System Level Synthesis Of Dataflow Programs:
HEVC Decoder Case Study

Mariem Abid™*, Khaled Jerbi*, Mickaél Raulet*, Olivier Déforges*, Mohamed Abidf
*IETR, INSA Rennes, CNRS UMR 6164, UEB
20, Av. des Buttes de Coésmes, 35708 Rennes
{mabid, kjerbi, odeforge, mraulet} @insa-rennes.fr
TCES Lab., National Engineering school of Sfax
Route Soukra km 4, 3000 Sfax Tunisia
{mohamed.abid} @enis.rnu.tn

Abstract—While dealing with increasing complexity of signal
processing algorithms, the primary motivation for the devel-
opment of High-Level Synthesis (HLS) tools for the automatic
generation of Register Transfer Level (RTL) description from
high-level description language is the reduction of time-to-market.
However, most existing HLS tools operate at the component level,
thus the entire system is not taken into consideration.

We provide an original technique that raises the level of abstrac-
tion to the system level in order to obtain RTL description from
a dataflow description. First, we design image processing algo-
rithms using an actor oriented language under the Reconfigurable
Video Coding (RVC) standard. Once the design is achieved, we
use a dataflow compilation infrastructure called Open RVC-CAL
Compiler (Orcc) to generate a C-based code. Afterward, a Xilinx
HLS tool called Vivado is used for an automatic generation of
synthesizable hardware implementation.

In this paper, we show that a simulated hardware code generation
of High Efficiency Video Coding (HEVC) under the RVC speci-
fications is rapidly obtained with promising preliminary results.

Keywords—System level, dataflow, RVC, HLS, HEVC

I. INTRODUCTION

Nowadays, the implementation of complex processing ap-
plications including image and video coding applications on
heterogeneous embedded systems, becomes a more and more
challenging subject. Video coding is the process of compress-
ing and decompressing a digital video signal. The main goal
of digital compression is to reduce the data size for storage,
processing or transmission. With the purpose to ensure that
compliant encoders and decoders can successfully inter-work
with each other, it has been necessary to define a number of
key international standards for image and video compression.
Thereby, there exist several notable compression standards
including MPEG-1, MPEG-2, MPEG-4, H.263, H.264-AVC,
High Efficiency Video Coding (HEVC), etc. Knowing that
the past structure of video compression standards is based
on monolithic programming (usually in the form of C/C++
programs) which has many shortcomings and unsuited for
hardware design, efforts have focused on standardizing a

This work is done as part of 4EVER, a French national project with support
from Europe (FEDER), French Ministry of Industry, French Regions of
Brittany, Ile-de-France and Provence-Alpes-Cote-d’ Azur, Competitivity clus-
ters Images & Reseaux (Brittany), Cap Digital (Ile-de-France) and Solutions
Communicantes Securisées (Provence-Alpes-Cote-d’ Azur).

library of video coding components called Reconfigurable
Video Coding (RVC) [1]. The RVC framework is based on the
usage of a new actor/dataflow oriented language called CAL
Actor Language (CAL) [2] that presents several advantages
versus the classical imperative sequential languages.

In this context, several issues could be raised namely why
dataflow programs result in a more efficient hardware imple-
mentation compared with the manual Hardware Description
Language (HDL) code, and how to translate the dataflow
programs into Register Transfer Level (RTL) descriptions suit-
able for implementation in programmable hardware. Several
works have sought to address these issues, for the sake of
reducing the complexity and time-to-market, and obtaining
performance/cost efficient implementation. The goal is, there-
fore, to design video codec on higher abstraction level under
the RVC framework and use High-Level Synthesis (HLS) [3]
tools to automatically generate RTL code that targets different
platforms (e.g., general purposes PCs, embedded systems,
Field-Programmable Gate Array (FPGA), etc.).

The main contributions of this paper are in one hand a new
system-level approach for generating hardware description
from dataflow programs and on the other hand a new C back-
end for the CAL synthesizable by the newly Xilinx Vivado
HLS tool that is compliant with the design flow.

