Rapid Design of Specific MPSoC prototyg#hin
FPGA

Emna Kallel
Electrical department
CES Research Unit, National school of
Engineers of Sfax, Tunisia
kallelemna@yahoo.fr

Yassine Aoudni
Electrical department
CES Research Unit, National school ¢
Engineers of Sfax, Tunisia
yassine.aoudni@gmail.com

Mohamed Abid
Electrical department

Engineers of Sfax, Tunisia
mohamed.abid@enis.rnu.tn

Abstract—This paper presents an idea of automatic
generation of SoC architecture from a functional spcification.
Starting from an application task graph, C code wil be
generated automatically. Then the user can add thepecific code
of each task. Compilation rules are used in ordera have a
correct task graph and c code. Finally, an automati generation
of hardware and software SoC architecture will be dwn to get a
new model prototype of the FPGA based SOC platformWe
demonstrate the effectiveness of the proposed idely the
implementation of CAGT software tool which can genete
efficient and correct C code from a task graph. Thegenerated
code is compliant to the ANSI C standard thus cané accepted
by most compilers.

Keywords—automatic code generation, functional
specification, Compilation rules, SoC architecture.

l. INTRODUCTION

As most design decisions are taken in early degsigrses
at high abstraction levels, there is a need fothouxtlogies
and support tools helping the designer to seleet st
design alternatives. Much work has been done ithegirzing

the HW part of the system. However, most industrial

embedded software is still created manually from giistem
specification [3]. It is desired that the embeddadtware
could be generated automatically from
specification. Several commercial behavioral orhHiyel
synthesis tools are available, e.g., Cynthesizer Hoyte
Design Systems [5], CatapultC by Mentor Graphids §hd

NEC’s CyberWorkBench [14]. Moreover, automatic code

generation tools for embedded processors exist 1,

Various design methodologies for designing embedded

software are also available. Many of these staxisnfan
abstract model of ([2], [10]). One methodologydastanually

write both models and verify them for equivalencg b

checking for similar properties using techniqué&s bounded
model checking [16]. However, this would require nual
effort in model rewriting as well as re-verifyingegy time the
architecture is modified. Another methodology woué

the system

verifying the functional specification first and eth
automatically refining it to an equivalent architee model
[13]. In this paper, we address this problem bscdbing a
design method which can automatically generate de ¢mm
a system specification model and by proving ite&ffeness
by implementing automatic code generation softwia:

Custom Architecture Generator Tool (CAGT).

Fig. 1 shows how a specification model is refinadah
implementation level model. Each task in the speatibn is
generated to a uniqgue component in the architectline
model generation algorithm has the specificatiordehcas
input. It uses the compilation rules to generateomect C
code. The output consists in custom architectte DSP,
Custom instruction, and MPSoC that can be valid#isaligh
simulation or verification.

T Model
A S | generation

algorihm

H]I,f'

Jpecifican model

Lrchitectue
model

Compilation rules

Figure 1: Architecture refinement

The rest of this paper is organized as follows:tiSed|
gives an insight into the related work on softwamede
generation in system design. Section Il describew the
automatic software generation is integrated with $igstem
level design method. Details of the code genergpiatess
are covered in Section Ill.A, Section IIl.B and &ec I1I.C.
Section IV.A describes the CAGT software. SectidhBl
illustrates a GUI example with CAGT. Experimentabults
are shown in Section IV.C and Section V conclutiespgaper
with a brief summary and an outlook on future work.

