Sommaire

INTRODUCGTION ..cuueiiiuiiircniessnrissssnssssssssssessnsssssssssssssssassosssssssssssssssssssssssssssssssssssssessassssssssssassssasssse -1-
CHAPITRE 1: SYSTEMES TEMPS REEL -4-
L. INEFOTUCTION ..ottt bbb -5-
2. Définition d’un Systeme Temps REEIccooviiiiiiiiiiece e -5-
3. Applications TeMPS FBEL.......c.i e -6-
3.1. APPlICAtIONS CONCUITENTES. ... cotieiieitieieeiiesteeie sttt ettt sbe e sreebe e sbeenee s -6 -
3.2. NOLION & TACNE ..ot s -6-
3.3. Interaction entre 18S tACNES........ccviiiiiiiii e -7-

4. Architecture des Systemes TempPS REElcovvvevi e -7-
4.1. Architecture Materielle.........cooveieiiii e -8-
4.2. Architecture 10giCIelle..........coooiiiiii -9-

5. Quantification duU tEMPScoieiiiieceece e -11-
5.1. Les Taches en TempPs REEIcvoiiiiiiiiieese e -12 -
5.1.1. TACHE PAIIOTIQUEecvveeieiece ettt -12 -
5.1.2. TAChE @PEriOdIQUEccueiveieiirieeiere e -13-

5.2, QUAIITE 0B SEIVICE.....cuviiivieieie ettt ettt be e rbe e sbe e sreeebeesree s -13-
5.3. Ordonnancement et ValIdationcccoveiveeiiienieeie e -14 -

B. CONCIUSION......oiiiiiieiiiie ettt -15-
CHAPITRE 2: APPROCHES DE MODELISATION DES SYSTEMES TEMPS REEL.......- 16 -
1 INEFOAUCTION. .ot -17 -
2 ROOM .t e et e et e e e e -17-
T T I | PSP S TV PP PRRPRR -18 -
4 RESEAUX U8 PALI ..ottt bbb -19-
5 N I L PSPPI - 20 -
6. UMLEtIEtemMPS M. -22 -
6.1. Modélisation comportementale aveC UMLccccooviiiiiininennneeeseee, -22 -
6.1.1. Les diagrammes d’aCtiVitecccevveiiiiiiicece e -22-
6.1.2. LeS MAChINES A’ ELALSccveiveiieciecieieie e -22 -
6.1.3. Le langage d’aCtionccoveiiiiieieeic e -24 -
6.1.4. Diagramme de SEQUENCE.cueerueeererie ettt - 26 -

6.2, PIOTIHT UML....ooiiiiiiie et -26 -
B.2.1. ROPES ..ottt ettt e -28 -
B.2.2. OMEGA ..ottt bbbt -29 -
B.2.3. SP T ittt et e e e e nens -30-
6.2.4. GASPARD ..ottt -31-
6.2.5. Profil QOS & FT ..ottt -32-
6.2.6. Profil MARTES. ..ot -33-
6.2.7. ACCORD/IUMLooiiiiiiisit sttt -33-

6.3. OCL €t 1 temMPS FBEI ... -34-

T 1ol U £S1] o] OSSPSR -34 -
ST O [0 [1] o] o PR UR PRSPPI -36 -
CHAPITRE 3: INGENIERIE DIRIGEE PAR LES MODELEScccceceeeeeususesesasaenenes -37-
SR 141 70 ¥ o{ £ o] o USSR TORRN -38 -
2. L’architecture MDA de PFOMGc.ooiiiiiiiiiceee e -38-

3. PrINCIPES U DASE ...ttt -41 -

4. LS STANAAITAS IMIDA ... oottt s s ennennennennnnnnnnnns -43 -

4.1, LeS ProfilS UML ..c.oooiic ettt -43 -
4.2. MOF (Meta ODbjJect FACIlITY)cccoviiiiiiieicicee s -44 -
4.3. XMI (XML Metadata INterchange)ccccceevveiveieiie i -44 -
4.4. CWM (Common Warehouse Metamodel):...........ccoovviiiiinininieecee -45 -

5 Modeélisation/Meéta-mOdEliSAtioNcccereririiiniiiseseee e -45 -
5.1. Langages de méta-modeliSation :...........cccouiiieiiiiiineire e -47 -
5.2. Transformation des MOUEIESccereiiiiiiiieiee s -48 -
5.2.1. CaraCteriStIGUES :veeiueieuieierieieete sttt -49 -
5.2.2. Langages de transformationccccceeveiiieiieic s -50 -
5.2.3. L 1aNGAGE ATL ..ot -51-

B. CONCIUSION......oiiiiiieii ettt -54 -
CHAPITRE 4: DEMARCHE DE CONCEPTION PROPOSEE -55-
SR 1411 7o ¥ o1 £ o] o USROS - 56 -
2. 1dentification des DESOINSccvieiiiiiieieie e e - 56 -
3. DEMArChe PrOPOSEEecuieeeeieeieee et et -57 -
4. Modélisation de la structure d’un RTOS.........ccoiiiiiiniininiene e -59 -
4. 1. MOORIE STALIGUEc.eeueiiieieiieie et -61-
4.2. MOAElE dYNAMIQUE.......ceeiieeieciiecie ettt e raenne e -64 -
4.2.1. Modélisation du comportement d’une tache ..o, -65 -
4.2.2. Définition de la sémantique opérationnelle.............cccccevveviiiciieie e, - 66 -

5. Modélisation de I’OrdonnanCeU............cueueierieresiesese s se e eneeneas - 66 -
5.1. Définition de POrdonnanCeUcuuieieierieienie s e -67 -
5.2. Modélisation d’un algorithme d’ordonnancement.............ccoceoevererenenernicnieneas - 68 -

6. IMOUCIES PrOPOSES.....cueeiieeieetie ettt ettt ettt e e e teebesraesreeneenneas -71-
6.2. Modéle associé la structure d’un executif temps réel..........ccoovviiniinieneene, -72 -
6.3. Modéle assoCié @ I’0rdONNANCEUT..........uviiieieieie e -75-

7. CONCIUSION ..ottt et ere e teentesneenneeneennees -75-

CHAPITRE 5: IMPLANTATION DES STATECHARTS ET GENERATION DE CODE....- 76 -

SR 11411 7o 101 1 o o USRS SRORRN -77 -
2. Modélisation des variations SEMaNTIQUESccerveirierirereneeee e -77 -
2.1. OCL pour qualifier les points de variation Sémantiquecccevvevverereennenne -80 -
2.2. Un Profil UML pour spécifier les choix Semantiquesccoeeevenererenicninens -81-

3. Implantations des StateChartS............ccccvveieiie i e -81-
3.1. Techniques d’implantation des StateChartsccoccvvveereeienieeniesie e -82 -
3.1.1. Enumération des états et des VENEMENLScccccveveiieeieere e, -82 -
3.1.2. Réification des BVENEMENLS........cceeveieieieese e -82 -
3.1.3. REIfICAtION dES BLALSc.vecvveciieiece e -83-
3.1.4. Réification des états et des EVENEMENLScccveveriereierere e, -84 -

3.2. Progression de PaUtOMALe.........ccueivviieiecie e -85 -
3.3. MOABIE FINAL ... - 86 -

4. GENEration de COUE.......cceeiieeee ittt sre e - 87 -
4.1 IMOEIE SOUICEveiveetieeieieiee ettt te ettt sttt e e sa et nreere e enaenee s - 88 -
Y oo (=] (=T o]] - USSR -91-

TR O] o [1] o] o PO URSPPR -92-
CONCLUSION .ucuiiineressneisssssssssresssssosssssssasssssssosssssssssssssassssnssssssssssssssssssssssssssssssssassssassssssssssassssssssss -94 -

REFERENCES ...uuiniiiitininniniiinnisinnissisiisissississeestsssssssesssssessssssessessssssassesssssssssassssssssssesssssess -96 -

Liste des figures

Figure 1 : Interprétation de la pile de modélisation multi-niveau de ’'OMG -39 -
Figure 2: La transformation de modeéles basée sur les méta-modeles.............ccocvevverieenenn. -41 -
Figure 3 : Notions de base en technologie des objets [P1].........ccccoiiiiiiiiineniieriss -42 -
Figure 4: Notions de base en ingénierie des modeles [P2]cccccvvvviveriiin e, -42 -
Figure 5 : Modeles, langages, méta-modeles et métalangagesccccecvevevveveeieireenenn, - 46 -
Figure 6 : L’0rganisation 3+1 du MDA ..o e -46 -
Figure 7 : Automatisation des tranSformationscoveeeierenenene s -49 -
Figure 8 : Syntaxe de I"EN-tELEcccviiviiieii e -52 -
Figure 9 : Forme d’une méthode dans ATLccccveiiiieiieciecie e -53-
Figure 10 : MAtCEd TUIES........ooueieeiie et -53-
Figure 11 : DEMArche PrOPOSEEcveuirierieieieiieieieste ettt -59 -
Figure 12: Diagramme de classe correspondant a la structure de I’'RTOS OSEK -61-
Figure 13: Bibliothéque d’0bjets VXWOIKSccccoueiiiiiiieieece e -64 -
Figure 14: Conception de la variation de I’état d’une tache a I’aide des FSM - 65 -
Figure 15: Modele étendu pour la définition de la sémantique opérationnelle................... - 66 -
Figure 16: Diagramme de classe correspondant a la definition de I’Ordonnanceur - 68 -
Figure 17 : Diagramme de Séquence illustrant I’algorithme d’Ordonnancement Rate

A/ To] 0T] (o] o oSSR OR -70 -
Figure 18 : Modéle statique de la définition de la structure de I’'RTOS proposé................ -73-
Figure 19: Diagramme d’états transitions relatif a I’entité tache annoté avec des contraintes

@ 1 SRS -74 -
Figure 20 : Récapitulatif des différents points de variations [FRAO4]c.ccevvvverieinnnen, -79-
Figure 21: La procédure Step en pseudo-code[FRAODA]........cooorririineinienereese e -80 -
Figure 22 : Contraintes OCL sur la gestion des eVENEMENtSccovververeereereeseesieenenns -80 -

Figure 23 :

81 -

Figure 24 :

Figure 25
Figure 26
Figure 27

Figure 28 :
Figure 29 :

Application du pattern command sur I’entité TasK..........ccocovevvrveniininiinnnn,

: Application du pattern State sur I’entité Taskccccevvvveerveieiieeniecicseein,

: Application du pattern state et du pattern Command sur I’entité Task

: Application du pattern Active Object sur I’entité TasK..........ccccevvvvevivivnnnnenn,

Modeéle source en XMl

Modele d’ordonnancement issu de I’implémentation des statecharts

Profil UML pour préciser les choix sémantiques associés aux statecharts [FRA04]-

Figure 30 : Méta-modeéle source en KIM3 ..ot s
Figure 31 : Méta-modele cible en KM3ooioi e
FIQUre 32 : REQIE €N ATL ..ottt s ettt

Liste des Tableaux

Tableau 1: Exemple de spécification d’événements temporels.ccccccevviviiveieeieriennenn, -24 -
Tableau 2: Comparaison entre les profils SPT et QOS.......ccccovvevviiiieere e -32-
Tableau 3: PrinCipe [PL] €t [P2]....ccove oot -41 -
Tableau 4 : Bilan récapitulatif des différentes approches de modélisation des RTOS. -72-

Tableau 5 : Récapitulatif des différents points de variations [FRAO4]........c.cccooevvrerrnnnen. -78 -

Introduction

Introduction

Les systemes embarqués envahissent de plus en plus notre vie quotidienne. D’une grande
diversité, ces systémes occupent une place prépondérante dans plusieurs domaines de I’industrie
comme la télécommunication, I’automobile, I’avionique ou encore I’aérospatial. Ces systéemes
sont composés d’une partie matérielle et d’une autre logicielle et possedent la particularité d’étre
enfouis dans un milieu avec lequel ils sont en interaction permanente. Cette interaction avec le
milieu s’effectue le plus souvent en temps réel. Les systemes embarqués doivent donc étre des

systemes temps réel [REALO3].

La conception de ces systemes devient de plus en plus complexe, du fait de I'hétérogénéité
grandissante des applications (traitement de signal multimédia, communication, sécurité) ainsi
que les architectures de déploiement (processeurs multicores et architectures dédies, systéemes sur
puce (SoCs)). Face a cette complexité, ces systemes se trouvent alors difficiles a spécifier et les
possibilités d'erreurs sont de plus en plus nombreuses. Leur disfonctionnement, a cause de la
surcharge ou de la terminaison de quelques services aprés un délai imposeé, peut avoir de graves
conséquences (économiques, judiciaires, humaines, etc.). De ce fait, plusieurs contraintes
s’imposent lors de la conception de ces systemes, essentiellement celles temps réels. La
vérification des propriétés du systeme pour une étape préliminaire pourrait diminuer la dimension

du probléme.

Actuellement, la modélisation orientée objets soutenue par le standard UML (Unified Modeling
Language) apporte des solutions efficaces a de tels probléemes, ceci est réalisé via I’extension
et/ou la restriction de ce langage par I’intermédiaire de profil [UMLO4]. Cependant, les capacités
de spécification du comportement temps réel d'une application ne sont pas encore complétement
satisfaisantes. En effet, ces méthodes, récemment industrialisées, fournissent des solutions en
terme de spécification de la concurrence d'une application, mais restent insuffisantes notamment,
pour I’expression des contraintes non fonctionnelles d'une application et pour I’intégration de la
modélisation de I’'RTOS (Real Time Operating System) [VIV02] lors de la conception du

systeme.

Introduction

Ainsi, pour remeédier a ces problémes, nous essayons dans ce mémoire de Mastere de modéliser
un RTOS tout en definissant les sémantiques temporelles [ARNO7]. Pour cela, nous définissons
un nouveau modele relatif & un RTOS. Ce modéle tient compte explicitement des instructions
conditionnelles présentes dans le code des taches et permet ainsi de prendre en compte
I’ensemble des durées d’exécution des taches et le comportement réel de I’application vis a vis de
la gestion des ressources. Nous sommes alors amenés a définir le probleme de I’ordonnancement
[YVOO05] en définissant les variations sémantiques aux statecharts associées a I’état d’un
processus. Enfin, apres I’implantation des statecharts et a I’aide de I’ingénierie dirigée par les
modeéles nous montrons comment nous pouvons générer automatiquement le code relatif a un
RTOS.

Pour ce faire, nous avons divisé ce document en cing chapitres :

Dans le premier chapitre, nous rappellerons les principes fondamentaux liés a notre travail. Nous
présenterons tout d'abord un apercu sur la notion de systéme temps réel et en particulier son

architecture. Nous détaillerons ensuite les caractéristiques de I’exécutif temps réel.

Dans le deuxieme chapitre, nous effectuerons une étude des travaux menés dans divers projets
lies au domaine de conception des systemes temps réel. Nous etudierons plus en détail la notion

de profil UML, et nous nous attacherons a synthétiser les caractéristiques de quelques profils.

Dans le troisieme chapitre, nous présenterons les concepts liés a l'ingénierie dirigée par les
modeéles (IDM) tout en insistant sur I’approche MDA (Model Driven Architecture). De plus, une
attention est mise sur I’architecture, les principes et les standards de cette approche en mettant

I’accent sur la transformation des modéles

Le quatrieme chapitre expose notre solution conceptuelle pour la mise en oeuvre de la
modélisation de I’RTOS lors de la modélisation d’un systeme temps réel, notamment en adoptant
la démarche dirigée par les modéles. Nous expliquerons les choix qui nous ont menés au modéle

de ’'RTOS, et nous détaillerons chacune de ses composantes.

Le dernier chapitre constitue une partie plus applicative, puisqu'il consiste a présenter les
expérimentations que nous avons menées en parallele a notre étude. Nous montrerons les
différentes solutions techniques que nous avons exploité pour implanter les statecharts et générer

automatiquement le code.

Introduction

En conclusion générale, nous résumons la démarche qui nous a amené a la modélisation du
processus de développement dirigé par les modéles pour la spécification et la mise en oeuvre de
I’exécutif temps réel. Nous terminons enfin en exposant les perspectives liées a ce travail, tant du

point de vue de la modélisation que de la réalisation.

Chapitre 1: Systémes temps réel

CHAPITRE

i

Systemes temps réel

Chapitre 1: Systémes temps réel

1. Introduction

L'objectif de ce chapitre est de présenter le contexte scientifique dans lequel est realisée ce travail
de Mastere. Les notions mises en avant sont celles qui ont été retenues pour la réalisation de notre
étude, et ne constituent pas une étude exhaustive. Cette presentation du contexte scientifique
s'articule autour du domaine des systemes temps réel, couvrant les aspects architecturaux,

techniques et conceptuels sur lesquels sont batis notre travail.

Nous présentons de maniére générale les systémes temps réels. Nous rappelons leurs
architectures et nous focalisons sur les caractéristiques d’un systéme d’exploitation temps réel.

Nous en synthétisons ensuite les principales fonctionnalités.
2. Définition d’un Systéme Temps Réel

Il existe de nombreuses définitions des Systemes Temps Reel. Une premiere définition tirée de
[STA88], décrit un systtme Temps Réel comme: «tout systéme informatique dont le bon
fonctionnement ne dépend pas uniquement de la correction algorithmique et logique mais
également des dates d’arrivee des résultats». Contrairement a la notion de correction temporelle
qui est bien mise en évidence, le caractére réactif est loin d’étre explicitement défini. Une
deuxiéme approche qualifie les systemes Temps Réel comme étant : «des systémes ouverts
répondant constamment aux sollicitations de leur environnement en produisant des actions sur
celui-ci». Cette définition insiste sur la notion de servitude vis a vis du procédée contr6lé mais
sans évoquer I’aspect temporel. C’est au CNRS [CNR88] que nous pouvons enfin trouver la
définition suivante qui concilie entre les deux paradigmes primordiaux des Systémes Temps
Réel : «Peut étre qualifiée de temps réel toute application mettant en oeuvre un systéeme
informatique dont le fonctionnement est assujetti a I’évolution dynamique de I’état d’un

environnement (procédé) qui lui est connecté et dont il doit contrdler le comportement».

Dans le but d’affiner cette définition, par le biais d’introduction des notions de critéres temporels,
nous pouvons nous référer a la définition donnée par [ALA92] :«Une application temps réel
constitue un systeme de traitement de I’information ayant pour but de commander un
environnement imposé en respectant les contraintes de temps et de débit (temps de réponse a un
stimulus, taux de perte d’information toléré par entrée) qui sont imposees a ses interfaces avec cet

environnement».

Chapitre 1: Systémes temps réel

Ainsi, les systemes temps réel [REALO3] se distingue par leur capacité permettant aux
applications qu’ils gerent (nommees : applications temps reel) de réagir a des évenements et/ou
d’atteindre des resultats selon des contraintes de temps fixées antérieurement. Ils sont notamment
susceptibles de disposer de mécanisme de contréle des automates, des robots, des chaines de

production, des véhicules, des centrales nucléaires...
3. Applications Temps réel

Les définitions présentées précédemment des Systemes Temps Réel ont mis I’accent sur deux
éléments distincts : une ou plusieurs entités physiques constituant le procédé, dont le rdle est
d’agir et de détecter, et un contréle informatique, nommé contrdleur ou application temps réel qui
est le décideur des actions (ou réactions) du procédé. Le contrdleur recoit des informations sur le
milieu du procédé a I’aide de capteurs et commande les changements d’état du procédé a travers

des actionneurs.
3.1. Applications concurrentes

La dynamique des périphériques (ou interfaces) du procédé et de son environnement détermine
celle de I’interaction entre le procédé et le contréleur. De la méme fagcon que I’environnement
connait des transformations en paralléle avec les périphériques du systeme, le contrdleur, c’est a

dire I’application temps réel, est censé de refléter ce parallélisme.

Pour geérer toutes ces entités interagissantes, il est donc indispensable de développer des
techniques logicielles capables de traiter les informations recues des capteurs sur I’unité de calcul

pour fournir les actions appropriees.
3.2. Notion de Tache

La notion de capteurs et d’actionneurs introduit implicitement, en terme logiciel, I’utilisation de
differentes taches permettant de les piloter. Ce sont des programmes séquentiels dédiés au
traitement d’un des composants du systétme Temps Réel. A titre d’exemple, un programme

Temps Reéel peut étre constitué d’un ensemble de taches tels que :

= des exécutions périodiques de mesures de différentes grandeurs physiques (pression,
température, accélération, etc.). Ces valeurs peuvent étre comparées a des valeurs de

consignes liées au cahier des charges du procéde

-6 -

Chapitre 1: Systémes temps réel

= des traitements a intervalles réguliers ou programmes

= des traitements en réaction a des événements internes ou externes : dans ce cas les taches
doivent étre aptes a accepter et a analyser en accord avec la dynamique du systeme, les
requétes liées a ces événements. Nous considérons ainsi, une Application Temps Réel

comme étant une application multitaches.
3.3. Interaction entre les taches

Les taches, dont les comportements sont séquentiels, peuvent interagir entre elles pour garantir le
bon fonctionnement global de I’application que le systeme commande. Il est donc necessaire de
fournir parallélement a ces taches des moyens de communication et de synchronisation
susceptibles de gérer tous les problemes liés aux accés a des ressources communes comme par
exemple les périphériques (mémoires, imprimantes, etc.), ou I’exécution des taches ordonnées par

des criteres de précédence.

Dans le cas du partage de ressources, certaines d’entre elles peuvent étre bornées en nombre
d’accés simultanés. Dans ce cas, nous évoquons la notion de ressources critiques. Pour assurer un
bon fonctionnement de I’application, il est nécessaire de mettre I’acces a ces ressources en
exclusion mutuelle. 1l faut s’assurer qu’il y ait bien au plus le nombre maximum autorisé de
taches simultanément en section critique, c’est a dire qui utilisent simultanément la ressource. De
plus, il convient de garantir la non préemption des ressources en cours d’utilisation. L’accés a ces
ressources peut de plus s’effectuer en mode lecture ou écriture, chacun possedant son propre

nombre d’accés simultanés autorisés.

Les criteres de précédence des taches sont souvent issus soit d’un désir d’échange de données
entre deux taches, soit de la volonté de synchroniser deux taches pour que la suite de leur
exécution se fait en paralléle par un mécanisme de Rendez-Vous. Dans le premier cas, nous

parlons d’une tache émettrice et d’une tache réceptrice.

Nous identifions le concept de taches indépendantes lorsque I’application n’utilise ni ressources

critiques, ni synchronisation.
4. Architecture des Systemes Temps Réel

Un systeme temps réel est formé de deux composantes : une matérielle et une autre logicielle.