The reminder of this paper is organized as follows: Section II
outlines some basic properties of the dataflow programming,
the Moving Picture Expert Group (MPEG)-RVC standard
framework and its reference programming language, and sum-
marizes the existing HDL code generation approaches from
dataflow representations. Section III examines our proposed
methodology. Section IV gives insights on experimental results
by means of two different design cases. Finally, Section V
presents some final conclusions and directions for future work.

II. BACKGROUND AND RELATED WORK

In this section, we provide a brief review of the main con-
cepts required to establish the foundation needed to understand
the work presented in this paper.

A. Dataflow Programming Paradigm

In contrast to the traditional sequential programming
paradigm, dataflow approach is a programming paradigm that
models a program as a directed graph in which the nodes
correspond to computational units and the edges represent the

direction of the data flowing among nodes. On one hand, each
computational unit’s functional behavior is autonomous and
independent of other computational units, thus achieving mod-
ularity, reusability and reconfigurability and easing parallelism
exploitation. In the other hand, the communication semantics
of the data channels and processing behavior of Functional
Units (FUs) are defined by a Model of Computations (MoC)
such as Kahn Process Network (KPN) [4], Synchronous
Dataflow (SDF) [5] and Dataflow Process Network (DPN) [6].
We briefly review DPN as it forms the basis of the MoC
used by the CAL, which is a super-set of the RVC-CAL
standardized as part of the RVC framework. Derived from
KPN, DPN models the data channels of the dataflow network
as unidirectional unbounded First In, First Out data queues
(FIFO) that have non-blocking read semantics, and the nodes
as actors with a dynamic behavior. An actor is described as
a set of firing rules that indicate under which conditions an
actor may fire.

B. The RVC framework

Based on the dataflow programming paradigm, the MPEG
standardized the RVC framework. MPEG RVC is a new
specification formalism for describing video codecs in a way
that it promotes flexibility and reuse. The principle of MPEG
RVC consists of describing the functional and Input/output
(I/0) behavior of FUs in RVC-CAL. Connections between
FUs are then described by an eXtensible Markup Language
(XML) Dataflow Format (XDF) to form FUs network. The
FUs and the FUs network are instantiated to form an abstract
model. RVC standard is specified in two parts namely MPEG-
B part 4 that specifies the dataflow framework, and the MPEG-
C part 4 that defines a Video Tool Library (VTL). In order
to support the RVC dataflow framework, MPEG-B part 4
specifies dataflow programming language called RVC-CAL for
describing FUs in a target agnostic way. In RVC-CAL, with
respect to DPN semantics, FUs are implemented as actors.
Each actor contains states variables, atomic actions, parameters
and input and output ports that consume and produce tokens,
respectively. Listing 1 gives an overview of the structure of an
actor written in RVC-CAL as described below.

Listing 1: The general structure of an actor written in RVC-
CAL.

actor FUName (<DataType> FUParaml, <DataType> FUParam2...)
DataType> InputPortl, <DataType> InputPort2, .
<DataType> OutputPortl, <DataType> OutputPort2, ... :
// State variables.

<DataType> StateVarl;

DataType> StateVar2;

// Actions.

Actionl:

action InputPortl:[a], ... ==> OutputPortl:[a]

guard <conditions

do

<Statements>

end

Action2:

action InputPort2:[a],
guard <conditions>
do

Statements>

- OutputPort2:[a], ...

end
// FSM schedule to control the action-selection.
schedule fsm initialState:

initialState (Actionl) state2;

state2 (Action2) ——> state3;

end

// Priority block to prioritize actions.
Priority

{

Actionl > Action2 > ...;

}

end

When an actor fires, an action is selected according to input
token availability (i.e. the number of tokens necessary for its
execution), guard conditions (as additional conditions on token
values) or state variables, Finite-State Machine (FSM) and
priorities. This action firing may change the state of the actor.
Moreover, each actor interacts with each other by reading and
writing tokens from and to FIFO as illustrated in Figure 1.

Actions

Fig. 1: A CAL network.