CES Research Unit, National school of

Il. RELATED WORK

Some related work can be found on code generation f
embedded software. There are approaches to autoowte
generation from abstract models (e.g UML [4]), from
graphical finite state machine design environméatg UML
StateCharts [17]), or from synchronous programming
languages (e.g Esterel) [7]. In [18], a softwaretisgsis
approach from a concurrent process specificatiaoutih
intermediate Petri-Net is given. The proposed ne:thoplies
quasi-static scheduling to a set of Petri-Netsrtmdpce a set
of corresponding state machines, which are thenpethp
syntactically to the final software code. In [8], veay of
combining static task scheduling and dynamic sclirglun
software synthesis is proposed. In [12], a method f
automatic generation of application-specific opeamt
systems and corresponding application softwareaféarget
processor is given. While these approaches magdyd on
software scheduling issues, no efficient code gsitar
method from system specification is described. DL
[11], software synthesis from Co-design Finite &tisliachine
(CFSM) is presented. Code generation is performetivd
steps: (1) transformation of the CFSM specificatioio a s-
Graph and (2) translation of s-Graph into portableode. A
small customized operating system consisting ofreduler
and drivers for the 1/0O channels is used to colyect
implement the run-time behavior of the input CFSNIkis
work, however, is mainly for reactive real time teyss and
can't be easily extended to other more generaldreanks. In
[9], software code generation from a high-level elodf
operating system called SoCOS is presented. However
SoCOS requires its own proprietary simulation eagind it
requires manual refinement to get the software ctué3],
software generation from SystemC SLDL based on the
redefinition and overloading of SystemC class lipra
elements is presented. Their approaches use the sam
SystemC code both for the system-level specificasind for
the target binary code generation. However, theye hzery
strict requirements with regards to the input Sy€emodel
(e.g no event wait/notify are allowed inside precasd the
processes lack a sensitivity list). Besides, thé&eno
information regarding how the processes in thetiigystemC
model get scheduled in the final implementation,jciwhis
very important considering the real time requiretaesf the
embedded software.

In this work, we aim to generate SoC architectuoenfa
task graph description to accelerate embedded rsyste
conception and increase productivity. We also presee
design process steps in which the architecture maxe
automatically generated from a compiled task grapte
approach is similar to that of Gajski [10], wherenathod of
automatically creating embedded software from sydevel
model written in system level design language (SLOd
presented.

The overall design flow of the design methodologybased
on (i) a task graph of the application, (ii) conapibn of task
graph using the compilation rules, (iii) code gatien from a

DESIGN METHOD

XML description of the compiled task graph aftetesting
parameters by the editor (iv) architecture modeiegation
for SOC platforms. Fig. 2 shows our design methegs

|
Task graph | | .

@ model E Task graph compilation E

Edit. : I; :

Compiled task graph

E Architecture E
— i
vl model "

Code generation
Automate

i
Belect project name, place, |
type .. [

Tser
specification

Code execution
on 30C
platform

Automate

Figure 2: Our design method that generates code &task graph model

A. specification model

The specification model gathers a set of concepts t
specify the application part of a system. It expesstasks and
data dependencies of the application.

In our specification model, task management is kahdy
the operating system pC-OS Il which runs on eaclsaofip
NIOS Il processor. This operating system offergh® user
the means to communicate between the various eses
through communications tools (mutex, mailbox, eftasks
are synchronized by using routines to access thexrand
the mailbox core hardware. These functions areifipéx the
mutex and the mailbox core and directly manipuletelevel
hardware. In our RTOS model, tasks have a setraihpeters
like name, size, priority, processor number, etc.

TABLE | shows some of Hardware Access Routines tised
task synchronization.

TABLE . HARDWARE ACCESSROUTINES

Function Name L
Description

altera_avalon_mailbox_pend()| Blocks waiting for a message to

be in the mailbox.

altera_avalon_mailbox_post() Posts a message to the mailbox|

Locks the mutex. Will not return
until it has successfully claimed
the mutex.

altera_avalon_mutex_lock()

altera_avalon_mutex_unlock() Unlocks the mutex

B. Compilation rules

The task graph compilation process verifies
description of tasks and processors. The main igl#zat we
correct the mistakes in the task graph by applgimge rules
in order to have a correct code generation.

the

Rules for C code generation are described in TABLE

TABLE 1. TASK GRAPH COMPILATION RULES
Rules Description
R1 The diagram must not be empty
R2 The diagram must not be composed by an onlycbhje
R3 Two different objects mustn’t have the same name
R4 Two different objects mustn’t have the sameriiyio

