Design Pattern for self-adaptive RTE systems monitoring

Abstract—Approaches for the development of self-adaptive
real-time embedded (RTE) systems are numerous. However,
there is still a lack of generic and reusable design which
fits different systems and alleviate the designer task. Design
patterns represent a promising solution to get fast and reusable
design. Unfortunately, patterns dealing with self-adaptive RTE
systems development are still not well tackled in the literature.
The general structure of self-adaptive RTE systems is based
on a MAPE loop which is composed of four basic adaptation
processes: Monitor, Analyze, Plan, and Execute. In this paper,
we define patterns for the monitoring and analyzing processes
through the generalization of relevant existing adaptation ap-
proaches to improve their accessibility to new adaptive systems
developers. To evaluate the work, the proposed patterns are
applied to a relevant existing cross-layer adaptation framework.
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1. INTRODUCTION

The development of self-adaptive embedded systems is a
costly and time-consuming process due to their complexity,
continuously variable environment as well as the lack of
reusable designs and development tools [1, 2, 3]. Therefore,
there is a high demand for alleviating the designer task and
reducing cost and Time To Market by decreasing system
complexity and automating the process management. At this
moment, a question needs to be answered: How to exploit
software engineering approaches to provide solutions that
rapidly transform an ordinary embedded system into a self-
adaptive one?

Many approaches for the development of self-adaptive RTE
systems have been proposed in the literature [4, 3]. They
are based on software engineering approaches, typically the
Model Driven Engineering (MDE) which is well appropriate
to embedded systems and permits to ease their design by
avoiding dealing with technical details. However, there is
still a lack of reusable design that is target independent and
sufficiently generic to fit different systems and fasten the
designer task. To address this problem, we propose to use
design patterns which are effective for design reusability and
quickness [5]. Patterns that are particularly intended for the
embedded systems domain are still under-explored. Existing
solutions are mostly dedicated to desktop and distributed
systems and ignore important constraints of RTE systems,
essentially the real-time constraint.

Our aim is to propose patterns for the development of self-
adaptive RTE systems. These patterns provide a generic
specification that guides experts of the domain to build

their own adaptive systems giving them the freedom to
insert additional information that have not been defined
in the design. The general structure of self-adaptive RTE
systems is based on a MAPE loop which is composed of
four basic adaptation processes: Monitor, Analyze, Plan,
and Execute. In this paper, we propose patterns for the
monitoring and analyzing processes. We survey relevant
research works related to adaptation in order to construct
a unified terminology of adaptive systems that we use
to develop our design patterns. These patterns are to be
integrated in a model-based approach for automatic pattern-
based re-factoring of the system design model to generate
a dynamically adaptive system model. The patterns are
described using Unified Modeling Language (UML) models
that are annotated with the UML/MARTE (Modeling and
Analysis of Real-Time and Embedded Systems) [6] profile
stereotypes. The MARTE profile offers a rich terminology
for the specification and analysis of RTE systems.

The present paper is organized as follows. Section 2 presents
the adaptive embedded systems domain and introduces the
adaptation loop modules. In section 3, we give the descrip-
tion of the proposed patterns. We illustrate the utilization
and effectiveness of the patterns through a case study of
dynamically adaptive RTE system running object tracking
application. Section 5 provides a brief discussion of related
work. To conclude, in Section 6, the suggested patterns are
briefly outlined and future work is given.

II. ApaptaTioN LooP FOR RTE sysTEMS

A self-adaptive system is a system that is able to
change its structure or behavior at run-time in response
to the execution context variations and according to
adaptation engine decisions [7]. The design of adaptive
embedded systems presents many challenges due to the
complexity of the problem it handles. A common basic
challenge is optimizing system non-functional properties
(e.g. maximizing output quality) while meeting internal and
external constraints (e.g. real-time constraint). For example,
a high quality of service may require a high utilization of
system resources, such as CPU cycles and memory space,
and implies high energy consumption. Self-adaptation can
be conceived in different ways depending on various aspects
such as target platform, application domain, adaptation goals,
users’ requirements, system constraints, context changes,
adaptation mechanisms, targeted system layers, adaptation
scope, and many others [8]. However, there is a common
structure of the adaptation mechanism that a self-adaptive



system embodies. It is an adaptation loop referred to as the
MAPE loop [9]. It is composed of sensors, effectors and
four basic modules which are the monitoring, analyzing,
planning or deciding and executing or acting. These entities
are briefly described as follows:

« Sensors collect data about the status of the system and
its environment.