C. Hardware code generation from dataflow programs

The design complexity and long verification processes
create a bottleneck for image and video processing applica-
tions. In order to decrease the time-to-market, many solutions
were developed by raising the level of abstraction to the
Electronic System Level (ESL) [7]. In Figure 2 the most
common abstraction levels that are used for digital integrated
circuits can be seen.

component

system

Fig. 2: The different abstraction levels.

The highest abstraction level is the system level, at which
design is done taking the entire system into consideration
as well, not just individual components. In other words, the
interactions amongst components at an increased abstraction
level are examined. Next, at the component level an algorith-
mic description in a high-level language is synthesized down
to an RTL description. This step is commonly referred to as
HLS. In the following, we examine different code generation
tools available for hardware implementation whether at the
component level or the system level.

1) HLS tools: At the component level, there exist several
tools to perform the HLS automatically. Generally speaking,
C is one possible high-level language. Here, HLS takes as an
input a model written in C, C++, or SystemC, and as an output
it generates a corresponding RTL representation in a HDL
such as VHSIC Hardware Description Language (VHDL) or
Verilog. In this case, we discuss C-to-Gate HLS tools such as
Catapult C, C2H, Synphony, GAUT, etc. However, the goal of
translating real-word applications written in a language such

as C into efficient hardware implementations, provides strong
limitations since it doesn’t take into consideration the whole
system, thus it is not always efficient on an entire multi-
component system description.

2) System level design: There exist also several solutions
that tried to generate hardware at the system level like those
starting from dataflow programs. The question arises to why
dataflow programs are chosen. The efficiency of hardware
generation from dataflow language (CAL) for specifying signal
processing systems such as MPEG compression technology
and the advantages of such approach versus the state of the
art approaches were established in [8], [9]. Currently, two tools
support the code generation of RVC applications towards HDL
as summarized in Figure 3.

HDL
——| Orec [— XLIM ——
Xronos
IR

RVC-CAL

—— HDL

OpenForge

[OpenDE] — v — [EATERBE] — HoL

Fig. 3: RVC-CAL development tools for hardware generation.

The Open RVC-CAL Compiler (Orcc) Orcc [10] is an
open-source framework to compiling network of actors and
generating code for software targets (C, C++, Java, etc) as
well as hardware targets (VHDL) [11]. In the front-end of
Orcc, a graph network and its associated CAL actors are parsed
into an Abstract Syntax Tree (AST) and then transformed into
an Intermediate Representation (IR) that undergoes typing,
semantic checks and several transformations in the middle-
end and in the back-end. Pretty printing is applied on end on
the resulting IR to generate a chosen implementation language.
The limitation of the VHDL code generation is the fact that it
is not mature enough to handle with all RVC-CAL structures
and features.

The Open DataFlow Environment (OpenDF) OpenDF [12]
is a compilation framework, its particularity is to incorporate
a generator of IR in XML Language-Independent Model
(XLIM) from dataflow programs (i.e. CAL to XLIM). OpenDF
includes also a back-end for transforming XLIM representation
to Verilog and HDL representation for hardware platforms
(OpenForge) [8]. Often in RVC-CAL literature this tool is
known as CAL2HDL. However, XLIM OpenDF code gen-
eration does not support all the RVC-CAL subsets, thus the
choice of creating an Orcc XLIM back-end [13], [14]. Another
alternative is under development, which is the Xronos I tool
that takes as input an Orcc IR. Indeed, Xronos is an improved
version of OpenForge that take into consideration the FIFO
management.

For the purposes of this paper, system level design is going to
refer primarily to the employed level of abstraction.

III. PROPOSED METHOD

This paper provides two main contributions concerning the
automatic generation of hardware implementations from RVC-
CAL descriptions. The first one deals with a C back-end of

Uhttps://github.com/orcc/xronos

Orcc synthesizable by Vivado HLS tool, qualified ”c-HLS” in
the rest of this paper. The second main contribution consists
in defining the system level design. Vivado HLS ? is a Xilinx
tool that transforms a C based description into a corresponding
RTL representation in a HDL such as VHDL or Verilog. It
turns out that Vivado HLS has a significant advantage since
it speed up productivity for the 7 series devices and many
generations of FPGAs to come. In the following, we detail the
code generation specifications of c-HLS while respecting the
DPN MoC, in order to keep the same actor behavior in the
hardware description. Then, we provide the methodology used
in order to establish the system level by accurately connecting
the hardware generated components by Vivado HLS with the
corresponding hardware FIFO components.

