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Abstract—This paper presents an idea of automatic 

generation of SoC architecture from a functional specification. 
Starting from an application task graph, C code will be 
generated automatically. Then the user can add the specific code 
of each task. Compilation rules are used in order to have a 
correct task graph and c code. Finally, an automatic generation 
of hardware and software SoC architecture will be down to get a 
new model prototype of the FPGA based SOC platform. We 
demonstrate the effectiveness of the proposed idea by the 
implementation of CAGT software tool which can generate 
efficient and correct C code from a task graph. The generated 
code is compliant to the ANSI C standard thus can be accepted 
by most compilers. 

Keywords—automatic code generation, functional 
specification, Compilation rules, SoC architecture. 

I. INTRODUCTION  

As most design decisions are taken in early design phases 
at high abstraction levels, there is a need for methodologies 
and support tools helping the designer to select the best 
design alternatives. Much work has been done in synthesizing 
the HW part of the system. However, most industrial 
embedded software is still created manually from the system 
specification [3]. It is desired that the embedded software 
could be generated automatically from the system 
specification. Several commercial behavioral or high-level 
synthesis tools are available, e.g., Cynthesizer by Forte 
Design Systems [5], CatapultC by Mentor Graphics [1], and 
NEC’s CyberWorkBench [14]. Moreover, automatic code 
generation tools for embedded processors exist [6, 15]. 
Various design methodologies for designing embedded 
software are also available. Many of these starts from an 
abstract model of ([2], [10]). One methodology is to manually 
write both models and verify them for equivalence by 
checking for similar properties using techniques like bounded 
model checking [16]. However, this would require manual 
effort in model rewriting as well as re-verifying every time the 
architecture is modified. Another methodology would be 

verifying the functional specification first and then 
automatically refining it to an equivalent architecture model 
[13].  In this paper, we address this problem by describing a 
design method which can automatically generate C code from 
a system specification model and by proving its effectiveness 
by implementing automatic code generation software tool: 
Custom Architecture Generator Tool (CAGT). 

Fig. 1 shows how a specification model is refined to an 
implementation level model. Each task in the specification is 
generated to a unique component in the architecture. The 
model generation algorithm has the specification model as 
input. It uses the compilation rules to generate a correct C 
code. The output consists in custom architecture like DSP, 
Custom instruction, and MPSoC that can be validated through 
simulation or verification. 

 
     Figure 1: Architecture refinement 

The rest of this paper is organized as follows: Section II 
gives an insight into the related work on software code 
generation in system design. Section III describes how the 
automatic software generation is integrated with the system 
level design method. Details of the code generation process 
are covered in Section III.A, Section III.B and Section III.C. 
Section IV.A describes the CAGT software. Section IV.B 
illustrates a GUI example with CAGT. Experimental results 
are shown in Section IV.C and Section V concludes this paper 
with a brief summary and an outlook on future work.                                  
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II. RELATED WORK  

Some related work can be found on code generation for 
embedded software. There are approaches to automatic code 
generation from abstract models (e.g UML [4]), from 
graphical finite state machine design environments (e.g UML 
StateCharts [17]), or from synchronous programming 
languages (e.g Esterel) [7]. In [18], a software synthesis 
approach from a concurrent process specification through 
intermediate Petri-Net is given. The proposed method applies 
quasi-static scheduling to a set of Petri-Nets to produce a set 
of corresponding state machines, which are then mapped 
syntactically to the final software code. In [8], a way of 
combining static task scheduling and dynamic scheduling in 
software synthesis is proposed. In [12], a method for 
automatic generation of application-specific operating 
systems and corresponding application software for a target 
processor is given. While these approaches mainly focus on 
software scheduling issues, no efficient code generation 
method from system specification is described. In POLIS 
[11], software synthesis from Co-design Finite State Machine 
(CFSM) is presented. Code generation is performed in two 
steps: (1) transformation of the CFSM specification into a s-
Graph and (2) translation of s-Graph into portable C code. A 
small customized operating system consisting of a scheduler 
and drivers for the I/O channels is used to correctly 
implement the run-time behavior of the input CFSMs. This 
work, however, is mainly for reactive real time systems and 
can’t be easily extended to other more general frameworks. In 
[9], software code generation from a high-level model of 
operating system called SoCOS is presented. However, 
SoCOS requires its own proprietary simulation engine and it 
requires manual refinement to get the software code. In [3], 
software generation from SystemC SLDL based on the 
redefinition and overloading of SystemC class library 
elements is presented. Their approaches use the same 
SystemC code both for the system-level specification and for 
the target binary code generation. However, they have very 
strict requirements with regards to the input SystemC model 
(e.g no event wait/notify are allowed inside process and the 
processes lack a sensitivity list). Besides, there is no 
information regarding how the processes in the input SystemC 
model get scheduled in the final implementation, which is 
very important considering the real time requirements of the 
embedded software. 

