 

sémantiques temporelles et transitionnelles présenté par les statecharts. Ce qui nous amène à 

l’implémentation d’un profil UML pour l’implantation des statecharts. Cette phase sera bien 

décrite dans le chapitre suivant. Lors de la définition des variations sémantiques, nous appliquons 

quelques techniques à savoir la réification et l’énumération des états et des événements. Nous 

optons pour l’utilisation d’une démarche d'intégration de design pattern dans le but de réutiliser 

des composants logiciels existants et éprouvés, plutôt que de recréer de nouveaux modèles pour 

l’implémentation des statecharts. Le modèle final relatif à la variation des différents états  relatifs 

aux comportements d’une tâche correspond au modèle cible lors de l’étape de transformation des 

modèles. Comme étape finale, nous passons à la génération automatique de code.  

Notre démarche illustrée par la figure 11, pourrait alors se résumer aux étapes suivantes : 

1. Définition de la structure de l’RTOS à l’aide d’un diagramme de classe (définition du 

modèle source) 

2. Définition des différents états possibles pour la description du comportement d’une tâche 

à l’aide des statecharts 

3. Définition des variations sémantiques associées aux statecharts 

4. Implantation des statecharts 

5. Construction du modèle cible correspondant au modèle cible du niveau PIM de la 

démarche MDA. Ce modèle est issu de la phase précédente 

6. Génération de code 



Chapitre 4 : Démarche de conception proposée   

 - 59 -

 

Figure 11 : Démarche proposée 

Nous associons au cours de la deuxième phase de notre proposition, un diagramme d’états 

transitions décrivant une vue comportementale de l’état d’une tâche. Nous exprimons quelques 

règles OCL relatives à chaque état dans le but d’atteindre la qualité correction du comportement 

du système. 

La suite de la description des autres phases de notre démarche sera décrite en détail dans le 

chapitre suivant. 

4. Modélisation de la structure d’un RTOS 

Un modèle d’RTOS peut être vu selon deux composantes : la structure et le modèle 

d’ordonnancement. A chaque modèle, nous associons les diagrammes convenables à savoir les 

diagrammes à aspect statique et/ou dynamique. A ce stade, les digrammes proposés doivent être 

cohérents et doivent couvrir touts les constituants d’un RTOS essentiellement ceux qui le 

caractérisent par rapport à un système d’exploitation ordinaire. Pour assurer l’extensibilité des 

profils, le modèle doit préserver leurs sémantiques et y rajouter les notions dont on a besoin. 

M
ise en correspondance 

produit

reçoit

Conforme à 

 
Structure de l’RTOS 

Phase n : 1 

États et transitions 
 possibles d’une tâche 

Phase n : 2  

Modélisation des 
Variations sémantiques 

Phase n : 3 

Implantation des  
Statecharts 

Phase n : 4 

 
Modèle source 

 
Modèle cible 

R
èg

les d
e  

T
ra

n
sfo

rm
a

tio
n

s 

 
Méta-modèle 

 source 

 
Méta-modèle  

source 



Chapitre 4 : Démarche de conception proposée   

 - 60 -

Pour y arriver, nous nous basons sur deux travaux : Le premier correspond à la modélisation d’un 

RTOS dédié à l’automobile appelé OSEK [SHO04] et le deuxième concerne le système 

d’exploitation VxWorks [DAV06], il consiste à faire de la «reverse engineering». 

Dans [SHO04], les auteurs se basent sur deux diagrammes de classe indépendants : un 

diagramme décrivant la structure et un autre décrivant l’ordonnanceur. Ces modèles séparés 

explicitement souffrent d’un manque de cohérence et de définition de sémantiques temporelles. 

En fait, le diagramme utilisé pour la caractérisation de l’ordonnanceur et un diagramme statique 

de façon qu’il ne puisse pas couvrir le comportement temporel d’un RTOS, il doit aussi posséder 

l’aptitude d’être complémentaire au modèle de la structure et ce via la bonne expression du suivi 

de l’évolution d’un processus temps réel. 

Partant d’une bibliothèque temps réel écrite en langage C, DAV et Al [DAV06] effectuent les 

transformations nécessaires pour aboutir à un diagramme UML. Cette transformation amène à 

des entités spécifiant des composantes d’un système temps réel dont le lien entre elles est laissé à 

la charge du designer. Elle est restreinte à une description statique quoique le comportement 

puisse être touché en introduisant des attributs décrivant l’état de progression d’une tâche dans le 

temps ou en définissant une relation réflexive de précédence, cette technique s’appelle la 

définition de sémantique  opérationnelle. Il est à noter que nous pouvons modéliser un algorithme 

d’ordonnancement via l’utilisation d’un diagramme de séquence mais cette solution reste 

inefficace vu la multiplicité des algorithmes d’ordonnancement et la difficulté de leurs 

intégrations à une démarche MDA.    

Pour nos modèles proposés, nous décrivons la structure de l’RTOS à travers un diagramme de 

classe qui inclut la définition de la sémantique opérationnelle pour présenter la structure de 

l’RTOS. Nous définissons ensuite le comportement d’une tâche qui constitue le noyau d’un 

exécutif temps réel, afin d’assurer la cohérence entre les différents diagrammes UML. Pour 

aboutir au modèle d’ordonnancement, nous définissons les variations sémantiques temporelles et 

transitionnelles relatives aux différents états d’un processus temps réel.   

Dans la suite de cette section, nous présentons les différentes techniques qui peuvent être utilisé 

pour modéliser un RTOS à savoir les modèles statiques et les modèles dynamiques. Nous 

justifions au fur et à mesure nos modèles proposés.  



Chapitre 4 : Démarche de conception proposée   

 - 61 -

4.1. Modèle statique 

Ce modèle correspond à la définition des composantes les plus essentielles d’un RTOS, toutefois 

il ne peut pas couvrir l’aspect comportemental de l’RTOS et plus particulièrement l’aspect 

déterminisme du système. 

La description de la structure de l’RTOS peut être inspiré de la spécification de l’RTOS OSEK 

[SHO04] utilisé dans le domaine de l’automobile. Le diagramme utilisé est celui de classe 

présenté par la figure ci-dessous : 

 

Figure 12: Diagramme de classe correspondant à la structure de l’RTOS OSEK 

D’après la figure 12, la structure de l’RTOS est définie par les entités suivantes : 

 Task: C’est le composant le plus important du noyau d’un RTOS. Ce dernier  doit 

acquérir un grand nombre d’informations concernant les tâches dans le but de bien gérer 



Chapitre 4 : Démarche de conception proposée   

 - 62 -

leurs ordonnancements ainsi que leurs exécutions. Cette mission est confiée à 

l’Ordonnanceur. 

 Event : Au moment du déclenchement d’un évènement, l’état d’une tâche est changé. 

 ISR : Interrupt Server Routine: C’est la routine chargée du traitement de l’interruption. 

Elle fait, dans ce contexte, le relais entre le mécanisme matériel d’interruption et le 

mécanisme logiciel de signalisation. Le concept d’interruptions est basé sur différentes 

catégories d’ISR,  le premier (ISR type 1) est celui dans lequel on n’a pas besoin 

d’appeler un service exécutif. L’exécution du code de l’ISR est donc transparente pour 

l’exécutif et se traduit par un retard temporel de la tâche interrompue, durant le service de 

l’interruption, le deuxième modèle (ISR type 2) est celui dans lequel la routine est 

déclarée comme une routine d’interruption par un mot clé spécifique (le générateur 

d’application génère alors les appels de service nécessaires pour signaler à l’exécutif 

l’entrée et la sortie d’une routine d’interruption). 

 Message : Il est utilisé pour échanger des messages de données entre un système 

expéditeur et un autre récepteur. Ce message est utilisé pour assurer l’envoi 

d’informations protégées entre les différentes tâches.  

 Alarm : Basée sur un compteur, une alarme pourrait activer une tâche, imposer un 

évènement ou activer un alarmCallBack, elle est définie alors par les attributs suivants : 
activateTask,  setEvent et activateAlarmCallBack. Une alarme peut être unique ou 

cyclique, absolue ou relative. Si elle est relative, la valeur spécifiée par un paramètre du 

service est un incrément par rapport à la valeur courante du compteur (expression d’un 

délai de garde par exemple) ; si elle est absolue, la valeur spécifiée par un paramètre du 

service définit la valeur du compteur qui active l’alarme. Une autre valeur est spécifiée 

dans le cas d’une alarme cyclique afin de préciser (en nombre de ticks) la valeur du cycle. 

