
1

 Rapid Design of Specific MPSoC prototype within
FPGA

Abstract—This paper presents an idea of automatic

generation of SoC architecture from a functional specification.
Starting from an application task graph, C code will be
generated automatically. Then the user can add the specific code
of each task. Compilation rules are used in order to have a
correct task graph and c code. Finally, an automatic generation
of hardware and software SoC architecture will be down to get a
new model prototype of the FPGA based SOC platform. We
demonstrate the effectiveness of the proposed idea by the
implementation of CAGT software tool which can generate
efficient and correct C code from a task graph. The generated
code is compliant to the ANSI C standard thus can be accepted
by most compilers.

Keywords—automatic code generation, functional
specification, Compilation rules, SoC architecture.

I. INTRODUCTION

As most design decisions are taken in early design phases
at high abstraction levels, there is a need for methodologies
and support tools helping the designer to select the best
design alternatives. Much work has been done in synthesizing
the HW part of the system. However, most industrial
embedded software is still created manually from the system
specification [3]. It is desired that the embedded software
could be generated automatically from the system
specification. Several commercial behavioral or high-level
synthesis tools are available, e.g., Cynthesizer by Forte
Design Systems [5], CatapultC by Mentor Graphics [1], and
NEC’s CyberWorkBench [14]. Moreover, automatic code
generation tools for embedded processors exist [6, 15].
Various design methodologies for designing embedded
software are also available. Many of these starts from an
abstract model of ([2], [10]). One methodology is to manually
write both models and verify them for equivalence by
checking for similar properties using techniques like bounded
model checking [16]. However, this would require manual
effort in model rewriting as well as re-verifying every time the
architecture is modified. Another methodology would be

verifying the functional specification first and then
automatically refining it to an equivalent architecture model
[13]. In this paper, we address this problem by describing a
design method which can automatically generate C code from
a system specification model and by proving its effectiveness
by implementing automatic code generation software tool:
Custom Architecture Generator Tool (CAGT).

Fig. 1 shows how a specification model is refined to an
implementation level model. Each task in the specification is
generated to a unique component in the architecture. The
model generation algorithm has the specification model as
input. It uses the compilation rules to generate a correct C
code. The output consists in custom architecture like DSP,
Custom instruction, and MPSoC that can be validated through
simulation or verification.

 Figure 1: Architecture refinement

The rest of this paper is organized as follows: Section II
gives an insight into the related work on software code
generation in system design. Section III describes how the
automatic software generation is integrated with the system
level design method. Details of the code generation process
are covered in Section III.A, Section III.B and Section III.C.
Section IV.A describes the CAGT software. Section IV.B
illustrates a GUI example with CAGT. Experimental results
are shown in Section IV.C and Section V concludes this paper
with a brief summary and an outlook on future work.

Emna Kallel
Electrical department

 CES Research Unit, National school of
Engineers of Sfax, Tunisia
 kallelemna@yahoo.fr

Yassine Aoudni
Electrical department

 CES Research Unit, National school of
Engineers of Sfax, Tunisia

 yassine.aoudni@gmail.com

 Mohamed Abid
Electrical department

 CES Research Unit, National school of
Engineers of Sfax, Tunisia

 mohamed.abid@enis.rnu.tn

2

II. RELATED WORK

Some related work can be found on code generation for
embedded software. There are approaches to automatic code
generation from abstract models (e.g UML [4]), from
graphical finite state machine design environments (e.g UML
StateCharts [17]), or from synchronous programming
languages (e.g Esterel) [7]. In [18], a software synthesis
approach from a concurrent process specification through
intermediate Petri-Net is given. The proposed method applies
quasi-static scheduling to a set of Petri-Nets to produce a set
of corresponding state machines, which are then mapped
syntactically to the final software code. In [8], a way of
combining static task scheduling and dynamic scheduling in
software synthesis is proposed. In [12], a method for
automatic generation of application-specific operating
systems and corresponding application software for a target
processor is given. While these approaches mainly focus on
software scheduling issues, no efficient code generation
method from system specification is described. In POLIS
[11], software synthesis from Co-design Finite State Machine
(CFSM) is presented. Code generation is performed in two
steps: (1) transformation of the CFSM specification into a s-
Graph and (2) translation of s-Graph into portable C code. A
small customized operating system consisting of a scheduler
and drivers for the I/O channels is used to correctly
implement the run-time behavior of the input CFSMs. This
work, however, is mainly for reactive real time systems and
can’t be easily extended to other more general frameworks. In
[9], software code generation from a high-level model of
operating system called SoCOS is presented. However,
SoCOS requires its own proprietary simulation engine and it
requires manual refinement to get the software code. In [3],
software generation from SystemC SLDL based on the
redefinition and overloading of SystemC class library
elements is presented. Their approaches use the same
SystemC code both for the system-level specification and for
the target binary code generation. However, they have very
strict requirements with regards to the input SystemC model
(e.g no event wait/notify are allowed inside process and the
processes lack a sensitivity list). Besides, there is no
information regarding how the processes in the input SystemC
model get scheduled in the final implementation, which is
very important considering the real time requirements of the
embedded software.