The DiagramValidation function reflects the foulesu for

TABLE III. DIAGRAMVALIDATION ‘S FUNCTIONS

Functions Description

returns true if the vector

" LFDDiagram” is empty

returns true if the object FD is an

instance of the Tasks class

returns true if the object FD is

created alone

returns the index of the object FD in

the LFDDiagram

equals(FD, FD) retruns true if the Object FD and FD
' have the same name

Priority(FD) returns the priority of the object FD

The DiagramValidation function returns the value thg

isEmpty(LFCDiagram)

instanceof FD,Task$

orphelin(FD)

indexOF(FD,LFDiagram)

software code generation_ F|g 3 shows the code of attribute isvalid. The diagram will be validated Only when

DiagramValidation (LFDDiagram) function.

: LFDDiagram ={FD1,FD 2,......... ,FD Kk}

: booleanisvalid <- true;

if isEmpty(LFDDiagram}hen

write(“ the diagram is empty !");

isvalid <- falseg;

rend if

. for all FormDrawed FD in LFDDiagrardo
if ((not (instanceof (FD,Tasks)) and S
(orphelin(FD)))then

10: write “Erreur : Orphan Object, the object
11: FDis orphan”;

12: isvalid <- false;

13: end if

14:for i = indexOF(FD, LFDiagram) TO kdo
15: ifequals(FD, FP) then 3
16: write “Error: Name Duplication, D the
17: Objects F and Fbave the same name”> R3
18: isvalid <- false;

R1

CoNouRrRONE

7

19: endif J
20: if (instanceof ED,Task3 and instanceof
21: ED;,Task$) then

22: if (Priority(FD)= Priority(FD)) then b
23: write “Warning: Priority Duplication|
24: the Objects FD and Atave the [~ R4
25: same priority”;

26: isvalid <-false; 4
27: end if

28: end if

29: end for

30: end for

Figure 3: DiagramValidation (LFDDiagram) code

The DiagramValidation function verifies the taskapin
created by the user. The input to DiagramValidai®rhe
whole of objects created in the diagram “LFDDiagtam
TABLE 1l shows the several functions used in
DiagramValidation.

isvalid is true.

C. Code generation automate

After compiling the task graph for the considered
application, the next step in our design methoe (ggire 2)
consists in the automatic generation of the coomedpnt C
code. This is an important step for extraction effgrmance
parameters in terms of execution times, area vahres other
non-functional properties.

Fig. 4 shows the code of generateCcode(nbprocessor)
function which generates the code for the consilere
application.

1: Begin

2 String S <-"";

3 S <- S + includesListGenerator ();

4 S <- S + constantsGenerator ();

5: S <-S + structureGenerator ();

6 S <- S + globalVariablesGenerator ();
7. fori=0 TOnbprocessodo

8 S <- S + createAllTasks(i);

9: end for
10: return S;
11:end

Figure 4: generateCcode(nbprocessor) code
The input to generateCcode function is the diagram
processors number selected by the user.
TABLE IV shows the several functions
generateCcode function.

used in

TABLE IV. GENERATECCODE S FUNCTIONS

Functions Description

includesListGenerator () for generation of inclutissif

exist

constantsGenerator () for generation of constasts| |
if exist

structureGenerator () for generation of structuse |l
if exist

globalVariablesGenerator () for generation of globa

variables list if exist

createAllTasks(i) for the code task generation

IV. SOFTWARE IMPLEMENTATION: CUSTOM
ARCHITECTUREGENERATORTOOL

A. Custom Architecture Generator Tool presentation

We test the effectiveness of the proposed method by
the Custom Architecture Generator Tool (CAGThe
CAGT project seeks to develop techniques to aitthén
development of reliable architecture based embedded
systems using advanced development and verification
systems. As shown in figure 5, CAGT offers a Graphi
User Interface (GUI) for automatic generating pssos
architecture from a high specification level.