Ainsi on sait simplement, sur un compteur lié à l’horloge temps réel, définir au travers de 

plusieurs alarmes, des tâches périodiques de périodes différentes.  

 Counter : Un compteur présente une source logicielle/matérielle pour une alarme, il est 

présenté par les deux paramètres suivants : maxAllowedValue et minCycle. C’est un objet 

destiné à l’enregistrement de « ticks » en provenance d’une horloge ou d’un dispositif 

quelconque émettant des stimulis. C’est un dispositif de comptage ayant une certaine 



Chapitre 4 : Démarche de conception proposée   

 - 63 -

dynamique, qui repasse à zéro après avoir atteint sa valeur maximale (valeur définie à la 

génération de l’application). Il compte les ticks après une éventuelle pré-division (par 

exemple 10 ticks représentent une unité pour le compteur). Plusieurs alarmes peuvent être 

associées à un même compteur, ce qui permet de constituer facilement, par exemple, des 

bases de temps. 

 Ressource : Cette entité est utilisée pour cordonner les accès concurrents aux ressources 

partagées par les tâches. L’utilisation de cet objet est similaire à l’utilisation des 

sémaphores. 

Une autre façon de modéliser consiste à procéder par une approche ascendante, il s’agit de la 

« reverse engineering ». Dans cette approche, Dav et Al [DAV06] partent d’une libraire écrite 

dans un langage de haut niveau (langage C) qui inclut une gamme de services formés par l’RTOS 

VxWorks et dégage le modèle adéquat. Ce dernier permet d’utiliser d’une manière simplifiée les 

mécanismes offerts par un système temps réel : tâche, événement (utilisant un sémaphore 

binaire), sémaphore d’exclusion mutuelle, activations périodiques et gestion du temps. 

Pour répondre aux objectifs actifs d’un diagramme de classe UML, il est nécessaire de créer des 

tâches périodiques ou tâches apériodiques (déclencheurs d’événements), ce qui permettent les 

classes de base Processus, ProcessusPériodique, et ProcessusDeclenche (voir figure 13). Chaque 

objet actif hérite de l’une de ces classes selon le type ‘activation de l’objet. A l’instanciation de 

l’objet, une tâche sera lancée, exécutant une méthode virtuelle de la sous-classe correspondante à 

l’objet actif. 

A fin de gérer les flots de données entre objets actifs et au lieu de protéger l’accès aux méthodes 

des objets actifs, un objet partagé ayant une interface générique, la classe 

ElementCommunication a été mise en place. Deux méthodes, lire() et ecrire() permettent de 

mettre à jour ou de récupérer la valeur de cette variable partagée. Ensuite, selon les besoins, le 

concepteur parmi les objets de son exécutifs. Par exemple, la classe variableProtgee, qui 

implémente cette interface, associe un mécanisme de protection de données (sémaphore 

d’exclusion mutuelle) à travers ces méthodes, garantissant qu’un processus ne pourra passer outre 

et la classe BoiteAuxLettres utilise une file de message.  



Chapitre 4 : Démarche de conception proposée   

 - 64 -

 

Figure 13: Bibliothèque d’objets VxWorks 

La modèle présenté par la figure 13 souffre d’un manque de relation et de cohérence entre les 

entités, ceci est du à la difficulté du passage d’un code écrit en langage fonctionnel C à un modèle 

orienté objet. Ce qui nous a laissé penser à ajouter des relations et des associations entre certaines 

entités séparées tels que « Horloge », « WatchDog », « Evnet » et « MeanOfCommunication » .  

4.2. Modèle dynamique 

Suite à la description statique de la structure de l’RTOS, une définition de l’aspect 

comportemental du système s’avère très importante. Un modèle illustrant l’évolution d’une seule 

tâche dans le temps est nécessaire pour lui donner l’aspect déterminisme. Ce modèle serait ne 

supporte pas plusieurs tâches, il est différent du modèle d’ordonnancement. Ceci peut être 

modélisé en définissant le comportement d’une tâche ou encore en exprimant la dépendance 

d’une tâche avec une autre ou en indiquant le taux de progression d’une tâche dans le temps. 



Chapitre 4 : Démarche de conception proposée   

 - 65 -

4.2.1. Modélisation du comportement d’une tâche 

Etant donné que les machines d’états finies ou encore dit FSM (Final State Machine) présentent,  

par rapport à une entité, ses états possibles et ses transitions qui le font évoluer et spécifier ce que 

doit faire l’objet en réponse aux événements (ou traitements) qui lui sont appliqués, une FSM est 

attachée dans [SHO04] à l’entité Task, elle présente les états possible que peut subir une tâche 

suite au déclenchement d’un événement. 

 

Figure 14: Conception de la variation de l’état d’une tâche à l’aide des FSM 

La figure 14 illustre l’évolution détaillée de l’état d’une tâche d’un RTOS multi tâches, les 

valeurs qui lui sont associées sont présentées par les états suivants : 

  Ready : En attente de l’acheminement d’une autre tâche 

 Suspended : Soit la tâche est terminée ou elle est arrêtée par l’Ordonnanceur 

 Waiting : En attente de la réalisation d’un événement 

 Running : en cours d’exécution 



Chapitre 4 : Démarche de conception proposée   

 - 66 -

4.2.2. Définition de la sémantique opérationnelle. 

Une solution pour modéliser le comportement d’une tâche a été envisagée dans [BEN06] dans le 

domaine de la robotique mais tout en utilisant un digramme UML à aspect statique. Elle consiste 

à illustrer la dépendance d’une tâche avec une autre (Precedes). En effet, une contrainte sur le 

démarrage ou la fin de la seconde activité est précisée : start-to-start, finish-to-start et finish-to-

finish (PrecedenceKind). L’exécution d’un processus consiste à réaliser toutes les tâches qui le 

composent. Le processus est donc terminé quand toutes les tâches qui le composent sont 

achevées. Une tâche ne peut être commencée que si les tâches dont elle dépend sont commencées 

(précédence start-to-start) ou terminées (précédence finish-to-start). Au fur et à mesure du 

développement, le taux de réalisation d’une activité augmente jusqu’à ce qu’elle soit terminée 

(voir figure 15). Elle ne peut être terminée que si les tâches précédentes de type finish-to-finish 

sont terminées. C’est le développeur qui décide de quelle tâche commencer, continuer ou 

terminer.  

 

Figure 15: Modèle étendu pour la définition de la sémantique opérationnelle 

Pour compléter la sémantique opérationnelle, il est nécessaire de compléter le modèle précédent 

avec les informations liées à l’état des tâches. Un attribut progress  est ajouté sur la méta classe 

task. Il présente le taux de progression d’une tâche : non commencée (-1), en cours (0..99), ou 

terminée (100).  

5. Modélisation de l’Ordonnanceur 

L’ordonnanceur est considéré comme étant une pièce fondamentale d’un système temps réel. Il 

est en charge de définir le séquencement possible d’un ensemble de tâches exécutables par un 



Chapitre 4 : Démarche de conception proposée   

 - 67 -

processeur. Par « possible » on veut dire que l’ordonnancement prend en compte les contraintes 

de dépendances (temporelles ou causales) et d’échéance aux quelles les tâches en question sont 

soumises. 

Pour modéliser cette composante indispensable de l’RTOS, plusieurs diagrammes peuvent être 

utilisé tels que le diagramme de classe servant à la description de l’ordonnanceur, le digramme de 

séquence modélisant un algorithme d’ordonnancement. 

5.1. Définition de l’Ordonnanceur 

Suite à la séparation de la structure de l’RTOS et de l’Ordonnanceur lors de la modélisation dans 

[SHO04], le modèle relatif à l’Ordonnanceur mentionnée dans la figure 16 est présenté par les 

entités suivantes : 

 schedulingPolicy : Cette entité définit la politique d’ordonnancement utilisé par 

l’RTOS pour élire le processus à exécuter. Cette politique est basée sur la priorité et le 

deadline des tâches. 

 schedulableEntity : Chaque entité présente une réponse spécifiant la concurrence 

d’une tâche en cours d’exécution et un trigger indiquant combien de fois chaque tâche 

devrait être exécutée. 

 executionEngine : Il s’agit d’une ressource active et protégée de type processeur 

réalisant l’ordonnancement. Elle spécifie sa politique d’ordonnancement comme par 

exemple le FIFO ainsi que le contexte selon le temps (c'est-à-dire le temps nécessaire 

pour copier le contexte de la tâche suspendue depuis les registres processeurs  vers la 

mémoire et lancer la tâche à exécuter). Elle représente la capacité du système pour 

réaliser une tâche.  