In this work, we aim to generate SoC architecture from a
task graph description to accelerate embedded system
conception and increase productivity. We also present the
design process steps in which the architecture model is
automatically generated from a compiled task graph. The
approach is similar to that of Gajski [10], where a method of
automatically creating embedded software from system level
model written in system level design language (SLDL) is
presented.

III. DESIGN METHOD

The overall design flow of the design methodology is based
on (i) a task graph of the application, (ii) compilation of task
graph using the compilation rules, (iii) code generation from a

XML description of the compiled task graph after selecting
parameters by the editor (iv) architecture model generation
for SOC platforms. Fig. 2 shows our design method steps.

Figure 2: Our design method that generates code from a task graph model

A. specification model

The specification model gathers a set of concepts to
specify the application part of a system. It expresses tasks and
data dependencies of the application.
In our specification model, task management is handled by
the operating system µC-OS II which runs on each mpSoC
NIOS II processor. This operating system offers to the user
the means to communicate between the various processes
through communications tools (mutex, mailbox, etc). Tasks
are synchronized by using routines to access the mutex and
the mailbox core hardware. These functions are specific to the
mutex and the mailbox core and directly manipulate low-level
hardware. In our RTOS model, tasks have a set of parameters
like name, size, priority, processor number, etc.
TABLE I shows some of Hardware Access Routines used in
task synchronization.

TABLE I. HARDWARE ACCESS ROUTINES

Function Name

Description

altera_avalon_mailbox_pend()

Blocks waiting for a message to
be in the mailbox.

altera_avalon_mailbox_post()

Posts a message to the mailbox.

altera_avalon_mutex_lock()

Locks the mutex. Will not return
until it has successfully claimed
the mutex.

altera_avalon_mutex_unlock()

Unlocks the mutex.

B. Compilation rules

The task graph compilation process verifies the
description of tasks and processors. The main idea is that we
correct the mistakes in the task graph by applying some rules
in order to have a correct code generation.

3

Rules for C code generation are described in TABLE II.

TABLE II. TASK GRAPH COMPILATION RULES

Rules Description

R1 The diagram must not be empty

R2 The diagram must not be composed by an only object

R3 Two different objects mustn’t have the same name

R4 Two different objects mustn’t have the same priority

The DiagramValidation function reflects the four rules for
software code generation. Fig. 3 shows the code of
DiagramValidation (LFDDiagram) function.

1: LFDDiagram ={FD1,FD 2,………,FD k}
2: boolean isvalid <- true;
3: if isEmpty(LFDDiagram) then
4: write(“ the diagram is empty !”);
5: isvalid <- false;
6: end if
7: for all FormDrawed FD in LFDDiagram do
8: if ((not (instanceof (FD,Tasks)) and
9: (orphelin(FD)))then
10: write “Erreur : Orphan Object, the object
11: FD is orphan”;
12: isvalid <- false;
13: end if
14: for i = indexOF(FD, LFDDiagram) TO k do
15: if equals(FD, FDi) then
16: write “Error: Name Duplication, D the
17: Objects F and FDi have the same name”;
18: isvalid <- false;
19: end if
20: if (instanceof (FD,Tasks) and instanceof
21: (FDi,Tasks)) then
22: if (Priority(FD)= Priority(FDi)) then
23: write “Warning: Priority Duplication,
24: the Objects FD and FDi have the
25: same priority”;
26: isvalid <-false;
27: end if
28: end if
29: end for
30: end for

Figure 3: DiagramValidation (LFDDiagram) code

The DiagramValidation function verifies the task graph
created by the user. The input to DiagramValidation is the
whole of objects created in the diagram “LFDDiagram”.
TABLE III shows the several functions used in
DiagramValidation.

TABLE III. DIAGRAMVALIDATION ‘S FUNCTIONS

The DiagramValidation function returns the value of the
attribute isvalid. The diagram will be validated only when
isvalid is true.

C. Code generation automate

After compiling the task graph for the considered
application, the next step in our design method (see figure 2)
consists in the automatic generation of the correspondent C
code. This is an important step for extraction of performance
parameters in terms of execution times, area values, and other
non-functional properties.

Fig. 4 shows the code of generateCcode(nbprocessor)
function which generates the code for the considered
application.