In this work, we aim to generate SoC architecture from a 
task graph description to accelerate embedded system 
conception and increase productivity. We also present the 
design process steps in which the architecture model is 
automatically generated from a compiled task graph. The 
approach is similar to that of Gajski [10], where a method of 
automatically creating embedded software from system level 
model written in system level design language (SLDL) is 
presented. 

III.  DESIGN METHOD 

The overall design flow of the design methodology is based 
on (i) a task graph of the application, (ii) compilation of task 
graph using the compilation rules, (iii) code generation from a 

XML description of the compiled task graph after selecting 
parameters by the editor (iv) architecture model generation 
for SOC platforms. Fig. 2 shows our design method steps. 
 

 
 

Figure 2: Our design method that generates code from a task graph model  

A. specification model 

The specification model gathers a set of concepts to 
specify the application part of a system. It expresses tasks and 
data dependencies of the application. 
In our specification model, task management is handled by 
the operating system µC-OS II which runs on each mpSoC 
NIOS II processor. This operating system offers to the user 
the means to communicate between the various processes 
through communications tools (mutex, mailbox, etc). Tasks 
are synchronized by using routines to access the mutex and 
the mailbox core hardware. These functions are specific to the 
mutex and the mailbox core and directly manipulate low-level 
hardware. In our RTOS model, tasks have a set of parameters 
like name, size, priority, processor number, etc. 
TABLE I shows some of Hardware Access Routines used in 
task synchronization. 

TABLE I.  HARDWARE ACCESS ROUTINES 

Function Name 
 

Description 

altera_avalon_mailbox_pend() 
 

Blocks waiting for a message to 
be in the mailbox. 

altera_avalon_mailbox_post() 
 

Posts a message to the mailbox. 

altera_avalon_mutex_lock() 
 

Locks the mutex. Will not return 
until it has successfully claimed 
the mutex. 

altera_avalon_mutex_unlock() 
 

Unlocks the mutex. 

B. Compilation rules 

The task graph compilation process verifies the 
description of tasks and processors. The main idea is that we 
correct the mistakes in the task graph by applying some rules 
in order to have a correct code generation.  
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Rules for C code generation are described in TABLE II. 

TABLE II.  TASK GRAPH COMPILATION RULES 

Rules Description 
 

R1 The diagram must not be empty 
 

R2 The diagram must not be composed by an only object 
 

R3 Two different objects mustn’t have the same name 
 

R4 Two different objects mustn’t have the same priority 
 

  
The DiagramValidation function reflects the four rules for 
software code generation. Fig. 3 shows the code of 
DiagramValidation (LFDDiagram) function. 
 
1: LFDDiagram ={FD1,FD 2,………,FD k} 
2: boolean isvalid <- true; 
3:  if isEmpty(LFDDiagram) then  
4:  write(“ the diagram is empty !”); 
5:  isvalid <- false; 
6: end if 
7: for all  FormDrawed FD in LFDDiagram do 
8:    if  ((not (instanceof (FD,Tasks)) and                                
9:    (orphelin(FD)))then  
10:  write “Erreur : Orphan Object, the object  
11:  FD is orphan”; 
12:  isvalid <- false; 
13:  end if 
14: for i = indexOF(FD, LFDDiagram) TO k do 
15:      if equals(FD, FDi ) then 
16:      write “Error: Name Duplication, D the  
17:      Objects F and FDi  have the same name”; 
18:       isvalid <- false; 
19:       end if 
20:       if  (instanceof (FD,Tasks) and instanceof         
21:        (FDi,Tasks) ) then  
22:            if ( Priority(FD)= Priority(FDi)) then 
23:            write “Warning: Priority Duplication,  
24:            the Objects  FD and FDi  have the  
25:            same  priority”;                                                   
26:            isvalid <-false; 
27:            end if 
28:        end if 
29:    end for 
30: end for 
 