 TRessource : Elle est accédée durant l’exécution d’une entité de type 

schedulableEntity. Elle spécifie la politique de contrôle pour répondre à la demande de 

l’entité schedulableEntity. 

 Trigger : Il spécifie l’occurrence de l’événement qui cause l’exécution d’une entité de 

type schédulableEntity 

 realTimeSituationContext : Cette entité fournit le contexte d’analyse 



Chapitre 4 : Démarche de conception proposée   

 - 68 -

 Contexte : C’est le comportement qui peut être caractérisé par ses propres exigences en 

terme de qualité de services. Il possède les attributs suivants : Entry, activate et terminate. 

 

Figure 16: Diagramme de classe correspondant à la définition de l’Ordonnanceur 

Le diagramme utilisé précédemment est le diagramme de classe. Ce diagramme ne peut fournir 

qu’une vue statique du système, il est en fait incapable de donner une vue comportementale du 

système. Par ailleurs, pour combler ce manque, une description à l’aide des machines à états finis 

(Final state machine FSM) a été associé à l’entité Task dans [SHO04]. 

5.2. Modélisation d’un algorithme d’ordonnancement 

Dans [MAR06], une proposition consistait à modéliser un algorithme d’ordonnancement en 

utilisant le diagramme de séquence. La figure 17 présente la modélisation de l’algorithme 

d’Ordonnancement Rate Monotonic. En effet, Rate-monotonic scheduling [CLL73] est un 

algorithme d'ordonnancement temps réel en ligne à priorité constante. Il attribue la priorité la plus 

forte à la tâche qui possède la plus petite période. RM est optimal dans le cadre d'un système de 



Chapitre 4 : Démarche de conception proposée   

 - 69 -

tâches synchrones, indépendantes et à échéance sur requête avec un Ordonnanceur préemptif. De 

ce fait, il n'est généralement utilisé que pour ordonnancer des tâches vérifiant ces propriétés. 

Pour mettre l’accent sur l’aspect temps réel lors de l’ordonnancement, une intégration d’un 

certain nombre de stéréotypes a été faite tels que : 

 Le stéréotype "SaResource" du profil SPT représente un genre de ressource protégée (par 

exemple, un sémaphore) qui est consultée pendant l'exécution d'une tâche. Il peut être 

partagé par des actions concurrentes multiples, comme il doit être protégé par un 

dispositif de verrouillage. L'étiquette "SAaccessControl" représente la politique de 

contrôle d'accès pour manipuler des demandes des travaux d'établissement du programme 

(dans notre modèle, ` PriorityInheritance '). 

 Le stéréotype "SAschedRes" du profil SPT représente une tâche. La Tâche a été indiquée 

en tant qu'active où chacun de ses instances (T1, T2 et T3) a son propre « thread » et peut 

lancer une activité. 

 Le stéréotype "SAscheduling" du profil SPT représente un Ordonnanceur qui est 

responsable de traiter les demandes d’un service de la part des clients. Ce stéréotype est 

basé sur la politique appropriée de contrôle d'accès pour ce service. Si un e service est 

occupé, alors la réponse peut demeurer en suspens jusqu'à ce que l'accès soit possible. 

L'étiquette "SAschedulingPolicy" représente alors l'ensemble de règles pour assigner le 

temps processeur à un ensemble des tâches à exécuter par le système.  

Pour mettre l’accent sur la relation entre tâche/ressource, un certains nombre d’attributs et de 

méthodes est rajouté au modèle d’ordonnancement des tâches tels que : 

 Idle : pour dire qu’un processus est en repos 

 Busy : lorsqu’il s’agit d’une ressource occupée 

 Delayed : lorsqu’une tâche dépasse le delai  

 Release : libérer une ressource 

 Awake : tâche réveillée 

 Assign : attribuer 



Chapitre 4 : Démarche de conception proposée   

 - 70 -

 

Figure 17 : Diagramme de Séquence illustrant l’algorithme d’Ordonnancement Rate Monotonic 



Chapitre 4 : Démarche de conception proposée   

 - 71 -

L’handicape de cette proposition réside au niveau de l’existence d’un grand nombre 

d’algorithmes d’ordonnancement, et par suite le designer va se trouver en premier lieu face à la 

modélisation de plusieurs algorithmes d’Ordonnancement à l’aide d’une suite de diagrammes de 

Séquence et en deuxième lieu, face à la problématique d’intégration de l’ensemble de ces 

diagramme dans le processus MDA.  

6. Modèles proposés  

Nous rappelons que l’approche descendante utilisée dans [SHO04] fait une séparation explicite 

lors de la modélisation de la structure de l’RTOS et de l’ordonnanceur sans définir les 

sémantiques temporelles. Cette approche se base sur deux diagrammes à aspect statique. 

Pour l’approche ascendante issue de [DAV06], elle se base sur le même diagramme et ne touche 

pas l’aspect comportemental. 

Pour notre approche, nous décrivons la structure de l’RTOS à travers un diagramme de classe qui 

inclut la définition de la sémantique opérationnelle pour présenter la structure de l’RTOS. Nous 

définissons ensuite le comportement d’une tâche, afin d’assurer la cohérence entre les différents 

diagrammes UML. Pour aboutir au modèle d’ordonnancement, nous définissons les variations 

sémantiques temporelles et transitionnelles relatives aux différents états d’un processus temps 

réel. 

Le tableau 4 donne une étude comparative entre différentes approches qui peuvent être exploitées 

lors de la modélisation d’un RTOS déjà citées précédemment, il permet de positionner notre 

démarche par rapport à elles.  



Chapitre 4 : Démarche de conception proposée   

 - 72 -

Modèle Description de la structure de l’RTOS Description de l’Ordonnanceur 

OSEK  Utilisation du diagramme de classe 

 Modélisation de la variation des 
états d’une tâche à l’aide des FSM 

 Manque de cohérence entre les 
diagrammes 

 

 Diagramme de classe → Aspect 
statique 

 Indépendance entre la description de 
l’Ordonnanceur et la structure de 
l’RTOS 

VxWorks  Utilisation du diagramme de classe 

 Entités séparées 

 Possibilité d’intégration d’attribut 
couvrant l’évolution dans le temps  

 Possibilité d’utilisation des 
relations de réciprocité  

 Absence totale de l’aspect 
comportemental 

 Pas de définition de modèle 
d’ordonnancement 

 

Approche 
proposée 

 Utilisation du diagramme de classe 

 Définition des états possibles 
d’une tâche à l’aide des 
statecharts → Garantir la 
cohérence entre les diagrammes 

 Définition et implantation des 
variations sémantiques associées aux 
statecharts 

Tableau 4 : Bilan récapitulatif des différentes approches de modélisation des RTOS 

6.2. Modèle associé la structure d’un exécutif temps réel 

Deux diagrammes sont proposés pour la description de la structure de l’ordonnanceur, un 

diagramme de classe décrivant les principales composantes de l’RTOS, et un diagramme d’états 

transition est associé à l’entité tâche pour modéliser son aspect comportemental. 

Nous nous basons alors sur le modèle présenté dans la figure 11 tout en ajoutant quelques 

attributs tels que periode, dateFirstActvation, deadline et duration au niveau de l’entité Task. 

Nous tenons à respecter notamment la spécification d’un exécutif temps réel présentée au niveau 

du premier chapitre. Nous intégrons aussi dans notre modèle d’autres entités telles que Process, 

Prcedes qui sont déjà mentionnées au niveau de la figure 15. Le modèle final issu est alors 

conforme à la figure 18. 



Chapitre 4 : Démarche de conception proposée   

 - 73 -

 

Figure 18 : Modèle statique de la définition de la structure de l’RTOS proposé 

Vu qu’un patron de conception ou encore un design pattern est la formalisation d’une approche 

pour résoudre un problème commun dans un contexte particulier [Dou98] et que son utilisation 

lors de la conception d’un logiciel permet de réutiliser des solutions construites et validées pour 

des problèmes similaires, trois patrons pour la fiabilité et la sécurité des systèmes temps réel 

peuvent être utilisés : 

 Patron chien de garde : Les chiens de garde permettent d’associer une routine à 

l’interruption de l’horloge du système. Ainsi, la routine s’exécute une fois le délai expiré. 