A. c-HLS back-end

The idea is to combine Orcc and Vivado HLS tool to obtain
a full conception flow from RVC-CAL to HDL as summarized
in Figure 4.

[RVC-CAL | —[Owec|— c-HLS — — HDL

Fig. 4: Integration of Vivado HLS in the design flow.

The first characteristic of the c-HLS back-end of Orcc is the
fact that it does not contain constructs which are not synthe-
sizable such as dynamic memory allocation and pointers since
RVC-CAL descriptions don’t already support such constructs.
Moreover, the c-HLS back-end respects the DPN MoC in that
it provides FIFO management explained in the following.

1) Actor firing translation: In order to model the FIFO
structure in the c-HLS back-end, we use a C++ template
class, hls::stream< >, provided by Vivado HLS. However, the
stream is a typical FIFO that returns only two information
about its state: full or empty. Since the information about the
number of tokens in the FIFO and the value of these tokens
is not accessible, which proves crucial for actor firing rules as
mentioned in section II-B, the solution was to create an internal
circular buffer for each input port where tokens can be pulled
and checked. For this issue, a similar transformation of RVC-
CAL actors has already been developed in a previous work
[15] and detailed subsequently based on a simple example. The
Listing 2 is an ”add” actor which consumes one token from
its input port A and one token from its input port B unless its
token value equals zero, computes the sum and produces the
result in port C.

Listing 2: add actor example.

actor addition() int A, int B int C:
action A:[a] , B:[b] ==> C:[atb]
guard B = 0
end
end

Formally, an actor is defined with a pair < f, R > such as:

. f S™ — S™ where f is a firing function that
consumes sequences of tokens on m input ports and

Zhttp://www.xilinx.com/products/design-tools/vivado/integration/esl-
design/index.htm

produces sequences of tokens on n output ports and
S is the set of all possible sequences,

e The actor can have N firing rules R = [Ry, .., Rn],

e The actor can fire if and only if one or more of
the firing rules is satisfied, where each firing rule
constitutes a set of patterns, one for each of m inputs,
R; ={Ri1,..,Rim},

e The symbol ”*” will denote a token wildcard.

Th “add” actor has only one firing rule, Ry = {Ry1, R12}

where,
{Rl’l . (1)
Ry =[x=0,%]

meaning that each of the two inputs A and B must have at
least one token, with a further condition on B. Indeed, the
transformation creates for each input port an internal circular
buffer A_buf fer and B_buf fer managed by read and write
indexes readIndex_A, writeIndex_A and readlndex_B,
writeIndex_B respectively. An action is created just to read
data from the FIFO and put it in the internal circular buffers
while increment the read indexes. Later consuming the data
from the buffers increments the write indexes. Consequently,
the difference between the read and the write indexes repre-
sents the number of available tokens in each buffer and all
the firing rules of the actions are related to this difference. An
example of an internal buffer is shown in Figure 5.

Tk Tk+2 s .
i

Idx=0 writeIndex = k readIndex =k+3 Idx = size -1

Fig. 5: Example of an internal buffer.

Using this methodology, the firing rule of equation 1 is
transformed to the rule of equation 2:

Ry 1 = [readindex_A — writeIndex_A >=1]

Ry 2 = [B_buf fer[writeIndex_B] =0,)
readIndex_B — writeIndex_B >= 1]

2) Scheduling translation: In order to have a correct hard-
ware implementation it was imperative to update the actor
scheduler to the Vivado HLS streams. Indeed, hardware FIFO
are not unbounded. So while executing the actions that write
tokens from internal circular buffers in the streams and the
actions that pull tokens from the FIFO, respectively, it was
necessary to ensure that the stream is not full, and not empty,
respectively. As presented in Listing 3 that contains the c-HLS
of the ”add” actor, the add scheduler is updated to check the
streams (not full or not empty) before the writing or reading
data.