Chapitre 1: Systémes temps réel

Dans cette partie, on ne parle pas de la cible architecturale a générer a un niveau d’abstraction

dans le cadre de la conception des circuits intégrés (CI) ou encore dans le cadre du co design. On

se place plutdt dans le cadre du génie logiciel en parlant d’une architecture matérielle qui est a

base de processeurs et d’une architecture logicielle mettant I’accent sur la structure et

I’agencement des composantes logicielles qui forment I’application a concevoir.

4.1. Architecture matérielle

Les systéemes temps réel peuvent étre classés selon leur couplage avec des éléments matériels

avec lesquels ils sont en interaction. Ainsi, I’application concurrente et le systeme d’exploitation

qui lui est associé peuvent se trouver :

soit directement dans le procedé contrdlé : dans ce cas, il s’agit des systemes embarqués.
Le procédé est pour la plupart treés spécialisé et fortement dépendant du calculateur. Les
exemples de systemes embarqués sont nombreux : contrle d’injection automobile,
stabilisation d’avion, électroménager... C’est le domaine des systéemes spécifiques

intégrant des logiciels sécurisés optimisés en encombrement et en temps de réponse.

soit le calculateur est détaché du procédé : c’est souvent le cas lorsque le procédé ne peut
étre physiquement couplé avec le systéme ou dans le cas géneral des contrdle/commandes
de processus industriels. Dans ce cas, les applications utilisent généralement des
calculateurs industriels munis de systemes d’exploitation standards ou des automates

programmables industriels comme dans les chaines de montage industrielles par exemple.

En intégrant la notion de calculateur ou de processeur, nous distinguons trois grandes catégories

d’architecture matérielle pour les Systemes Temps Réel en fonction de leur richesse en terme de

nombre de cartes d’entrée/sortie, de mémoires, de processeurs et de la présence de réseaux.

L’architecture monoprocesseur : un unique processeur exécute toutes les taches de
I’application concurrente. Dans ce cas, la notion de parallélisme n’a plus vraiment de sens
puisque le temps processeur est partagé entre toutes les taches. Nous parlons plutdt de
pseudo-parallélisme ou d’entrelacement des exécutions. En effet, le parallélisme des
taches semble réel a I’échelle de I’utilisateur mais le traitement sur I’unique processeur

s’opere de fagon séquentielle.

Chapitre 1: Systémes temps réel

L’architecture multiprocesseurs : I’execution de toutes les taches est ici répartie sur n
processeurs partageant une unique mémoire centrale. La coopération entre taches se fait
par partage des informations placées en mémoire. Le traitement est donc ici réellement

parallélisé.

L architecture distribuée : c’est le cas des architectures multiprocesseurs ne partageant pas
de mémoire centrale. Ces processeurs sont reliés entre eux par I’intermédiaire de réseaux
permettant d’assurer les communications entre les différentes taches. Une ferme
d’ordinateurs est un exemple typique de cette architecture. La coopération se fait ici par

communication par réseau.

Par la suite nous nous placerons dans le cas des architectures monoprocesseur dans toutes les

parties de notre travail.

4.2. Architecture logicielle

L architecture logicielle d’un systeme Temps réel est divisée en deux couches. La premiére

consiste en une application concurrente composée d’un ensemble de taches. Nous utilisons

également le terme d’applications multitaches. La deuxiéme, de plus bas niveau, joue le réle d’un

systéeme d’exploitation minimal chargé de faire le lien entre le procédé physique et I’application

multitaches.

Ce systeme d’exploitation, appelé exécutif Temps Réel, de par la considération de

I’asynchronisme, est dirige par les évenements, ceux-ci pouvant provenir de différentes sources :

du procédé physique par I’intermédiaire d’interruptions matérielles associées a chaque

événement.

du temps : chaque systeme est muni d’une horloge Temps Réel pouvant générer des

interruptions.

de I’application multitache lorsque par exemple I’exécution d’une tache est conditionnée
par I’exécution d’autres taches. Dans ce cas il faut que I’exécutif retarde I’exécution de

cette tAche pour permettre au préalable au processeur d’exécuter les autres.

Chapitre 1: Systémes temps réel

L’executif temps reel propose différents services et garanties facilitant I’exécution et la

communication des taches. Ces services appeles primitives temps réel peuvent étre directement

utilisés dans les taches et sont de différentes natures :

Gestion des taches : Celles ci changent d’état au cours de leur utilisation dans le systéme.
Elles sont toutes initialement inexistantes dans le systéme. Elles sont alors “creees” puis
réveillées ce qui les positionnent dans I’état “préte”. Un mécanisme logiciel de choix
décide alors d’élire une tache parmi celles dans I’état “préte” pour que le processeur la
traite. Dans ce cas I’état de la tache passe a “exécutée”. De cet état, une tache peut soit
étre préemptée par une autre tache, dans ce cas elle retourne dans I’état “prét”, soit étre
bloquée par une synchronisation, ce qui la fait passer a I’état “attente”, soit enfin elle

termine son exécution et passe dans I’état “terminée” avant de disparaitre du systéeme

Gestion des ressources partagées : Nous avons vu que certaines ressources peuvent étre
critiques et qu’elles doivent alors étre utilisées en exclusion mutuelle. L’utilisation de ces
ressources nécessite des techniques permettant de garantir le respect de I’exclusion
mutuelle. Par exemple, la plus simple consiste a masquer les interruptions durant
I’utilisation des ressources, ce qui empéche I’exécutif temps réel de traiter les nouvelles
demandes d’accés a une ressource et résout du méme coup les problemes d’exclusion
mutuelle. Toutefois, cette technique montre vite ses limites puisque I’utilisation d’une
ressource peut étre relativement longue et il n’est pas toujours souhaitable d’interdire la
préemption (conséquence du masquage des interruptions) sur une telle durée. C’est
pourquoi on lui préfere le plus souvent I’utilisation de sémaphores, qui permettent
d’implémenter toutes sortes de politique d’accés a une ressource comme par exemple la
politique FIFO (First In First Out) ou encore la politique de priorités fixes. Une fois
I’exclusion assurée, il reste a la charge de I’exécutif temps réel de vérifier qu’il n’y a pas

de phénomene d’interblocage

Gestion du temps : Le temps est utilisé ici comme une horloge absolue pour cadencer le
systeme. Nous utilisons traditionnellement une discrétisation du temps permettant au
processeur d’effectuer une action atomique minimale au vu des instructions de
I’application. La notion de temps intégrée dans un exécutif Temps Reel doit ainsi

permettre de satisfaire plusieurs exigences [BUR90] :

-10 -

Chapitre 1: Systémes temps réel

— I’accessibilité du temps courant pour permettre la mesure du temps écoulé.
— la mise en attente d’une tache pendant une durée finie.

— la définition d’une minuterie ou timer pour la détection par exemple de la non

occurrence d’un événement attendu.

» Gestion des interruptions et de la mémoire : La gestion des interruptions doit permettre
de tenir compte toutes les sollicitations matérielles et logicielles. Nous utilisons un service
de routines d’interruption (ISR) permettant d’associer un traitement a chaque exécution.
La durée de chaque routine doit étre la plus courte possible puisque les routines
s’exécutent de maniére atomique (les interruptions sont masquees durant leurs
exécutions). La gestion de la memoire peut étre faite suivant deux modeles : soit
I’exécutif et les taches ont chacun une zone de mémoire réservée, soit chaque tache ainsi

que I’exécutif possedent une zone mémoire séparée et protégée.

Toutes ces fonctions de I’exécutif Temps réel existent sous forme de primitives ou routines
élémentaires dont la plupart possedent des bribes atomiques, c’est & dire ne pouvant pas étre
interrompues par la gestion des interruptions matérielles. Ces portions ininterruptibles engendrent
des retards dans la gestion des événements qu’ils soient logiciels ou matériels. Pour assurer un
service optimal aux traitements des taches, il faut réduire ces portions au minimum. C’est
justement 1’un des critéres d’évaluation des exécutifs Temps Réel du marché (ou RTOS), ce qui
les différentient des systémes d’exploitation classiques. Les RTOS assurent ainsi une borne
temporelle pour chacune des primitives temps réel qu’elles proposent. Parmi ces RTOS
[YVOO05], nous pouvons citer par exemple Osek/VDX, Vxworks, RTEMS, Linux RT.

5. Quantification du temps

L architecture logicielle des applications temps réel permet d’identifier le traitement d’un
événement a une tache. Nous avons vu que ce traitement doit intervenir dans des délais
appropriés. Il faut donc étre a méme de Vérifier que le respect des contraintes temporelles est bien
assurée. Pour cela, nous devons introduire des indications temporelles quantitatives permettant
par exemple d’exprimer les délais a respecter. Ceci est mis en oeuvre par la modélisation

temporelle des taches. De plus, il est nécessaire de préciser la facon dont ces délais doivent étre

-11 -

Chapitre 1: Systémes temps réel

pris en compte. Nous devons, en d’autres termes, préciser la qualité de service attendue pour

I’évaluation de I’application temps réel.
5.1. Les Taches en Temps Réel

Il existe trois types de tdches en Temps Réel qui different par leurs caracteristiques temporelles.
Les taches dites Périodiques sont la plupart du temps stimulées par I’Horloge Temps Reéel (HTR)
de I’exécutif temps réel de fagon a assurer une activité réguliére, par exemple lors de I’acquisition
de données (comme dans le cas d’une lecture échantillonnée d’un signal continu) ou la génération
périodique d’évenements. Les taches apériodiques sont quant a elles activées de fagon aléatoire

en fonction par exemple d’événement aléatoire.

Nous pouvons noter qu’il existe une sous famille de ce type de taches qui est la famille des taches
sporadiques pour lesquelles une durée minimale sépare deux occurrences successives de
I’événement déclencheur. Enfin les taches cycliques [HAN95] sont trés proches des taches
périodiques a la différence prét que leur activation n’est pas liée a I’Horloge Temps Réel, ce qui
induit une périodicité approximative. La durée séparant deux activations successives d’une tache
périodique est constante alors qu’elle appartient a un intervalle [Pmin, Pmax] pour les taches

cycliques. Nous ne nous intéresserons par la suite qu’aux taches périodiques et apériodiques.

Nous utiliserons le terme de tadche pour désigner le programme informatique compilé qui sera

exécuté sur le processeur du systeme.
5.1.1. Tache périodique

Le modeéle de tache périodique représente les taches activées a intervalles réguliers (constants).

Soit une tache périodique Ti alors Ti est modélisée par les quatre paramétres temporels :

Ri la date a laquelle la premiere instance de Ti est activée

Ci la pire durée d’execution (ou charge maximale) de Ti

Di le délai critique (ou échéance relative) associé a Ti

Pi la période de la tache Ti.

-12 -

Chapitre 1: Systémes temps réel

5.1.2. Tache apériodique

Les taches apériodiques ont pour origine des activations de deux types : elles peuvent provenir
d’une intervention extérieure inattendue (comme une intervention humaine sur le procédé par
exemple), ou provenir de I’application elle-méme lorsque par exemple une tache périodique
chargée de faire de I’acquisition détecte une valeur inattendue nécessitant un traitement ponctuel

spécifique. Leur importance dépend de la criticité de I’information qu’elles doivent traiter.

Les événements déclencheurs étant en tout état de cause imprévisibles, les taches apériodiques
sont des taches dont la fréquence d’activation est totalement aléatoire. Les paramétres du modéle
précédent comme les dates de réveil et périodes n’ont par conséquent plus lieu d’étre ici. Par
contre, une tache apériodique possede bien une durée d’exécution bornée par un WCET (Worst-
Case Execution Time) Ci et éventuellement un délai critique Di pour s’assurer de son exécution

dans un temps borné.

Les taches sporadiques possedent un paramétre supplémentaire permettant de définir un intervalle
minimal entre deux activations successives Cet intervalle minimal est généralement assimilé a

son délai critique. Il existe de nombreuses definitions et particularités sur ce type de taches.
Soit une tache Ti.

= Si Ti est une tache apériodique, alors Ti est modélisée par un unique paramétre temporel :

Ci sa pire durée d’exécution.

= Si Ti est une tache sporadique, alors Ti est modélisée dans le cas général par :(Ci, Di, Tsi)
ou Tsi correspond a I’intervalle de temps minimum séparant deux activations successives

et Di au délai critique.
5.2. Qualité de service

Dans le paragraphe précédent, nous avons défini les parametres temporels accordés a une tache.

Nous indiquons maintenant la nature des contraintes qu’ils engendrent.

En effet, les systemes temps Réel n’ont pas tous le méme degré d’exigence vis a vis de ces
critéres. Si nous considérons un systéme critiqgue embarqué dans un avion, il est vital que les
taches d’un tel systéme aient des temps de réponse rigoureusement contr6lés, inférieurs

systématiquement a une borne fixée (exprimée par le délai critique des taches). Au contraire, un

-13-

Chapitre 1: Systémes temps réel

attardement de réaction (par rapport aux bornes fixées par les concepteurs qui correspondent & un
fonctionnement optimal) lors de la compression vidéo n’entraine aucune catastrophe, ni méme de
perturbation sensible si ce retard n’intervient pas trop souvent. Cette constatation permet de
définir des classes de systemes temps réel suivant le degré de criticité de leur qualité de service.
On distingue ainsi 3 familles de systemes temps réel suivant la rigidité des contraintes

temporelles qui leurs sont imposées :

= Les Systemes Temps Réel a Contraintes Strictes. Ce type de systéme impose que toutes

les contraintes temporelles soient impérativement respectées

= Les Systémes Temps Réel & Contraintes Souples. A I’opposé de la classe précédente, un
non respect d’une échéance n’entraine pas la défaillance du systeme. Ces dépassements

sont donc tolérés mais entraine des perturbations qu’il faudra alors minimiser.

= Les Systemes Temps Réel a Contraintes Mixtes. Ces derniers sont soumis a la fois aux
exigences des systemes a contraintes strictes pour certaines taches et a celles des systémes

a contraintes souples pour d’autres.
5.3. Ordonnancement et validation

L exécutif temps réel est constitué d'une base communément appelée ordonnanceur, encapsulé
par des agences qui offrent aux taches les services requis pour leurs synchronisations,

communications, temporisations...

Le probléeme de I’ordonnancement, sur lequel repose la validation de I’application, consiste a
définir une politique d’attribution du processeur (et des ressources) qui assure qu’aucune faute
temporelle ne sera commise, c'est-a-dire qu’aucune tache ne terminera I’une quelconque de ses

instances apres I’échéance de celle-ci.

= L’ordonnancement en ligne, ou un algorithme est implanté au niveau de I’ordonnanceur,
les décisions d’ordonnancement étant prises au cours de I’exécution de I’application

chaque fois qu’une nouvelle instance de taches est activée ou qu’une instance termine.

= L’ordonnancement hors ligne , qui est calculé sur I’ensemble des taches avant I’exécution
effective de I’application, la séquence ainsi produite est chargée dans une table qui sera
utilisée par le répartiteur. Notons que I’utilisation d’un ordonnancement hors ligne permet

d’éviter la surcharge processeur liee a I’exécution de I’algorithme d’ordonnancement. En

- 14 -

Chapitre 1: Systémes temps réel

contre partie, un ordonnancement en ligne est plus souple, en particulier en cas de
reconfiguration de I’application, ou en cas de prise en compte de taches sporadiques ou

apériodiques.
6. Conclusion

L'objectif de ce chapitre était de presenter le cadre scientifique sur lequel nous nous sommes
reposés pour mener notre travail. Nous avons vu la spécificité des systemes temps réel vis a vis
des systémes informatiques classiques. Nous avons mis en évidence I’'importance de la
quantification du temps dans les applications temps réel et nous avons alors exhibé les différents
modeéles temporels de taches qui les composent ainsi que les différentes mesures pouvant étre
associées aux taches. Nous nous sommes ensuite intéresses aux problémes de I’ordonnancement
de taches et avons énumére les classes de problemes d’ordonnancement les plus importants. Nous
avons ainsi pu mettre en évidence les difficultés d’ordonnancabilité que peut engendrer un
modeéle. Enfin et face a la montée croissante des systemes temps réel, notamment avec le
développement des systéemes temps réel et des systémes sur puces appelés SoC, de nouveaux
besoins sont apparus : des exigences de slreté de fonctionnement peuvent étre exigées lors de
I'exécution des applications, dans des domaines aussi divers que I’automobile, I’avionique,
I'armement, et la transmission de flux multimédias. Pour répondre a ces besoins des approches
formelles sont apparues pour spécifier ces systemes. Nous présenterons en détail ces méthodes

dans le chapitre suivant.

-15-

Chapitre 2 : Approches de modélisation des Systemes temps réel

CHAPITRE

2

Approches de modélisation

des Systemes temps réel

-16 -

Chapitre 2 : Approches de modélisation des Systemes temps réel

1. Introduction.

L’ étude des approches de modélisation des STRE (Systéeme temps réel embarqués ou RTES :
Real Time Embeded System) est faite selon des niveaux d’abstraction plus au moins variés.
Certains travaux montrent qu’on peut appliquer des techniques de génie logiciel que nous
présentons au cours de ce chapitre. Nous nous intéressons plus particulierement a la dimension
temporelle de ces méthodes. Cette présentation est centrée d'avantage sur des aspects conceptuels
plutdt que sur des aspects techniques de codage. Nous citons ROOM (Real-Time Object-Oriented
Modeling), SDL (Specification and Description Language), ADL (Architecture Description
Language) et I’approche orientée objet, et plus précisément la notion de profil UML [UMLO04] ou

I’accent a été mise.

La plupart des profils UML souffre de deux limitations majeures : ils ne prennent pas en charge
intrinsequement la modélisation de I’RTOS, et leurs performances peuvent s'en trouver
détériorees en faveur de la modularité de leur conception. Ces limitations pourraient laisser

penser qu’il est peu envisageable de construire des applications ayant des contraintes temporelles.

2. ROOM

Il s’agit d’un langage de modélisation visuel associé a une sémantique formelle [RO096], Il a été
développe par la société ObjecTime. Il est optimisé pour la spécification, la visualisation, la
documentation, I’automatisation et la construction de systemes temps réels potentiellement

distribués, complexes et « orientés-événement ».

ROOM n’est pas aussi genérique de facon qu’il soit parfois utilisable dans certaines

problématiques tandis que pour d’autres, il est préférable d’utiliser d’autres méthodes.

ROOM travaille essentiellement avec des Interfaces. Celles-ci sont reifiées dans des classes Port
et I’interaction complexe entre les objets est transposée dans des classes Protocol qui permettent

d’arbitrer le comportement entre Ports. A I’inverse des interfaces UML, les classes

L’un des bénefices les plus intéressants de ROOM est qu’il modélise les deux c6tés d’une
interface, tant le client que le serveur. Par ailleurs, I’utilisation de classes Port, Connector et
Protocol permet une trés bonne définition des interfaces complexes. Les classes Protocol sont

quasi exclusivement modélisées par des statecharts, ce qui facilite I’utilisation des pré et post

-17 -

Chapitre 2 : Approches de modélisation des Systemes temps réel

conditions des services. De plus, le fait que I’on puisse abstraire les interfaces (UML) en Port et
classes Protocol, permet de leur donner un état et des attributs, ce qui les rend donc plus

puissants.

Toutefois, les associations entre les classes semantiques (Capsules) passent par I’intermédiaire
d’un ensemble d’autres classes. Une telle structure peut compliquer inutilement les relations entre
classes ayant une sémantique simple. Aussi, I’usage de ROOM doit étre circonstancié. Il peut étre
utilisé lorsque des classes ont une sémantique qui est relativement importante et complexe.
ROOM est particulierement approprié quand I’interaction de quelques objets importants est

complexe et requiert des significations spéciales pour contrdler et arbitrer des choix.
3. SDL

Les systemes temps réel s’appuient sur un systeme d’exploitation temps réel (RTOS) dont
I’élément structurant de base est la tache. Plusieurs taches s’exécutent en parallele pour réaliser
les fonctions de base qui sont regroupées ensuite pour réaliser les fonctions les plus complexes et
ainsi de suite jusqu’a couvrir toute I’application. Il est rapidement apparu que le langage SDL
[SDLO04], qui permet d’organiser son application en regroupant les taches en blocs fonctionnels
qui, eux-mémes, peuvent étre regroupés en blocs de plus haut niveau, il est considéré comme un

bon moyen de représenter graphiquement I’architecture de n’importe quel systeme temps réel.

D’un point de vue statique, une interface se définit par un format d’échanges basé sur des
donnees structuréees tant dis que d’un point de vue dynamique et en particulier par I’écriture d’un
scénario qui décrit le séquencement des échanges. Pour la représentation de ces interfaces, le
SDL est relativement bien adapté. En effet, les signaux SDL accompagnés de paramétres typés
basés sur les données du langage (appelées Types de données abstraits ou ADT, Abstract data

types) permettent une description compléte d’une interface statique.

D’un autre point important: les systemes temps réel sont basés sur I’exécution en paralléle de
taches indépendantes. Il est donc important dans ce contexte de ne pas gaspiller du temps CPU
(Central Processing Unit) lorsqu’une tache n’a rien a faire. Ceci a conduit la plupart des
applications temps réel a se baser sur des machines a états finis, dans lesquelles le principe de
base est de se mettre en attente sur un objet de I’'RTOS, comme une file d’attente de messages,

des que la tche a terminé son action. Ici, les machines a états finis du langage SDL sont parfaites

-18-

Chapitre 2 : Approches de modélisation des Systemes temps réel

pour representer graphiquement ce type de comportement. Enfin, depuis sa version 92, le SDL est
orienté objet a tous les niveaux de la représentation graphique, ce qui permet de construire des
librairies de composants logiciels spécialisés, adaptés au marché du temps réel. Le SDL a di
s’adapter aux contraintes du temps réel. Sur le papier, le SDL apparait donc comme un langage
parfait pour la spécification et la conception des systemes temps réel. Alors que la réalité
technique est tout autre : Comme premier probleme, les ADT ne sont pas adaptés aux impératifs
de la conception d’un systeme temps réel. En effet, leur syntaxe de manipulation a été définie
pour signaler des protocoles, non pour les concevoir. Les développeurs sont alors frustrés de ne
pas avoir la précision qu’ils avaient avec des langages de programmation classique comme le C.
De plus, I’intégration de code existant est difficile car il faut réaliser une passerelle entre les types
de données SDL et les types de données C ou C++. Autre difficulté, il n’existe pas de
compilateur SDL natif ou croisé sur le marché. Par conséquent, une phase intermédiaire de

génération de code en C serait nécessaire pour implémenter le systeme SDL sur cible.
4. Réseaux de Pétri

Les réseaux de Petri permettent d’étudier des systemes dynamiques complexes quoiqu’ils restent
autonomes de I’architecture du systeme. lls ont été proposés en 1962 par Carl Adam PETRI
[PET62]. lls sont maintenant utilisés pour spécifier, modéliser et comprendre les systémes (au
sens informatique) dans lesquels plusieurs processus sont interdépendants. Ils constituent un outil
graphique et mathématique de modélisation. Dans le cas des STRE, ils restent restreints pour la

modélisation de I’aspect concurrence et ordonnancement des taches.