» The monitoring module processes the collected data to
decide about relevant changes and then trigger change
events

« The analyzing process examines the received events to
detect if an adaptation is required. It can also identify
the source of the change. Monitoring and Analyzing pro-
cesses stand for all forms of observation and evaluation
of systems’ execution such as performance monitoring,
safety inspection and constraint verification [7].

« The planning process generates an adaptation decision
which specifies what elements to change and how to
change them in order to best meet system requirements.
Two common approaches are used in the literature
to construct Decision makers: rule-based approaches
and intelligent approaches. The second approach does
not fit the real-time and embedded systems domain
because of its requirements in terms of computing time.
Adaptation actions can be classified in two categories
[10]: Parameter adaptation/tuning and compositional
adaptation mechanisms. The former modifies application
parameters that determine the behavior. The latter
exchanges algorithmic or structural system components
with others to improve the system outcome.

« The executing module applies the decision to the system.
It maps actions to effectors’ interfaces.

« An effector is related to an adaptable system element
and is responsible for applying adaptation actions to it.

Figure 1 illustrates the structure of a loop-based self-adaptive
system. The modules forming this structure are presented as
design patterns in order to permit their reuse, separately, in
other contexts.
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Figure 1. Structure of a loop-based adaptive system

III. PATTERNS DESCRIPTION

As we have already mentioned, in this paper we focus on
the two first processes of the adaptation loop; monitoring
and analyzing. The proposed patterns follow the [11] pattern

template. In this paper, we give details of six fundamental
fields which are the pattern name, problem, intent, context,
motivation and solution. To describe our patterns, we use
standard UML diagrams annotated with the UML/MARTE
profile stereotypes. We explain for each pattern both structural
and behavioral views using the class and sequence diagrams,
respectively. These diagrams are the result of the abstractions
and generalization of many relevant adaptation-related works
[12, 13, 14, 15, 16, 17, 18, 19, 20, 8].

A. RTE Monitor pattern

Name: RTE Monitor

Problem:

The problem treated by this pattern is the detection of
irregular status of an RTE system which results from relevant
variations of internal and external context elements.

Intent:

The RTE Monitor pattern permits the continuous control
of the status of one or more RTE system properties in
order to detect relevant changes and trigger events. It takes
into consideration the system stability issue by minimizing
events trigger through the selection of only important context
variations. It also handles concurrency and real-time features
relative to the control operations.

Context:

This pattern is used in the first step of development of a self-
adaptive RTE system. The designer has to define the system
to adapt and his adaptation requirements by answering the
«what to monitor?» question.

Motivation :

The starting point that triggers adaptation mechanism in an
RTE system is the context variation detection. Therefore,
to be self-adaptive, an RTE system first needs to integrate
a monitoring module that permits to continuously control
and update the status of its execution context. Additionally,
the execution context of an RTE system is very fluctuant
so that context variation detection risks being very frequent.
Therefore, in order to have a stable adaptive system with the
minimum of reconfigurations, a monitoring step is required
to restrict the number of treated changes by approving only
relevant ones.

Solution:

This pattern represents a monitoring process that permits the
observation of status of RTE system context properties.
Structural view:

Figure 2 shows the class diagram that explains the structural
view of the pattern.

Participants:

o ContextElement represents an internal or external prop-
erty of the system which is observed by the Monitor,
such as CPU load, battery life and network bandwidth. It
is a passive unit that carries information about the status
of a system property and is concurrently accessed by the
Sensor and Monitor. It is thus stereotyped «PpUnit». It
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Figure 2. Structural view of the RTE Monitor pattern

specifies its concurrency policy through the concPolicy
attribute (sequential, guarded or concurrent).

« Sensors are responsible for data collection about the
status of Context Elements. A Sensor is associated
with each ContextElement and provides measures of
its status. We classify sensors into two categories: a
hardware sensor, stereotyped «<HW_sensor», represents
a hardware device providing a measure of a physical
quantity and converting it into a signal. A software
sensor is defined by a software task running concurrently
on the system to measure a system property, such as
CPU usage, and notify a Monitor. It is thus stereotyped
«SwSchedulableResource» and «NotificationResource».
A notification resource is a software synchronization
resource used to notify events. To keep events history,
the notified occurrences can be memorized in a buffer
by setting the policy attribute to Memorized.