Listing 3: The c-HLS of the add actor.

#include <hls_stream .h>
using namespace hls;

typedef int i32;

extern stream<i32> stream_A;
extern stream<i32> stream_B;

extern stream<i32> stream_C;
static 132 B_buffer[1];
static 132 readIndex_B = O0;
static 132 writelndex_B = 0;
static void read() {

stream_A .read(a);
stream_B .read(b);

bool read_isSchedulable (){
return true;

}

static void add() {
stream_C . write(a + b);

static bool add_isSchedulable () {
bool result;
b = B_buffer[0 + writelndex_B & O0];
result = b == 0;
return result;

void add_scheduler () {
state_read :
if (read_isSchedulable ()){

if (!stream_A.empty()&&!stream_B .empty ()){

read ();
goto state_add;

}
telse{

goto state_read;
state_add:
if (add_isSchedulable)&&!stream_C. full ()){
add ();
goto state_read;
telse{

goto state_add;

}
}

This code is composed of three main parts:

e streams and associated buffers and indexes declara-
tions,

e actions called as functions followed by a Boolean
function that returns the guard condition,

e global scheduler that checks the Boolean functions
before firing the corresponding action. If there is an
FSM, the scheduler manages the current and next state
depending on which action is executed.

B. System level elaboration

In order to elaborate the system level, we take advantage
from the fact that (1) Vivado HLS tool works well in generating
hardware implementation from a unique actor and (2) the
dataflow networks in RVC are described using XML derived
languages as explained in Section II-B that can be parsed to
extract actor connections information. In addition, while the
streams are declared and used as externals making able the
hardware component to communicate with the FIFO, the FIFO
needs to be physically generated. For this issue, we modified

and used a generic FIFO component defined in the literature
of Vivado HLS. The bit width of the FIFO is put as generic to
match the bit width of the input and output data of the source
and target actors and a “Top” VHDL file is automatically
created to map the different signals of the components with
the signals of the FIFO as illustrated in Figure 6.

Fig. 6: Connections between the hardware FIFO and the
generated actor as in the Top VHDL.

Thus, the system level is obtained and the different actors can
fire in a parallel way. For a synchronous behavior, all clocks
and reset signals are connected to those of the "Top” entity.
For the validation of the generated design, we developed an
automatic generation of test-benches for all granularity levels
of the network which means that a test-bench is created for
each actor, each network and each sub-network. This approach
revealed to be very important to accelerate debugging and as-
sessing the hardware generated implementation at component
and system levels.

IV. RESULTS

The purpose of this section is to show the performances
of our proposed method for the automatic translation from
dataflow programs to HDL by means of two design cases.
The first is the MPEG-4 Simple Profile (SP) decoder, while
the second is the HEVC intra-decoder. In the following we
present an overview of these decoders’ architecture and ba-
sic actors and, subsequently, the implementation results. The
results presented are obtained using common simulators and
synthesizers.

A. First case study: MPEG-4 SP

Figure 7 shows the MPEG-4 Part 2 SP decoder which has
been described via a dataflow model using CAL and where the
color space components Y, U, and V are decoded separately.

Texture decoding H
Texture decoding +—>

Texture decoding H Motion Compensation

Motion Compensation

Bitstream
*’(Parser £—>

Motion Compensation

Merger Decoded
data

Fig. 7: MPEG-4 SP architecture.

The simulation results of the hardware implementation of
the MPEG-4 SP decoder generated with the Vivado HLS
tool are compared to those obtained with the Xronos tool.
The simulated performance values are given in Table I for a
stimulus frequency of 50 MHZ. Here, a Motion-MPEG stream
consists of five QCIF images (176 x 144 pixels) has been used
to obtain latency and throughput values.

TABLE I: MPEG-4 SP timing results.

Xronos Vivado HLS
Latency (ms) 0,258 0,158
Throughput (FPS) 232 125

After the simulation of the design, the HDL generated
code was implemented on a Xilinx Virtex 4 platform
(XC4VLX160). The area consumption results obtained are
presented in Table II.

TABLE II: MPEG-4 SP area consumption (Virtex 4).