[DELO3] présente I'approche UML/PNO (Unified Modelling Language with Petri Net Objects)
pour la specification de systémes temps réel. La méthode propose d'enrichir la description semi-
formelle UML du systéme par une modélisation formelle basée sur les réseaux de Petri. Les
concepts UML de sous-systemes et d'interfaces ont été étendus afin d’améliorer la description de
la vue systéme en termes de structuration, gestion de projets et organisation de la modélisation.
L’objectif est également d’adapter la méthode de modélisation systéme a une approche « orientée
composant » pour le temps réel. Le concept « d’objet composé » permet d’intégrer des
spécificités temps réel au sein du composant (protocole de communication, contrainte temporelle,

effet observable).

-19-

Chapitre 2 : Approches de modélisation des Systemes temps réel

Le comportement des objets est spécifié a I’aide des réseaux de Petri a places et transitions
stochastiques temporelles afin de permettre la validation et la vérification du systeme en cours de
specification. L’approche de validation propose des traductions semi-automatiques des
diagrammes UML en réseaux de Petri. Les techniques classiques de simulation et d'évaluation de
performances peuvent alors étre appliquées. Ces traductions dévoilent I'avantage de rassembler,
sur un méme modéle a réseau de Petri, tous les aspects dynamiques du composant apparaissant
dans différents diagrammes UML et d’examiner de ce fait la cohérence de son comportement et
de son utilisation. La veérification utilise les techniques d'analyse formelle, basées sur I'utilisation

conjointe du graphe de classes et de la logique lineaire.

Pour [PAIO6], il considere le probleme de I’ordonnancement hors ligne d’applications Temps
Réel multitdiches dans le contexte ou les taches peuvent comporter des instructions
conditionnelles. Il redéfinit le modéle temporel de taches pour prendre en compte explicitement
les instructions conditionnelles. Il reformule le probléme de I’ordonnancgabilité pour des taches
indépendantes et met en évidence I’ordonnancabilité globale et locale. Il étudie I’impact de la
présence d’instructions conditionnelles sur les durées nécessaires de simulation. 1l propose une
méthode d’analyse d’ordonnancabilité fondée sur une modélisation par réseaux de Petri. L ajout
de taches conditionnelles dans cette modélisation permet d’intégrer explicitement les difféerents
comportements d’exécution des taches et de prendre en charge I’activation des taches

sporadiques.
5. ADL

Le domaine des systémes temps réel affiche des besoins qui justifient actuellement une réelle
réflexion sur I’approche de conception architecturale : organisation complexe (présence de
fonctionnalités multiples interdépendantes), architectures matérielles réparties, présence de
contraintes non-fonctionnelles qui lient intimement éléments logiciels et matériels, utilisation
optimisée des ressources, reconfigurabilité dynamique, prédictibilité et donc nécessité de
vérification a priori et au plus vite dans le processus de développement, etc. De plus, la
généralisation de I’utilisation des systemes temps réel embarqués dans des domaines comme
I’automobile ou I’avionique (ou les produits sont déclinés en gamme et sont construits par
assemblage de sous-systemes fournis par différents équipementiers) fait émerger des exigences
nouvelles de flexibilité, réutilisabilité, portabilité, interopérabilité, etc. Les ADLs [ANNO5]

-20-

Chapitre 2 : Approches de modélisation des Systemes temps réel

constituent une classe de langages offrant des abstractions pour la description « gros grain » des
systemes logiciels. De multiples langages appartiennent & cette catégorie, langages qui, pour
certains, différent de maniére majeure ne serait-ce que par leur syntaxe, leur sémantique, leur
expressivité et les buts qu’ils visent. En proposant une définition unique, précise et consensuelle

est alors un probleme délicat.

L’objectif d’un langage de description d’architecture est avant tout d’exprimer les relations entre
les composants de I’application. Ces interactions deviennent rapidement un point dur du
développement dans le cadre d’applications réparties ou modulaires car elles sont construites par
assemblage de composants dont les interfaces doivent étre compatibles. C’est pour cette raison
que le développement de I’avionique modulaire a conduit & la définition d’un langage de
description d’architecture AADL appelé initialement (Avionics Architecture Description
Language) et ensuite renommé Architecture Analysis & Design Language, il est particuliérement
précis sur la définition de I’interface entre les composants de I’application, mais également sur la
description de I’environnement cible et de la maniére dont les composants sont déployés. Cet
AADL émergeant est un ADL développé pour répondre aux besoins spéciaux des systemes
embarqués temps-réel, il évoque explicitement des points méthodologiques comme la génération
automatique de code. L’objectif du code produit est double : relier entre eux les composants de la
specification en fonction de leur interface et déployer ces composants sur un environnement
d’exécution cible. AADL constitue une approche orientée avant tout sur le déploiement et la
specification de I’architecture de I’application afin de permettre une expression claire des liens de
communications entre ses composants. Seules les interfaces des différents modules sont
spécifiées. Les aspects comportementaux ou liés au contenu des données échangés sont décorélés
de la spécification AADL et traités dans un autre formalisme. Cette ouverture vers d’autres
formalismes de spécification est une fonctionnalité tres intéressante. Ainsi AADL propose un
mécanisme d’extension du langage par un systeme d’annexes, et la possibilité de relier entre eux
des composants écrits dans d’autres langages. Ainsi chaque composant peut étre développé dans

le formalisme le plus adapté, et integré a I’application en décrivant son interface en AADL.

Dans les ADL les interfaces des composants sont décrites de maniére syntaxique, avec tres peu
de sémantique associée. On reproche alors aux ADL le manque de sémantique commune des
modeéles et leurs objectifs de conception différents qui limitent les capacités d'interaction des

langages et de leurs outils.

-21-

Chapitre 2 : Approches de modélisation des Systemes temps réel

6. UML et le temps réel

UML fournit les fondements pour spécifier, construire, visualiser et décrire les artefacts d’un
systeme logiciel. Pour cela, UML se base sur une sémantique précise et sur une notation
graphique expressive. Il définit des concepts de base et offre également des mécanismes
d’extension de ces concepts.

6.1. Modélisation comportementale avec UML

Du point de vue comportemental, UML propose principalement trois constructions : les machines

d’états, les diagrammes d’activité et un langage d’action (Action).
6.1.1. Les diagrammes d’activité

Les diagrammes d’activité servent a faciliter la modélisation de traitements complexes en termes

de flots de contrdle et de flots d’objets entre les différents constituants de I’activité.

La semantique associée aux diagrammes d’activité repose sur une circulation de jetons, proche de
celle rencontré dans les réseaux de Pétri. Un jeton modélise une donnée ou un objet. Sa
circulation dans le réseau est conditionnée par les éléments de contréle (arcs ou noeuds). Ces

éléments permettent d’exprimer des notions de parallélisme et de synchronisation.

On distingue trois types de noeuds. Les noeuds d’action transforment les flux de
donnees/contréle d’entrée en flux de données/contrdle de sortie. Ces derniers sont alors les
entrées d’autres actions. Les noeuds de contr6le définissent les régles de circulation des jetons a
travers le graphe. Les noeuds objets servent a stocker temporairement des données ou des objets.
Pour connecter ces noeuds, il existe deux types d’arcs : les arcs de flux de contréle et les arcs de
flux d’objet. Les premiers synchronisent le début d’une action (destination de I’arc) avec la fin
d’une autre action (origine de I’arc). Les arcs de flux d’objet permettent de faire passer des

valeurs entre deux noeuds.
6.1.2. Les machines d’états

Attaché a une classe ou a un cas d'utilisation, le diagramme d’états transitions présente une classe
par rapport a ses états possibles et aux transitions qui le font évoluer. Il permet de spécifier ce que

doit faire I’objet en réponse aux événements (ou traitements) qui lui sont appliqués.

-22 -

Chapitre 2 : Approches de modélisation des Systemes temps réel

Les machines d’états offrent de nombreux concepts, tels que la notion d’état hiérarchique,

composite, historique et organisé par noeuds de branches qui, combines, couvrent la plupart des

formalismes sur la notion d’état. La description de la sémantique des machines d’états [N1Z06]

est de type opérationnel et repose sur une machine d’exécution hypothétique qui présente les trois

caractéristiques suivantes :

une file d’attente d’événements qui sert a stocker les instances d’événements entrantes en

attendant de les consommer.

une politique de choix des événements qui détermine I’ordre d’extraction des occurrences
d’événement contenues dans la file d’attente : Lors d’une exécution, une machine a états
accéde a un pool d’évenements géré par I’objet contexte de la machine. En fonction de
I’état courant de la machine et de I’ensemble d’événements pertinents contenus dans le
pool (c'est-a-dire ceux pouvant déclencher une transition a partir de I’état courant), la
politique de sélection des évenements determine un ordre pour I’extraction des
évenements du pool, et offre la possibilité de mettre en ceuvre différentes politiques de

gestion des priorités

un processeur a événement qui exécute les traitements associés aux événements en
respectant la sémantique des machines d’états transitions de UML et, en particulier,
I’hypothése d’exécution (Run-to-Completion). Les événements sont dépilés un par un et
consommés par une machine d’états transitions. L’ordre dans lequel ils sont dépilés n’est
pas précisé dans UML, cela constitue un point de variation sémantique. La sémantique
d’exécution des événements est basée sur I’hypothese dite de (Run-to-Completion). Cela
signifie qu’un événement ne peut étre dépilé puis consommé que lorsque le traitement de

I’événement précédent est achevé.

Une machine a états posséde une ou plusieurs regions, elles-mémes composées de sommets (états

ou pseudo-états) et de transitions reliant ces sommets. Les transitions sont gardees par une

contrainte, et déclenchées par un trigger référencant un évenement déclencheur. Tirer une

transition provoque I’execution du comportement (potentiellement) associe, et la modification de

I’état courant de la région, de I’état source a I’état cible de la transition.

-23-

Chapitre 2 : Approches de modélisation des Systemes temps réel

Pour la modélisation du temps au niveau du diagramme d’états transitions, UML définit un
événement spécifique appelé TimeEvent. 1l sert & modéliser I’expiration d’une échéance qui peut

étre relative ou absolue :

= un événement dénotant le passage d’une quantité de temps suite a I’entrée dans I’état
contenant la transition est noté avec le mot-clé after suivi d’une expression de type

TimeExpression qui donne la valeur temporelle de I’événement.

= un événement dénotant I’occurrence d’une date absolue est noté via le mot-clé when suivi

d’une date absolue de type Time.

Le tableau 1 décrit trois extraits de machine a états transitions illustrant I’utilisation possible des
événements temporels de UML. Dans les trois cas, lorsque le temporisateur armeé arrive a
échéance, il génere un événement qui est stocké comme tout autre événement dans la file

d’attente associée a la machine d’états. Si celle-ci est dans I’état S

Modélisation des évéenements temporels Description

S After (10ms) /"procedure’ L’évenement est généré 10 ms aprés la date
— > d’entrée dans I’état S.
”T\aﬁer(lo ms after the exit of S2) L’évenement est généré 10 ms apres la date de
- Proccan sortie de I’état S.
”T*When (ler Janvier 2000, 0h00) L’évenement est généré le ler Janvier 2000 a
— Procédur® 0h0O0.

Tableau 1: Exemple de spécification d’événements temporels.
6.1.3. Le langage d’action

UML définit le concept d’Action comme étant I’unité fondamentale de spécification
comportementale permettant a des modéles UML d’étre complétement exécutable. Le principe
repose sur le fait que les actions échangent des flux de controle et de données via des fiches

d’entrée et de sortie.

En effet, UML2.0 définit un package particulier appelé Actions [DUBO05] qui definit en détails
comment modéliser toutes les actions d’une application afin d’obtenir un modele exécutable. Les

actions sont les entités comportementales de base permettant la spécification de modeles UML

- 24 -

Chapitre 2 : Approches de modélisation des Systemes temps réel

exécutables. Les actions échangent des flots de contrdle et des flots de données a travers des

InputPins et des OutputPins. Le standard UML s’attache a definir la sémantique des actions en

les regroupant en quatre paguetages

Le paquetage BasicActions définit les actions d’appel d’opérations, d’envois de signaux

et d’invocation de comportements.

Le paquetage IntermediateActions définit des actions d’invocations (diffusion de signaux
et envois d’objets qui ne sont pas des signaux), des actions de lecture et d’écriture

d’objets, de caractéristiques structurelles et de liens.

Le paquetage CompleteActions définit des actions traitant de la relation entre les objets,
les classes et les liens d’objets ainsi que des actions de gestion des événements tels que les

acceptations d’appels d’opération.

Le paquetage StructuredActions définit les actions opérant dans le cadre d’activités. Ces

actions concernent la manipulation de variables et la gestion des exceptions.

Au travers des précédents sous paquetages, le standard UML2.0 s’est uniquement attaché a

définir une syntaxe abstraite et une sémantique pour le Langage d’Action UML. Mais, cette

norme est inutilisable telle quelle est, car aucun langage de surface (ou syntaxe concréte) n’est

proposée qui satisfasse la sémantique.

Le modele d’activités de UML 2.0 est organisé en différents paquetages reflétant les différents

niveaux de sémantique offerts :

Le paquetage FundamentalActivities définit les activités comme noeuds contenant des
actions. Ce niveau sémantique est partagé par les activités basiques (basic activities) et les

activités structurées (structured activities).

Le paquetage BasicActivities offre la spécification des activités avec des flots de controle

et de données entre les actions.

Le paquetage IntermediateActivities définit les activités offrants les flots de contrdle et de
données concurrents. Ce niveau de sémantique permet la modélisation de réseaux de Pétri

classiques.

=25 -

Chapitre 2 : Approches de modélisation des Systemes temps réel

Le paquetage CompleteActivities permet la définition d’activités avec des constructions

évoluées telles que les transitions pondérées ou encore le « streaming » de donnees.

= Le paquetage StructuredActivities permet la définition d’activités constituées de
constructions classiques de programmation structurée comme les boucles ou les
branchements conditionnels.

= Le paquetage CompleteStructuredActivities permet la définition d’activités avec des flots

de données en sortie des boucles ou des branchements conditionnels.

» Le paquetage ExtraStructuredActivities permet la définition d’activités contenant des

exceptions ou des invocations de comportement sur des ensembles de valeurs.
6.1.4. Diagramme de séquence

Le diagramme de séquence permet de décrire une interaction qui est elle-méme un ensemble de

messages entre des instances en vue de réaliser I’opération ou le résultat désiré.

Le diagramme de séquence associe a chacun des objets impliqués dans une interaction une ligne
de vie verticale représentant le temps (le temps s’écoule de haut en bas) et permettant d’identifier
explicitement la séquence et I’ordre des messages émis et recus par les objets. L’ordre est partiel
par rapport a tout le systeme. Lorsqu’on désire indiquer qu’un message déclenche un traitement
particulier dans I’objet, on représente ce traitement avec un petit rectangle vertical le long de sa
ligne de vie.

6.2. Profil UML

A sa creation, UML avait pour ambition de se positionner comme langage de modélisation
couvrant I’ensemble des domaines du logiciel, comme les bases de données, les systémes
embarqueés ou les systemes de gestion. UML s’est ainsi impose sur certains de ces domaines et
continue sa pénétration dans les autres, méme si parfois des difficultés sont rencontrées. De plus,
au fur et a mesure de I’adoption de UML, son champ d’investigation s’est ouvert a d’autres

domaines tels que I’électronique et, plus généralement, a I’ingénierie systéme.

Parce qu’un méme et unique langage ne pourrait pas répondre a toutes les spécificités de chaque
domaine, UML propose des possibilités de spécialisation permettant d’adapter le langage a des

besoins particuliers. Cet objectif peut étre atteint principalement par deux moyens : les points

- 26 -

Chapitre 2 : Approches de modélisation des Systemes temps réel

ouverts de variation sémantique et les mécanismes d’extension. Les mecanismes d’extension
visent & adapter UML a des besoins spécifiques. Cela peut se faire via trois concepts particuliers
de UML : les stéréotypes, les valeurs étiquetées «Tagged values» et les contraintes. L’adjonction
d’un stéréotype peut étre vue comme I’ajout d’une nouvelle méta classe au méta-modele de
UML, c’est-a-dire comme I’ajout d’un nouveau mot au vocabulaire de base proposé par UML.
Un stéréotype est défini dans le contexte d’un élément existant du méta-modele de UML et «
hérite » ainsi de ses caracteristiques (attributs, opérations, relations, ...). Lors de la définition
d’un steréotype, une nouvelle représentation graphique peut lui étre attachée si besoin est.
Associees a un stéréotype, il est également possible de définir des valeurs étiquetées. Celles-ci
peuvent étre vues comme étant de nouveaux meéta attributs liées a un stéréotype ; elles permettent
ainsi d’en définir des nouvelles caractéristiques. De méme, il peut étre utile de définir un
ensemble de contraintes qui, associées a un stéréotype, clarifieront la sémantique de fagon
formelle, en utilisant par exemple le langage Object Constraint Language(OCL). En vue
d’organiser I’éventuelle prolifération de stéréotypes, valeurs étiquetées et autres contraintes, le
concept de profil [UMLO4] a été introduit afin de regrouper sous une méme banniére un
ensemble d’extensions de UML défini de fagon a faciliter la modélisation d’un probleme

particulier.

Face a des contraintes de productivité et de concurrence de plus en plus forte, les industriels du
secteur des systemes embarques temps réel se sont tournés vers les technologies orientées objets
et/ou composants. Ils sont ainsi naturellement arrivés a adopter UML et I'ingénierie dirigée par
les modeles (IDM) parce que :

= La spécification des systémes temps réel embarqués implique différents points de vue
(ex. fonctionnel, temps réel, tolérance aux fautes...) et il est difficile de distinguer les
aspects génériques des produits des aspects particuliers de leur implantation. En effet,
les contraintes de réalisation de telles applications, souvent dictées par les limites des
ressources disponibles, sont telles qu’il est difficile d’en faire abstraction lors de la

specification d’une application.

= Les options d’implantation visées peuvent varier considérablement ; différents modéles
d’exécution peuvent étre envisagés pour un méme modele en fonction des contraintes de

réalisation particulieres (ex. modéle multi-taches avec Real Time Operating System,

- 27 -

Chapitre 2 : Approches de modélisation des Systemes temps réel

modeles d’exécution synchrone...). De plus, les options d’implantation peuvent
également reposer sur des solutions proprietaires compliquant les éventuels portages

vers d’autres cibles matérielles.

= La performance de tels systéemes est un probléme critique qui va souvent a I’encontre
des techniques standards d’encapsulation logicielle. Les optimisations peuvent alors
mener a des entrelacements du code fonctionnel et temps réel qui devient alors un

facteur pénalisant en terme de maintenabilité des applications.

= Le test et la validation des applications temps réel embarquées sont des activités
critiques qui nécessitent la mise en place de modeles et d’outils d’analyse sophistiqués

spécifiques.

= Enfin le domaine du développement temps réel embarqué nécessite des développeurs a

haut niveau d’expertise en conception, implantation et validation.

Pour répondre aux problémes trés spécifiques du domaine temps réel, nous présente les profils
UML suivants : le profil « Rapid Object-Oriented Process for Embedded Systems » (ROPES), le
profil OMEGA, le profil « Scheduling, Performance and Timing » (SPT) et le profil «Quality of
Services & Faults Tholérance» (QoS&FT), le profil ACCORD /UML, le profil GASPARD
(Graphical Array Specification for Parallel and Distributed Computing) et le profil Modeling and
Analysis of Real-Time and Embedded systems (MARTES).

6.2.1. ROPES

Le processus ROPES [ROPO04] est basé sur un cycle de vie du développement itératif qui utilise
le standard UML et qui encourage la génération automatique de code et ce afin de parvenir

rapidement a des prototypes a valider.
Ce processus de développement est divisé en quatre grandes phases :

= Analyse: Cette phase permet d’identifier toutes les caractéristiques du systéme a
développer. Celle-ci peut étre découpée en trois sous-phases qui ont chacune leurs
spécificités. Les diagrammes utilisés pour cette phase peuvent donc étre choisis parmi les
propositions suivantes : texte en langue naturelle, diagrammes de Use Case, Diagrammes

de séquences, Diagrammes d’états

-28-

Chapitre 2 : Approches de modélisation des Systemes temps réel

Design : Tandis que la phase d’analyse identifie la logique d’un systéme, le design
propose une solution particuliere unique optimale. Trois sous-phases composent cette

étape :

— Le design architectural definit les décisions stratégiques du design qui affecteront
les composants software tel que le modéle de concurrence, la distribution des

composants.
— Le design mécaniste ajoute la liaison entre les composants.

— Le design détaillé définit la structure interne et le comportement de chaque classe,

composant, ...

La phase de design consiste majoritairement en I’application de « design patterns » au

modeéle logique établi a la fin de I’étape d’analyse

Implémentation : Le passage de modeles conceptuels successivement affinés a du code
concret et efficient caractérise cette phase. ROPES impose aussi qu’a ce stade des unités
de test soient développées de maniére a pouvoir valider chaque ensemble cohérent de

code exécutable

Test: Cette phase integre tant les tests d’intégration que ceux de validation. Il est

important de concevoir ces tests pour obtenir des résultats observables

6.2.2. OMEGA

Le profil OMEGA [OMEOQ5] spécialise une partie du profil dans le but de raffiner la description

de contraintes temporelles sur le comportement du systéme et de formaliser la relation entre ces

contraintes (annotations) et la sémantique du modéle fonctionnel. Il offre des moyens et une

syntaxe concréte pour exprimer les contraintes temporelles a la fois de maniére opérationnelle et

de maniere déclarative.

Les Concepts temporels opérationnels définis par le profil sont :

Le temps courant a la méme valeur partout dans le systeme et que cette valeur peut étre

accédée explicitement dans le langage d’actions, a travers I’expression now.

Les temporisations sont des instances (d’une classe predéfinie « Timer ») qui permettent

de compter la progression du temps. Une temporisation peut étre armee pour compter le

-29-

Chapitre 2 : Approches de modélisation des Systemes temps réel

temps correspondant & une durée et elle génére un événement « TimeOut» aprés
I’écoulement de la duree spécifiée, qui peut étre utilisé pour déclencher une transition

dans I’objet qui le détient.

= Les horloges (instances d’une classe prédéfinie « Clock ») sont des concepts empruntés
aux automates temporisés. Ils permettent de mesurer et de consulter le temps écoulé

depuis leur dernier démarrage.
Les concepts couverts par le profil OMEGA sont :

= La description de la structure, faite a travers des diagrammes de classes, incluant des

relations d’héritage et d’associations.

= Un modele particulier de concurrence, défini a partir des notions de classes actives et
passives. Les primitives de communication entre objets sont les signaux asynchrones et

les appels d’opérations.

