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   Abstract. This paper presents a new technique called Empirical Mode 
Decomposition (EMD) applied to filter a stationary and non-stationary signal and 
demonstrates the influence of the number of filtered IMFs on the SNR. The result of 
comparaison with wavelet transforms technique demonstrates the performance of 
the proposed approach. Noisy signal is decomposed adaptively into oscillatory 
components called Intrinsic Mode Functions (IMFs) by means of a process called 
sifting. The EMD denoising involves filtering or thresholding each IMF and 
reconstructs the estimated signal using the processed IMFs. In this paper, we apply 
this approach to denoise the stationary and non-stationary signals to achieve the 
highest SNR as the number of IMFs filtered..We demonstrate how the proposed 
method improves the interpretive information of the signal by com paring it with 
widely used DWT denoising schemes. 

Keywords. Empirical mode decomposition, Signal denoising, SNR, IMF, wavelet 
transform.   

1. Introduction 
Signal filtering and noise reduction are fundamental problems in various applications 

includes medical signal, analysis and speech signal processing [1].  
Generally, the signals are noisy when they were purchased. Filtering or denoising is 

often required to improve the quality of these signals and the power later use. Filtering or 
denoising are often required to improve the quality of these signals and classical linear 
methods such as Wiener filter, the averaging or Gaussian are the most used because of 
their simplicity and ease of implementation [2]. The improvement of this method is 
demonstrated in the case of stationary and non stationary signals. 

In recent years,  firstly wavelet transform technique is applied to analyze the non linear 
and the non stationary signals  then the application of Empirical Mode Decomposition 
(EMD) technique is applied to  analyze nonlinear and non-stationary signals has gained 
importance [3] . 
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The paper is organized as follows. In section 2, the EMD methods used in this paper is 
shortly described. Next in section 3 we describe this method in signal denoising and 
filtering. Further are experiment results on the EMD approach applied in stationary and 
non stationary signal in section 4. Finally, a conclusion is presented in section 5. 

2. Empirical Mode Decomposition 

Empirical mode decomposition proposed by Huang in 1998 deals with nonlinear and 
non-stationary signals [4]. The EMD decomposes a signal into a collection of oscillatory 
modes, Called intrinsic mode functions (IMF), which represent fast to slow oscillations in 
the signal with correspond to high frequency (or detail in wavelet terminology) and low 
frequency (approximation). In IMFs the frequency bands are different to each other, 
depends on frequency in real signal. 

An IMF is defined as a function with equal number of extrema and zero crossings (or at 
most differed by one) with its envelopes, as defined by all the local maxima and minima, 
being symmetric with respect to zero. [5] 

Empirical mode decomposition (EMD) adaptively decomposes a multicomponent 
signal x (t) into M Intrinsic Mode Functions (IMFs). 

  
The sifting procedure to obtain IMFs of the signal x (t) is described as follows [6]. 

1) Identify all the maxima and the minima in the signal x (t). 
2) Generate its upper and lower envelopes using cubic spline interpolation. 
3) Compute the point by point local mean m1 from upper and lower envelopes. 
4) Extract the details, 11 m)t(xh −= . 
5) Check the properties of h1 and iterate k times, then )k(m-1)-(kh(k)h 111 =   
becomes the IMF once it satisfies some stopping criterion. It is designated as first IMF  

(k)hc 11 = . 

6) Repeat steps 1) to 5) on the extracted data 11 c-x(t)(k)r =  . 
7) The step 6) is repeated until all the IMFs and residual is obtained. 

The result of the sifting procedure is that x (t) will be decomposed into  (t)IMFj  ,  

j = 1. . . N and a residual (t)rN  : 
N

x(t) IMF (t) r (t) Njj 1
= +∑

=

  
(1) 

 
The EMD approach can be applied to denoise signals or images as well as wavelet 
technique. 



3. Denoising by EMD 

This approach is based on the reconstruction of filtered signal by filtering all IMFs 
previously pre-treated. The method is seen as a technique for denoising. The idea of EMD 
is to Threshold (as defined by wavelet denoising) each IMF separately [7]. 