IHnL

(\ automate !‘q Altera Library

Mics architecture

Figure 5: CAGT working strategy

The CAGT system has several principal modules.
TABLE V shows the functionalities of CAGT modules.

TABLE V. CAGT’'S FUNCTIONALITIES

module functionalities

Custom Instructions Integrator Integrate Custom Instructions in

the Nios processor

Converts a Template to NIOS
Coprocessor

Template Converter

Statistics generator = Calculates code complexity
= Calculates the number (@
templates or elementary operatior]

=

Generator of monoprocessor real| = Realizes a mono processor task
time application diagram
Generates the equivalent C code

Generator of multiprocessor real | » Realizes a multiprocessor task
time application diagram
= Generates the equivalent C
code

B. Graphic User Interface of the multiprocessor réale
application generation module

The GUI construction is very important in the saftey
design. In our tool, the aim is to design an ergaico
application (efficient and easy).

Fig. 6 illustrates the CAGT GUI of the multiprocesseal
time application generation module.

Flo Edt View Navigate Tools Window Help

£ Dlapanmederrenstion

ER Y e

Toolbar /= raexe

mmunications interprocesseur
o

Design Interface TTITT
TN
e e

O Palette

yyyyyyyyy

Output for Compilatioﬁ

Figure 6: GUI of the multiprocessor real time apalion generation module
C. Experimentation and results

1) Application: Two-Dimensional Fast Fourier
Transform

The entry point of our design method is a multigssor
task graph designed and edited by the CAGT user.the
experimental evaluation of the CAGT software, we tise
FFT example of a 4*256 matrix (matrix A).

This application is used to compute FFT of a campl
sequence of size m, a power of 4, with "decimaiion-
frequency decomposition” method. The output is igitd
reversed order. Each complex value is with intereal6-bit
real and imaginary parts. An excerpt of such arliegupon is
illustrated by TABLE VI.

TABLE VI. 2D FFT APPLICATION PROCESSORS ROLES

parallel
Processors

sequential
processors

Allocate_MatA 1

Priority role

Allocate memory for
Matrix A

Allocate memory for
coefficientMatrix B
Calculate the FFT of
x1 (the line number 1
of matrix A)

Calculate the FFT of
X2 (the line number 2
of matrix A)

Calculate the FFT of
x3 (the line number 3
of matrix A)

Calculate the FFT of
x4 (the line number 4
of matrix A)
Assemble the FFT_X1
FFT_X2, FFT_X3 and
FFT_X4 vectors to
have finally the FFT of
matrix A

Allocate_MatB 2

FFT_X1 3

FFT_X2 3

FFT_X3 3

FFT_X4 3

Assembling 4

The 2D FFT case study consists in tree steps:

. Stepl: After allocating memory for matrix A and B,
the “Allocate_MatA” and “Allocate_MatB”
processors send to “FFT_X1", “FFT_X2",
“FFT_X3" and “FFT_X4" processors respectively

the vectors x1[], x2[], x3[], and x4[] (the revof
matrix A) and the vectors wi[], w2[], w3[] andi{v
] (the rows of coefficienmatrix B), using hardware
mailboxes.

e Step2: The “FFT_X1", “FFT_X2", “FFT_X3" and
“FFT_X4" processors will establish in parallel tffie
of each line of the matrix A. Each processor sends
message to the “Assembling” processor through a
hardware mailbox, when it finishes.

. Step3: The fft of the vectors x1[], x2[], x3[4nd
x4[1 will be assembled by the “Assembling”
processor to obtain, finally, the fft of matrix A.

In the multiprocessor task graph design, CAGT usex also,
specify the priority of each processor and othescessor
parameters like the name, processor number, rgtpen..

2) Results

After a correct task graph compilation, the code
generation process creates the C code equivalernheo
compiled task graph.

TABLE VI lllustrates the conception effort spent for
realization of the complete 2D FFT application wihnd
without using the CAGT software. It indicates agkr
difference between the conception time using CAGT the
manual conception time.