= Ladescription du comportement, faite & I’aide de machines a états (associées aux classes)
et d’opérations. On distingue deux types d’opérations, les unes (primitives) décrites par

une méthode, les autres « triggered » décrites par la machine a états de la classe.

= Les actions des transitions et des méthodes sont decrites dans un langage d’actions

impératif conforme a la sémantique d’actions d’UML

Certes le profil OMEGA est tres riche en termes de définition de propriétés non fonctionnelles du
systéme mais présente un manque au niveau de définition d’un modele d’ordonnancement et de

vérification et de validation d’ordonnancabilité.
6.2.3. SPT

Il s’agit d’un profil UML concernant le temps, I’ordonnancabilité, et le temps. Ce profil [SPT02]
a pour objectif d’augmenter la capacité de modélisation de la qualité de services liée au temps
(échéance et durée). De plus, ce profil est capable de définir un systeme temps reel sous formes
de ressources, de définir leurs propriétés temporelles et de modéliser leur déploiement sur une
architecture cible. Pour la modélisation de ses contraintes, des stéréotypes sont mis en place
comme par exemple deadline pour représenter une échéance simple. Ce profil est utilisé par

Rashbody et son couplage a I’outil de validation RapidRMA qui permet [I’analyse de

-30 -

Chapitre 2 : Approches de modélisation des Systemes temps réel

I’ordonnoncabilité du systéme. L’avantage du SPT est d’avoir été adopté par ’'OMG et d’étre

capable de spécifier directement en UML des informations quantitatives.

Ce profil vise alors & définir un ensemble minimal de concepts nécessaires a la modélisation des
aspects temps réel d’un systéme. Les concepts doivent aboutir a la description de modeéles a partir
desquels on doit étre capable soit de produire une implantation ou des supports d’implantation,
soit d’analyser le comportement temps réel d’une application. Pour ce faire, le profil SPT est
constitué de deux sous-ensembles (paquetages) principaux : le paquetage des ressources

générales et le paquetage d’analyse comportementale temps réel.

Au coeur du premier paquetage, on trouve les concepts de ressource et de qualité de service. Ce
concept de qualité de service fournit une base pour la définition de contraintes temps réel
qualitatives tels que : échéance, débit, temps d’exécution maximale, etc. Le paquetage d’analyse
du profil SPT propose trois sous profils dédiés respectivement a I’ordonnancabilité classique, a
I’étude de performance et a I’analyse d’ordonnancabilité dans le contexte de RT-CORBA mais

non pas dans le contexte d’un RTOS.
6.2.4. GASPARD

Le profil GASPARD (Graphical Array Specification for Parallel and Distributed Computing)
[GASO06] est un environnement intégré de développement pour la conception des SoC, et comme
son nom I’indique, il est principalement destiné a la spécification des applications de traitement
des signaux intensifs. Gaspard permet une modelisation de haut niveau pour la conception du
logiciel et du matériel. Ce niveau d'abstraction permet I'utilisation des techniques de verification
avant tout prototypage. Il permet aussi de produire automatiquement une distribution et un
ordonnancement de l'application sur l'architecture avec génération du code. Cet environnement

assure donc la modélisation, la simulation, le test ainsi que la génération du code pour les SoC.

Gaspard est basé sur plusieurs niveaux d’abstractions. Dans le niveau le plus haut, le designer
décrit son application logicielle et I’architecture matérielle sur laquelle va tourner I’application

appropriée. IL s’étale sur six packages :
= package « component »
» package « factorization »

= package « application »

-31-

Chapitre 2 : Approches de modélisation des Systemes temps réel

= package « hardwareArchitecture »
» package « association »

= package « control »
6.2.5. Profil QoS & FT

Le profil UML QoS & FT [QOS01] a une portée plus large que le profil SPT. Il permet a
I'utilisateur de définir une variété plus large d’exigences de QoS et des propriétés (performance et
tolérance aux pannes). La framework de ce profil supporte une catégorisation générale des
différentes sortes de QoS. L'inclusion de la QoS est fixée lors de la conception et sera gérée
dynamiquement. En outre, ce profil supporte I'intégration des différentes catégories de QoS pour

modéliser la QoS des aspects du systeme.

Le framework de ce QoS fournit un méta-modéle pour définir les concepts de domaine et pour

construire le profil QoS et un dép6t de spécifications QoS (nommé le Catalogue QoS).

Le tableau ci dessous présente une comparaison entre les deux profiles Q0S&FT et SPT

Exigence Profil SPT Profil QoS
Annotation des processus Faible Bien défini
Permission & [Putilisateur | Non (mesures prédéfinies) oui

d’ajouter des mesures

Type pour des valeurs | Valeurs temps réel aucun

concernant le temps

Expressions pour définir des | Partie du langage TVL non
propriétés non fonctionnelles

(NFPs) quantitatives

Expressions pour définir des | Limité Riche avec OCL

contraintes

Tableau 2: Comparaison entre les profils SPT et QoS

-32-

Chapitre 2 : Approches de modélisation des Systemes temps réel

6.2.6. Profil MARTES

MARTE (Modeling and Analysis of Real-Time and Embedded Systems) [MARO06] vient des
deux profils existants: SPT et Q0S&FT. Ce profil permet la modélisation de systemes embarqués
réactifs, de contréle/commande et leurs flux de donnees intensifs ainsi que leurs aspects logiciels
et matériels. Ce profil assure la conformité avec le Profil QoS &FT pour modéliser la Qualité de
Service et la tolérance aux pannes, il permet ainsi la spécification de contraintes non seulement
en temps réel mais aussi d'autres caractéristigues QoS incorporées comme la consommation
électrique et la taille de mémoire. MARTES offre aussi la possibilité de modélisation et d'analyse
d'architectures & base de composants. Il possede la capacité de modéliser le temps

asynchrone/causal, synchrone/horloge et réelle/Continue.
6.2.7. ACCORD/UML

Accord|lUML est a la fois un cadre conceptuel et une méthodologie qui a pour but d’assister le
développement d’applications temps réel en masquant le plus possible les aspects d’implantation
pour permettre au deéveloppeur de se concentrer sur les aspects metiers du systeme
(fonctionnalités, contraintes de performance...). Pour atteindre ce but, Accord|UML se place dans

un contexte d’ingénierie des modeles, et s’appuie tres largement sur des modéles

UML et des transformations automatiques pour le raffinement et I’enrichissement de ces

modeéles, ainsi que pour les aspects méthodologiques.
ACCORD/UML propose essentiellement deux concepts dediés:

= Le stéréotype « RealTimeObject » (ou « RTO ») supportant la modélisation d’entités
concurrentes et encapsulant les contrdles de concurrence et d’états. Il s'agit d'une
extension de celui d'objet actif ou il est possible d'attacher des contraintes temps réel aux
traitements des messages effectués par les objets actifs de I'application. L’objet temps reel
peut ainsi étre vu comme un serveur de taches. Chaque demande d’exécution d’une de ses
opérations (un service) correspond alors a I’activation d’une tache temps réel dans
I’application. Un objet temps réel est capable de recevoir et d’émettre des messages qui

peuvent étre de deux natures différentes : un signal ou un appel d’opération.

» Un stéréotype « RealTimeFeature » (ou « RTF ») réifiant le concept de qualité de service

du SPT pour le besoin de modélisation de contrainte temps-réel. Les différentes valeurs

-33-

Chapitre 2 : Approches de modélisation des Systemes temps réel

étiquetées associées a ce concept permettant ainsi de modéliser des caractéristiques

qualitatives temps reel telles que échéances, périodes, temps de debut...
6.3. OCL et le temps réel

Le langage de contrainte d'objets [OCL04] a été présenté pour supporter la spécification de
contraintes pour des diagrammes UML et est principalement employé pour formuler des
invariants et des opérations pré et des post conditions. Bien que OCL soit également appliqué
dans les diagrammes comportementaux, par exemple, le diagramme d'états transitions, ce n'est
pas actuellement possible d’indiquer des contraintes au sujet des propriétés dynamiques de

comportement et de synchronisation de tels diagrammes.

Le travail issu de [STEO4] présente une extension de OCL avec des spécifications des contraintes
états orientés temps délimités, de facon que OCL supporte non seulement des propriétés

fonctionnelles du systeme mais aussi d’autres non fonctionnelles
7. Discussion

Il est clair d’aprés la description de la spécificité de chaque profil présenté précédemment, que
I’accent est mis sur la description de I’architecture matérielle et de I’application. Ces profils sont
fondés sur un niveau d’abstraction plus élevé que d’autres approches, ils visent également les
applications a dominance flot de données et non pas celui de contréle. Méme dans le cas ou ces
travaux touchent I’aspect temporel, ils ne peuvent pas couvrir la modélisation de I’RTOS. On leur
reproche ainsi le manque de sémantique temporelle et transitionnelle commune des modéles ainsi

que la non disponibilité des outils qui les supportent.

En effet, ces travaux ne nous permettent pas encore de garantir la sireté de fonctionnement du
systéeme, en d’autre terme son aspect déterminisme. Le modéle d'application n'est pas associé
avec le modele d'analyse et la liaison entre deux modéles doit étre encore effectuée manuellement
avec de nombreuses itérations. Ces modeles ne supportent pas suffisamment l'intégration des
caractérisations temps réelles comme le temps d'exécution et les contraintes temps réelles et par
conséquent ils ne tiennent pas compte de I’RTOS relatif a I’architecture et I’application
considérées. Malgré cette absence d’intégration de I’RTOS dans les modéles, des travaux tels

que [IMEO5] et [SAMO06] ont démarré pour toucher cet aspect quoiqu’ils restent superficiels.

-34-

Chapitre 2 : Approches de modélisation des Systemes temps réel

Les approches liées a la simulation ont besoin d’un temps de simulation assez long pour donner
une vue de fonctionnement relativement fiable. Par ailleurs, les travaux bases sur I'exécution

numérique impliquent toujours I'explosion combinatoire des états du systeme.

On a donc besoin dans un premier temps d'une methodologie servant a specifier le systéme et
essentiellement ses propriétés non fonctionnelles et également a valider I'ordonnancabilité de ces

systemes temps reels.

Ensuite, pour amortir cette difficulté de conception, le recours & des CAD (Computer Aiding
Design) TOOLS est une solution plus au moins efficace. Mais, abstraire le plus possible se voit
une solution plus évidente. Ce ci pourrait étre réalisé a travers le recours a une approche de méta-
modélisation dans le but de modéliser les trois composantes principales du systéeme :
I’application, le modele d’architecture et le systeme d’exploitation temps réel (RTOS). A partir
du méta-modeéle composé, on pourra veérifier formellement le comportement temporel du

systeme.

L’approche MDA ceuvre dans ce sens. En effet, I’approche MDA améne & un niveau
d’abstraction encore plus haut a travers le principe de développement & base de modeéles visant a
promouvoir la conception de systéeme indépendamment de toute plate-forme technologique
logicielle. De plus, elle permet aussi la division orthogonale du systeme en plusieurs modeles de
domaines, augmentant ainsi encore plus le niveau de réutilisation. Le « Plateforme Independant
Model » (PIM) est le point de départ du processus MDA. Combiner une version spécifique de
ciblage du cadre en temps réel avec une technologie de génération de code puissante et
personnalisable est une facon trés efficace et souple de traduire un PIM en PSM (Plateforme
Specific Model). Cette fagon permet également de recibler facilement le PIM vers un PSM
different. Cette méthode fournit un avantage en permettant de tester et de déboguer I'application
au niveau de la conception ou du PIM sur I'h6te tout en prenant en compte les concepts et
ressources de planification utilisés dans les environnements embarqués typiques ciblant soit un

RTOS commercial soit un environnement de planification exclusif.

Pour résoudre tous ces problemes, dans le travail du mastere, nous proposons une démarche

offrant la possibilité de modéliser et de valider le systeme MDA sur les RTOS.
Les propriétés temps réels qui doivent étre vérifiées lors de la modélisation sont :

= Le comportement dépendant du temps

-35-

Chapitre 2 : Approches de modélisation des Systemes temps réel

= La prétention relative au temps sur I’environnement externe systeme comme le temps de

réponse et le temps d’execution d’une action

= Condition relative au temps tel que la date limite d’une action et la durée entre deux

événements.

8. Conclusion

Nous avons présenté dans ce chapitre une synthese des approches de conception des systemes
temps réel. Nous avons notamment choisi d'étudier en détail des approches issues des ateliers de
génie logiciel essentiellement les profils UML dédiés a la modélisation des STRE. Quelque soit
le profil, nous avons pu identifier des caractéristiques communes : Manque de garantie de s(reté

de fonctionnement et d’intégration de I’'RTOS.

Toutefois, notre but n'est pas de recréer une nouvelle maniére de modéliser des STRE, ni de
proposer de solutions techniques pour les implémenter. Notre objectif est d'avantage l'intégration
de la modélisation d’un RTOS avec I’application et I’architecture, notamment en se référant a

I'ingénierie dirigée par les modeéles.

En se basant sur des standards liés a la modélisation et aux transformations de modeéles que nous
allons présenter dans le chapitre suivant. Les chapitres 4 et 5 exposent nos travaux sur le

développement d’un RTOS, en s'appuyant sur les concepts présentés dans les chapitres 1 et 3.

-36 -

Chapitre 3 : Ingénierie Dirigée par les modeles

CHAPITRE

K

Ingénierie Dirigée par les

modéeles

-37-

Chapitre 3 : Ingénierie Dirigée par les modeles

1. Introduction

Une nouvelle maniére d'envisager la production et la maintenance des systemes logiciels consiste
a s'appuyer essentiellement sur les modéles, qui sont alors considérés comme entités de premiére
classe. Il s'agit de I'ingénierie des modéles (ou IDM), qui est une branche de l'ingénierie des
langages. Les modéles sont maintenant représentés a lI'aide de formats précis dont la manipulation
peut étre automatisée. Chacun de ces modéles est défini en utilisant un langage spécifiant un
ensemble de concepts et leurs relations. Chaque langage a généralement aussi une syntaxe

concrete, par exemple textuelle ou visuelle, permettant de représenter les modeles.

L'IDM vise a définir un systéme logiciel a l'aide d'un ensemble de modéles utilisant différents
langages. L'un des intéréts de I''DM est de pouvoir considérer les modéles sur lesquels le

programmeur raisonne comme faisant partie a part entiére de la définition du logiciel.

L'IDM est connue sous différents noms. Une de ses appellations en langue anglaise est MDE
(Model Driven Engineering pour ingénierie dirigée par les modeles). Les principes du MDE sont

appliqués dans différents standards.

L'approche MDA (Model Driven Architecture ou architecture dirigée par les modéles) est un
exemple d'application du MDE. Le MDA est recommandé par 'OMG (Objet Management
Group) et est basé sur d'autres recommandations de ce méme organisme. L'automatisation de la

manipulation des modeles est donc réalisée par des opérations sur ces modeles.

2. L’architecture MDA de P’OMG

En novembre 2000, I’OMG annongait son initiative MDA. Le consensus sur UML a été essentiel
dans cette transition des techniques de production de logiciel basées sur le code vers des
techniques de production basées sur les modéles. Un role clef est maintenant joué par le concept

de méta-modele. Mais ceci n’est pas suffisant.

Le MOF [MOFO03] (Object Management Group, 1997) est issu de la reconnaissance qu’UML
était un méta-modele possible dans le domaine du développement logiciel, mais n’était pas le
seul. Devant le danger de voir se développer et evoluer independamment une grande variéte de

méta-modeles différents et incompatibles (data warehouse, workflow, software process, etc.), il y

-38 -

Chapitre 3 : Ingénierie Dirigée par les modeles

avait un besoin urgent de fournir un cadre global d’intégration pour tous les méta-modeles dans le
domaine de I’ingénierie du logiciel, des systemes et des donnees.

La réponse logique était donc d’offrir un langage de définition de méta-modeles, c’est-a-dire un
méta-meta-modéle, chaque meta-modéle definissant lui-méme un langage pour décrire un
domaine spécifique d’intérét. Par exemple UML permet de décrire les artefacts d’un logiciel a
objets.

D’autres méta-modeles adressent des domaines différents comme le « legacy » (existant logiciel),
les processus logiciels, I’organisation, les tests, la qualite de service, etc. Leur nombre est
important et croissant. Ils sont définis comme des composants séparés et de nombreuses relations

existent entre eux.

T
M e e e e e e e o e e] o — — — —— — — — — — — — — — — —
7 i
1 1 1
<
S S e d_=——=
— — T I
< ! |
Lo __]

Figure 1 : Interprétation de la pile de modélisation multi-niveau de I’OMG

Le changement réel en ingenierie des modeles est intervenu lorsque ces modéles ont commence a

étre utilisés directement dans les chaines de production de logiciel. Bien que cette possibilité ait

-39-

Niveau
RAR

Chapitre 3 : Ingénierie Dirigée par les modeles

souvent été considérée et partiellement appliquee, il est maintenant possible d’envisager son

déploiement industriel a grande échelle (Greenfield et al., 2003).

Jusqu’a présent les modéles d’analyse et de conception ont principalement été utilisés pour
documenter les systémes logiciels. Les analystes et les concepteurs ont produit des modeles
souvent fournis aux programmeurs comme du matériau d’inspiration, pour faciliter la production
de logiciel. Le passage de cette période « contemplative » a une nouvelle situation ou les outils de
production seront dirigés par les modeles a été facilité par I’introduction de standards du MDA
comme la recommandation XML [XMLO01] (Object Management Group, 1998).

La question de la transformation de modéles se situe aussi au centre de I’approche MDA (figure
Une suggestion initiale de recherche avait initialement été faite en (Lemesle, 1998) et un appel a
proposition industriel (RFP MOF/QVT) est actuellement en cours (Object Management Group,
2002) pour définir une sorte de langage unifié de transformation ou plutét une famille
coordonnée de tels langages. Ceci permettra de transformer un modele Ma en un autre modele
Mb, indépendamment du fait que les méta-modéles MMa et MMb de Ma et Mb soient identiques
ou différents. De plus le programme de transformation, par exemple écrit en langage ATL
(Bézivin et al., 2004) - un langage de la famille QVT - doit lui-méme étre considéré comme un
modele Mt. En conséquence il sera conforme a un méta-modéle MMt, une définition abstraite de
ce langage de transformation. Ces éléments constituent donc les briques de base de ce que I’on
appelle I’architecture MDA de I’OMG. lls évoluent rapidement, donnant lieu a la réalisation

d’outils industriels applicables et parfois appliqués a certains domaines spécifiques.

Cependant, la communauté de recherche est elle-méme impliquée dans la compréhension en

profondeur des concepts et des principes régissant cette approche industrielle du MDA.

- 40 -

Chapitre 3 : Ingénierie Dirigée par les modeles

Figure 2: La transformation de modéles basee sur les méta-modéles

3. Principes de base

En technologie des objets, un principe de base (« Tout est objet », [P1]) a été trés utile lors de
I’apparition de la technologie sur la scéne industrielle dans les années 1980 pour la pousser dans
la direction de la simplicité, de la généralité et de la puissdn€@ NINgrIMB&tRe facon similaire,
en ingénierie des modeles, le principe de base « Tout'&?ﬂ%gﬁ §?ﬁ’ﬁ%§sséde plusieurs

propriétés intéressantes.

Tout est objet [P1]

Tout est modéle [P2]

Tableau 3: Principe [P1] et [P2]

L approche MDA n’est pas basée sur une idée unique. Parmi les objectifs poursuivis on peut

mentionner la séparation de descriptions métier neutres d’avec les aspects liés a la plateforme,

-4]1 -
MMa modele
source

Chapitre 3 : Ingénierie Dirigée par les modeles

I’expression séparée des aspects d’un systéeme en cours de développement par des langages
specifiques de domaines, I’établissement de relations précises entre ces différents langages dans
un cadre global et en particulier la possibilité d’exprimer des transformations précises entre eux,

etc.

Comme suggeré par les figures 3 et 4, les outils conceptuels qui étaient les plus utilises dans les
années 1980 sont en cours de renouvellement. Au début de la période de déploiement industriel
de la technologie des objets, ce qui était important était qu’un objet soit instance d’une classe et
qu’une classe puisse hériter d’une autre classe. Ceci peut étre vu comme une définition minimale

correspondant au principe [P1]. Nous appelons ces deux relations instanceOf et inheritsFrom.

De facon trés différente, ce qui semble étre important aujourd’hui est qu’une vue particuliére (un
aspect) d’un systeme soit capturé par un modele et que chaque modele soit écrit dans le langage
de son méta-modéle. Ceci peut étre vu comme une définition minimale correspondant au principe

[P2]. Nous appelons les deux relations de base representedBy et conformsTo.

Super-Class

Inhgrits

InstanceOf
class P Instance

A

Figure 3 : Notions de base en technologie des objets [P1]

Meta- Model

Confdrms to

Represented By

MOdel System

A

Figure 4: Notions de base en ingénierie des modeles [P2]

-42 -

Chapitre 3 : Ingénierie Dirigée par les modeles

Lorsque I’on considere un systeme donné, on peut travailler avec différentes vues de ce systéme,
chacune de celles-ci étant caractérisée de fagon précise par un meta-modéle donné. Quand
plusieurs modeles différents ont été extraits du méme systeme a I’aide de méta-modeles
différents, ces modéles restent liés et pourront étre, recomposés par la suite. Pour que ceci puisse
étre largement appliqué, il est nécessaire de pouvoir disposer d’une organisation réguliere des
modeéles composites. Il s’agit d’une organisation pragmatique similaire a I’organisation des

langages de programmation déja présentée dans la partie droite de la figure 1.

Récemment des sociétés comme Microsoft ou IBM ont défini leurs positions a ce sujet. Dans le «

manifeste MDA » (Booch et al., 2004) d’IBM les principes de base sont au nombre de trois :

» La représentation directe : c’est-a-dire la nécessité de disposer de familles de langages
de domaines (DSL) permettant de prendre en compte chacune des situations et des

communautés corporatives

= L’automatisation : permettant les traitements de mise en correspondance automatique

des modéles conformes aux différents langages de domaines

* Les standards ouverts: permettant I’émergence rapide d’écosystémes d’industriels
utilisateurs et fournisseurs d’outils et de chercheurs appliqués autour de plateformes de

logiciel libre utilisant ces standards, par exemple ceux basés sur MOF ou sur XML.

4. Les standards MDA

Au cceur du MDA, se trouvent plusieurs standards importants : UML [UMLO1], XMI [XMLO1],
MOF [MOF03] et le CWM [CWMO1].