Since we are in the context of real-time and embedded
systems, two basic issues have to be taken into con-
sideration: the concurrency and the real-time features.
In order to handle these issues, we annotate the active
classes by the HLAM «RtUnit» stereotype[6] indicating
that it is a real time unit. An RtUnit is an autonomous
execution resource that may own one or more schedu-
lable resources and one or several behaviors. It is also
capable of handling different incoming messages at the
same time without worrying about concurrency issues
thanks to its own concurrency and behavior controller.

It owns a message queue permitting to save messages it
receives. Messages can represent operation calls, signal
occurrences or data receptions. A message can be used
to trigger the execution of a behavior owned by the real-
time unit. A sensor is an active class that we annotate
«RtUnit».

« Status stores the measures realized by sensors in order
to keep track of context information history which is
important to determine the trends of context elements
variations [19] and consequently to improve predictions.
Status indicates for each measure the date and time
and the value. This latter is typed NFPValue which has
different attributes that permit to precisely specify NFP
values, such as statistical qualifier, precision and source.

o The Monitor is an «RtUnit» that is associated to
each ContextElement. It examines sensing data using
minimum and maximum values stored in a Threshold
to decide if a significant variation has occurred or a
certain threshold has been exceeded. Threshold may
represent either interval limits indicating a regular status
or allowed variation margins to be used to decide
about the variation relevance. If a variation is relevant,
the Monitor generates a variation event, stereotyped
«NotificationResource».

For the sake of system stability when self-adapting, it is
recommended to define an adaptation period in order to
manage the adaptation mechanism occurrence. Commonly,
this period is equal to a defined number Ne of application
iterations [16]. Every period, the monitoring process starts a
control session and then the adaptation cycle is executed.
Therefore, the operations executed by the sensing and
monitoring processes need to specify their occurrence kind
(such as periodic, aperiodic and sporadic). Moreover, in order
to respect the real-time constraint, these operations have
deadlines that they are asked to meet. In order to model these
real-time properties, we annotate the sensing and monitoring
methods with the «RtFeature» stereotype which has the
occKind, relD1 and absDl (for occurrence kind, relative
deadline and absolute deadline, respectively) attributes. In
order to specify additional attributes for real-time constraints
of these operations, we use the «RtService» stereotype. It
permits to manage the execution priority of a real-time
service by the specification of the execution kind (exeKind
attribute) which can be either deferred, remoteImmediate or
locallmmediate.

Behavioral view:

Figure 3 shows the UML sequence diagram presenting
the execution scenario of the RTE Monitor pattern by
showing the communication between the different objects
forming it. The monitoring process starts by Sensor which
periodically delivers a new measure of the status of the
supervised Context Element then it notifies the Monitor.
The NotifyStatus() method execution kind is locallmmediate
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Figure 3. Behavioral view of the RTE Monitor pattern

in order to be immediately executed by the Sensor. The
Monitor receives the new measure and updates the current
status value of the Context Element. Then it examines the
new status to decide about the relevance of the change. It
can use thresholds to verify whether the measure is in the
interval delimited by min and max values. The negative
case indicates an irregular state causing the Monitor to
generate a variation event and send it to the Adaptation
Controller of the system through its notifyVariation() method
in order to be processed and decided upon. This method
occurrence is aperiodic since its execution depends on the
verification result of the examineStatus() method. However,
when executed, it has the highest priority, thus having its
execution kind set to locallmmediate.

B. RTE Analyzer pattern

Name: RTE Analyzer
Problem: having the status of an RTE system context, the
RTE Analyzer pattern responds to the question «Does an
adaptation need to be applied?»
Intent:
This pattern permits the verification of constraints meeting

of an RTE system and then asks for adaptation if needed.

It contributes to providing a stable adaptive system by
minimizing adaptation requests. It handles concurrency and
real-time features relative to the control operations.
Context:

This pattern is used when designing a self-adaptive RTE
system, specifically when information about changes in
the system context is available and system constraints are
defined.

Motivation:

A change in the execution context does not necessarily affect
the functioning of the system, i.e. violate system constraints,
thus not requiring an adaptation. Therefore, a verification
step is needed in order to avoid useless adaptations.
Solution:

Structural view :

Figure 4 shows the class diagram relative to the structural

view of the RTE Analyzer pattern.
Participants:
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Figure 4. Structural view of the RTE Analyzer pattern

« The Analyzer is responsible for the verification of the
system constraints meeting. It processes a Variation
Event that occurs to the system to decide whether an
adaptation action is required or not. It is thus an active
class stereotyped «RtUnit». It has an analysis method,
verifyConstraints(), which generally executes a con-
straint miss test. The miss-test may require thresholds.
The requireAdaptation() method generates an Adaptation
Request.