1: Begin
2: String S <-"";
3: S <- S + includesListGenerator ();
4: S <- S + constantsGenerator ();
5: S <- S + structureGenerator ();
6: S <- S + globalVariablesGenerator ();
7: for i = 0 TO nbprocessor do
8: S <- S + createAllTasks(i);
9: end for
10: return S;
11: end

Figure 4: generateCcode(nbprocessor) code

The input to generateCcode function is the diagram
processors number selected by the user.
 TABLE IV shows the several functions used in
generateCcode function.

TABLE IV. GENERATECCODE’S FUNCTIONS

Functions Description

includesListGenerator () for generation of includes list if
exist

constantsGenerator () for generation of constants list
if exist

structureGenerator () for generation of structure list
if exist

globalVariablesGenerator () for generation of global
variables list if exist

createAllTasks(i) for the code task generation

Functions

Description

isEmpty(LFDDiagram)
returns true if the vector
“ LFDDiagram” is empty

instanceof (FD,Tasks)
returns true if the object FD is an
instance of the Tasks class

orphelin(FD)
returns true if the object FD is
created alone

indexOF(FD,LFDDiagram)
returns the index of the object FD in
the LFDDiagram

equals(FD, FDi)
retruns true if the Object FD and FDi

have the same name

Priority(FD) returns the priority of the object FD

R1

R2 R2

R3

R4

4

IV. SOFTWARE IMPLEMENTATION: CUSTOM

ARCHITECTURE GENERATOR TOOL

A. Custom Architecture Generator Tool presentation

We test the effectiveness of the proposed method by

the Custom Architecture Generator Tool (CAGT). The
CAGT project seeks to develop techniques to aid in the
development of reliable architecture based embedded
systems using advanced development and verification
systems. As shown in figure 5, CAGT offers a Graphic
User Interface (GUI) for automatic generating processor
architecture from a high specification level.

 Figure 5: CAGT working strategy

The CAGT system has several principal modules.
TABLE V shows the functionalities of CAGT modules.

 TABLE V. CAGT’S FUNCTIONALITIES

module functionalities
Custom Instructions Integrator Integrate Custom Instructions in

the Nios processor
Template Converter Converts a Template to NIOS

Coprocessor
Statistics generator � Calculates code complexity

� Calculates the number of
templates or elementary operations

Generator of monoprocessor real
time application

� Realizes a mono processor task
diagram
Generates the equivalent C code

Generator of multiprocessor real
time application

� Realizes a multiprocessor task
diagram
� Generates the equivalent C
code

B. Graphic User Interface of the multiprocessor real time

application generation module

The GUI construction is very important in the software

design. In our tool, the aim is to design an ergonomic
application (efficient and easy).
Fig. 6 illustrates the CAGT GUI of the multiprocessor real
time application generation module.

Figure 6: GUI of the multiprocessor real time application generation module

C. Experimentation and results

1) Application: Two-Dimensional Fast Fourier
Transform

The entry point of our design method is a multiprocessor
task graph designed and edited by the CAGT user. For the
experimental evaluation of the CAGT software, we use the
FFT example of a 4*256 matrix (matrix A).
 This application is used to compute FFT of a complex
sequence of size m, a power of 4, with "decimation-in-
frequency decomposition" method. The output is in digit-
reversed order. Each complex value is with interleaved 16-bit
real and imaginary parts. An excerpt of such an application is
illustrated by TABLE VI.

 TABLE VI. 2D FFT APPLICATION PROCESSORS ROLES

The 2D FFT case study consists in tree steps:

• Step1: After allocating memory for matrix A and B,
the “Allocate_MatA” and “Allocate_MatB”
processors send to “FFT_X1”, “FFT_X2”,
“FFT_X3” and “FFT_X4” processors respectively

parallel
Processors

sequential
processors

Priority role

 Allocate_MatA 1
Allocate memory for
Matrix A

 Allocate_MatB 2
Allocate memory for
coefficient Matrix B

FFT_X1 3
Calculate the FFT of
x1 (the line number 1
of matrix A)

FFT_X2 3
Calculate the FFT of
x2 (the line number 2
of matrix A)

FFT_X3 3
Calculate the FFT of
x3 (the line number 3
of matrix A)

FFT_X4 3
Calculate the FFT of
x4 (the line number 4
of matrix A)

 Assembling 4

Assemble the FFT_X1,
FFT_X2, FFT_X3 and
FFT_X4 vectors to
have finally the FFT of
matrix A

Palette

Toolbar

Design Interface

Output for Compilation

5

the vectors x1[], x2[], x3[], and x4[] (the rows of
matrix A) and the vectors w1[], w2[], w3[] and w4[
] (the rows of coefficient matrix B), using hardware
mailboxes.