4.1. Les profils UML

Le MDA préconise fortement I’utilisation d’UML pour I’élaboration de PIMs et de la plupart des
PSMs: les spécificités de chaque plate-forme peuvent étre modélisées grace aux mécanismes
d’extension d’UML (stéréotypes, valeurs marquées, contraintes). En fait, on peut définir pour
chaque systeme un profil qui regroupe les éléments nécessaires a ses caractéristiques. Nous

voyons en détail la notion de profil au niveau du chapitre suivant.

Dans le cadre du MDA, les profils UML s’intéegrent parfaitement car ils tirent partis des

informations de sémantiques portées par le modéle PIM pour générer automatiquement les

-43-

Chapitre 3 : Ingénierie Dirigée par les modeles

classes et le framework associés au domaine cible. Outre I’interopérabilité plus aisee entre les
applications tirant parties de ces frameworks, les profils UML permettent de gagner du temps de

minimiser les risques lors de I’élaboration d’un logiciel.
4.2. MOF (Meta Object Facility)

Le langage MOF est le standard de I’OMG qui permettait I’élaboration de méta-modeles. 1l est
une extension du modeéle objet, qui permet a celui-ci de représenter non plus des entités du monde
réel, mais des entités de description de modeéles. Le MOF est donc un langage de description des
langages de modélisation (ou méta-modeles). En utilisant des éléments du MOF, on peut décrire
un langage tel que UML, le langage de description des bases de données relationnelles, XML, ou
encore le MOF lui-méme. Ce langage permet d’abord de faire une représentation graphique d’un
langage de modélisation particulier. Mais surtout il définit une grammaire selon laquelle un

programme peut reconnaitre et traiter des éléments d’un modele décrit dans le langage spécifié.

Dans les diagrammes MOF, les classes (que I’on appelle des méta classes) representent les
concepts a definir et les associations (que I’on appelle des méta associations) représentent les
relations entre ces concepts. Les méta classes et les méta associations sont contenues dans des
packages. Un intérét du MOF est qu’il permet de faire interopérer des méta-modeles differents.
Une application MOF peut manipuler un modéle a I’aide d’opérations génériques sans

connaissances du domaine.
4.3. XMI (XML Metadata Interchange)

XMl est le standard de I’OMG qui fait la jonction entre le monde des modeles et le monde XML
de W3C (World Wide Web Consortium). XMI a été mis en place en 2000 pour permettre la
sérialisation des modeles, afin de rendre possible I’échange de modéles entre différents logiciels
(de modélisation, de développement). XMI offre ainsi une solution pour représenter des objets et
leurs associations sous forme textuelle. De plus, puisque XMI est basé sur XML, les métadonnées
(tags) et les instances (elements) sont regroupées dans le méme document, ce qui permet a une
application de comprendre les instances grace a leurs métadonnées. De plus, la possibilité
d’imbrication des balises permet de représenter I’imbrication entre éléments dans un méta-

modeéle, comme par exemple entre une classe et ses attributs.

- 44 -

Chapitre 3 : Ingénierie Dirigée par les modeles

Le standard XMI, est actuellement utilisé, sous de nombreuses variantes par des plateformes de
modélisation et de développement logiciel, notamment Poseidon, NetBeans et Eclipse, pour

permettre la transmission de modeles entre ces plateformes.

Le standard XMI permet de décrire une instance du MOF sous forme textuelle, grace au langage
XML en définissant la maniére d’utilisation de ses balises. Il permet la génération de DTDs
(Document Type Definitions) et de schémas XML a partir de méta-modeles MOF. Les modeéles
sont alors traduits dans des documents XML conformes a leurs DTD correspondantes.
Néanmoins, I’application la plus connue de XMl est celle qui a permis la construction de la DTD
UML. Cette DTD UML permet la représentation des modéles UML sous forme de documents
XML et assure ainsi les échanges de modéles UML entre les différents outils du marché. Le
standard XMI de sérialisation des modeles compatibles &8 MOF est en cours de stabilisation et son

utilisation devient incontournable dans les outils industriels.
4.4. CWM (Common Warehouse Metamodel):

Le CWM est le standard de I’OMG pour les techniques liées aux entrep6ts de données. 1l couvre
le cycle de vie complet de modélisation, construction et gestion des entrepdts de données. Le
CWM définit un méta-modeéle qui représente les meta données aussi bien métiers que techniques
qui sont le plus souvent trouvées dans les entrepOts de données. Il est utilisé a la base des

échanges de méta données entre systémes hétérogenes.
5. Modélisation/Méta-modélisation

Un modéle représente un systéeme réel en se basant sur la sémantique et les regles qui
conditionnent ses éléments; en d’autres termes il ne doit en aucun cas briser la structure ou les

contraintes que les éléments du systeme réel respectent.

En consequence, les éléments du langage d’expression d’un modéle doivent satisfaire un
ensemble de regles qui leur permet de former un modele qu’on appelle méta-modeéle. Le langage
est alors dit un langage bien défini et on peut ne plus faire la distinction entre le méta-modéle et

le langage qu’il définit (voir figure 5)

- 45 -

Chapitre 3 : Ingénierie Dirigée par les modeles

Is written in
Meta-
Méta-Model Language
A
Is defifed by
Is written in
Language
Model

Figure 5 : Modeéles, langages, méta-modeles et métalangages

De méme, un méta-modele est écrit dans un langage appelé métalangage et il est instance d’un

métaméta-modele qui définit les éléments du métalangage.

On peut méme dire qu’un langage est écrit (défini) par un métalangage. Le métalangage doit étre

écrit encore par un méta métalangage et ainsi de suite.

La figure 6 illustre les 4 niveaux de modélisation :

l Conforms to
g_ Y M3 | Meta-Meta-Model
~ & Conforms to
&
» M2 Meta-Model
A
Conforms to
- M1 Model
]
3
o
S
S Represented by
o
o

Figure 6 : L’organisation 3+1 du MDA

- 46 -

Chapitre 3 : Ingénierie Dirigée par les modeles

On distingue alors selon la normalisation de I’OMG quatre couches de modélisation :

= mo :C’est la premiére couche correspondant a un systéme en exécution (running).

mO contient des instances d’objets en cours de traitement par le logiciel.

= ml:C’est la couche du modéle exécutable renfermant la structure et le
comportement du systeme. C’est a ce niveau que se situent généeralement les
modéles que nous manipulons quotidiennement dans nos activités de

développement de logiciel.

= m2: C’est la troisiéme couche de modeles appelés méta-modele, et dont les

instances sont des modeéles de la couche m1.

= m3: C’est un niveau d’abstraction encore plus éleve, ou I’instance d’un modele de
cette couche donne un modéle de la couche m2. Un modele de m3 donnera une

syntaxe d’écriture de méta-modéle.

OMG arréte cette suite d’abstraction au niveau 4 en definissant les éléments de m3 comme
instances de concepts de la méme couche m3. C’est a dire que m3 est définie d’une facon auto
descriptive.

On rappelle que le méta-modeéle est conforme a lui-méme.
5.1. Langages de méta-modélisation :

Il existe de nombreux langages de méta-modélisation tels que MOF 1.4, EMOF 2.0 [KMMO05],
Ecore, etc. La plupart de ces langages utilisent les concepts de classe, attribut et association ou
référence. Cependant, ils sont incompatibles puisqu'un méta-modele conforme a I'un d'entre eux
ne peut géneralement pas étre conforme a un autre. Ils n‘ont pas non plus de définition formelle.
De plus, certains de ces langages possedent des concepts dépassant le domaine de la méta-
modélisation. C'est notamment le cas de Ecore qui permet par exemple d'annoter un méta-modele
avec des directives pour la génération de code Java. Par ailleurs, il n'existe que peu d'outils pour

la création ou la manipulation des méta-modéles définis dans ces langages.

On s’intéresse dans notre mémoire au langage de méta-modélisation KM3 [KMMO05] (Kernel
MetaMetaModel ou métaméta-modele noyau) qui a une définition formelle basée sur la logique

du premier ordre. Ce langage est une simplification des langages existants dans ce domaine et

-47 -

Chapitre 3 : Ingénierie Dirigée par les modeles

plus particulierement de MOF 1.4, EMOF 2.0 et Ecore. Il est donc possible de traduire n'importe
quel méta-modéle KM3 vers un de ces langages. Les méta-modeles définis en KM3 peuvent ainsi
étre utilisés avec différents systemes de manipulation de modéles basés sur ces métaméta-modeéle
(e.g. Netbeans/MDR et Eclipse/EMF). Par ailleurs, afin d'offrir une alternative a l'utilisation des
quelques éditeurs graphiques de méta-modeles, une syntaxe concrete textuelle a été définie pour
KM3.

L'objectif de KM3 est de fournir une solution relativement simple a la définition du méta-modéle
de definition du domaine (ou DDMM pour Domain Definition MetaModel) d'un DSL. KM3 est
donc un DSL pour la définition des méta-modeles tout comme EBNF est un DSL de définition de

grammaires :

= Méta-modéle de définition du domaine : Le DDMM de KM3 est un métaméta-modele
auquel les autres DDMMs sont conformes. Ce DDMM est défini en KM3, de la méme

maniere que la syntaxe EBNF peut étre decrite en EBNF en quelques lignes.

KM3 utilise les concepts de classe (Class), attribut (Attribute), référence (Reference), etc. Sa
structure est proche d’EMOF 2.0 et d’Ecore.

= Syntaxe concréte : La syntaxe par défaut de KM3 est textuelle .Ceci permet la définition

simple de méta-modeles avec n'importe quel éditeur textuel.

= Sémantique : La sémantique de KM3 permet la définition de méta-modéles et de

modeéles. Une définition conceptuelle précise de KM3 est présentée ci apres.

Des transformations vers et depuis MOF 1.4 et Ecore ont notamment été définies en ATL
[BEZ03]. KM3 est de ce fait utilisable avec des outils tels qu'Eclipse EMF et Netbeans MDR.

En tant que métaméta-modele, KM3 est plus simple que MOF 1.4, MOF 2.0 ou encore Ecore. Il
ne contient que 14 classes la ou Ecore en a 18 et MOF 1.4 en a 28. Seuls les concepts essentiels

de ces autres métaméta-modeles ont été retenus dans KM3.
5.2. Transformation des modéles

La principale opération dans MDA est la transformation de modéles qui consiste a créer de
nouveaux modeles a partir de modéles existants. La transformation n'est alors plus limitée a la

traduction du code source mais peut opérer sur tous les modeles décrivant un systéeme. De plus,

-48 -

Chapitre 3 : Ingénierie Dirigée par les modeles

les modeles créés par transformation ne sont pas nécessairement du code exécutable mais peuvent
étre trés varies. Dans son approche MDA, 'OMG recommande QVT [MOF03] (Query / View /
Transformation ou requéte / vue / transformation) qui propose une famille de langages de

transformation.
5.2.1. Caractéristiques :

La transformation de modéles est formée d’un ensemble de régles et doit étre écrite dans un
langage bien defini qu’un outil pourra compiler et exécuter. Cette automatisation sous-entend que
les modeles doivent étre écrits dans un langage traitable par les machines. La figure 7 illustre ceci

tout en utilisant la notion de langage d’écriture de modéle qu’on a examiné dans la section II.

_— Transformation definition _—
Language - Language
Is used by
Is written in l Is wiitten in

Transformation Tool

—1

PSM

L]

PIM

Figure 7 : Automatisation des transformations

Une transformation se caractérise par la maniére dont ses régles s’appliquent, d’ou le besoin de
distinguer les propriétés suivantes qui varient selon la définition de la transformation et le

langage utilisé :
= L’ordre d’application sur les fragments de modele correspondant a une régle;
= L’ordre dans lequel s’appliquent les différentes régles;
= La possibilité de composition de regles;
= Larelation entre les modeles source et cible (méme, différent);

= Latracabilité (définie ci-apres);

- 49 -

Chapitre 3 : Ingénierie Dirigée par les modeles

La bidirectionnalité;

L’interactivité permettant la paramétrisation ;

5.2.2. Langages de transformation

Pour définir une transformation de modeéles, on peut utiliser un langage non formel, un

langage d’action pour représenter I’algorithme de la transformation, ou encore un langage bien

défini de mapping de modeles.

Le QVT RFP a déja généré 8 propositions ainsi qu’un certain nombre d’initiatives indépendantes.

Nous allons citer quelques-unes rapidement en insistant sur les langages s’avérant utiles a notre

future contribution dans le domaine. De plus amples informations sur les outils d’implémentation

seront données ultérieurement.

OpenQVT [QVTO03] : soumis par un groupe d’universités et de sociétés francaises en
réponse au QVT RFP. Ce langage est a la base du développement de I’'implémentation de
la syntaxe ATL par un outil prometteur de transformation de modéles ADT qui est

intégrable dans I’environnement de développement Eclipse

XMOF d’IBM et Compuware : Comparable a XSLT qui est un langage applicable pour
exprimer des transformations de fichiers XML, XMOF est un langage déclaratif qui décrit
les résultats voulus d’une transformation plutdt que les processus nécessaires a sa

réalisation.

Le langage TRL : Ce langage est une autre proposition en réponse au QVT RFP
soumise par Alcatel Softeam, Thales, TNI-Valiosys et Codagen Technologies Corp, et
supportee par France Telecom, INRIA/IRISA, Softeam, Université de Paris VI,
Université de Nantes, LIFL, CEA., TRL utilise les standards de ’'OMG comme OCL, pour
exprimer les contraintes et les queries de MOF. De plus, ce langage est basé sur une
technique de méta-modélisation avec les deux approches déclarative et impérative. Il
permet le marquage et la paramétrisation, et il accepte plus qu’un modele d’entrée a la

fois.

QVT Partners: Est une soumission de proposition QVT qui se distingue par la

considération de I’aspect unidirectionnel et bidirectionnel des transformations. Ses LHS et

-50 -

Chapitre 3 : Ingénierie Dirigée par les modeles

RHS ressemblent a ceux d’UMLX, qu’on verra dans cette section, mais sans supporter les
multiplicités. De plus ce langage compte sur I’expression textuelle de la relation entre
LHS et RHS qui forme une contrainte qui doit étre satisfaite aprés tout passage de LHS
vers RHS. Ce langage utilise Action Semantics pour I’expression des mappings en plus
d’OCL.

» MOLA : Le laboratoire IMCS de [I'université de Latvia a développé le Model
Transformation Language (MOLA) comme une tentative de définition de transformations
plus naturelles et lisibles. On a adopté des structures de contrdle itératives et simples
plutbt que récursives puisées dans la programmation structurelle traditionnelle., MOLA
utilise I’approche de réécriture graphique utilisant les LHS et RHS avec une instruction

essentielle “loop’ qui cherche tous les fragments de graphes coincidant avec un LHS.

= ATL [ATLO5] : L’équipe ATLAS a propose a la normalisation de I’OMG un langage de
transformation de modéle nommeé ATL (ATLAS Transformation Language) qui sera

détaillé dans la section suivante.
5.2.3. Le langage ATL

ATL est un langage de transformation hybride, il contient un mélange de constructions
déclaratives et imperatives, cependant, I’utilisation du style déclaratif est encouragée. Les
transformations ATL sont unidirectionnelles et operent sur des modeles source en lecture seule et
produisent des modéles cible en eécriture seule Une transformation bidirectionnelle est

typiquement implémentée par un couple de transformations : une pour chaque direction.

Pendant I'exécution d'une transformation, les modeles source peuvent étre navigués mais pas
modifiés, alors que les modeles cible ne peuvent pas étre navigués. Ces restrictions permettent de
simplifier la sémantique d'exécution et notamment de garantir un résultat déterministe sans

demander au développeur de définir explicitement un ordre d'exécution des regles.
La structure d’ATL est comme suit :

= L'en-téte : commence par le mot-clé module suivi du nom du module. Ensuite, les
modeéles source et cible sont déclarés comme des variables typées par leurs méta-modéles.

Le mot-clé create indique les modeles cible. Le mot-clé from indique les modeles source.

-51-

Chapitre 3 : Ingénierie Dirigée par les modeles

Le modele cible est représenté par le variable OUT a partir du modele source representé
par IN.

module <nom du module> ;
create OUT : <métamodeélecible> from IN : <métamodeéle source>;

Figure 8 : Syntaxe de I’en-téte

= Helpers : Les fonctions ATL sont appelées helpers d'apres le standard OCL sur lequel
ATL se base. En ATL, un helper peut étre spécifié dans le contexte d'un type OCL (par
exemple String ou Integer) ou d'un type source (venant de I'un des méta-modeles source).

OCL definit deux sortes de helpers : opération et attribut.

v" Les helpers opération : peuvent étre utilisés pour définir des opérations dans le

contexte d'un élément de modele ou du module de transformation.

Le role principal des helpers opération est de realiser la navigation des modéles source. lls
peuvent avoir des parametres et peuvent utiliser la récursivité. Les helpers opération définis dans

le contexte d'eléments de modéles permettent les appels polymorphiques.

Puisque la navigation n'est autorisée que sur les modeéles source en lecture seule, une opération

retourne toujours la méme valeur pour un contexte et un ensemble d'arguments donnés.

v' Les helpers attribut : sont utilisés pour associer des valeurs nommées en lecture

seule sur les éléments de modeéles source.

Comme les opérations, ils ont un nom, un contexte et un type. La différence est qu'ils ne peuvent

pas avoir de parametres. Leur valeur est définie par une expression OCL.

Comme les opérations, les attributs peuvent étre définis récursivement avec les mémes

contraintes de terminaison et de cycles.

Les helpers attribut sont pratiquement comme les propriétés derivées de MOF 1.4 ou d’Ecore
mais peuvent étre associés a une transformation. Ils ne sont pas necessairement liés a un méta-
modeéle donné. Alors que dans EMF et MDR ils sont implémentés en Java, ils sont définis en
OCL avec ATL.

-52-

Chapitre 3 : Ingénierie Dirigée par les modeles

Les helpers attribut peuvent étre considérés comme un moyen de décorer les modeles source
avant I'exécution de la transformation. La décoration d'un élément de modéle peut dépendre de la
déclaration d'autres éléments. De plus ils peuvent aussi étre utilises pour etablir des liens entre

éléments de différents modéles source.

Le type d'un attribut peut en effet étre une classe provenant d'un meta-modéle différent du meta-

modele de son contexte. Ceci correspond a une forme élémentaire de composition de modéle.

La figure 3 donne la forme des helpers ATL :

Helper def : (<paramétre> : <type>) . <type retour> =

<expression OCL>;

Figure 9 : Forme d’une méthode dans ATL

= Regles de transformation : La régle de transformation est la construction élémentaire en
ATL pour exprimer la logique de transformation. Les regles ATL peuvent étre soit

déclaratives soit impératives.

v Régles déclaratives (matched rules) : Une matched rule est composée d'un pattern
(motif) source et d'un pattern (motif) cible, sa syntaxe est la suivante :

rule <nom de la régle> {
from
<pattern source>

to
<un ou plusieurs patterns cibles>}

Figure 10 : Matched rules
v Régles impératives : on distingue :

= Called rules : se sont des opérations au sens OCL et peuvent donc étre
appelé comme des fonctions dans les expressions. lls ont des

parametres.

= Action block : se sont des séquences d’instructions impératives qui

peuvent étre utilisées soit dans matched ou called rules.

-53-

Chapitre 3 : Ingénierie Dirigée par les modeles

6. Conclusion

Nous avons étudié dans ce chapitre l'approche MDA qui base entiérement le processus de
développement sur le concept des modéles a I’opposé des approches traditionnelles
d'analyse/codage. La logique métier est congue uniqguement de maniere abstraite, independante de
toute technologie d'implémentation. Les différentes étapes de transformation et d'enrichissement
apportant des propriétés non fonctionnelles au modele de base aménent, de maniére plus ou
moins automatisée, a une application exécutable dans un environnement choisi. Cette méthode
nous apparait comme particulierement intéressante dans nos travaux sur le développement
d'applications a contraintes de temps reel en environnements embarqués. Elle sera développée
utilisée tout au long des deux chapitres suivants, notamment pour répondre aux objectifs que nous
nous sommes fixés. Ainsi nous étudierons, d'une part, comment la modélisation indépendante de
la plate-forme peut servir de base pour la speécification de contraintes non fonctionnelles
essentiellement celles temps réel, également indépendante de I'environnement cible. Puis nous
présenterons, d'autre part, les processus de transformations, permettant de passer du niveau
indépendant de la plate-forme vers un niveau plus spécifique, qui seront utilisés pour générer le

code applicatif et le code en tenant compte de parameétres spécifiques a un environnement donné.

-54 -

Chapitre 4 : Démarche de conception proposée

CHAPITRE

+

Démarche de conception

proposee

- 55 -

Chapitre 4 : Démarche de conception proposée

1. Introduction

Ce chapitre présente I’objectif de ce Mastére. Nous avons présenté dans le premier chapitre les
STRE aux quels nous nous intéressons, en nous focalisant sur I’étude des RTOS. Dans le second
chapitre, nous avons synthétisé les principales approches de modélisation de ces systemes. Il
ressort de cette synthése une volonté d’intégration de I’'RTOS lors de la modélisation d’un STRE,
ainsi que la définition explicite de la sémantique temporelle et transitionnelle dans le but
d’assurer le bon fonctionnement du systeme et de valider son ordonnancabilité. Il s'avére en
réalité que les gains obtenus sont doubles : gain en terme de conception, de réutilisation, de
maintenance; et gain en termes de qualité a I'exécution. Nous sommes donc confortés dans l'idée

d’adopter la démarche MDA, pour étudier la modélisation de I’'RTOS.

Ce chapitre présente alors la contribution liée a la modélisation orientée objet de I’'RTOS, en
s'appuyant sur le niveau le plus haut des modeles MDA, et notamment en focalisant I’étude sur le
niveau PIM, plus précisément en nous intéressons au modeéle source lors de la phase de

transformation de modeles.

2. Identification des besoins

Dans cette section, nous présentons notre étude sur la modélisation de I’RTOS en se basant sur
I'approche dirigée par les modeles et sur les travaux de 'OMG. Comme nous l'avons décrit dans
le troisieme chapitre, MDA est une approche dirigée par les modeles qui propose des
spécifications pour la création, la visualisation et I'échange de modeéle logiciels. Deux niveaux de
modeéles coexistent : un niveau abstrait et indépendant de I'environnement d'exécution, nommeé
PIM et un niveau dépendant du support d'exécution, nommé PSM. Cette section s'attache a la

description abstraite des RTOS, c'est-a-dire elle est attachée au premier niveau.

Dans le contexte de notre travail, les profils UML existants, décrits dans le deuxiéme chapitre,
s’intéressent uniquement a la description de I’architecture et de I’application d’un STRE. lls ne
supportent pas I’intégration d’une composante qui devient de plus en plus indispensable dans les

nouveaux STRE a savoir I’RTOS.

Le point fort de notre travail vient contredire la multiplicité des environnements et renforcer

I’orientation d’unification dans le but d’avoir un profil unifié. Pour cela, nous avons essayé de

-56 -

Chapitre 4 : Démarche de conception proposée

partir des profils existants, de prendre en compte les exécutifs temps reel, et de définir des

sémantiques temporelles et transitionnelles.