 Patron de surveillance et action : Ce patron possède un système d’action (qui effectue les 

actions destinées à contrôler un processus), un système de surveillance (qui garde une 



Chapitre 4 : Démarche de conception proposée   

 - 74 -

trace de ce que le système d’action doit faire et qui surveille l’environnement physique de 

l’application) et un système qui contrôle les deux premiers systèmes 

 Patron de directives de sécurité : Le patron de directives de sécurité utilise un 

coordinateur central pour la surveillance de la sécurité et la tolérance aux fautes du 

système. Il fonctionne comme un chien de garde intelligent qui traque et coordonne toute 

la surveillance du système en saisissant les informations relatives aux délais des chiens de 

garde, aux erreurs logicielles et aux fautes détectées par les systèmes de détection du 

patron de surveillance et action. En cas de dysfonctionnement, le système des directives 

de sécurité agit de façon à remplacer le sous-système défaillant par des actions de 

recouvrement effectuées par un système redondant 

Nous associons à l’entité Task un diagramme d’états transitions décrivant une vue 

comportementale de l’état d’une tâche, au cours de la deuxième phase de notre proposition. Nous 

exprimons quelques règles OCL relatives à chaque état dans le but d’atteindre la qualité 

correction du comportement du système (voir figure 19). 

 

Figure 19: Diagramme d’états transitions relatif à l’entité tâche annoté avec des contraintes 

OCL 



Chapitre 4 : Démarche de conception proposée   

 - 75 -

6.3. Modèle associé à l’ordonnanceur 

Nous rappelons que nous avons déjà utilisé un diagramme de classe pour la définition des 

différentes composantes de l’RTOS. Nous avons associé à l’entité Task, qui constitue le cœur du 

modèle, un diagramme d’états transitions. Vu que ce diagramme présente des points de variations 

sémantiques dont leurs définitions sont laissées à la charge du designer, nous proposons de les 

préciser et de les expliciter ultérieurement dans la phase de définition des sémantiques 

temporelles. Cette phase qui nous a amenée au modèle d’ordonnancement, sera détaillée dans le 

chapitre suivant. 

7. Conclusion 

La conception d’application selon l'approche MDA débute par l'analyse du problème, modélisé 

d'un point de vue abstrait. MDA définit pour cette phase la notion de PIM. Cette étape de 

modélisation sur laquelle nous avons mis l’accent, s'appuie sur le langage UML. Nous avons plus 

particulièrement focalisé notre étude sur deux des diagrammes les plus représentatifs : le 

diagramme de classes et celui d’états transitions. Le digramme de classe décrit la structure d’un 

RTOS. Un diagramme d’états transitions est associé à l’entité Task décrivant l’évolution de son 

état au cours du temps. Nous lui définissons dans le chapitre suivant la variation des sémantiques 

dans le but de caractériser l’Ordonnanceur. 

 



Chapitre5: Implantation des statecharts et Génération de code  

 - 76 -

C H A P I T R E   
 

          5 
 

 

 

 

 

 

 

Implantation des statecharts 

et Génération de Code 



Chapitre5: Implantation des statecharts et Génération de code  

 - 77 -

1. Introduction 

Dans le chapitre précédent, nous avons étudié la façon dont nous spécifions en UML la structure 

d’un RTOS associé à un modèle d'application. A partir du digramme de classe, nous définissons 

les états possibles de l’entité « Task » sous forme d’un diagramme d’états transitions. Dans ce 

chapitre, nous définissons les points de variations sémantiques que présente ce diagramme tout en 

ajoutant des extensions sous la forme d'un profil qui contient des stéréotypes utilisés pour 

l'annotation des éléments du modèle. Ces annotations, qui décrivent des informations liées à la 

définition de la sémantique temporelle et transitionnelles. 

Une fois cette tâche accomplie, des solutions techniques à savoir l’énumération et la réification 

doivent être mises en place pour permettre l’implantation des statecharts. Le modèle final issu va 

correspondre au modèle cible lors de la transformation des modèles. 

Toujours dans une même optique de la démarche MDA, nous finissons par la génération 

automatique du code. 

2. Modélisation des variations sémantiques 

Dicté par son caractère généraliste, UML définit un ensemble de points sémantiques non définit 

[ARN07] explicitement. C'est alors dans le contexte d'une méthodologie donnée, et s'appuyant 

sur UML comme langage de modélisation, que le sens de chacun des points de variation 

sémantique doit être précisé. 

Les points ouverts de variations sémantiques doivent être précisés clairement et volontairement 

par tous les outils et méthodes affirmant s’appuyer sur UML car dans le cas contraire, il ne serait 

pas possible de conclure sur le sens réel d'un quelconque modèle UML 

Le tableau suivant issu de [FRA04] synthétise les différentes variations sémantiques des 

statecharts tels qu’ils sont décrits dans UML 2.0. 



Chapitre5: Implantation des statecharts et Génération de code  

 - 78 -

Variations Type Dépendances Portée 

TimeOut syntaxique Sémantique temporelle Transition 

Transitions inter-niveaux syntaxique --- Automate 

Référence à un état syntaxique --- Transition 

Evénement conditionnel syntaxique --- Transition 

Etat historique syntaxique --- Automate 

Sémantique temporelle sémantique --- Application 

Sélection des événements sémantique --- Automate 

Durée des événements sémantique Evénement  différé Automate 

Priorités entre transition sémantique Plus interne Automate 

Non déterminisme Sémantique --- Automate 

Tableau 5 : Récapitulatif des différents points de variations [FRA04] 

A fin de spécifier les différents points de variations associées aux statecharts, il est nécessaire de 

disposer d’un méta-modèle permettant d’exprimer les différents choix possibles. Ce méta-modèle 

est illsustré par la figure 20. La question de la sémantique temporelle est représentée par 

l’élément TimeProgression qui peut prendre deux valeurs : synchrone ou asynchrone. Les 

variations concernant la gestion des évènements sont représentées par les éléments 

EventSelection et EventChoice montrant respectivement la sélection de l’événement et son choix. 



Chapitre5: Implantation des statecharts et Génération de code  

 - 79 -

 

Figure 20 : Récapitulatif des différents points de variations [FRA04] 

En ce qui concerne les variations relatives aux transitions, elles sont présentées par les éléments 

TransitionSelection et TransitionChoice. L’avantage de cette solution est qu’elle permet une 

grande flexibilité dans la définition de la sémantique associée aux statecharts. En effet les 

portions de code associées à la progression de l’automate ne sont pas figées et peuvent être 

facilement modifiées dans le modèle adéquat. La sémantique des statecharts est résumée en une 

procédure, appelée step() qui correspond à la réaction de l’automate face à l’occurrence d’un 

évènement. Cette procédure peut se résumer à trois actions principales : sélectionner un 

évènement, sélectionner une transition parmi celles que déclenche l’évènement et tirer la 

transition choisie. 

procedure step() 

begin 

eventSet := eventPool.select(); 

anEvent := eventSet.choice(); 

transitionSet := getFirableTransition(event).select(); 

aTransition := transitionSet.choice(); 



Chapitre5: Implantation des statecharts et Génération de code  

 - 80 -

aTransition.fire(); 

end. 

Figure 21: La procédure Step en pseudo-code[FRA04] 

D’après la figure 21, la procédure step exige la sélection d’un élément dans un ensemble en 

fonction de différents critères de priorités. Dans la cas des évènements par exemple, les différents 

critères de priorités (évènements internes/externes, ordre dans la file, etc.) permettent de 

sélectionner un sous-ensemble d’évènements. Il peut être nécessaire cependant d’avoir à 

départager plusieurs évènements parmi ce sous-ensemble. Deux politiques peuvent être évoquées: 

soit le choix de l’évènement se fait de façon aléatoire, par un tirage au sort par exemple, soit de 

façon arbitraire si l’on fixe l’évènement choisi. 

2.1. OCL pour qualifier les points de variation sémantique 

Les différentes étapes de la procédure step() définissent le noyau de la sémantique des statecharts 

utilisé dans UML. Chacune de ces étapes correspond à une méthode qui peut être caractérisée à 

l’aide du langage OCL. 