TABLE VII. CONCEPTION TIME WITH AND WITHOUTCAGT

BY ALTERING THE PROCESSORS NUMBER

Processors number 1 2 4 7 8 10| 15
Time conception with

CAGT (day) 2 3 5 6 7 8 8
Time conception

without CAGT (day) ! 10) 26| 43 551 70 90

Fig. 7 proves the important gain of time offered by
CAGT. However the curve of conception time withQAGT
is infinitely growing. Conceiving an applicationtiwbut using
CAGT needs a very long time comparing when usingsCA
So, conception without using CAGT can cause an itapb
loss in terms of cost.

days
42
39 —
36 I
33 —
30 &
27
24
21
18
15

P

Processors number

® \\ith CAGT
¢ Without CAGT

Figure 7: conception time of 2D FFT applicationtwéind without CAGT vs
processors number

V. CONCLUSIONS AND FUTURE WORK

This paper presents a design method that, stdrimg a
specification model, generates the correspondingC SO
architecture code. For this purpose, we developed
transformations from the application model to thempiled
model and a C code generation.

This method is fully automatized and has been addid by
implementing the CAGT software which can automdiiica
generates efficient and correct C code for embedgstem
from his GUI.

As future work, we plan to optimize the generated

architecture model in order to enhance the FPGA
implementation of the produced design.
REFERENCES

[1] http://www.mentor.com

[2] Rational.http://www.rational.com/uml/index.html

[3] F. Herrera, H. Posadas, P. Snchez, and E. Villar.
“Systematic embedded software generation from Byste
Proceedings of Design Automation and Test in EUrppATE, 2003.

[4] Selo Sulistyo, and Andreas Prinz. “Recursive Mimdgfor Completed
Code Generation”, Proceedings of the 1st WorkshopBehaviour
Modelling in Model- Driven Architecture, June 2009.

[5] http://www.forteds.com

[6] Christian Haubelt, Thomas Schlichter, Joachim Keirend Mike
Meredith. “SystemCoDesigner: Automatic Design SpEgeloration
and Rapid Prototyping from Behavioral Models”, DRG08, June 8—
13, 2008, Anaheim, California, USA.

[71 F. Boussinot and R. de Simone. “The ESTEREL Laggl In
Proceedings of the IEEESeptember 1991.

[8] J. Cortadella, “Task generation and compile tinteedaling for mixed
data-control embedded software”. Rroceedings of the Design
Automation Conferen¢dune 2000.

[9] D. Desmet. “Operating system based software geéopréor system-
on-chip”. In Proceedings of the Desighutomation Conferencelune
2000.

[10] Haobo Yu, Rainer Doemer, and Daniel Gajski. “Auttim&oftware

Generation for System Level Design”, CECS Technivaport 03-18,
May 14, 2003.

[11] F. Balarin ‘Hardware-Software Co-design of Embedded Systems —
The POLIS approach’Kluwer Academid?ublishers, January 1997.

[12] L. Gauthier. “Automatic generation and targeting abplication-
specific operating systems and embedded systentwasef, IEEE
Trans. on CADNovember 2001.

[13] Daniel Gajski and Samar Abdi. “Automatic GeneratainEquivalent
Architecture Model from Functional SpecificatiorDAC 2004, June
7-11, 2004, San Diego, California, USA.

[14] http://www.cyberworkbench.com

[15] R. Leupers. “Code Optimization Techniques for EnusetProcessors
— Methods, Algorithms, and Tools”. Kluwer Acadenfiublishers,
Nov. 2000.

[16] X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe. S€atudies of
model checking for embedded system designs”. ImdTtmiternational
Conference on Application of Concurrency to Systessign, pages
20-28, June 2003.

[17] A. Knapp and S. Merz, “Model checking and codeegation for
UML state machines and collaborations”, Proc. ®thrkshop on
Tools for System Design and Verification, ReiseghuGermany,
2002, 59-64.

[18] B. Lin. “Software synthesis of process-based cameuiprograms”. In
Proceedings of the Design Automation Conferenc8319