Pour cela, les profils deja identifiés vont nous apporter une base pour construire un profil UML

orienté RTOS, et pour lequel nous nous sommes fixés les contraintes suivantes :

= Créer un modele d'un systeme d’exploitation temps réel, correspondant au niveau PIM de
I’approche MDA afin de prendre en considération les caractéristiques communes d’un

RTOS et les services génériques qu’il offre.
= Garder a l'esprit le critere de lI'indépendance vis-a-vis de la plate forme d’exécution.

= Restreindre le modéle d’ordonnancement aux cas monoprocesseur. La possibilité de

I’extension vers le multi processeurs reste valable.

= Définir explicitement toutes les contraintes temporelles du systéme et mettre I’accent sur

I’aspect déterminisme du systeme, il s’agit de définir un modele d’ordonnancement.

= Assurer la cohérence entre la vue statique et la vue dynamique des modéles: En effet, la
construction d'un modele d'application repose d'abord sur la vue statique, notamment par
le biais du diagramme de classes. Les informations liees a I’'RTOS décrites dans celui-ci
servent donc de base par défaut pour I’intégration de I’exécutif temps réel lors de la
modélisation d’un STRE. Les informations d'interactions décrites par le biais du
diagramme d’états transitions viennent ensuite se greffer pour compléter, spécialiser et

ordonnancer les taches décrites dans le diagramme de classes.

Nous proposons alors un modéle qui vient complémenter et enrichir ce qui existe, ce modele doit
spécifier les contraintes d'exécution, en s'appuyant sur le vocabulaire habituellement employé
dans les systemes tels que I’allocation de ressources, les politiques d'ordonnancement, les délais
d'invocation d'opérations, etc). En résumé, nous proposons une démarche qui part de la
modélisation de la structure de ’'RTOS jusqu’a la genese du modéle d’ordonnancement. Une fois

le modéle d’ordonnancement est obtenu, nous passons a la génération de code.
3. Démarche proposée

Certes, le diagramme de classe présente une vue statique d’un systéme, mais ne peut pas couvrir

tout I’aspect comportemental du systéme. La séparation explicite lors de la modélisation de la

-57 -

Chapitre 4 : Démarche de conception proposée

structure de I’'RTOS et de I’ordonnanceur et le manque de cohérence entre les différents

diagrammes utilisés pourraient influer sur I’aspect comportemental du systéme.

Notre approche présente une démarche assurant la cohérence entre les différents diagrammes
UML utilisés et couvrant I’aspect comportemental du systéme ainsi que ses contraintes temps
réel. 1l s’agit de modéliser, dans un premier temps la structure de I’'RTOS. Dans un deuxiéme
temps, nous associons un digramme statecharts relatif a I’entité tache la plus importante dans le
modele et ce tout en I’annotant avec des contraintes OCL. Nous définissons ensuite les variations
sémantiques temporelles et transitionnelles présenté par les statecharts. Ce qui nous ameéne a
I’implémentation d’un profil UML pour I'implantation des statecharts. Cette phase sera bien
décrite dans le chapitre suivant. Lors de la définition des variations sémantiques, nous appliquons
quelques techniques a savoir la réification et I’énumération des états et des événements. Nous
optons pour Iutilisation d’une démarche d'intégration de design pattern dans le but de réutiliser
des composants logiciels existants et éprouvés, plutdt que de recréer de nouveaux modeéles pour
I’implémentation des statecharts. Le modele final relatif a la variation des différents états relatifs
aux comportements d’une tache correspond au modeéle cible lors de I’étape de transformation des

modeéles. Comme étape finale, nous passons a la génération automatique de code.
Notre démarche illustrée par la figure 11, pourrait alors se résumer aux étapes suivantes :

1. Définition de la structure de I’'RTOS a I’aide d’un diagramme de classe (définition du

modeéle source)

2. Définition des différents états possibles pour la description du comportement d’une tache

a I’aide des statecharts
3. Définition des variations sémantiques associées aux statecharts
4. Implantation des statecharts

5. Construction du modele cible correspondant au modele cible du niveau PIM de la

démarche MDA. Ce modeéle est issu de la phase précédente

6. Génération de code

- 58 -

Chapitre 4 : Démarche de conception proposée

Modele source Méta-modeéle
source

Structure de I'RTOS

Phasen:1

|

recoit ,_|—\
Etats et transitions 3 =
possibles d’'une tache 7 X g
Phasen: 2 ah 8’ §
S o Q
35 3
28 E
=
S =
7 =
J]

Variations sémantiques
Phasen: 3

Implantatlon des Conforme a
Statecharts Modeéle cible Méta-modeéle
Phasen: 4 source

Figure 11 : Démarche proposée

Modélisation des }
vroduit

Nous associons au cours de la deuxiéme phase de notre proposition, un diagramme d’états
transitions décrivant une vue comportementale de I’état d’une tdche. Nous exprimons quelques
regles OCL relatives a chaque état dans le but d’atteindre la qualité correction du comportement

du systeme.

La suite de la description des autres phases de notre démarche sera décrite en détail dans le

chapitre suivant.
4. Modélisation de la structure d’un RTOS

Un modele d’RTOS peut étre vu selon deux composantes: la structure et le modele
d’ordonnancement. A chaque modéle, nous associons les diagrammes convenables a savoir les
diagrammes a aspect statique et/ou dynamique. A ce stade, les digrammes proposés doivent étre
cohérents et doivent couvrir touts les constituants d’un RTOS essentiellement ceux qui le
caractérisent par rapport a un systeme d’exploitation ordinaire. Pour assurer I’extensibilité des

profils, le modéle doit préserver leurs sémantiques et y rajouter les notions dont on a besoin.

-59-

Chapitre 4 : Démarche de conception proposée

Pour y arriver, nous nous basons sur deux travaux : Le premier correspond a la modelisation d’un
RTOS dédié a I'automobile appelé OSEK [SHOO04] et le deuxieme concerne le systéme

d’exploitation VxWorks [DAV06], il consiste a faire de la «reverse engineering».

Dans [SHOO04], les auteurs se basent sur deux diagrammes de classe indépendants: un
diagramme décrivant la structure et un autre décrivant I’ordonnanceur. Ces modeles séparés
explicitement souffrent d’un manque de cohérence et de définition de sémantiques temporelles.
En fait, le diagramme utilisé pour la caractérisation de I’ordonnanceur et un diagramme statique
de fagon qu’il ne puisse pas couvrir le comportement temporel d’un RTOS, il doit aussi posseder
I’aptitude d’étre complémentaire au modele de la structure et ce via la bonne expression du suivi

de I’évolution d’un processus temps réel.

Partant d’une bibliothéque temps réel écrite en langage C, DAV et Al [DAVO06] effectuent les
transformations nécessaires pour aboutir a un diagramme UML. Cette transformation améne a
des entités spécifiant des composantes d’un systéme temps réel dont le lien entre elles est laissé a
la charge du designer. Elle est restreinte & une description statique quoique le comportement
puisse étre touché en introduisant des attributs décrivant I’état de progression d’une tache dans le
temps ou en définissant une relation réflexive de précédence, cette technique s’appelle la
définition de sémantique opérationnelle. 1l est a noter que nous pouvons modéliser un algorithme
d’ordonnancement via I’utilisation d’un diagramme de séquence mais cette solution reste
inefficace vu la multiplicité des algorithmes d’ordonnancement et la difficulté de leurs

intégrations a une démarche MDA.

Pour nos modeéles proposés, nous décrivons la structure de I’RTOS a travers un diagramme de
classe qui inclut la définition de la sémantique opérationnelle pour présenter la structure de
I’RTOS. Nous definissons ensuite le comportement d’une tache qui constitue le noyau d’un
exécutif temps réel, afin d’assurer la cohérence entre les différents diagrammes UML. Pour
aboutir au modele d’ordonnancement, nous définissons les variations sémantiques temporelles et

transitionnelles relatives aux différents états d’un processus temps réel.

Dans la suite de cette section, nous présentons les différentes techniques qui peuvent étre utilisé
pour modéliser un RTOS a savoir les modeles statiques et les modeles dynamiques. Nous

justifions au fur et a mesure nos modeles proposes.

- 60 -

Chapitre 4 : Démarche de conception proposée

4.1. Modéele statique

Ce modeéle correspond a la définition des composantes les plus essentielles d’un RTOS, toutefois
il ne peut pas couvrir I’aspect comportemental de I’'RTOS et plus particuliérement |’aspect

déterminisme du systeme.

La description de la structure de I’'RTOS peut étre inspiré de la spécification de ’'RTOS OSEK
[SHOO04] utilisé dans le domaine de I’automobile. Le diagramme utilisé est celui de classe

preésenté par la figure ci-dessous :

i
|

Figure 12: Diagramme de classe correspondant a la structure de I’RTOS OSEK
D’apres la figure 12, la structure de I’RTOS est définie par les entités suivantes :
= Task: C’est le composant le plus impo,(tant du noyau d’un RTOS. Ce dernier doit

acquérir un grand nombre d’informations concernRT @SEEeneans le but de bien gérer

1

Chapitre 4 : Démarche de conception proposée

leurs ordonnancements ainsi que leurs exécutions. Cette mission est confiée a

I’Ordonnanceur.
= Event : Aumoment du déclenchement d’un événement, I’état d’une tache est changé.

= ISR : Interrupt Server Routine: C’est la routine chargée du traitement de I’interruption.
Elle fait, dans ce contexte, le relais entre le mécanisme matériel d’interruption et le
mécanisme logiciel de signalisation. Le concept d’interruptions est basé sur différentes
catégories d’ISR, le premier (ISR type 1) est celui dans lequel on n’a pas besoin
d’appeler un service exécutif. L’exécution du code de I’ISR est donc transparente pour
I’exécutif et se traduit par un retard temporel de la tache interrompue, durant le service de
I’interruption, le deuxieme modéle (ISR type 2) est celui dans lequel la routine est
déclarée comme une routine d’interruption par un mot clé spécifique (le générateur
d’application génere alors les appels de service nécessaires pour signaler a I’exécutif

I’entrée et la sortie d’une routine d’interruption).

» Message : Il est utilisé pour échanger des messages de données entre un systéme
expediteur et un autre récepteur. Ce message est utilise pour assurer I’envoi

d’informations protégees entre les différentes taches.

= Alarm : Basée sur un compteur, une alarme pourrait activer une tache, imposer un

événement ou activer un alarmCallBack, elle est définie alors par les attributs suivants :
activateTask, setEvent et activateAlarmCallBack. Une alarme peut étre unique ou
cyclique, absolue ou relative. Si elle est relative, la valeur spécifiée par un paramétre du
service est un incrément par rapport a la valeur courante du compteur (expression d’un
délai de garde par exemple) ; si elle est absolue, la valeur spécifiée par un paramétre du
service définit la valeur du compteur qui active I’alarme. Une autre valeur est spécifiee
dans le cas d’une alarme cyclique afin de préciser (en nombre de ticks) la valeur du cycle.
Ainsi on sait simplement, sur un compteur lié a I’horloge temps réel, définir au travers de

plusieurs alarmes, des taches périodiques de péeriodes différentes.

= Counter : Un compteur présente une source logicielle/matérielle pour une alarme, il est
presenté par les deux parametres suivants : maxAllowedValue et minCycle. C’est un objet
destiné a I’enregistrement de « ticks » en provenance d’une horloge ou d’un dispositif

quelconque émettant des stimulis. C’est un dispositif de comptage ayant une certaine

-62 -

Chapitre 4 : Démarche de conception proposée

dynamique, qui repasse a zéro apres avoir atteint sa valeur maximale (valeur définie a la
géneration de I’application). Il compte les ticks aprés une éventuelle pre-division (par
exemple 10 ticks représentent une unité pour le compteur). Plusieurs alarmes peuvent étre
associées a un méme compteur, ce qui permet de constituer facilement, par exemple, des

bases de temps.

= Ressource : Cette entité est utilisée pour cordonner les accés concurrents aux ressources
partagées par les taches. L’utilisation de cet objet est similaire & I’utilisation des

sémaphores.

Une autre facon de modéliser consiste a procéder par une approche ascendante, il s’agit de la
« reverse engineering ». Dans cette approche, Dav et Al [DAVO06] partent d’une libraire écrite
dans un langage de haut niveau (langage C) qui inclut une gamme de services formés par ’'RTOS
VxWorks et dégage le modéle adéquat. Ce dernier permet d’utiliser d’une maniére simplifiée les
mécanismes offerts par un systeme temps réel: tache, événement (utilisant un sémaphore

binaire), sémaphore d’exclusion mutuelle, activations périodiques et gestion du temps.

Pour répondre aux objectifs actifs d’un diagramme de classe UML, il est nécessaire de créer des
taches périodiques ou taches aperiodiques (déclencheurs d’événements), ce qui permettent les
classes de base Processus, ProcessusPériodique, et ProcessusDeclenche (voir figure 13). Chaque
objet actif hérite de I’une de ces classes selon le type “activation de I’objet. A I’instanciation de
I’objet, une tache sera lancée, exécutant une méthode virtuelle de la sous-classe correspondante a

I’objet actif.

A fin de gérer les flots de données entre objets actifs et au lieu de protéger I’acces aux méthodes
des objets actifs, un objet partagé ayant une interface générique, la classe
ElementCommunication a été mise en place. Deux méthodes, lire() et ecrire() permettent de
mettre a jour ou de récupérer la valeur de cette variable partagée. Ensuite, selon les besoins, le
concepteur parmi les objets de son exécutifs. Par exemple, la classe variableProtgee, qui
implémente cette interface, associe un mécanisme de protection de données (sémaphore
d’exclusion mutuelle) a travers ces méthodes, garantissant qu’un processus ne pourra passer outre

et la classe BoiteAuxLettres utilise une file de message.

-63 -

Chapitre 4 : Démarche de conception proposée

\/

Figure 13: Bibliotheque d’objets VX¥Woekst *

. -nature 3
La modele présenté par la figure 13 souffre d’un manque de relation et de cohérence entre les

entités, ceci est du a la difficultéadiopassage d’un code écrit en langage fonctionnel C a un modéle

orienté objet. Ce qui nou$%T&HEE penser a ajouter des relations et des associations entre certaines
+nowDate()

entités séparees tels que «dpantatery(x WatchDog », « Evnet » et « MeanOfCommunication » .
+operator-() 1
+operator<()

4.2. Modele dynamigugor-() Horloge
+setNow() -name
Suite a la description statique de la structure ,dgtilyREPSsKpne definition de I"aspect
tsetEv

Q%gs’:meﬂ@g]‘.,gggthion d7une seule

tache dans le temps est nécessaire pour lui donner I’aspect déterminisme. Ce modele serait ne

comportemental du systeme s’avere tres importante. YR 19

supporte pas plusieurs taches, il est difféerent du modele d’ordonmancement. Ceci peut étre
modélisé en définissant le caberertement d’une tache ou engore en rexprimant la déependance

d’une tache avec une auti€dffen indi%uant le taux de progkessismeusg\tathe dans le temps.
+operator+(-MinCycle
+operator-()
+operator=()

-taskSH
1 -Priorit
-progre
+entry(
+active
+termii
+preen
* +wait()

1

LettreBox

ToSTcorast ~ 64 .

FileMessag

+isEmpty()
+nbMessadc

Chapitre 4 : Démarche de conception proposée

4.2.1. Modélisation du comportement d’une tache

Etant donné que les machines d’états finies ou encore dit FSM (Final State Machine) présentent,
par rapport a une entite, ses états possibles et ses transitions qui le font évoluer et spécifier ce que
doit faire I’objet en réponse aux évenements (ou traitements) qui lui sont appliqués, une FSM est
attachée dans [SHOO04] a I’entité Task, elle présente les états possible que peut subir une tache

suite au déclenchement d’un événement.

:
.

_)

-
-

Figure 14: Conception de la variation de I’état d’une tache a I’aide des FSM

La figure 14 illustre I’évolution détaillée de I’état d’une tache d’un RTOS multi taches, les

valeurs qui lui sont associées sont présentées par les états suivants :
» Ready : En attente de I’acheminement d’une autre tache
= Suspended : Soit la tache est terminée ou elle est arrétée par I’Ordonnanceur
= Waiting : En attente de la réalisation d’un événement

unning

* Running : en cours d’execution

wait

- 65 -

Chapitre 4 : Démarche de conception proposée

4.2.2. Définition de la sémantique opérationnelle.

Une solution pour modéliser le comportement d’une tache a été envisagée dans [BENO6] dans le
domaine de la robotique mais tout en utilisant un digramme UML a aspect statique. Elle consiste
a illustrer la dépendance d’une tache avec une autre (Precedes). En effet, une contrainte sur le
démarrage ou la fin de la seconde activité est précisée : start-to-start, finish-to-start et finish-to-
finish (PrecedenceKind). L’exécution d’un processus consiste a réaliser toutes les taches qui le
composent. Le processus est donc terminé quand toutes les taches qui le composent sont
achevées. Une tache ne peut étre commencée que si les taches dont elle dépend sont commencées
(précédence start-to-start) ou terminées (précédence finish-to-start). Au fur et a mesure du
développement, le taux de réalisation d’une activité augmente jusqu’a ce qu’elle soit terminée
(voir figure 15). Elle ne peut étre terminée que si les taches précedentes de type finish-to-finish
sont terminées. C’est le développeur qui décide de quelle t&che commencer, continuer ou

terminer.

Figure 15: Modele étendu pour la définition de la sémantique opérationnelle

Pour compléter la sémantique opérationnelle, il est nécessaire de compléter le modéle précédent
avec les informations liées a I’état des taches. Un attribut progress est ajouté sur la méta classe
task. Il presente le taux de progression d’une tache : non commencée (-1), en cours (0..99), ou
terminée (100).

5. Modélisation de I’Ordonnanceur

L ordonnanceur est considéré comme étant une piéce fondamentale d’un systéme temps réel. Il

est en charge de definir le séquencement possible d’un ensemble de taches exécutables par un

- 66 -

Chapitre 4 : Démarche de conception proposée

processeur. Par « possible » on veut dire que I’ordonnancement prend en compte les contraintes
de dépendances (temporelles ou causales) et d’échéance aux quelles les taches en question sont

soumises.

Pour modéliser cette composante indispensable de I’RTOS, plusieurs diagrammes peuvent étre
utilisé tels que le diagramme de classe servant a la description de I’ordonnanceur, le digramme de

séquence modélisant un algorithme d’ordonnancement.
5.1. Définition de I’Ordonnanceur

Suite a la séparation de la structure de I’RTOS et de I’Ordonnanceur lors de la modélisation dans
[SHOO04], le modele relatif a I’Ordonnanceur mentionnée dans la figure 16 est présenté par les

entités suivantes :

= schedulingPolicy : Cette entité définit la politique d’ordonnancement utilisé par
I’RTOS pour élire le processus a exécuter. Cette politique est basée sur la priorité et le

deadline des taches.

» schedulableEntity : Chaque entité présente une réponse spécifiant la concurrence
d’une tache en cours d’exécution et un trigger indiquant combien de fois chaque tache

devrait étre exécutée.

= executionEngine : Il s’agit d’une ressource active et protégée de type processeur
réalisant I’ordonnancement. Elle spécifie sa politique d’ordonnancement comme par
exemple le FIFO ainsi que le contexte selon le temps (c'est-a-dire le temps nécessaire
pour copier le contexte de la tache suspendue depuis les registres processeurs vers la
mémoire et lancer la tdche a exécuter). Elle représente la capacité du systeme pour

réaliser une tache.

= TRessource : Elle est accédée durant [I’exécution d’une entité de type

schedulableEntity. Elle spécifie la politique de contrdle pour répondre a la demande de

I’entité schedulableEntity.

= Trigger : Il spécifie I’occurrence de I’événement qui cause I’exécution d’une entité de

type schédulableEntity

= realTimeSituationContext : Cette entité fournit le contexte d’analyse

-67 -

Chapitre 4 : Démarche de conception proposée

= Contexte : C’est le comportement qui peut étre caractérisé par ses propres exigences en

terme de qualité de services. Il posséde les attributs suivants : Entry, activate et terminate.

Figure 16: Diagramme de classe correspondant a la définition de I’Ordonnanceur

Le diagramme utilisé précédemment est le diagramme de classe. Ce diagramme ne peut fournir
gu’une vue statique du systeme, il est en fait incapable de donner une vue comportementale du
systeme. Par ailleurs, pour combler ce mangue, une description a I’aide des machines a états finis
(Final state machine FSM) a été associé a I’entité Task dans [SHO04].

5.2. Modélisation d’un algorithme (X({rdonnancement
ction

*
Dans [MARO06], une proposition consistai_tp?idﬂﬂgéliser un algorithme d’ordonnancement en

utilisant le diagramme de séquence. La ﬁ@f&ékﬂq@ﬂfﬁ%mte la modélisation de I’algorithme
d’Ordonnancement Rate Monotonic. En e@f@erﬁﬁ@ﬂg@onic scheduling [CLL73]R@gsqurce
algorithme d'ordonnancement temps réel en Jfg@@j?'pmité constante. Il attribue la pr_@bé@wlus
forte a la tache qui posséde la plus petite péreldmdriVirer optimal dans le cadre d'umpressptite
-delayTime 0.+ 0.+ -priorityceiling

- 68 -

0.*
0.*

Chapitre 4 : Démarche de conception proposée

taches synchrones, indépendantes et a échéance sur requéte avec un Ordonnanceur préemptif. De

ce fait, il n'est généralement utilisé que pour ordonnancer des taches verifiant ces propriétés.

Pour mettre I’accent sur I’aspect temps réel lors de I’ordonnancement, une intégration d’un

certain nombre de stéréotypes a été faite tels que :

Le stéreotype "SaResource” du profil SPT représente un genre de ressource protégée (par
exemple, un sémaphore) qui est consultée pendant I'exécution d'une tache. Il peut étre
partage par des actions concurrentes multiples, comme il doit étre protégé par un
dispositif de verrouillage. L'étiquette "SAaccessControl” représente la politique de
contrble d'accés pour manipuler des demandes des travaux d'établissement du programme

(dans notre modele, ~ PriorityInheritance).

Le stéréotype "SAschedRes" du profil SPT représente une tache. La Tache a été indiquée
en tant qu'active ou chacun de ses instances (T1, T2 et T3) a son propre « thread » et peut

lancer une activité.

Le stéréotype "SAscheduling" du profil SPT représente un Ordonnanceur qui est
responsable de traiter les demandes d’un service de la part des clients. Ce stéréotype est
basé sur la politique appropriée de contrdle d'accés pour ce service. Si un e service est
occupé, alors la réponse peut demeurer en suspens jusqu'a ce que l'accés soit possible.
L'étiquette "SAschedulingPolicy™ représente alors I'ensemble de regles pour assigner le

temps processeur a un ensemble des taches a exécuter par le systeme.