La sélection des évènements peut-être envisagée de nombreuses façons : FIFO, LIFO . . . . Pour 

notre cas il s’agit d’une file de priorité : l’événement tiré est celui ayant la priorité la plus haute. 

Quelle que soit la politique choisie, la procédure manipule toujours les mêmes éléments : un 

ensemble d’évènements sur lequel elle en extrait un sous ensemble (voir figure 22).  

context EventManagement 

def : eventPool : Set 

inv : eventPool->select(evt : Event | event->isOver())->isEmpty() 

context : PRIORITY::nextEvent() : Set 

pre : eventPool->notEmpty() 

post : return = self.getAllAttributes()-> select(name='priorite').upper 

context : LIFO::nextEvent() : Set 

pre : eventPool->notEmpty() 

post : return = eventPool@pre->asSequence()->last() 

context : FIFO::nextEvent() : Set 

pre : eventPool->notEmpty() 

post : return = eventPool@pre->asSequence()->first() 

Figure 22 : Contraintes OCL sur la gestion des évènements 



Chapitre5: Implantation des statecharts et Génération de code  

 - 81 -

2.2. Un Profil UML pour spécifier les choix sémantiques 

Dans le cadre de notre application, un profil UML va permettre de définir une extension d’UML 

autorisant l’utilisateur à décorer les statecharts avec les propriétés adéquates. Le profil UML 

nécessaire doit permettre de préciser les éléments qui déterminent le comportement de la 

procédure step(). Il faut donc spécifier comment sélectionner un évènement, comment 

sélectionner une transition, et quelle est la sémantique associée à la progression de l’automate. La 

figure 23 ci-contre présente une représentation de ce profil. 

 

Figure 23 : Profil UML pour préciser les choix sémantiques associés aux statecharts [FRA04] 

Cependant les tagged values ne suffisent pas. En effet, une telle étiquette n’est qu’une paire 

(nom, valeur) qui ajoute une nouvelle propriété à un élément de modélisation. Ce système ne 

permet pas de faire le lien entre la sélection des évènements dans la pile et le code associé à cette 

opération. Pour cela, il est donc nécessaire de décrire dans un modèle spécifique le code de ces 

opérations. 

Les modèles correspondant au méta-modéle proposent donc un certain nombre de solutions pour 

chacune des étapes de la procédure step(). Chaque solution est identifiée par un nom, et c’est ce 

nom qui sera associé à la tagged value correspondant dans le modèle. 

3. Implantations des statecharts 

Comme nous venons de dire la spécification des choix sémantiques est insuffisante. De ce fait, 

l’implantation des statecharts constitue une phase primordiale au cours de notre démarche 



Chapitre5: Implantation des statecharts et Génération de code  

 - 82 -

proposée. Le modèle final issu, après cette étape, correspondra au modèle cible lors de la 

transformation des modèles. 

3.1. Techniques d’implantation des statecharts 

Un ensemble d’approches [LUI03, PIN04]  a été proposé dans la littérature afin d’implémenter 

les statecharts, à savoir la spécialisation de fonctions et l’utilisation d’interpréteur générique muni 

d’un ensemble de structures de données spécifiant le comportement. Ces approches sont 

gourmandes en terme d’utilisation du processeur et de la mémoire. Elles sont aussi difficiles à  

maintenir.  

Pour notre application nous optons pour la technique la plus simple, celle basée sur l’énumération 

et la réification. Plusieurs designs pattern sont spécialisés pour la mise en œuvre de ces 

techniques. 

En effet, la réification consiste à matérialiser un concept par un objet et de le manipuler 

concrètement. Il s’agit de transformer une entité qui n’est pas un objet en objet. Elle peut être 

utile dans les méta-applications. Cette technique présente un outil graphique et mathématique de 

modélisation. Dans le cas des STRE, ils restent restreints pour la modélisation de l’aspect 

concurrence et ordonnancement de l’RTOS. L’énumération consiste à attribuer les valeurs 

énumérées que peut prendre un concept 

3.1.1. Enumération des états et des événements 

L’état de l’entité Task prend ses valeurs de l’ensemble :{created, waiting, ready, running, 

stopped}. Pour la représentation des événements, nous faisons recours à une méthode 

processEvent (evt :Event) où evt est un type énuméré. Pour la représentation de la réaction à un 

événement, l’objet Task est doté d’une méthode processEventPlay qui détermine le 

comportement en fonction de l’état courant d’une tâche. 

3.1.2. Réification des événements  

Le concept de réification peut être appliqué aux différents évènements au niveau des statecharts. 

En effet, chaque évènement est considéré comme action de l’automate. Vu que le pattern 

Command [FOW97] permet de spécifier, stocker et exécuter des actions à des moments différents 

(les commandes exécutées peuvent être stockées ainsi que les états des objets affectés), il peut 



Chapitre5: Implantation des statecharts et Génération de code  

 - 83 -

être utiliser pour décrire les événements agissant sur l’état d’un processus. Le résultat de la 

réification des éventements est illustré par la figure 24. 

 
Figure 24 : Application du pattern command sur l’entité Task 

 3.1.3. Réification des états 

Le principe de la réification des états consiste à séparer le comportement lié à un état dans objet. 

Le pattern State [FOW97] semble une solution efficace pour notre cas (voir figure 25). En effet 

ce pattern permet, lorsqu’un objet est altéré de changer son comportement changé. Le 

changement d’état peut parfois poser des problèmes dans leurs gestions, le Pattern State permet 

de pallier à ce problème de manière simple et rapide.  

State doit comporter des classes précises participantes à ce Pattern : 

 Context  

 State 

 ConcreteState 



Chapitre5: Implantation des statecharts et Génération de code  

 - 84 -

On utilise State lorsque : 

 Le comportement d'un objet dépend de son état, qui change à l'exécution. 

 Les opérations sont constituées de parties conditionnelles de grande taille. 

 
Figure 25 : Application du pattern State sur l’entité Task 

3.1.4. Réification des états et des évènements 

Il s’agit lors de cette phase de réifier les états et les événements en même temps et ce en 

appliquant les deux patterns State et Command. Cette solution représente d’une façon souple de 

l’automate mais augmente énormément le nombre de classes. La réification des états et des 

événements nous amène au modèle présenté par à la figure 26. 



Chapitre5: Implantation des statecharts et Génération de code  

 - 85 -

 
Figure 26 : Application du pattern state et du pattern Command sur l’entité Task 

3.2. Progression de l’automate 

A la lumière des solutions présentées précédemment et en vue d’assurer la progression de 

l’automate, il est nécessaire de mettre l’accent sur l’aspect déterministe du système, c'est-à-dire il 

est indispensable de déterminer l’état courant de l’automate et le comportement à adopter en 

fonction de l’événement survenu. 

Quand il s’agit de l’énumération des états et des événements, le code réagissant la progression de 

l’automate est localisé dans la méthode processEvent(). Quant à l’énumération des états et la 

réification des événements, le code sera reparti entre la méthode processEvent() et execute() de 

chaque classe. S’il s’agit de la réification des états et l’énumération des événements, le code sera 

réparti entre la méthode processEvent() et la méthode processEventPlay() de chaque classe état. 

Finalement, lorsque nous réifions les états et les évènements, Le code est réparti entre la méthode 



Chapitre5: Implantation des statecharts et Génération de code  

 - 86 -

processEvent() de la classe principale, les méthodes processEvent() des classes états et les 

méthodes execute() des classes évènements. 

Les solutions de réifications et d’énumérations ne nous permettent pas également de représenter 

la notion de file de messages relative à la progression de l’automate. Le temps n’est pas pris en 

considération. Pour surmonter ce problème, l’utilisation du patron active Object [FOW97] est 

alors indispensable. 

En effet ce patron dissocie la tâche qui reçoit une requête de celle qui la traite. La mise en oeuvre 

des différentes stratégies d’affectation peut ainsi être réalisée indépendamment du 

fonctionnement des clients des objets actifs (qui se contentent de remettre un travail à effectuer à 

un relais offrant la même interface que l’objet réel) et de celui des objets réels qui exécutent ces 

travaux dans une tâche spécifique. Ce patron est donc efficace pour la réalisation des différentes 

politiques de parallélisme.  