  

Figure 3:  DiagramValidation (LFDDiagram) code 

 
The DiagramValidation function verifies the task graph 
created by the user. The input to DiagramValidation is the 
whole of objects created in the diagram “LFDDiagram”. 
TABLE III shows the several functions used in 
DiagramValidation.                                                                             

TABLE III.  DIAGRAMVALIDATION ‘S FUNCTIONS 

The DiagramValidation function returns the value of the 
attribute isvalid. The diagram will be validated only when 
isvalid is true.  

C. Code generation automate 

After compiling the task graph for the considered 
application, the next step in our design method (see figure 2) 
consists in the automatic generation of the correspondent C 
code. This is an important step for extraction of performance 
parameters in terms of execution times, area values, and other 
non-functional properties. 

Fig. 4 shows the code of generateCcode(nbprocessor) 
function which generates the code for the considered 
application.  
 
1: Begin 
2:      String S <-""; 
3:      S <- S + includesListGenerator (); 
4:      S <- S + constantsGenerator (); 
5:      S <- S + structureGenerator (); 
6:      S <- S + globalVariablesGenerator (); 
7:    for i = 0 TO nbprocessor do 
8:      S <- S + createAllTasks(i); 
9:     end for 
10:   return S; 
11: end 

 
 

Figure 4:  generateCcode(nbprocessor) code 

The input to generateCcode function is the diagram 
processors number selected by the user. 
 TABLE IV shows the several functions used in 
generateCcode function.                                                                                                     

TABLE IV.  GENERATECCODE’S FUNCTIONS 

Functions Description 
 

includesListGenerator () for generation of includes list if 
exist 

constantsGenerator () for generation of constants list 
if exist 

structureGenerator () for generation of structure list 
if exist 

globalVariablesGenerator () for generation of global 
variables list if exist 

createAllTasks(i) for the code task generation 

Functions 
 

Description 

isEmpty(LFDDiagram)   
returns true if the vector 
“ LFDDiagram” is empty 

instanceof (FD,Tasks) 
returns true if the object FD is an 
instance of the Tasks class 

orphelin(FD) 
returns true if  the object FD is 
created alone 

indexOF(FD,LFDDiagram) 
returns the index of the object FD in 
the LFDDiagram 

equals(FD, FDi ) 
retruns true if the Object FD and FDi  

have the same name 

Priority(FD) returns the priority of the object FD 

R1 

R2 R2 

R3 

R4 
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IV.  SOFTWARE IMPLEMENTATION: CUSTOM 

ARCHITECTURE GENERATOR TOOL 

A. Custom Architecture Generator Tool presentation 
 
We test the effectiveness of the proposed method by 

the Custom Architecture Generator Tool (CAGT). The 
CAGT project seeks to develop techniques to aid in the 
development of reliable architecture based embedded 
systems using advanced development and verification 
systems. As shown in figure 5, CAGT offers a Graphic 
User Interface (GUI) for automatic generating processor 
architecture from a high specification level. 
 

  
     
    Figure 5: CAGT working strategy 

The CAGT system has several principal modules. 
TABLE V shows the functionalities of CAGT modules. 

                             TABLE V.           CAGT’S  FUNCTIONALITIES  

module functionalities 
Custom Instructions Integrator Integrate Custom Instructions in 

the Nios processor 
Template Converter Converts a Template to NIOS 

Coprocessor 
Statistics generator � Calculates code complexity 

� Calculates the number of 
templates or elementary operations 

Generator  of monoprocessor real 
time application 

� Realizes a mono processor task 
diagram 
Generates the equivalent C code 

Generator  of multiprocessor real 
time application 

� Realizes a multiprocessor task 
diagram 
� Generates the equivalent C 
code 

 
B.  Graphic User Interface of the multiprocessor real time 

application generation module 
 
The GUI construction is very important in the software 

design. In our tool, the aim is to design an ergonomic 
application (efficient and easy). 
Fig. 6 illustrates the CAGT GUI of the multiprocessor real 
time application generation module. 