Pour mettre I’accent sur la relation entre tiche/ressource, un certains nombre d’attributs et de

méthodes est rajouté au modele d’ordonnancement des taches tels que :

Idle : pour dire gu’un processus est en repos
Busy : lorsqu’il s’agit d’une ressource occupée
Delayed : lorsqu’une tache dépasse le delai
Release : libérer une ressource

Awake : tache réveillée

Assign : attribuer

- 69 -

Chapitre 4 : Démarche de conception proposée

|

C)
o D

<<SaScheduler>>o 1 ISchudeler <<SaResouce>> R1:Ressource <<GA

C e
C:) run()

C T

assign(t1)

O
N

CD preempt(

C_
B
‘ Cj release() -
CD CD rung)

O

preempt(

t...t+8
Figure 17 : Diagramme de Séquen{ce iIIusErant I’algorithme d’Ordonnancement Rate Monotonic

rec

assian(T3)

-70 -

t2=Now Pre

Chapitre 4 : Démarche de conception proposée

L’handicape de cette proposition réside au niveau de [I’existence d’un grand nombre
d’algorithmes d’ordonnancement, et par suite le designer va se trouver en premier lieu face a la
modélisation de plusieurs algorithmes d’Ordonnancement a I’aide d’une suite de diagrammes de
Séquence et en deuxiéme lieu, face a la problématique d’intégration de I’ensemble de ces
diagramme dans le processus MDA.

6. Modc¢les proposés

Nous rappelons que I’approche descendante utilisée dans [SHOO04] fait une séparation explicite
lors de la modélisation de la structure de I’'RTOS et de I’ordonnanceur sans définir les

sémantiques temporelles. Cette approche se base sur deux diagrammes a aspect statique.

Pour I’approche ascendante issue de [DAV06], elle se base sur le méme diagramme et ne touche

pas I’aspect comportemental.

Pour notre approche, nous déecrivons la structure de I’RTOS a travers un diagramme de classe qui
inclut la définition de la semantique opérationnelle pour presenter la structure de I’RTOS. Nous
définissons ensuite le comportement d’une tache, afin d’assurer la cohérence entre les difféerents
diagrammes UML. Pour aboutir au modéle d’ordonnancement, nous définissons les variations
sémantiques temporelles et transitionnelles relatives aux différents états d’un processus temps

réel.

Le tableau 4 donne une étude comparative entre différentes approches qui peuvent étre exploitées
lors de la modélisation d’un RTOS déja citées préecédemment, il permet de positionner notre
démarche par rapport a elles.

-71 -

Chapitre 4 : Démarche de conception proposée

Modéle Description de la structure de ’RTOS Description de ’Ordonnanceur
OSEK = Utilisation du diagramme de classe Diagramme de classe — Aspect
= Modélisation de la variation des statique
états d’une tache a I"aide des FSM Indépendance entre la description de
= Manque de cohérence entre les I’Ordonnanceur et la structure de
diagrammes I’RTOS
VxWorks = Utilisation du diagramme de classe Absence totale de [I’aspect
= Entites separées comportemental
= Possibilité d’intégration d’attribut g’f"s | de def'”'tt'on de modele
couvrant I’évolution dans le temps ordonnancemen
= Possibilité d’utilisation des
relations de réciprocité
Approche = Utilisation du diagramme de classe Définition et implantation des
proposée variations sémantiques associées aux

= Définition des états possibles
d’'une tiche a [I’aide des

statecharts — Garantir la
cohérence entre les diagrammes

statecharts

Tableau 4 : Bilan récapitulatif des différentes approches de modélisation des RTOS

6.2. Modéle associé la structure d’un exécutif temps réel

Deux diagrammes sont proposés pour la description de la structure de I’ordonnanceur, un

diagramme de classe décrivant les principales composantes de I’RTOS, et un diagramme d’états

transition est associé a I’entite tache pour modéliser son aspect comportemental.

Nous nous basons alors sur le modéle présenté dans la figure 11 tout en ajoutant quelques

attributs tels que periode, dateFirstActvation, deadline et duration au niveau de I’entité Task.

Nous tenons a respecter notamment la spécification d’un exécutif temps réel présentée au niveau

du premier chapitre. Nous intégrons aussi dans notre modéle d’autres entités telles que Process,

Prcedes qui sont déja mentionnées au niveau de la figure 15. Le modeéle final issu est alors

conforme a la figure 18.

-72 -

Chapitre 4 : Démarche de conception proposée

R E——
!
P—
I—
i
RTOSKé&rnel

Pr

* -idProcess

1
Figure 18 : Modeéle staigeatle la définition de la structure de I’'RTOS proposé

Vu qu’un patron de concepflnoarl{ﬂé)rﬂ3 encore un design pattern est la formalisation d’une approche
pour résoudre un probléme commun dans un contexte particufli'\elra [B‘(ﬁjﬁgfre]t que son utilisation
lors de la conception d’un logiciel permet de réutiliser des solutions construites et validées pour
des problemes similaires, trois patrons pour la fiabilité et la sécurité des systemes temps réel
peuvent étre utilisés : 1

= Patron chien de garde: Les chiens de garde permetteqf,fassocier une routine a

I’interruption de I’horloge du systeme. Ains?, la reutingss’exécute une fois le délai expiré.

. . FactivateTask() . .
= Patron de surveillance et action : Ce patron possédgp\ystgme d’action (qui effectue les

actions destinées & contréler un processus), un $FSEMASRIATAAIRRE(Qui garde une

*

1

-73-
Counter

-MaxAllowedValue
-MinCycle

-tasks
-Prior
-idTa:
-datel
-dead
-peric
-durat
-peric
-resp
+entn
+acti\
+termr
+pree
+crea
+rele:

Ta

+wait

Chapitre 4 : Démarche de conception proposée

trace de ce que le systéme d’action doit faire et qui surveille I’environnement physique de

I’application) et un systéme qui contréle les deux premiers systéemes

= Patron de directives de sécurité: Le patron de directives de sécurité utilise un
coordinateur central pour la surveillance de la sécurité et la tolérance aux fautes du
systéme. Il fonctionne comme un chien de garde intelligent qui traque et coordonne toute
la surveillance du systéme en saisissant les informations relatives aux délais des chiens de
garde, aux erreurs logicielles et aux fautes détectées par les systemes de détection du
patron de surveillance et action. En cas de dysfonctionnement, le systeme des directives
de sécurité agit de facon a remplacer le sous-systeme défaillant par des actions de

recouvrement effectuées par un systéeme redondant

Nous associons a I’entité Task un diagramme d’états transitions décrivant une vue
comportementale de I’état d’une tache, au cours de la deuxiéme phase de notre proposition. Nous
exprimons quelques regles OCL relatives & chaque état dans le but d’atteindre la qualite

correction du comportement du systeme (voir figure 19).

Figure 19: Diagramme d’états transitions relatif & I’entité tache annoté avec des contraintes
OCL

- 74 -

Chapitre 4 : Démarche de conception proposée

6.3. Modé¢le associé a ’ordonnanceur

Nous rappelons que nous avons déja utilisé un diagramme de classe pour la définition des
differentes composantes de I’RTOS. Nous avons associé a I’entité Task, qui constitue le cceur du
modeéle, un diagramme d’états transitions. Vu que ce diagramme présente des points de variations
sémantiques dont leurs definitions sont laissées a la charge du designer, nous proposons de les
préciser et de les expliciter ultérieurement dans la phase de définition des sémantiques
temporelles. Cette phase qui nous a amenée au modele d’ordonnancement, sera détaillée dans le

chapitre suivant.
7. Conclusion

La conception d’application selon I'approche MDA débute par I'analyse du probléme, modélisé
d'un point de vue abstrait. MDA définit pour cette phase la notion de PIM. Cette étape de
modélisation sur laquelle nous avons mis I’accent, s'appuie sur le langage UML. Nous avons plus
particulierement focalisé notre étude sur deux des diagrammes les plus représentatifs : le
diagramme de classes et celui d’états transitions. Le digramme de classe décrit la structure d’un
RTOS. Un diagramme d’états transitions est associé a I’entité Task décrivant I’évolution de son
état au cours du temps. Nous lui définissons dans le chapitre suivant la variation des sémantiques

dans le but de caractériser I’Ordonnanceur.

-75 -

Chapitre5: Implantation des statecharts et Génération de code

CHAPITRE

5

Implantation des statecharts

et Génération de Code

-76 -

Chapitre5: Implantation des statecharts et Génération de code

1. Introduction

Dans le chapitre précédent, nous avons étudié la fagon dont nous spécifions en UML la structure
d’un RTOS associé a un modele d'application. A partir du digramme de classe, nous définissons
les éetats possibles de I’entité « Task » sous forme d’un diagramme d’états transitions. Dans ce
chapitre, nous définissons les points de variations sémantiques que présente ce diagramme tout en
ajoutant des extensions sous la forme d'un profil qui contient des stéréotypes utilisés pour
I'annotation des éléments du modéle. Ces annotations, qui décrivent des informations liées a la

définition de la sémantique temporelle et transitionnelles.

Une fois cette tache accomplie, des solutions techniques a savoir I’énumération et la réification
doivent étre mises en place pour permettre I’implantation des statecharts. Le modeéle final issu va

correspondre au modéle cible lors de la transformation des modéles.

Toujours dans une méme optique de la démarche MDA, nous finissons par la génération

automatique du code.

2. Modélisation des variations sémantiques

Dicté par son caractere généraliste, UML définit un ensemble de points sémantiques non définit
[ARNO7] explicitement. C'est alors dans le contexte d'une méthodologie donnée, et s'appuyant
sur UML comme langage de modélisation, que le sens de chacun des points de variation

sémantique doit étre précisé.

Les points ouverts de variations sémantiques doivent étre précisés clairement et volontairement
par tous les outils et méthodes affirmant s’appuyer sur UML car dans le cas contraire, il ne serait

pas possible de conclure sur le sens réel d'un quelconque modéle UML

Le tableau suivant issu de [FRAO04] synthétise les différentes variations sémantiques des

statecharts tels qu’ils sont décrits dans UML 2.0.

-77 -

Chapitre5: Implantation des statecharts et Génération de code

Variations Type Dépendances Portée
TimeOut syntaxique Sémantique temporelle Transition
Transitions inter-niveaux syntaxique Automate
Reférence a un état syntaxique Transition
Evénement conditionnel syntaxique Transition
Etat historique syntaxique Automate
Sémantique temporelle sémantique Application
Sélection des événements sémantique Automate
Durée des événements sémantique Evénement différé Automate
Priorités entre transition sémantique | Plus interne Automate
Non déterminisme Sémantique Automate

Tableau 5 : Récapitulatif des différents points de variations [FRA04]

A fin de spécifier les différents points de variations associées aux statecharts, il est nécessaire de
disposer d’un méta-modéle permettant d’exprimer les différents choix possibles. Ce méta-modele
est illsustré par la figure 20. La question de la sémantique temporelle est représentée par
I’élément TimeProgression qui peut prendre deux valeurs : synchrone ou asynchrone. Les
variations concernant la gestion des évenements sont représentées par les éléments

EventSelection et EventChoice montrant respectivement la sélection de I’événement et son choix.

-78 -

Chapitre5: Implantation des statecharts et Génération de code

—L]

—L K+

— L]

Figure 20 : Récapitulatif des différents points de variations [FRA04]

EventManaging

En ce qui concerne les variations relatives aux transitions, elles sont présentées par les éléments

TransitionSelection et TransitionChoice. L’avantage de cette solution est qu’elle permet une

grande flexibilité dans la définition de la sémantique associée aux statecharts. En effet les

portions de code associées a la progression de I’automate ne sont pas figées et peuvent étre

facilement modifiées dans le modéle adéquat. La sémantique des statecharts est réesumée en une

procédure, appelée step() qui correspond a la réa@RMABYGutomate face a I’occurrence d’un

événement. Cette procédure peut se résumer a trois actions prindipales : SéleCti‘F}QerﬁsL,’ lonManagin.

événement, sélectionner une transition parmi celles que déclenche I’événement et tirer la
*

transition choisie.

procedure step()
begin
eventSet := eventPool.select();

anEvent := eventSet.choice();

aTransition := transitionSet.choice();

transitionSet := getFirableTransition(event).select();

TimeProgression

-79 -

Chapitre5: Implantation des statecharts et Génération de code

aTransition.fire(Q;

end.

Figure 21: La procédure Step en pseudo-code[FRA04]

D’aprés la figure 21, la procédure step exige la sélection d’un élément dans un ensemble en
fonction de différents criteres de priorités. Dans la cas des événements par exemple, les différents
criteres de priorités (évenements internes/externes, ordre dans la file, etc.) permettent de
sélectionner un sous-ensemble d’évenements. Il peut étre nécessaire cependant d’avoir a
départager plusieurs événements parmi ce sous-ensemble. Deux politiques peuvent étre évoquees:
soit le choix de I’événement se fait de fagcon aléatoire, par un tirage au sort par exemple, soit de

facon arbitraire si I’on fixe I’évenement choisi.
2.1. OCL pour qualifier les points de variation sémantique

Les différentes étapes de la procédure step() definissent le noyau de la sémantique des statecharts
utilisé dans UML. Chacune de ces étapes correspond a une méthode qui peut étre caractérisée a

I’aide du langage OCL.

La sélection des évenements peut-étre envisagée de nombreuses facons : FIFO, LIFO Pour
notre cas il s’agit d’une file de priorité : I’événement tiré est celui ayant la priorité la plus haute.
Quelle que soit la politique choisie, la procédure manipule toujours les mémes éléments : un

ensemble d’évenements sur lequel elle en extrait un sous ensemble (voir figure 22).

context EventManagement

def : eventPool : Set

inv : eventPool->select(evt : Event | event->isOver())->isEmpty()
context : PRIORITY::nextEvent() : Set

pre : eventPool->notEmpty()

post : return = self._getAllAttributes()-> select(name="priorite®).upper
context : LIFO::nextEvent() : Set

pre : eventPool->notEmpty()

post : return = eventPool@pre->asSequence()->last()

context : FIFO::nextEvent() : Set

pre : eventPool->notEmpty()

post : return = eventPool@pre->asSequence()->first()

Figure 22 : Contraintes OCL sur la gestion des événements

-80 -

Chapitre5: Implantation des statecharts et Génération de code

2.2. Un Profil UML pour spécifier les choix sémantiques

Dans le cadre de notre application, un profil UML va permettre de définir une extension d’UML
autorisant I’utilisateur a décorer les statecharts avec les propriétés adéquates. Le profil UML
nécessaire doit permettre de préciser les eéléments qui déterminent le comportement de la
procédure step(). Il faut donc spécifier comment sélectionner un eévénement, comment
sélectionner une transition, et quelle est la sémantique associée a la progression de I’automate. La
figure 23 ci-contre présente une représentation de ce profil.

<= tagged value == << tagged value ==
TransitionSelection TransitionChoice
StateMachine << tagged value ==
(From State_Machines) TimeProgression
<< tagged value == << tagged value ==
EventSelection EventChoice

Figure 23 : Profil UML pour préciser les choix sémantiques associés aux statecharts [FRA04]

Cependant les tagged values ne suffisent pas. En effet, une telle étiquette n’est qu’une paire
(nom, valeur) qui ajoute une nouvelle propriété a un élément de modélisation. Ce systeme ne
permet pas de faire le lien entre la sélection des evénements dans la pile et le code associé a cette
opération. Pour cela, il est donc nécessaire de décrire dans un modele spécifique le code de ces
opérations.

Les modéles correspondant au méta-modéle proposent donc un certain nombre de solutions pour
chacune des étapes de la procédure step(). Chaque solution est identifiée par un nom, et c’est ce

nom qui sera associé a la tagged value correspondant dans le modele.
3. Implantations des statecharts

Comme nous venons de dire la spécification des choix sémantiques est insuffisante. De ce fait,

I’implantation des statecharts constitue une phase primordiale au cours de notre démarche

-81-

Chapitre5: Implantation des statecharts et Génération de code

proposée. Le modeéle final issu, aprés cette etape, correspondra au modele cible lors de la
transformation des modeéles.

3.1. Techniques d’implantation des statecharts

Un ensemble d’approches [LUI03, PINO4] a été propose dans la littérature afin d’implémenter
les statecharts, a savoir la spécialisation de fonctions et I’utilisation d’interpréteur générique muni
d’un ensemble de structures de données spécifiant le comportement. Ces approches sont
gourmandes en terme d’utilisation du processeur et de la mémoire. Elles sont aussi difficiles a

maintenir.

Pour notre application nous optons pour la technique la plus simple, celle basée sur I’énumération
et la réification. Plusieurs designs pattern sont spécialisés pour la mise en ceuvre de ces
techniques.

En effet, la reification consiste a matérialiser un concept par un objet et de le manipuler
concrétement. |l s’agit de transformer une entité qui n’est pas un objet en objet. Elle peut étre
utile dans les méta-applications. Cette technique présente un outil graphique et mathématique de
modélisation. Dans le cas des STRE, ils restent restreints pour la modélisation de I’aspect
concurrence et ordonnancement de I’RTOS. L’énumération consiste a attribuer les valeurs

énumérées que peut prendre un concept
3.1.1. Enumération des états et des événements

L’état de I’entité Task prend ses valeurs de I’ensemble :{created, waiting, ready, running,
stopped}. Pour la représentation des événements, nous faisons recours a une méthode
processEvent (evt :Event) ou evt est un type énuméré. Pour la représentation de la réaction a un
événement, I’objet Task est doté d’une méthode processEventPlay qui détermine le

comportement en fonction de I’état courant d’une tache.
3.1.2. Réification des événements

Le concept de réification peut étre appliqué aux différents évenements au niveau des statecharts.
En effet, chague événement est considéré comme action de I’automate. Vu que le pattern
Command [FOW97] permet de spécifier, stocker et exécuter des actions a des moments différents

(les commandes exécutées peuvent étre stockées ainsi que les états des objets affectés), il peut

-82-

Chapitre5: Implantation des statecharts et Génération de code

étre utiliser pour décrire les évenements agissant sur I’état d’un processus. Le résultat de la

réification des éventements est illustré par la figure 24.

Figure 24 : Application du pattern command sur I’entité Task

3.1.3. Réification des états

receptor
Le principe de la réification des états condi&®k séparer le comportement lié a un état dans objet.

Le pattern State [FOW97] sembleGldresitiitatefficace pour notre cas (voir figure 25). En effet
ce pattern permet, lorsqu’un obfRECESSHR¥ANEE changer son comportement changé. Le
changement d’état peut parfois poser des problémes dans leurs gestions, le Pattern State permet

de pallier & ce probleme de maniére simple et rapide.

State doit comporter des classes précises participantes a ce Pattern :

= Context abstrac

= State
<<depends>> +eXGCUte(

= ConcreteState

-83-

Chapitre5: Implantation des statecharts et Génération de code

On utilise State lorsque :
= Le comportement d'un objet dépend de son état, qui change a I'exécution.

= Les opérations sont constituées de parties conditionnelles de grande taille.

,,,,,,,,,,,,,,,,,,

Figure 25 : Application du pattern State sur I’entité Task

3.1.4. Réification des états et des é_\lf_énﬁments context
as

Il s’agit lors de cette phase de réifier les états et les événements en méme temps et ce en

appliquant les deux patterns Statgﬁgogggm%%ﬁt(splution représente d’une fagon souple de
I’automate mais augmente énormément le nombre de classes. La réification des états et des

événements nous améne au modele présenté par a la fi%lre 26.
contexte

currentState

-84 -

abstrac

+stop()
+preempt(
+processP

Chapitre5: Implantation des statecharts et Génération de code

CommandPatt F
|

Figure 26 : Application du pattern state et du pattern Command sur I’entité Task

-
D

+proces
3.2. Progression de I’automate

. : — ... abstractCommand .
A la lumiere des solutions presentées précédemment et en vue d’assurer la progression de

I’automate, il est nécessaire de mettre I’accent sur I’aspect déterministe du systéme, c'est-a-dire il
est indispensable de déterminer I’état courant de I’automate et le comportement & adopter en

) o abstractEvent
fonction de I’événement survenu.

Quand il s’agit de I’énumération des éwtgﬁc%ﬁe(({fs événements, le code réagﬁgggﬂ?%s?rogression de
I’automate est localisé dans la méthode processEvent(). Quant & I’énumération des états et la
réification des événements, le code sera reparti entre la méthode processEvent() et execute() de
chaque classe. S’il s’agit de la réification des états et I’énumération des événements, le code sera
réparti entre la méthode processEvent() et la méthode processEventPlay() de chaque classe état.

Finalement, lorsque nous réifions les états et les evenements, Le code est réparti entre la méthode

-85 -

concreteCommanc

createEveni preemptEvent waitEvent terminateEveni releaseEvent activateEven

Chapitre5: Implantation des statecharts et Génération de code

processEvent() de la classe principale, les méthodes processEvent() des classes etats et les

méthodes execute() des classes évenements.

Les solutions de réifications et d’énumérations ne nous permettent pas également de représenter
la notion de file de messages relative a la progression de I’automate. Le temps n’est pas pris en
considération. Pour surmonter ce probléme, I’utilisation du patron active Object [FOW97] est
alors indispensable.

En effet ce patron dissocie la tache qui recoit une requéte de celle qui la traite. La mise en oeuvre
des différentes stratégies d’affectation peut ainsi étre réalisée indépendamment du
fonctionnement des clients des objets actifs (qui se contentent de remettre un travail a effectuer a
un relais offrant la méme interface que I’objet réel) et de celui des objets réels qui exécutent ces
travaux dans une tache spécifique. Ce patron est donc efficace pour la réalisation des différentes
politiques de parallélisme.

< ,,,,,,,,,,,,,,,,,,,,,,

Figure 27 : Application du pattern Active Object sur I’entité Task
3.3. Modéle final

Suite a I’application de la réification des états et des événements, ainsi que I’illustration de
I’évolution de I'automate, le modéle final correspondant au modéle cible au niveau PIM de

I’approche MDA est représenté par le modéle ci-dessous :

- 86 -

Chapitre5: Implantation des statecharts et Génération de code

receptor

fffff Comman m

stractCommanc

Figure 28 : Modéle d’ordonn&heifdRYestu de I’implémentation des statecharts

N . . . ; <<depqnd$>>
Ce modeéle d’ordonnancement, ainsiegeeui¢®@ modele proposé pour la description de I’'RTOS

mettent en ceuvre I’adéquation Algorithme Architecture. En effet, si ces deux modéles sont
intégrés a un profil déja existant et tepant compte de I’application et de I’architecture, cette
adéquation sera explicite. La communication entre I’application et I’'RTOS et I’application sera
assuree via I’entité Task. Pour la communication entre I’RTOS et I’architecture, elle sera identifié

grace aux entités ressource et horloge.
concreteCommand

4. Génération de Code

createEvent waitEvent preemptEvent terminateEvent activateEvent

Notre objectif consiste a transformer un modeéle source XML obtenu automatiquement a partir de
notre modéle source, en un modéle cible XML. Pour réaliser les transformations, nous nous
appuyons sur un modéle de transformation en langage ATL. E;%% décrire le modéle a
transformer, nous utilisons le langage KM3, qui permet de définir des modéles selon le méta-

.) e +process()
modéle MOF sous une forme textuelle simplifié.