 
Figure 27 : Application du pattern Active Object sur l’entité Task 

3.3. Modèle final 

Suite à l’application de la réification des états et des événements, ainsi que l’illustration de 

l’évolution de l’automate, le modèle final correspondant au modèle cible au niveau PIM de 

l’approche MDA est représenté par le modèle ci-dessous : 

 



Chapitre5: Implantation des statecharts et Génération de code  

 - 87 -

 
Figure 28 : Modèle d’ordonnancement issu de l’implémentation des statecharts  

Ce modèle d’ordonnancement, ainsi que le modèle proposé pour la description de l’RTOS 

mettent en œuvre l’adéquation Algorithme Architecture. En effet, si ces deux modèles sont 

intégrés à un profil déjà existant et tenant compte de l’application et de l’architecture, cette 

adéquation sera explicite. La communication entre l’application et l’RTOS et l’application sera 

assurée via l’entité Task. Pour la communication entre l’RTOS et l’architecture, elle sera identifié 

grâce aux entités ressource et horloge.  

4. Génération de Code 

Notre objectif consiste à transformer un modèle source XML obtenu automatiquement à partir de 

notre modèle source, en un modèle cible XML. Pour réaliser les transformations, nous nous 

appuyons sur un modèle de transformation en langage ATL. Pour décrire le modèle à 

transformer, nous utilisons le langage KM3, qui permet de définir des modèles selon le méta-

modèle MOF sous une forme textuelle simplifié.  



Chapitre5: Implantation des statecharts et Génération de code  

 - 88 -

Il est à noter que l’exemple utilisé lors de la transformation est pris adéquatement étant donné que 

l’objectif de notre travail est de montrer juste la faisabilité de l’utilisation de l’IDM pour 

l’intégration de la modélisation de l’RTOS lors de la conception des STRE. 

4.1 Modèle source 

Le modèle source que nous transformons correspond au diagramme de classe présenté par la 

figure 18. Le code correspondant en XMI, basé sur XML offre une structure arborescente à notre 

modèle en présentant les classes et les attributs sous forme textuelle. Nous obtenons le code 

présenté ci-dessous : 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns="Xml"> 
   
  <RtosKernel name="RTOSCES"> 
    <Process idProcess="P1" > 
              <Task idTask="T1" priority="1" taskState="create" 
dateFirstActivation="0" deadline="12" duration ="10" periode="2"  
ResponseTime="12" Periodicity="1"> 
   <TaskContext/> 
   <Ressource ressourceProprety="Processor" action="use"/> 
   <Prcedes kind="starttostart"/> 
   <MeanOfCommuinication> 
    <ProtectedVar> 
     <Mutex/> 
    </ProtectedVar> 
    <LettreBox> 
     <FileMessage/> 
    </LettreBox> 
    <TCPSocket/> 
   </MeanOfCommuinication> 
   <event nature="preemp"/> 
   </Task> 
    </Process> 
     
    <ISR category="aa"> 
  <WatchDog/> 
  <Ressource ressourceProprety="Processor" action="use"/> 
   <MeanOfCommuinication> 
    <ProtectedVar> 
     <Mutex/> 
    </ProtectedVar> 
    <LettreBox> 
     <FileMessage/> 
    </LettreBox> 
    <TCPSocket/> 
   </MeanOfCommuinication> 
 </ISR> 
 <event nature="preemp"/> 
  </RtosKernel> 
  <AlarmAction> 



Chapitre5: Implantation des statecharts et Génération de code  

 - 89 -

   <Alarm> 
    <Counter maxAllowValue="30" minCycle="3"/> 
     <Task idTask="T1" priority="1" taskState="create" 
dateFirstActivation="0" deadline="12" duration ="10" responseTime="2"  
periodicity="1" > 
   <TaskContext/> 
   <Ressource ressourceProprety="Processor" action="use"/> 
   <Prcedes kind="starttostart"/> 
   <MeanOfCommuinication> 
    <ProtectedVar> 
     <Mutex/> 
    </ProtectedVar> 
    <LettreBox> 
     <FileMessage/> 
    </LettreBox> 
    <TCPSocket/> 
   </MeanOfCommuinication> 
   <event nature="preemp"/> 
   </Task> 
    <event nature="preemp"/> 
   </Alarm> 
  </AlarmAction>  

</xmi:XMI> 

Figure 29 : Modèle source en XMI 

Afin de modéliser notre méta-modèle source (métamétamodèlisation), ce dernier doit être écrit en 

KM3 (Kernel MetaMetaModel) déjà décrit dans le chapitre 3, et qui se base sur la notion de 

packages, classes et références qui seront par la suite manipulés  par ATL. Ce méta-modèle est 

décrit à l’aide de la figure ci contre : 

package RTOSStructure { 
 
 class RtosKernel { 
  attribute name : String; 
  reference Process container : Process1 oppositeOf RTOS; 
   
  reference ISR container : ISR1 oppositeOf RTOS11; 
  reference event container : Event1 oppositeOf RTOS2; 
 } 
 
 class Process1 { 
  attribute idProcess : String; 
  reference RTOS[0-1] : RtosKernel oppositeOf Process; 
  reference Task container : Task1 oppositeOf RTOSModel; 
   
 } 
  
 class Event1 
 { 
attribute nature : String; 
  reference RTOS2[0-1] : RtosKernel oppositeOf event;  
 } 



Chapitre5: Implantation des statecharts et Génération de code  

 - 90 -

  
  
  
 class ISR1 { 
 attribute category : String; 
  reference RTOS11[0-1] : RtosKernel oppositeOf ISR; 
  reference WatchDog [1-*] ordered container: WatchDog1; 
  reference Ressource [1-*] ordered container: Ressource1; 
  reference MeanOfCommuinication [1-*] ordered container: 
MeanOfCommuinication1; 
   
 } 
 class WatchDog1{} 
 class Task1 { 
  attribute idTask : String; 
  attribute priority : String; 
  attribute taskState : String; 
  attribute dateFirstActivation : String; 
  attribute deadline : String; 
  attribute duration : String; 
  attribute periode : String; 
  attribute ResponseTime : String; 
  attribute Periodicity : String; 
  reference RTOSModel[0-1] : Process1 oppositeOf Task; 
  reference TaskContext [1-*] ordered container: TaskContext1; 
  reference Prcedes [1-*] ordered container: Prcedes1; 
  reference Ressource [1-*] ordered container: Ressource1; 
  reference MeanOfCommuinication [1-*] ordered container: 
MeanOfCommuinication1; 
  reference event [1-*] ordered container: Event1; 
   
   
 } 
 class TaskContext1 
 {} 
 class Prcedes1 
 { 
 attribute kind : String; 
 } 
 class Ressource1 
 { 
 attribute ressourceProprety : String; 
 attribute action : String; 
 } 
  
 class MeanOfCommuinication1{ 
     reference ProtectedVar [1-*] ordered container: ProtectedVar1; 
 reference LettreBox [1-*] ordered container: LettreBox1; 
 reference TCPSocket [1-*] ordered container: TCPSocket1; 
 } 
 class ProtectedVar1{ 
 reference Mutex [1-*] ordered container: Mutex1; 
 } 
 class Mutex1{} 
 class LettreBox1{ 
 reference FileMessage [1-*] ordered container: FileMessage1; 
 } 



Chapitre5: Implantation des statecharts et Génération de code  

 - 91 -

 class FileMessage1{} 
 class TCPSocket1{} 
 class AlarmAction { 
 reference Alarm [1-*] ordered container: Alarm1; 
}  
 class Alarm1{ 
 reference Counter [1-*] ordered container: Counter1; 
 reference Task [1-*] ordered container: Task1; 
 reference event [1-*] ordered container: Event1; 
 } 
 class Counter1{ 
 attribute maxAllowValue : String; 
 attribute minCycle : String; 
 } 
  
} 
 
package PrimitiveTypes { 
 datatype String; 
} 

Figure 30 : Méta-modèle source en KM3 

4.2 Modèle cible  

C’est le modèle que nous voulons obtenir après l’exécution des transformations appliquées sur le 

modèle source. Il doit être conforme au méta-modèle décrit dans la figure 31: 

package RTOSSchudeler { 
 
 class shudeler { 
 reference proxy [1-*] ordered container: Proxy; 
      reference task [1-*] ordered container: Task; 
      reference eventpool [1-*] ordered container: EventPool;           
        