Xronos Vivado HLS
Slices 28823/67584(42%) 142302/67584(210%)
4 input LUTs 51898/135168(38%) 194583/135168(143%)
FIFO16/RAMB16s 223/288(77%) 150/288(52%)

Considering the comparison in Tables I and II, the Xronos de-
sign is found to be more efficient in terms of area consumption.
This could be explained by the fact that the Xronos tool is a
CAL dedicated tool. Despite the fact it uses more slices, the
vivado HLS tool turns out to be a general tool adapted to any
c-based descriptions. However, results presented on Table III
highlights a profit in terms of area consumption for the design
with the Vivado HLS tool on a recent Xilinx Virtex 7 platform
(XC7V2000T).

TABLE III: MPEG-4 SP area consumption (Virtex 7).

Vivado HLS
Number of Slice Registers 135503/2443200(5%)
Number of Slice LUTSs 129403/1221600(10%)
Number of Block RAM/FIFO 75/1292(5%)

Nevertheless, concerning the time performances the proposed
method reveal to be more efficient in terms of latency.

B. Second case study: HEVC

HEVC is currently being prepared as the newest video
coding standard of the IUT-T Video Coding Experts Group and
the ISO/IEC MPEG. The main goal of the HEVC standard-
ization effort is to enable significantly improved compression
performance relative to existing standards. Figure 8 gives an
overview of the HEVC intra-decoder.

e The first part is the parser, an actor that extracts the
different syntax elements of the different decoding
stages from a bitstream.

e The IntraPrediction actor predicts the image blocks
using neighbor blocks’ values and a prediction mode
information provided by the parser.

e The xIT actor is the integer transform that decodes the
residual coefficients.

e The selectCU and LCU_reord are actors that reconsti-
tute the image using the prediction mode information.

In the main design, there also the inter decoder part, the SAO
and the deblocking filters, which would be dealt with in future

Algo_Parser
byte TUSize
Coeff

PartMode

SelectCU

Sample

Cllnfo CUlnfo
PictSize 4 IntraPrediction L e
PicSizelnMb Sample PredSample
DispCoord PartMode
SliceAddr PictSize

StronglntraSmecthing \ CUinfo
SplitTransform \ SliceAddr A

IntraSample

ResidualSample

LCU_reord
IntraPredMade \ g bt outhing Block_in Black_out
\ SplitTransform PictSize

IntraPredMede

Fig. 8: HEVC intra-decoder architecture.

works.
Simulation results of our proposed method are shown in Table
IV for a stimulus frequency of 20 MHZ. We use a sequence of
240p resolution under the Quantization Parameter (QP) value
of 22.

TABLE IV: HEVC timing results.

Vivado HLS
Latency 6,68
Throughput (FPS) 6

The high latency of the HEVC intra-decoder was expected
since the intra-prediction and the SelectCU actors store a big
amount of tokens before starting the processes. The throughput
frequency of 6 FPS can be far improved because there are
several directives in the literature of Vivado HLS that will be
exploited in the future work. We notice that this is a pioneer
simulated hardware code generation of HEVC intra-decoder
and the obtained results can be considered a starting point.

V. CONCLUSION AND PERSPECTIVES

This paper presents a new method which allows the imple-
mentation of a system operating at the highest level of abstrac-
tion compared to current approaches. It enables an automatic
translation of dataflow programs written in actor/dataflow ori-
ented language called CAL under the RVC standard into RTL
descriptions. Such language has been specifically designed
for modeling complex signal processing systems. Moreover,
a development tool called Vivado HLS tool from Xilinx is
used to convert C-based algorithms to hardware blocks. The
functionality of the Vivado HLS tool was enhanced so it
supports the entire system. The methodology used to adapt
such tool to the constraints of RVC mainly the FIFO manage-
ment was explained. Although our proposed method compared
to existing approach seems to be less efficient in terms of
area consumption, we effectively achieved a pioneer simulated
hardware code generation of the most recent standard HEVC
via our proposed design flow.