-87-

+proces:

startEvent

Schi

+step(

evel

+nexty(
+add(]
+remo

Chapitre5: Implantation des statecharts et Génération de code

Il est & noter que I’exemple utilisé lors de la transformation est pris adéequatement étant donné que
I’objectif de notre travail est de montrer juste la faisabilit¢ de I’utilisation de I’IDM pour

I’intégration de la modélisation de I’RTOS lors de la conception des STRE.

4.1 Modéle source

Le modele source que nous transformons correspond au diagramme de classe présenté par la
figure 18. Le code correspondant en XMI, basé sur XML offre une structure arborescente a notre
modeéle en présentant les classes et les attributs sous forme textuelle. Nous obtenons le code

présenté ci-dessous :

<?xml version="1.0" encoding="1S0-8859-1"?>
<xmi :XMI xmizversion="2._.0" xmIns:xmi="http://www.omg.org/XMI" xmlIns="Xml">

<RtosKernel name="RTOSCES">
<Process idProcess="P1" >
<Task idTask="T1" priority="1" taskState="create"
dateFirstActivation="0" deadline="12" duration ="10" periode="2"
ResponseTime="12" Periodicity="1">
<TaskContext/>
<Ressource ressourceProprety="Processor" action="use"/>
<Prcedes kind="'starttostart'/>
<MeanOfCommuinication>
<ProtectedVar>
<Mutex/>
</ProtectedVar>
<LettreBox>
<FileMessage/>
</LettreBox>
<TCPSocket/>
</MeanOfCommuinication>
<event nature="preemp"/>
</Task>
</Process>

<ISR category="aa'">
<WatchDog/>
<Ressource ressourceProprety="Processor"™ action="use'"/>
<MeanOfCommuinication>
<ProtectedVar>
<Mutex/>
</ProtectedVvar>
<LettreBox>
<FileMessage/>
</LettreBox>
<TCPSocket/>
</MeanOfCommuinication>
</1SR>
<event nature="preemp’/>
</RtosKernel>
<AlarmAction>

- 88 -

Chapitre5: Implantation des statecharts et Génération de code

<Alarm>
<Counter maxAllowvalue="30" minCycle="3"/>
<Task idTask="T1" priority="1" taskState="create"
dateFirstActivation="0" deadline="12" duration ="10" responseTime="2"
periodicity="1" >
<TaskContext/>
<Ressource ressourceProprety="Processor’ action="use"/>
<Prcedes kind="starttostart'/>
<MeanOfCommuinication>
<ProtectedVar>
<Mutex/>
</ProtectedVvar>
<LettreBox>
<FileMessage/>
</LettreBox>
<TCPSocket/>
</MeanOfCommuinication>
<event nature="‘preemp'/>
</Task>
<event nature="'preemp'/>
</Alarm>
</AlarmAction>

</xmi : XM1>

Figure 29 : Modele source en XMl

Afin de modéliser notre méta-modéle source (métamétamodelisation), ce dernier doit étre écrit en
KM3 (Kernel MetaMetaModel) déja décrit dans le chapitre 3, et qui se base sur la notion de
packages, classes et références qui seront par la suite manipulés par ATL. Ce méta-modéle est

décrit a I’aide de la figure ci contre :

package RTOSStructure {

class RtosKernel {
attribute name : String;
reference Process container : Processl oppositeOf RTOS;

reference ISR container : ISR1 oppositeOf RT0S11;
reference event container : Eventl oppositeOf RTO0S2;

class Processl {
attribute idProcess : String;
reference RTOS[0-1] : RtosKernel oppositeOf Process;
reference Task container : Taskl oppositeOf RTOSModel;

}
class Eventl

attribute nature : String;
reference RTOS2[0-1] : RtosKernel oppositeOf event;
b3

-89 -

Chapitre5: Implantation des statecharts et Génération de code

class ISR1 {
attribute category : String;
reference RTOS11[0-1] : RtosKernel oppositeOf ISR;
reference WatchDog [1-*] ordered container: WatchDogl;
reference Ressource [1-*] ordered container: Ressourcel;
reference MeanOfCommuinication [1-*] ordered container:
MeanOfCommuinicationl;

}
class WatchDogl{}
class Taskl {
attribute idTask : String;
attribute priority : String;
attribute taskState : String;
attribute dateFirstActivation : String;
attribute deadline : String;
attribute duration : String;
attribute periode : String;
attribute ResponseTime : String;
attribute Periodicity : String;
reference RTOSModel[0-1] : Processl oppositeOf Task;
reference TaskContext [1-*] ordered container: TaskContextl;
reference Prcedes [1-*] ordered container: Prcedesl;
reference Ressource [1-*] ordered container: Ressourcel;
reference MeanOfCommuinication [1-*] ordered container:
MeanOfCommuinicationl;
reference event [1-*] ordered container: Eventl;

class TaskContextl

{3

class Prcedesl

{
attribute kind : String;

class Ressourcel

{

attribute ressourceProprety : String;
attribute action : String;

}

class MeanOfCommuinicationl{

reference ProtectedVar [1-*] ordered container: ProtectedVarl;
reference LettreBox [1-*] ordered container: LettreBoxl;
reference TCPSocket [1-*] ordered container: TCPSocketl;

class ProtectedvVaril{
reference Mutex [1-*] ordered container: Mutexl;

class Mutex1{}
class LettreBox1{
reference FileMessage [1-*] ordered container: FileMessagel;

3

-90 -

Chapitre5: Implantation des statecharts et Génération de code

class FileMessagel{}

class TCPSocketl{}

class AlarmAction {

reference Alarm [1-*] ordered container: Alarml;

}
class Alarml{
reference Counter [1-*] ordered container: Counterl;
reference Task [1-*] ordered container: Taskl;
reference event [1-*] ordered container: Eventl;
class Counterl{
attribute maxAllowvalue : String;
attribute minCycle : String;
}

}

package PrimitiveTypes {
datatype String;
by

Figure 30 : Méta-modeéle source en KM3
4.2 Modzéle cible

C’est le modele que nous voulons obtenir aprés I’exécution des transformations appliquées sur le

modele source. 1l doit étre conforme au méta-modéle décrit dans la figure 31.:

package RTOSSchudeler {

class shudeler {
reference proxy [1-*] ordered container: Proxy;
reference task [1-*] ordered container: Task;
reference eventpool [1-*] ordered container: EventPool;

}
class Proxy {}

class Task {
reference abstractstate [1-*] ordered container: AbstractState;
reference abstractevent [1-*] ordered container: AbstractEvent;

class AbstractState {
reference stopstate [1-*] ordered container: StopState;
reference waitstate [1-*] ordered container: WaitState;
reference readystate [1-*] ordered container: ReadyState;
reference createstate [1-*] ordered container: CreateState;
reference runnigstate [1-*] ordered container: RunnigState;

class EventPool {
reference abstractevent [1-*] ordered container: AbstractEvent;

class AbstractEvent {
reference createevent [1-*] ordered container: CreateEvent;

-01-

Chapitre5: Implantation des statecharts et Génération de code

reference waitevent [1-*] ordered container: waitEvent;
reference PreeemtEvent [1-*] ordered container: PreeemtEvent;
reference terminateevent [1-*] ordered container: TerminateEvent;
reference activateevent [1-*] ordered container: ActivateEvent;
reference startevent [1-*] ordered container: StartEvent;
}
class StopState{}
class WaitState{}
class ReadyState{}
class CreateState{}
class RunnigState{}
class CreateEvent{}
class waitEvent{}
class PreeemtEvent{}
class TerminateEvent{}
class ActivateEvent{}
class StartEvent {}

}

package PrimitiveTypes {
datatype String;

}

Figure 31 : Méta-modeéle cible en KM3

Nous présentons maintenant un exemple de régle ATL écrite pour assurer la transformation, cette regle est utilisée

pour assurer la génération automatique du modeéle cible, elle est présentée par la figure 32.

rule RTOSModeling{
from
s : RTOSStructurelTaskl
to
w : RTOSSchudeler!lshudeler ()

Figure 32 : Régle en ATL
5. Conclusion

Dans ce chapitre, nous avons rappelés les points de variations sémantiques des statecharts. Nous
avons présentés les différentes techniques nécessaires pour les implémenter. Nous avons adopté
une démarche d'intégration de design pattern dans le but de réutiliser des composants logiciels
existants et éprouvés, plutdt que de recréer de nouveaux modeles pour I’implémentation des

statecharts.

Le modeéle final relatif a la variation des différents états de I’entité «Task» correspond au modéle
cible de la démarche MDA.

-92-

Chapitre5: Implantation des statecharts et Génération de code

Nous avons en effet présenté les différentes étapes menant de I'élaboration du modéle cible de

I’ingénierie dirigé par les modeles jusqu'a la génération du code final.

-03-

Conclusion

Conclusion

Le domaine des systemes temps réel, et d'une maniere générale celui du développement des

RTQOS, représente de vastes sujets d'étude, que nous avons souhaité réunir.

Plus particulierement, nous avons expose dans ce mémoire de mastére les travaux concernant
notre approche pour la prise en compte d’exécutif temps réel lors de la conception d’un STRE
en optant pour une approche orientée objet. Notre objectif a été d'étudier et de mettre en

pratique un paradigme récent : I'Ingénierie Dirigée par les Modéles.

Nous avons présenté dans le Chapitre 1 le contexte scientifique dans lequel notre travail a été
réalisé. Nous avons introduit les systéemes temps réel, en nous focalisant notamment sur

I’étude des caractéristiques d’un RTOS.

Dans le deuxiéme chapitre, nous avons effectué un tour d'horizon sur les tendances passes et
actuelles utilisées dans le domaine de conceptions des STRE. Au cours de ce chapitre, I'étude
de l'existant nous a montré que de nombreuses solutions avaient été proposées pour répondre
a chacun de ces problémes. Nous avons détaillé plus précisément deux approches : la notion

de profil UML, ainsi que la définition de la sémantique temporelle et transitionnelle.

De cette étude est ressorti que lI'une des principales préoccupations dans ce domaine était
I'intégration des caractérisations temps réelles comme le temps d'exécution et les contraintes
temps réelles et par conséquent la prise en compte de I’'RTOS relatif a I’architecture et

I’application considérées.

En partant de ce constat, il nous a semblé judicieux d'apporter notre contribution en générant
automatique un RTOS tout en utilisant une démarche orientée objet. Cette démarche est mise
en évidence au niveau du troisieme chapitre, nous avons notamment présenté les éléments de
I'ingénierie dirigée par les modeles, et plus particulierement les specifications MDA mises au
point par 'OMG.

Notre travail est découpé en deux parties, pour lesquelles nous avons également suivi une

démarche proche du développement basé sur les modeles.

La premiére partie, décrite dans le chapitre 4, détaille notre solution. Nous avons tout d'abord
décrit un prototype pour la modélisation de la structure de I’'RTOS a I’aide d’un diagramme

de classe qui correspond au modele source pour la démarche MDA.

-94 -

Conclusion

Au niveau du cinquiéme chapitre qui constitue la deuxiéme partie de notre travail, nous avons
définit et implanté la variation des sémantiques associées aux statecharts relatifs a la I’état
d’un processus dans le but de spécifier le modele d’ordonnancement. Le modéle issu de cette
phase correspond au modéle cible de la démarche MDA Nous avons notamment fini avec la
génération automatique de code.

Enfin, du point de vue des perspectives, nous souhaitons adapter notre travail a d'autres

domaines que ceux directement liés aux RTOS dédiés au domaine de I’automobile.

Nous pouvons enrichir le modele de profil relatif au statecharts, grdce au mécanismes
d'extensions propres a UML pour pouvoir concevoir tout un profil propre aux STRE intégrant
ses différentes composantes : architecture (mono processeur, multi processeur voir méme
SoC), application et RTOS.

Ainsi, il serait intéressant d'appliquer notre approche au développement d'applications de
domaines tels que celui de la robotique ou celui des réseaux de capteurs. Dans ces domaines,
des entités de nature hétérogéne sont amenées a communiquer, qu'il s'agisse de robots
coopérants, et dont I'ensemble peut étre vu comme un systeme réparti; ou qu'il s'agisse des

réseaux de capteurs communiquant au sein d'un habitat « intelligent ».

La mise au point d'extensions a ce profil, contenant des stéréotypes propres a chacun de ces
domaines, tirerait alors les mémes avantages que ceux que nous avons montrés dans nos

résultats.

-05 -

Références

[ALA92] M. Alabau and T. Dechaize, "Ordonnancement temps réel par échéance". In T.S.1.,
volume 11. n.3, 1992.

[ANNO5] Anne-Marie Déplanche, Sébastien Faucou Institut de Recherche en
Communications et Cybernétiqgue de Nantes (UMR no 6597), "Les langages de

description d’architecture pour le temps réel”.

[ARNO7] Arnaud Cuccuru — Chokri Mraidha — Francgois Terrier —Sébastien Gérard, "Méta-
modeéles et Points de Variation Sémantique”. (SéMo'07) (Atelier adossé a la
conférence francophone IDM'07 Toulouse les 29 et 30 mars 2007).

[ATLO5] ATLAS group LINA & INRIA Nantes, " ATL: Atlas Transformation Language
ATL". Starter’s Guide version 0.1 December 2005

[BENO6] Benoit Combemale Sylvain Rougemaille, Xavier Crégut, Fedéric Migeon Marc
Pantel Christine Maurel, "Expérience pour décrire la sémantique en Ingénierie des
modeles”. IDM6 LILE 26 28 juin 2006

[BEZO3] Beézevin Jean, Erwan Breton, Gregoire Dupé, Patricx Valduriez, “The ATL
Transformation-based Model Management Framework”, RESEARCH REPORT No
03.08 09/09/2003

[BUR90] A. Burns and A Wellings., "Real-Time Systems and their Programming Languages.
Addison-Wesley", 1990.

[CLL73] C.L. Liu & J.W. Layland, "Scheduling algorithms for multiprogramming in a hard
real-time environment”,Journal of the Association for Computing Machinery 20
(1973), no. 1, p. 46-61

[CNR88] G.D.R.T.R CNRS. "Le temps réel. Technique et Science Informatiques”, 1988.

[CWMO01] "The Common Warehouse MetaModel (CWM), OMG Document ad/2001-02-01",
Janvier 2001.

[DAVO06] Dave Thomas Claude Baron Bertrannd Tondu. "Ingénierie dirigée par les modeles
appliquée a la conception d’un contréleur de robot de service". IDM6 LILE 26 28
juin 2006

- 906 -

[DELO3] Jérobme DELATOUR 2003. "Contribution a la spécification des systéemes Temps
Réel L’approche UML/PNO" THESE Présentée au Laboratoire d’Analyse et
d’Architecture des Systémes (LAAS) Du CNR par Jérébme DELATOUR 2003

[DOU98] B. Douglass. "Real-Time UML: Developing Efficient Objects for Embedded
Systems. Addison-Wesley", 1998.

[DUBO05] Dubois Hubert, Gérard Sébastien, Mraidha Chokri. "Un Langage d’Action pour le
développement UML de systemes embarqués temps réel”. CEA-List CEA Saclay
91191 Gif-sur-Yvette Cedex France, IDM'05 Premieres Journées sur I'Ingénierie
Dirigee par les Modeéles Paris, 30 juin, 1 Juillet 2005.

[FOW97] FOWLER Martin. "Analysis patterns, reusable object models”. 07-1997

[FRA04] Franck Chauvel DEA d’Informatique Sous la direction de M. Jean-Marc Jézéquel
Rennes, "Génération de code a partir de modéles UML Avec points de variation
sémantique”. le 18 juin 2004 Université de RENNES 1 (IFSIC)

[GAS06] "Gaspard Profile". DART team Laboratoire d'informatique fondamentale de

Lille.Université des sciences et technologies de Lille. France 2006.

[HANO95] C. Hanen and A. Munier. "Cyclic scheduling on parallel processors : An Overview,
volume Scheduling theory and its applications”, P. Chretienne et al., Chap 9. John
Wiley & Sons, 1995.

[IMEO5] Imene Benkermi, Amine Benkhelifa, Daniel Chillet, Sebastien Pillement, Jean-
Christophe Prevotet, Francois Verdier. "Modélisation niveau systéme de SoC
reconfigurables”. RENPAR’16 / CFSE’4 / SympAAA’2005 / Journées Composants
Le Croisic, France, 5 au 8 avril 2005

[KMMO5] "The Kernel Meta-MetModel (KM3) Manual™, disponible dans le projet GMT 61,
section ATL Documentation”, Aout 2005.

[LUIO3] Luis Gomes, Anikd Costa. "From Use Cases to System Implementation: Statechart
Based Co-design”. Proceedings of the First ACM and IEEE International
Conference on Formal Methods and Models for Co-Design (MEMOCODE’03).
ISBN 0-7695-1923-7/03 2003 IEEE.

[MARO06] "MARTE: the future OMG standard for MDE of RTES 1stworkshop on UML and
AADL". ENST, Paris —October, the 9th2006

-97 -

[MARO6] Maria Cruz Valiente, Gonzalo Genova, Jesus Carretero. "UML 2.0 Notation for
Modeling Real Time Task Scheduling”. Carlos I11 University of Madrid JOURNAL
OF OBJECT TECHNOLOGY Published by ETH Zurich, Chair of Software
Engineering ©JOT, 2006

[MOFO03] "QVT, MOF 2.0 Query / Views / Transformations RFP", OMG Document ad/
2003-08-03, Aodt 2003.

[N1Z06] Nizar Idoudi, Claude Duvallet, Bruno Sadeg, Faiez Gargouri. "Vers une méthode de

conception des bases de donnees temps réel”. GEI 2006

[OCLO04] Eric Cariou. "OCL Object Constraint Language".Département Informatique

Université de Pau. http://web.univ-pau.fr/~ecariou/cours/mde/cours-ocl.pdf

[OMEO5] lulian Ober, lleana Ober, Susanne Graf et David Lesens VERIMAG. "Projet
Omega : Un profil UML et un outil pour la modélisation et la validation de systemes
temps réel". Grenoble Université Paul Sabatier, Toulouse (IRIT) EADS SPACE

Transportation

[PAIO6] Stéphane PAILLER. "Analyse Hors Ligne d’Ordonnancabilité d’ Applications
Temps Réel comportant des Taches Conditionnelles et Sporadiques”. THESE
Présentée au Ecole Nationale Supérieure de Mécanique et d’Aérotechnique le 19
Octobre 2006

[PET62] "C.A. Petri. Kommunikation mit automaten”. Bonn Institut fur Instrumentelle
Mathematik, Schriften des IIM Nr. 2, English translation, 1966, pages Vol.1,
Suppl.1, 1962.

[PINO4] G. Pinter and I. Majzik. "Impact of Statechart Implementation Techniques on the
Effectiveness of Fault Detection Mechanisms”. Proceedings of the 30th
EUROMICRO Conference (EUROMICRO’04). 1089-6503/04 IEEE

[PRI04] Prih Hastono, Stephan Klaus and Sorin A. Huss. "Real-Time Operating System
Services for Realistic SystemC Simulation Models of Embedded System™.
Integrated Circuits and Systems Laboratory Department of Computer Science -

Technische Universitat Darmstadt Alexanderstr. 10, 64283 Darmstadt, Germany

[QOS04] "UMLTM Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms"”. OMG Adopted Specification. Ptc/2004-06-01

- 08 -

[QVTO3] "OMG / MOF 2.0, Query / Views / Transformation. ad/2002-04-10, Revised
Submission”, Version 1.0, 2003/08/18, @ OpenQVT, disponible a
http://www.omg.org/docs/ad/03-08-05.pdf.

[REALO3] "Real-Time Concepts for Embedded Systems". CMP Books © 2003

[ROO96] "Tutorial: real-time object-oriented modeling (ROOM) Selic", B. Real-Time
Technology and Applications Symposium, 1996. Proceedings, 1996 IEEE Volume,
Issue, 10-12 Jun 1996 Page(s):214 — 217

[ROP04] Vincent ENGLEBERT. "Modélisations de systémes coopératifs mobiles a temps
réels Analyse de cas pour des systemes ATC (Air Traffic Control) Evaluation du

processus de développement ROPES". Thése soutenue 2004

[SAMO06] Samuel Rouxel. "Modélisation et Caractérisation de Plates-Formes SoC
Hétérogenes : Application a la Radio Logicielle". These présentée et soutenue
publiguement le 5 décembre 2006 par

[SDL04] EMMANUEL GAUDIN PRAGMADEYV. "SDL et UML: mariage de raison pour la

conception des logiciels temps réel™. Mars 2004 n°145 - Electronique

[SHOO04] Shourong Lu Wolfgmg A. Halang Roman Gumzej. "Towards Platform Independent
Models of Real Time Operating Systems". 0-7803-8513-6/04/$20.00 Q2004 IEEE

[SPTO02] "UMLTM Profile for Schedulability, Performance, and Time Specification”. An
Adopted Specification of the Object Management Group, Inc. January 2005 Version
1.1 formal/05-01-02

[STA88] J.A. Stankovic. "Misconception about real -time computing”. In IEEE Computer
Magazine, volume 10, pages 0-19. 21, 1988.

[STEO4] Stephan Flake and Wolfgang Mueller C-LAB. "An OCL Extension for Real-Time

Constraints", , Paderborn University, F urstenallee 11 33102 Paderborn, Germany

[UMLO1] Unified Modeling Language (UML), OMG Document formal/2001-09-67,
Septembre 2001.

[UMLO4] "Real Time UML: Advances in The UML for Real-Time Systems"”, Third Edition
Pub Date February 20, 2004

-99 -

[VIV02] Vivek Agarw. M.Tech . "Embedded Operating Systems for Real-Time
Applications”. Sagar P M (02307406). credit seminar report,Electronic Systems
Group, EE Dept, IIT Bombay, Submitted in November 2002.

[XMLO1] "XML Metadata Interchange (XMI) ", OMG Document formal/2000-11-02,
Novembre 2001.

[YVOO05] Yvon Trinquet IRCCyN. "Les systemes d’exploitation temps reel”. — UMR CNRS
6597 Ecole Centrale de Nantes Université de Nantes. Ecole d’été Temps réel 2005
ETR’05

- 100 -