     } 
 class Proxy {} 
  
 class Task { 
      reference abstractstate [1-*] ordered container: AbstractState; 
      reference abstractevent [1-*] ordered container: AbstractEvent; 
      } 
 class AbstractState { 
  reference stopstate [1-*] ordered container: StopState; 
      reference waitstate [1-*] ordered container: WaitState; 
      reference readystate [1-*] ordered container: ReadyState; 
      reference createstate [1-*] ordered container: CreateState; 
      reference runnigstate [1-*] ordered container: RunnigState; 
      } 
  class EventPool { 
   reference abstractevent [1-*] ordered container: AbstractEvent; 
   } 
   class AbstractEvent { 
  reference createevent [1-*] ordered container: CreateEvent; 



Chapitre5: Implantation des statecharts et Génération de code  

 - 92 -

      reference waitevent [1-*] ordered container: waitEvent; 
      reference PreeemtEvent [1-*] ordered container: PreeemtEvent; 
      reference terminateevent [1-*] ordered container: TerminateEvent; 
      reference activateevent [1-*] ordered container: ActivateEvent; 
      reference startevent [1-*] ordered container: StartEvent; 
      } 
   class StopState{} 
   class WaitState{} 
   class ReadyState{} 
      class CreateState{} 
     class RunnigState{} 
     class CreateEvent{} 
     class waitEvent{} 
   class PreeemtEvent{} 
      class TerminateEvent{} 
            class ActivateEvent{} 
            class StartEvent {} 
  } 
 
package PrimitiveTypes { 
 datatype String; 

} 

Figure 31 : Méta-modèle cible en KM3 

Nous présentons maintenant un exemple de règle ATL écrite pour assurer la transformation, cette règle est utilisée 

pour assurer la génération automatique du modèle cible, elle est présentée par la figure 32. 

rule RTOSModeling{ 
 from 
  s : RTOSStructure!Task1  
 to 
  w : RTOSSchudeler!shudeler () 
   
} 

Figure 32 : Règle en ATL 

5. Conclusion 

Dans ce chapitre, nous avons rappelés les points de variations sémantiques des statecharts. Nous 

avons présentés les différentes techniques nécessaires pour les implémenter. Nous avons adopté 

une démarche d'intégration de design pattern dans le but de réutiliser des composants logiciels 

existants et éprouvés, plutôt que de recréer de nouveaux modèles pour l’implémentation des 

statecharts. 

Le modèle final relatif à la variation des différents états de l’entité «Task» correspond au modèle 

cible de la démarche MDA. 



Chapitre5: Implantation des statecharts et Génération de code  

 - 93 -

Nous avons en effet présenté les différentes étapes menant de l'élaboration du modèle cible de 

l’ingénierie dirigé par les modèles jusqu'à la génération du code final. 



Conclusion   

 - 94 -

Conclusion 
Le domaine des systèmes temps réel, et d'une manière générale celui du développement des 

RTOS, représente de vastes sujets d'étude, que nous avons souhaité réunir. 

Plus particulièrement, nous avons exposé dans ce mémoire de mastère les travaux concernant 

notre approche pour la prise en compte d’exécutif temps réel lors de la conception d’un STRE 

en optant pour une approche orientée objet. Notre objectif a été d'étudier et de mettre en 

pratique un paradigme récent : l'Ingénierie Dirigée par les Modèles. 

Nous avons présenté dans le Chapitre 1 le contexte scientifique dans lequel notre travail a été 

réalisé. Nous avons introduit les systèmes temps réel, en nous focalisant notamment sur 

l’étude des caractéristiques d’un RTOS. 

Dans le deuxième chapitre, nous avons effectué un tour d'horizon sur les tendances passés et 

actuelles utilisées dans le domaine de conceptions des STRE. Au cours de ce chapitre, l'étude 

de l'existant nous a montré que de nombreuses solutions avaient été proposées pour répondre 

à chacun de ces problèmes. Nous avons détaillé plus précisément deux approches : la notion 

de profil UML, ainsi que la définition de la sémantique temporelle et transitionnelle. 

De cette étude est ressorti que l'une des principales préoccupations dans ce domaine était 

l'intégration des caractérisations temps réelles comme le temps d'exécution et les contraintes 

temps réelles et par conséquent la prise en compte de l’RTOS relatif à l’architecture et 

l’application considérées.  

En partant de ce constat, il nous a semblé judicieux d'apporter notre contribution en générant 

automatique un RTOS tout en utilisant une démarche orientée objet. Cette démarche est mise 

en évidence au niveau du troisième chapitre, nous avons notamment présenté les éléments de 

l'ingénierie dirigée par les modèles, et plus particulièrement les spécifications MDA mises au 

point par l'OMG. 

Notre travail est découpé en deux parties, pour lesquelles nous avons également suivi une 

démarche proche du développement basé sur les modèles. 

La première partie, décrite dans le chapitre 4, détaille notre solution. Nous avons tout d'abord 

décrit un prototype pour la modélisation de la structure de l’RTOS à l’aide d’un diagramme 

de classe qui correspond au modèle source pour la démarche MDA.  



Conclusion   

 - 95 -

Au niveau du cinquième chapitre qui constitue la deuxième partie de notre travail, nous avons 

définit et implanté la variation des sémantiques associées aux statecharts relatifs à la l’état 

d’un processus dans le but de spécifier le modèle d’ordonnancement. Le modèle issu de cette 

phase correspond au modèle cible de la démarche MDA Nous avons notamment fini avec la 

génération automatique de code. 

Enfin, du point de vue des perspectives, nous souhaitons adapter notre travail à d'autres 

domaines que ceux directement liés aux RTOS dédiés au domaine de l’automobile.  

Nous pouvons enrichir le modèle de profil relatif au statecharts, grâce au mécanismes 

d'extensions propres à UML pour pouvoir concevoir tout un profil propre aux STRE intégrant 

ses différentes composantes : architecture (mono processeur, multi processeur voir même 

SoC), application et RTOS. 

Ainsi, il serait intéressant d'appliquer notre approche au développement d'applications de 

domaines tels que celui de la robotique ou celui  des réseaux de capteurs. Dans ces domaines, 

des entités de nature hétérogène sont amenées à communiquer, qu'il s'agisse de robots 

coopérants, et dont l'ensemble peut être vu comme un système réparti; ou qu'il s'agisse des 

réseaux de capteurs communiquant au sein d'un habitat « intelligent ». 

La mise au point d'extensions à ce  profil, contenant des stéréotypes propres à chacun de ces 

domaines, tirerait alors les mêmes avantages que ceux que nous avons montrés dans nos 

résultats. 

 

 

 

 



 

 - 96 -

Références 
 [ALA92] M. Alabau and T. Dechaize, "Ordonnancement temps réel par échéance". In T.S.I., 

volume 11. n.3, 1992. 

[ANN05] Anne-Marie Déplanche, Sébastien Faucou Institut de Recherche en 

Communications et Cybernétique de Nantes (UMR no 6597), "Les langages de 

description d’architecture pour le temps réel".  

[ARN07] Arnaud Cuccuru – Chokri Mraidha – François Terrier –Sébastien Gérard,  "Méta-

modèles et Points de Variation Sémantique". (SéMo'07) (Atelier adossé à la 

conférence francophone IDM'07 Toulouse les 29 et 30 mars 2007). 

[ATL05] ATLAS group LINA & INRIA Nantes, " ATL: Atlas Transformation Language 

ATL". Starter’s Guide  version 0.1 December 2005  

[BEN06] Benoit Combemale Sylvain Rougemaille, Xavier Crégut, Fedéric Migeon Marc 

Pantel Christine Maurel, "Expérience pour décrire la sémantique en Ingénierie des 

modèles". IDM6 LILE 26 28 juin 2006   

[BEZ03] Bézevin Jean, Erwan Breton, Grégoire Dupé, Patricx Valduriez, “The ATL 

Transformation-based Model Management Framework”, RESEARCH REPORT No 

03.08 09/09/2003 

[BUR90] A. Burns and A Wellings., "Real-Time Systems and their Programming Languages. 

Addison-Wesley", 1990. 

[CLL73] C.L. Liu & J.W. Layland, "Scheduling algorithms for multiprogramming in a hard 

real-time environment",Journal of the Association for Computing Machinery 20 

(1973), no. 1, p. 46-61 

[CNR88] G.D.R.T.R CNRS. "Le temps réel. Technique et Science Informatiques", 1988. 

[CWM01] "The Common Warehouse MetaModel (CWM), OMG Document ad/2001-02-01", 

Janvier 2001. 