« An AdaptationRequest carries request data indicating the
analysis results such as the source of constraint violation.
It has a timeout to be considered when treated.

Behavioral view:

The behavior of the Analyzer pattern is depicted by the
UML sequence diagram in Figure 5. Having variation events
received in its message queue, the Analyzer treats them
in a loop. It asks for event data if the event is still valid,
i.e. its timeout is not achieved. Then it uses the collected
data to verify the system constraints meeting through the
verifyConstraints() method. Since events occurrence is
aperiodic, this method’s occurrence kind is aperiodic too. If
constraints are not met, the analyzer asks for adaptation by
sending an AdaptationRequest to the Adatation Controller
of the system. For more clarity, we can cite an example of
real scenario: when a task entry event occurs in the system,
the Analyzer performs a schedulability test to verify the
real-time constraint meeting. If tasks’ deadlines are not met,
it asks for adaptation by generating an adaptation request
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Figure 5. Behavioral view of the RTE Analyzer pattern

carrying new context data.

IV. EXAMPLE OF PATTERN APPLICATION

This section permits to illusrate the utilization of the
proposed patterns through a case study of a dynamically
adaptive object tracking application proposed in [16]. This
work has been developed at a low level, thus lacking a high
abstraction level modeling step, which is the case of most
state of the art works in the field. Consequently, to apply
our patterns, we start by providing a table of correspondence
between adaptation concepts offered by the patterns and those
considered in the application example in order to evaluate the
generic aspect of the solutions. Then, we present a pattern-
based design to show how to append the patterns to the
self-adaptive system structure. Since this paper focuses only
on the monitoring and analyzing processes, this section is
thus limited to the adaptation features related to these two
modules.

A. Application description

The application presented in [16] consists in a self-adaptive
object tracking application implemented on an FPGA-based
smart-camera. The application is composed of 10 tasks
which can be implemented in HW or in SW. An electric
toy train tracking scenario is proposed to illustrate the
system self-adaptivity. The scenario contains various events
provoking configuration decisions. The goal is to design
an embedded system able to respect a constraint while
optimizing secondary magnitudes. In this case study, the
regulated magnitude is the QoS indicating the tracking
accuracy and the optimized ones are power and execution
time.
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Figure 6. Global structure of the closed-loop self-adaptive system proposed
in [16]

This self-adaptive system is developed based on a cross-
layer adaptation approach for self-adaptive RTE systems
development. Authors propose a hierarchy of local and
global configuration managers (LCM/GCM), as depicted
in Figure 6, to separately deal with application-specific
and application-independent reconfigurations, respectively.
The LCM is responsible for local application algorithmic
reconfigurations. An LCM is defined for each application.
The GCM is responsible for architectural reconfigurations
which consist in tasks migration from software to hardware
on a multiprocessor heterogeneous architecture. Only one
GCM is defined for the whole system.

B. Adaptation concepts correspondence

The adaptation features correspondence is summarized in
Table 1.
The train tracking application considers three context el-
ements, the QoS metric indicating the tracking error, the
execution time and the battery life. It uses three corresponding
sensors and a fourth one providing estimations of the context
behavior. A LCM compares user-defined references with
observed magnitudes values to detect irregular status. It then
asks for correction by sending a preliminary decision of
application’s algorithmic configuration to the GCM. This
latter is the responsible for the global reconfiguration decision,
taking into account the received LCM local decision. A
configuration period Ne is defined to control the periodic
execution of the adaptation mechanism. This scenario is very
similar, in both structure and behavior, to the RTE Monitor
pattern in conjunction with the RTE Analyzer. The LCM
encompasses both monitoring and analyzing modules. The
three magnitudes are the observed context elements whose
measured values, with a set of associated thresholds, form
the input of the LCM. Its output is an adaptation request
sent to the Decision Maker (the GCM) where the request
data is an Algorithmic configuration.
This equivalence study permits to show the important
degree of similarity between the proposed patterns and the
application case study. That proves the efficiency of the
solution in providing a generalized and high abstracted design
permitting to cover most RTE adaptation features design.