In future work, our goal is to improve performance and
area using directives offered in the Vivado HLS tool such
as binding the tool for more efficient generation, applying
ping-pong buffers management and pipelining and paralleling
functions. Moreover, in this work we used the streams to insure
the communication between components, but it is possible to

use directly Random Access Memory (RAM). In this case,
a RAM would be accessible to spy tokens, thus there would
be no need to create internal buffers. This perspective would
have a very important impact on both the area and timing
performances.

ACKNOWLEDGMENT

We would like to express our distinguished thanks to Hervé
Yviquel for his contribution in C-HLS code to be compatible
with the Vivado HLS tool. The authors are also particularly
grateful to Gildas Cocherel for his important advises in the
VHDL test-benches and streams communication.

REFERENCES

[1]1 S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mattavelli,
and M. Raulet, “Overview of the MPEG Reconfigurable Video Coding
Framework,” Journal of Signal Processing Systems, vol. 63, no. 2, pp.
251-263, May 2011.

[2] J. Eker and J. W. Janneck, “Cal language report specification of the cal
actor language,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/ERL M03/48, 2003.

[3] P. Coussy and A. Morawiec, High-Level Synthesis From Algorithm to
Digital Circuit. Springer Publishing Company, 2008.

[4] G. Kahn, “The semantics of a simple language for parallel program-
ming,” Information processing, vol. 74, pp. 471-475, 1974.

[5] E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow,” in
Proceedings of the IEEE, vol. 75, no. 9, Sep. 1987, pp. 1235-1245.

[6] E. A. Lee and T. Parks, “Dataflow process networks,” in Proceedings
of the IEEE, 1995, pp. 773-799.

[71 G. Martin, B. Bailey, and A. Piziali, ESL Design and Verification:
A Prescription for Electronic System Level Methodology. — Morgan
Kaufmann Publishers Inc. San Francisco, CA, USA, 2007.

[8] J. W. Janneck, I. D. Miller, D. B. Parlour, G. Roquier, M. Wipliez, and
M. Raulet, “Synthesizing hardware from dataflow programs: An MPEG-
4 simple profile decoder case study,” in Signal Processing Systems,
2008. SiPS 2008. IEEE Workshop on, Washington, Etats-Unis, 2008,
pp. 287 — 292.

[9] T. Richard, R. Mosqueron, J. Dubois, and M. Mattavelli, “Generation
of Hardware/Software systems based on CAL dataflow description,”
lgorithm-Architecture Matching for Signal and Image Processing, Lec-
tures Notes in Electrical Engineering, vol. 73, no. 3, pp. 275-292, Jan.
2011.

[10] M. Wipliez, “Infrastructure de compilation pour des programmes flux
de données,” Ph.D. dissertation, INSA de Rennes, Dec. 2010.

[11] N. Siret, M. Wipliez, J. F. Nezan, and A. Rhatay, “Hardware code
generation from dataflow programs,” in Design and Architectures for
Signal and Image Processing (DASIP), 2010 Conference on, Royaume-
Uni, 2010, pp. 113 -120.

[12] S. S. Bhattacharyya, G. Brebner, J. W. Janneck, J. Eker, C. Von Platen,
M. Mattavelli, and M. Raulet, “OpenDF — A Dataflow Toolset for
Reconfigurable Hardware and Multicore Systems,” in First Swedish
Workshop on Multi-Core Computing, Ronneby, Suede, 2008, p. CD.

[13] E. Bezati, H. Yviquel, M. Raulet, and M. Mattavelli, “A unified
hardware/software co-synthesis solution for signal processing systems,”
in Design and Architectures for Signal and Image Processing (DASIP),
2011 Conference on, France, 2011, pp. 1 —6.

[14] E. Bezati, R. Thavot, G. Roquier, and M. Mattavelli, “High-level
dataflow design of signal processing systems for reconfigurable and
multicore heterogeneous platforms,” Journal of Real-Time Image Pro-
cessing, pp. 1-12, 2013.

[15] K. Jerbi, M. Raulet, O. Déforges, and M. Abid, “Automatic Generation
Of Optimized And Synthesizable Hardware Implementation From High-
Level Dataflow Programs,” VLSI Design, vol. 2012, p. Article ID
298396, 2012.