 
 

Figure 6: GUI of the multiprocessor real time application generation module 
 

C. Experimentation and results 

1)  Application: Two-Dimensional Fast Fourier  
Transform  

The entry point of our design method is a multiprocessor 
task graph designed and edited by the CAGT user. For the 
experimental evaluation of the CAGT software, we use the 
FFT example of a 4*256 matrix (matrix A). 
 This application is used to compute FFT of a complex 
sequence of size m, a power of 4, with "decimation-in-
frequency decomposition" method. The output is in digit-
reversed order. Each complex value is with interleaved 16-bit 
real and imaginary parts. An excerpt of such an application is 
illustrated by TABLE VI. 
 

           TABLE VI.      2D  FFT   APPLICATION  PROCESSORS  ROLES 

 
The 2D FFT case study consists in tree steps: 

• Step1: After allocating memory for matrix A and B, 
the “Allocate_MatA” and “Allocate_MatB” 
processors send to “FFT_X1”, “FFT_X2”, 
“FFT_X3” and “FFT_X4” processors respectively 

parallel 
Processors  

sequential 
processors 

Priority role 

 Allocate_MatA 1 
Allocate memory for 
Matrix A 

 Allocate_MatB 2 
Allocate memory for 
coefficient Matrix B 

FFT_X1  3 
Calculate the FFT of 
x1 (the line number 1 
of matrix A) 

FFT_X2  3 
Calculate the FFT of 
x2 (the line number 2 
of matrix A) 

FFT_X3  3 
Calculate the FFT of 
x3 (the line number 3 
of matrix A) 

FFT_X4  3 
Calculate the FFT of 
x4 (the line number 4 
of matrix A) 

 Assembling 4 

Assemble the FFT_X1, 
FFT_X2, FFT_X3 and 
FFT_X4  vectors to 
have finally the FFT of 
matrix A 

Palette 

Toolbar 

Design Interface 

Output for Compilation 



5 
 

the vectors x1[ ], x2[ ], x3[ ], and x4[ ] (the rows of 
matrix A) and the vectors w1[ ], w2[ ], w3[ ] and w4[ 
] (the rows of coefficient matrix B), using hardware 
mailboxes.  

• Step2: The “FFT_X1”, “FFT_X2”, “FFT_X3” and 
“FFT_X4” processors will establish in parallel the fft 
of each line of the matrix A. Each processor sends a 
message to the “Assembling” processor through a 
hardware mailbox, when it finishes. 

• Step3: The fft of the vectors x1[ ], x2[ ], x3[ ], and 
x4[ ] will be assembled by the “Assembling” 
processor to obtain, finally, the fft of matrix A. 

 
In the multiprocessor task graph design, CAGT user can, also, 
specify the priority of each processor and other processor 
parameters like the name, processor number, return type…   

2) Results 

After a correct task graph compilation, the code 
generation process creates the C code equivalent to the 
compiled task graph. 

TABLE VII  Illustrates the conception effort spent for 
realization of the complete 2D FFT application with and 
without using the CAGT software. It indicates a large 
difference between the conception time using CAGT and the 
manual conception time. 
 
         TABLE VII.              CONCEPTION  TIME  WITH  AND   WITHOUT CAGT    

BY  ALTERING  THE  PROCESSORS  NUMBER 
Processors  number 1 2 4 7 8 10 15 

Time conception with 
CAGT (day) 

2  3  5  6 7 8 8 

Time conception 
without CAGT (day) 

7 10 26 43 55 70 90 

 
Fig. 7 proves the important gain of time offered by 

CAGT. However the curve of conception time without CAGT 
is infinitely growing. Conceiving an application without using 
CAGT needs a very long time comparing when using CAGT. 
So, conception without using CAGT can cause an important 
loss in terms of cost. 
 

 
Figure 7: conception time of 2D FFT application with and without CAGT vs 

processors number 

V. CONCLUSIONS AND FUTURE WORK 

This paper presents a design method that, starting from a 
specification model, generates the corresponding SOC 
architecture code. For this purpose, we developed 
transformations from the application model to the compiled 
model and a C code generation. 
This method is fully automatized and has been validated by 
implementing the CAGT software which can automatically 
generates efficient and correct C code for embedded system 
from his GUI. 

As future work, we plan to optimize the generated 
architecture model in order to enhance the FPGA 
implementation of the produced design. 
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