Table I
ADAPTATION CONCEPTS CORRESPONDENCE BETWEEN RTE MoNITOR AND RTE ANALYZER PATTERNS AND THE OBJECT TRACKING APPLICATION

Concept

Instance

Context elements

3 magnitudes:
-Application QoS (the tracking error)
-Execution time
-Power consumption

Sensors

4 observers:
-Task T10
-SW timer of RTOS
-Battery gauge component
-Observer estimator

Monitor + Analyzer

Local configuration manager (LCM)

Monitoring Thresholds - irregular status

QoS reference (the tracking maximum error) is
set to 10% and reduced to 2% within the critical
area to guaranty good reactivity.

Task T10 provides the LCM with the application
QoS metric (error between prediction and object
position):

- A value close to 0 but lower than the reference
(10%) means a very high tracking quality —> can
be relaxed by reducing the application speed.

A value higher than the reference —> the
application rate must be increased with a faster
configuration.

Decision maker

Global configuration manager (GCM)

Adaptation request (request Data)

An Algorithmic configuration as a first local
decision sent by the LCM to the GCM mailbox

System stability and avoidance of reconfiguration

Proportional Integrator (PI) regulator
(coefficients: kp = 0,25; ki = 0,25), and least
mean square (LMS) observer (coefficient kL = 22!)

Adaptation period

Configuration period Ne is set to 1, which means
(that a new configuration is evaluated after each
application iteration

C. Patterns application

The general structure of the closed-loop self-adaptive
system is illustrated in Figure 6. It is composed of 4 basic
elements:

« The controlled system S is composed of configuration
managers, a LCM for the tracking application and a
GCM, a set of tasks and sensors observing the controlled
magnitude y(t).

« The control function R is a proportional and integrator
regulator (PI) permitting to handle system stability and
avoidance of reconfiguration.

« The system observer O calculates estimates of controlled
magnitude for the next time slot in order to predict its

evolution to anticipate the right reconfiguration decision.

This model-based estimator permits rapid, accurate and
costless estimation of system behavior that replaces new
sensors’ measures when they are delayed or even not
available.

o The user references u(t) represent values or thresholds
relative to considered magnitudes, that are defined by
the designer to be used by the control mechanism. For
instance, a reference can be a lifetime threshold that will
be compared to a value provided by the battery gauge
component, or an application QoS constraint that will
be compared to the QoS value provided by the LCM

of the application.

The corresponding high-level pattern-based design is depicted
in Figure 7.

D. Discussion

Using the high abstraction level pattern-based modeling
for the development of a RTE system presents advantages
upon the low-level development approach. Instantiating the
patterns for the target system has simplified the design by
hiding internal functional details of system elements and
lowering the system model size. This follows from the fact
that the patterns operate at a high abstraction level to cover
adaptation features considered by the low-level system design.
In addition, the pattern-based design permitted us to promote
modularity and thus flexibility of the design by providing a
modular structure for the LCM component.

V. RELATED WORK

The development of self-adaptive systems has begun
several years ago and proposed approaches and techniques
have evolved with the evolution of technology, system ar-
chitectures, applications, user requirements and environment
constraints. In this section, we limit our review to relevant
research works on adaptation of embedded systems, which are
the most useful for the definition of our adaptation patterns.

Self-adaptation in embedded systems has been well tack-
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led in the literature. Several approaches have been based
on low-level development process integrating adaptation
techniques in the classic System on Chip co-design flow
[16, 15, 14, 13, 12]. Later, the development of adaptive
systems at a low-level has become a tedious task due to
the growing complexity of modern systems and dedicated
applications. Designers have then resorted to high abstraction
level approaches [21, 22, 23, 24], typically based on the
model driven engineering (MDE) methodology [25] with
the UML/MARTE profile which is the most upcoming
standard for embedded systems model-driven development.
This methodology has been proven to be well appropriate to
embedded system design [26]. It eases the modeling of self-
adaptive systems by avoiding dealing with technical details
thus promoting reusability. Details about the previously cited
works may be found in [4].

In addition to the above approaches, several projects [17, 18]
have been realized in the literature to help guide and ease
self-adaptive systems development. Researchers have equally
developed middleware [19, 27, 28], frameworks [20, 29],
languages [30] and tools [31] for this aim. CARISMA
(Context-Aware Reflective mlddleware System for Mobile
Applications) [27] and MADAM (Mobility and Adaptation
Enabling Middleware) [19] offer adaptation middleware to
facilitate the development of mobile applications. CARISMA
exploits the principal of reflection to enable mobile ap-
plication to dynamically adapt to context changes. It also
offers a conflict resolution approach that treats conflicts that
may be incurred by the reflective behavior. The MADAM
project proposes a component-based design of both adaptation
middleware and mobile applications. Each component has a
set of implementations offering the same functional properties
but different non-functional ones. The adaptation middleware
decides of the implementation that best meets user needs. It
is composed of three core components: a context manager
which monitors the change in user requirements and context
elements, an adaptation manager which takes the appropriate
adaptation decisions and a configurator which reconfigures
the mobile application according to the adaptation decisions.
The author of [20] proposed a model based framework that
helps automate the development of self-adaptive embedded
systems. He uses formal methods to specify system features