Thus, if we consider )t(f j  a non noisy finite length T and its noisy version (t)IMFj  by 
assumed white Gaussian and additive noise, )t(b j  then 

 
j=1,…,NIMF (t) f (t) b (t);  j j j= + (2) 

 
We then define jf

~ (t) an estimate of jf  (t) based on the observation of noisy (t)IMFj . 

The denoising signal (reconstructed) jx~ (t) is given by the relation: 

j=1,…,N
N

x(t) f (t) r (t);  Njj 1
= +∑

=
%%  

 
     (3) 

 

jf
~ (t) is obtained by a hard or soft thresholding of the decomposed IMF.  

3.1. Hard thresholding 

The hard thresholding is an intuitive method to keep only those samples whose 
amplitudes are higher to τj and replacing others with zero [9]. 
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 jτ  is called universal threshold of Donoho described by  equation (5)[9]. 

 2.ln(T)jσ
~

jτ =  (5) 

 
jσ

~  is also called the noise level of the jth IMF and T is the number of samples. 
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(7) 

 
Where MAD is the Median Absolute Deviation and Median { } is the median of the 

variable. 

3.2. Soft  thresholding 

Soft thresholding is less excessive than the hard thresholding and can reduce the noise 
of each IMF. This method of mitigation jτ  decreases the amplitude of all noisy samples 

( (t)IMFj  values) that are above the threshold jτ . The estimate of denoised versions jf
~ (t) 

(t)IMFj is associated calculated as following [8]: 
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(8) 

 
The soft thresholding leads to smoother estimates than those obtained by hard 

thresholding approach [9].  

4. Experimental results 

We applied the approach to the EMD denoising non-stationary signals. The noise used 
is an additive Gaussian noise with gamma 50δ = . 

The EMD approach adaptively decomposes the noisy signal into a set of intrinsic 
mode function (IMFs) and a residual one. The result of decomposition is illustrated in 
figure1. 



To implement the EMD approach, described in paragraph 2, on the noisy non-
stationary signal and find the reconstructed signal, we add all IMFs filtered by the 
equation (3 ). 

 Figure 2 and 3 present respectively an example of stationary and non-stationary signal 
denoised with the EMD approach. 

It was noted that there is no need to filter all IMFs decomposed a noisy signal but  just 
filter the first IMFs, which contains the most noise on this example the first 3 IMFs are 
filtered and gives maximum of the SNR (36 db). So the Figure 4 explains the behavior of 
SNR on the number of IMFs filtered. 

We are compared the EMD denoising approach with DWT technique. The Figure 5 
shows the difference between the EMD denoising approach and the DWT applied on a 
non-stationary signal. 

 The result of the SNR level is 37db for the EMD and 14 for DWT technique 
denoising approach when 3 IMFs are filtered. This shows these values of SNR 
demonstrated that this approach (EMD) applied on non-stationary signals has shown the 
efficiency in SNR criteria compared to other approaches used as the DWT approach, 
especially for the Gaussian  additive noise. 

It was noted that the EMD for non-stationary signal denoising is more effective for 
Gaussian noise than other used filters.  

 
 
 



 
 

Fig. 1. Empirical mode decomposition of a noisy non-stationary signal. 



 
Fig 2. Results of denoising by EMD approach for the stationary signal  

x(t)=cos(7 t)+2 cos(3 t)+0.3 cos(t) 
 

 
 

Fig 3. Results of denoising by EMD approach for the non-stationary signal. 



 
Fig.4. The behavior of SNR as a function of IMFs filtered. 

 
 

 
Fig.5. Comparison of the EMD method with DWT for denoising non-stationary signals. 

 



5. Conclusions 

An efficient technique for signal denoising using Empirical Mode Decomposition 
(EMD) has been proposed. This contribution consists on applying the EMD approach for 
the denoising the non-stationary signals. Original signal is decomposed into successive 
IMFs using empirical mode decomposition. In the next step, Each IMF is filtered 
separately by soft thresholding method. The reconstruction of the signal is performed by 
adding the different filtered IMFs. During implementation of this approach it was noted 
that there is no need to filter all IMFs components of the original signal; just the first ones 
(two or three) are necessary to give a good result. The simulations are performed for 
stationary and non stationary signals. The application of this approach in the denoising 
field gives a better performance compared with Discrete Wavelet technique.  
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