• Step2: The “FFT_X1”, “FFT_X2”, “FFT_X3” and
“FFT_X4” processors will establish in parallel the fft
of each line of the matrix A. Each processor sends a
message to the “Assembling” processor through a
hardware mailbox, when it finishes.

• Step3: The fft of the vectors x1[], x2[], x3[], and
x4[] will be assembled by the “Assembling”
processor to obtain, finally, the fft of matrix A.

In the multiprocessor task graph design, CAGT user can, also,
specify the priority of each processor and other processor
parameters like the name, processor number, return type…

2) Results

After a correct task graph compilation, the code
generation process creates the C code equivalent to the
compiled task graph.

TABLE VII Illustrates the conception effort spent for
realization of the complete 2D FFT application with and
without using the CAGT software. It indicates a large
difference between the conception time using CAGT and the
manual conception time.

 TABLE VII. CONCEPTION TIME WITH AND WITHOUT CAGT

BY ALTERING THE PROCESSORS NUMBER
Processors number 1 2 4 7 8 10 15

Time conception with
CAGT (day)

2 3 5 6 7 8 8

Time conception
without CAGT (day)

7 10 26 43 55 70 90

Fig. 7 proves the important gain of time offered by

CAGT. However the curve of conception time without CAGT
is infinitely growing. Conceiving an application without using
CAGT needs a very long time comparing when using CAGT.
So, conception without using CAGT can cause an important
loss in terms of cost.

Figure 7: conception time of 2D FFT application with and without CAGT vs

processors number

V. CONCLUSIONS AND FUTURE WORK

This paper presents a design method that, starting from a
specification model, generates the corresponding SOC
architecture code. For this purpose, we developed
transformations from the application model to the compiled
model and a C code generation.
This method is fully automatized and has been validated by
implementing the CAGT software which can automatically
generates efficient and correct C code for embedded system
from his GUI.

As future work, we plan to optimize the generated
architecture model in order to enhance the FPGA
implementation of the produced design.

REFERENCES
[1] http://www.mentor.com.

[2] Rational. http://www.rational.com/uml/index.html.

[3] F. Herrera, H. Posadas, P. Snchez, and E. Villar.
“Systematic embedded software generation from systemc.
Proceedings of Design Automation and Test in Europe” , DATE, 2003.

[4] Selo Sulistyo, and Andreas Prinz. “Recursive Modeling for Completed
Code Generation”, Proceedings of the 1st Workshop on Behaviour
Modelling in Model- Driven Architecture, June 2009.

[5] http://www.forteds.com.

[6] Christian Haubelt, Thomas Schlichter, Joachim Keinert and Mike
Meredith. “SystemCoDesigner: Automatic Design Space Exploration
and Rapid Prototyping from Behavioral Models”, DAC 2008, June 8–
13, 2008, Anaheim, California, USA.

[7] F. Boussinot and R. de Simone. “The ESTEREL Language”. In
Proceedings of the IEEE, September 1991.

[8] J. Cortadella, “Task generation and compile time scheduling for mixed
data-control embedded software”. In Proceedings of the Design
Automation Conference, June 2000.

[9] D. Desmet. “Operating system based software generation for system-
on-chip”. In Proceedings of the Design Automation Conference, June
2000.

[10] Haobo Yu, Rainer Doemer, and Daniel Gajski. “Automatic Software
Generation for System Level Design”, CECS Technical Report 03-18,
May 14, 2003.

[11] F. Balarin “Hardware-Software Co-design of Embedded Systems –
The POLIS approach”. Kluwer Academic Publishers, January 1997.

[12] L. Gauthier. “Automatic generation and targeting of application-
specific operating systems and embedded systems software”, IEEE
Trans. on CAD, November 2001.

[13] Daniel Gajski and Samar Abdi. “Automatic Generation of Equivalent
Architecture Model from Functional Specification”. DAC 2004, June
7–11, 2004, San Diego, California, USA.

[14] http://www.cyberworkbench.com.

[15] R. Leupers. “Code Optimization Techniques for EmbeddedProcessors
– Methods, Algorithms, and Tools”. Kluwer Academic Publishers,
Nov. 2000.

[16] X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe. “Case studies of
model checking for embedded system designs”. In Third International
Conference on Application of Concurrency to System Design, pages
20–28, June 2003.

[17] A. Knapp and S. Merz, “Model checking and code generation for
UML state machines and collaborations”, Proc. 5th Workshop on
Tools for System Design and Verification, Reisenburg, Germany,
2002, 59-64.

[18] B. Lin. “Software synthesis of process-based concurrent programs”. In
Proceedings of the Design Automation Conference, 1998.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

42

39

36

33

30

27

24

21

18

15
 9

 3

Processors number

With CAGT
Without CAGT

days