which are the embedded system, the events that trigger
reconfiguration and the reconfiguration requirements. Author
proposes a process formalization that permits to extend the
original system model to a self-adaptive one based on its
formal specification. The resulting model can be the input
of existing model-based simulator or code generator.

All the previously described approaches are beneficial since
they facilitate and fasten the development of adaptive systems.
However, they present some weaknesses. They are generally
domain specific which limits their applicability for diverse
systems. They are also not sufficiently generic since they
tackle specific adaptation problems, which consequently
compromises their reusability as well as their ability to adapt
to new system requirements and constraints. Additionally,
most of them focus on the software side adaptation while
ignoring the hardware side which is essential in the embedded
systems design.

The development of design patterns is a promising alternative
approach to deal with the above problems. A design pattern
gives a higher abstraction view of a commonly recurring
problem, thus promoting the reusability and extensibility of
the design. Works dealing with pattern-based adaptation are
not numerous. Some were interested in defining the internal
functioning of adaptation modules [5, 32, 33] while others
rather focused on the structure and organization of adaptation
functions. Concerning patterns dedicated to the architecture
of adaptive systems, we cite Weyns et al. [34] who proposed
patterns to decentralize multiple adaptation loops in large
and complex self-adaptive systems. In [35] authors proposed
a dynamic self-adaptation pattern for distributed transaction
management in service-oriented applications (SOA). SOA
coordination patterns are used to deal with the coordination
of distributed transactions. In [36] a taxonomy was proposed
for self-adaptation patterns at both component and ensemble
levels. At the component level, authors describe the basic
components that may compose self-adaptation patterns. At
the ensemble level, mechanisms by which components can
be composed into ensembles are presented.

As for patterns dealing with the internals of the adaptation
functions, Gamaa and colleagues [5] proposed design patterns
to specify the behavior to dynamically reconfiguring four
types of software architectures; master/slave, centralized,
server/client, and decentralized architectures. Schmidt et
al. [32] proposed a set of patterns that can be used for
the development of adaptive middleware. For instance, the
virtual component pattern [37] permits to adapt a distributed
application to embedded systems’ memory constraint. The
component configurator pattern enables an application to
change its components’ implementations at run-time. In
[33] authors proposed a set of patterns aiming at adapting
distributed networked systems in order to satisfy requirements
and constraints that arise at execution-time. Patterns are classi-
fied, according to their purpose, into three principle categories:
monitoring, decision-making and reconfiguration activities.



For example, Sensor Factory pattern is a monitoring pattern
dedicated to component-based distributed infrastructure and
intends to automatically deploy sensors across a network and
probe the distributed components. These patterns are useful
for the development of adaptive systems in different domains.
However, they do not fit the real-time and embedded systems
domain since they do not deal with RTE systems constraints.
Also, they are limited to only addressing the software part of
the system and are most appropriate for distributed systems.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a generic design of self-adaptive
RTE systems based on an adaptation loop composed of
four adaptation processes, monitoring, analyzing, deciding
and acting, accompanied with sensors and effectors. We
detailed the internals of the two first adaptation processes.
We proposed design patterns giving generic solutions for the
monitoring of an RTE system context and the verification
of its constraints meeting to decide about the need of
an adaptation action. Both patterns deal with the system
stability issue by minimizing events trigger through the
selection of only important context variations. In addition,
they handle concurrency and real-time features of adaptation
operations. The proposed solution permits to guide adaptive
systems designers decrease the complexity of their heavy job
and fasten the development of such systems by promoting
reusability of the design.

The proposed patterns were applied to a RTE system running
a self-adaptive object tracking application implemented on
an FPGA-based smart-camera. The case study shows the
effectiveness of using high abstraction level pattern-based
modeling for the development of a RTE system. It promotes
modularity and flexibility of the design by providing a
modular structure.

We plan in future work to complete the modules of the
adaptation loop. Indeed, our goal is to integrate the proposed
patterns in an MDE-based approach for the automatic
generation of self-adaptive RTE systems.
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