[DAV06] Dave Thomas Claude Baron Bertrannd Tondu. "Ingénierie dirigée par les modèles 

appliquée à la conception d’un contrôleur de robot de service". IDM6 LILE 26 28 

juin 2006 



 

 - 97 -

[DEL03] Jérôme DELATOUR 2003. "Contribution à la spécification des systèmes Temps 

Réel L’approche UML/PNO" THÈSE Présentée au Laboratoire d’Analyse et 

d’Architecture des Systèmes (LAAS) Du CNR par Jérôme DELATOUR 2003 

[DOU98] B. Douglass. "Real-Time UML: Developing Efficient Objects for Embedded 

Systems. Addison-Wesley", 1998. 

[DUB05] Dubois Hubert, Gérard Sébastien, Mraidha Chokri. "Un Langage d’Action pour le 

développement UML de systèmes embarqués temps réel". CEA-List CEA Saclay 

91191 Gif-sur-Yvette Cedex France, IDM'05 Premières Journées sur l'Ingénierie 

Dirigée par les Modèles Paris, 30 juin, 1 Juillet 2005. 

[FOW97] FOWLER Martin. "Analysis patterns, reusable object models". 07-1997 

[FRA04] Franck Chauvel DEA d’Informatique  Sous la direction de M. Jean-Marc Jézéquel 

Rennes, "Génération de code à partir de modèles UML Avec points de variation 

sémantique". le 18 juin 2004 Université de RENNES 1 (IFSIC) 

[GAS06] "Gaspard Profile". DART team Laboratoire d'informatique fondamentale de 

Lille.Université des sciences et technologies de Lille. France 2006. 

[HAN95] C. Hanen and A. Munier. "Cyclic scheduling on parallel processors : An Overview, 

volume Scheduling theory and its applications", P. Chretienne et al., Chap 9. John 

Wiley & Sons, 1995. 

[IME05] Imène Benkermi, Amine Benkhelifa, Daniel Chillet, Sébastien Pillement, Jean-

Christophe Prevotet, François Verdier. "Modélisation niveau système de SoC 

reconfigurables".  RENPAR’16 / CFSE’4 / SympAAA’2005 / Journées Composants 

Le Croisic, France, 5 au 8 avril 2005 

[KMM05] "The Kernel Meta-MetModel (KM3) Manual", disponible dans le projet GMT 61, 

section ATL Documentation", Aout 2005. 

[LUI03] Luís Gomes, Anikó Costa. "From Use Cases to System Implementation: Statechart 

Based Co-design". Proceedings of the First ACM and IEEE International 

Conference on Formal Methods and Models for Co-Design (MEMOCODE’03). 

ISBN 0-7695-1923-7/03 2003 IEEE. 

[MAR06] "MARTE: the future OMG standard for MDE of RTES 1stworkshop on UML and 

AADL". ENST, Paris –October, the 9th2006 



 

 - 98 -

[MAR06] Maria Cruz Valiente, Gonzalo Genova, Jesus Carretero. "UML 2.0 Notation for 

Modeling Real Time Task Scheduling". Carlos III University of Madrid JOURNAL 

OF OBJECT TECHNOLOGY Published by ETH Zurich, Chair of Software 

Engineering ©JOT, 2006 

[MOF03] "QVT, MOF 2.0 Query / Views / Transformations RFP", OMG Document ad/ 

2003-08-03, Août 2003. 

[NIZ06] Nizar Idoudi, Claude Duvallet, Bruno Sadeg, Faiez Gargouri.  "Vers une méthode de 

conception des bases de données temps réel". GEI 2006 

[OCL04] Eric Cariou. "OCL Object Constraint Language".Département Informatique 

Université de Pau. http://web.univ-pau.fr/~ecariou/cours/mde/cours-ocl.pdf 

[OME05] Iulian Ober, Ileana Ober, Susanne Graf et David Lesens  VERIMAG. "Projet 

Omega : Un profil UML et un outil pour la modélisation et la validation de systèmes 

temps réel". Grenoble Université Paul Sabatier, Toulouse (IRIT) EADS SPACE 

Transportation 

[PAI06] Stéphane PAILLER. "Analyse Hors Ligne d’Ordonnançabilité d’ Applications 

Temps Réel comportant des Tâches Conditionnelles et Sporadiques". THÈSE 

Présentée au École Nationale Supérieure de Mécanique et d’Aérotechnique le 19 

Octobre 2006 

[PET62] "C.A. Petri. Kommunikation mit automaten". Bonn Institut für Instrumentelle 

Mathematik, Schriften des IIM Nr. 2, English translation, 1966, pages Vol.1, 

Suppl.1, 1962. 

[PIN04] G. Pinter and I. Majzik. "Impact of Statechart Implementation Techniques on the 

Effectiveness of Fault Detection Mechanisms". Proceedings of the 30th 

EUROMICRO Conference (EUROMICRO’04). 1089-6503/04  IEEE 

[PRI04] Prih Hastono, Stephan Klaus and Sorin A. Huss. "Real-Time Operating System 

Services for Realistic SystemC Simulation Models of Embedded System". 

Integrated Circuits and Systems Laboratory Department of Computer Science - 

Technische Universität Darmstadt Alexanderstr. 10, 64283 Darmstadt, Germany 

[QOS04] "UMLTM Profile for Modeling Quality of Service and Fault Tolerance 

Characteristics and Mechanisms".  OMG Adopted Specification. Ptc/2004-06-01  



 

 - 99 -

[QVT03] "OMG / MOF 2.0, Query / Views / Transformation. ad/2002-04-10, Revised 

Submission", Version 1.0, 2003/08/18, OpenQVT, disponible à 

http://www.omg.org/docs/ad/03-08-05.pdf. 

[REAL03] "Real-Time Concepts for Embedded Systems". CMP Books © 2003 

[ROO96] "Tutorial: real-time object-oriented modeling (ROOM) Selic", B. Real-Time 

Technology and Applications Symposium, 1996. Proceedings, 1996 IEEE Volume, 

Issue, 10-12 Jun 1996 Page(s):214 – 217 

[ROP04] Vincent ENGLEBERT. "Modélisations de systèmes coopératifs mobiles à temps 

réels Analyse de cas pour des systèmes ATC (Air Traffic Control) Evaluation du 

processus de développement ROPES". Thèse soutenue 2004 

[SAM06] Samuel Rouxel. "Modélisation et Caractérisation de Plates-Formes SoC 

Hétérogènes : Application à la Radio Logicielle". Thèse présentée et soutenue 

publiquement le 5 décembre 2006 par  

[SDL04] EMMANUEL GAUDIN PRAGMADEV. "SDL et UML: mariage de raison pour la 

conception des logiciels temps réel". Mars 2004 n°145 - Electronique 

[SHO04]  Shourong Lu Wolfgmg A. Halang Roman Gumzej. "Towards Platform Independent 

Models of Real Time Operating Systems".  0-7803-8513-6/04/$20.00 Q2004 IEEE 

[SPT02] "UMLTM Profile for Schedulability, Performance, and Time Specification". An 

Adopted Specification of the Object Management Group, Inc. January 2005 Version 

1.1 formal/05-01-02 

 [STA88] J.A. Stankovic. "Misconception about real -time computing". In IEEE Computer 

Magazine, volume 10, pages 0–19. 21, 1988. 

[STE04] Stephan Flake and Wolfgang Mueller C-LAB. "An OCL Extension for Real-Time 

Constraints", , Paderborn University, F¨urstenallee 11 33102 Paderborn, Germany 

[UML01] Unified Modeling Language (UML), OMG Document formal/200l-09-67, 

Septembre 2001. 

[UML04] "Real Time UML: Advances in The UML for Real-Time Systems", Third Edition 

Pub Date February 20, 2004 



 

 - 100 -

[VIV02] Vivek Agarw. M.Tech . "Embedded Operating Systems for Real-Time 

Applications". Sagar P M (02307406). credit seminar report,Electronic Systems 

Group, EE Dept, IIT Bombay, Submitted in November 2002. 

[XML01] "XML Metadata Interchange (XMl) ", OMG Document formal/2000-11-02, 

Novembre 2001. 

[YVO05] Yvon Trinquet IRCCyN. "Les systèmes d’exploitation temps réel". – UMR CNRS 

6597 Ecole Centrale de Nantes Université de Nantes. Ecole d’été Temps réel 2005 

ETR’05 

 


