
Towards a User Interface Generation Approach Based on
Object Oriented Design and Task Model

Adel Mahfoudhi
Department of Computer Science, Science Faculty

of Sfax
Rte Soukra km 3,5 BP : 802

 3018 Sfax (TUNISIA)
adel.mahfoudhi@fss.rnu.tn

Mohamed Abid

National Engineering School of Sfax
Rte Soukra 3018 Sfax (TUNISIA)

mohamed. abid@enis.rnu.tn

Mourad Abed
Christophe KOLSKI

LAMIH (UMR CNRS 8530)
 Université of Valenciennes

BP : 311 – 59304 Valenciennes cedex9
 (France)

mourad.abed @univ-valenciennes.fr
Christophe.Kolski@univ-valenciennes.fr

ABSTRACT
This paper presents an approach to generate the user
interface from the task model. Our works are situated in the
course of approaches based on models. This approach
called TOOD (Task Object Oriented Design) is based on a
formal notation, which gives quantitative results which may
be checked by designers and which provide the possibility
of performing mathematical verifications on the models.
The modelling formalism is based on the joint use of the
object approach and high level Petri nets. The TOOD
method integrates different models (task model, user
model, local model of the interface, abstract model of the
interface, model of the implementation) and their relations.
An example, extracted from the air traffic control, is
presented to illustrate TOOD methodology.
Keywords
Task Model, User Interface Specification, Formal Method,
Object Approach, Petri Nets.
INTRODUCTION
Several research projects have been dedicated to the
modelling of user tasks in the field of interactive system
design (see, for example, the work concentrating on the
following methods: MAD [18], DIANE [1], GOMS [3]).
However, their actual use is far from being a widespread
practice. One of the possible reasons for this is that they do
not use truly formal methods, which make it possible to
provide the task models with conciseness, coherence and
non-ambiguity [14]. What is more, these projects suffer not
only from their lack of integration into a global design
process covering the entire life cycle of the User Interface
(UI) but also from the lack of modelling support software.

In order to overcome these problems, current research
projects are oriented towards a methodological framework
which covers all stages from the first activity analysis stage
up to the stage of the detailed specification of the UI: The
methods MAD* [6], DIANE+ [21], GLADIS++ [22],
ADEPT [8] and TRIDENT [24] go in this direction. These
design methodologies are based on several models (task
model, user model, interface model) and are aided by tools
for the implementation of these models.
Our research work falls into this category, but we
emphasise the formal aspects of model representation and
their transformation throughout the stages of the design
process. The TOOD method is based on the representation
that the user has of the task, apart from the considerations
of computer processing. Like the UML/PNO method [4],
HOOD/PNO [16] , [4], [7], [17] and ICO [15], the TOOD
method uses the object approach and the object Petri nets to
describe, on the one hand, the functional aspects and the
dynamics of the user tasks, and on the other hand the
behavioural aspects of the HCI and of the user in order to
specify how the tasks are performed. Its formalism aims at
covering the entire development cycle from the analysis of
what exists, up to the detailed design and implementation.
TOOD AND THE CYCLE OF DEVELOPMENT OF USER
INTERFACE
The TOOD design process can be divided into four major
stages [11], [20] (Figure 1).
• The analysis of the existing system and of the need is

based on its user’s activity and it forms the entry point
and the basis for any new designs.

• The Structural Task Model (STM) is concerned with the
description of the user tasks of the system. It makes it
possible to describe the user task in a coherent and
complete way.

• The Operational Model (OM) makes it possible to specify
the UI objects in a Local Interface Model (LIM), as well
as the user procedures in a User Model (UM) of the

system to be designed. It uses the needs and the
characteristics of the structural task model in order to
result in an Abstract Interface Model (AIM) which is
compatible with the user’s objectives and procedures.

• The realisation of the UI is concerned with the computer
implementation of the specifications resulting from the
previous stage, supported by the multi-agent software
architecture defined in the Interface Implementation
Model (IIM). Analysis of the existing system

To know what the operator is presumed to do using the new
system, we must know what is achieved in real work
situations (the activity analysis) using an existing version of
the system or a similar system.
STRUCTURAL TASK MODEL (STM)
After the stage of the existing system analysis and its user's
activity, the structural task model (STM) makes it possible
to establish a coherent and complete description of tasks to
be achieved on the future system, while avoiding the
inconveniences of the existing system and adding the new
required functions and features. For that, two types of
model are elaborated: a static model (SSTM) and a
dynamic model (SDTM).
The construction of the structural model is composed of
four iterative stages:
• Hierarchical decomposition of tasks.
• Identification of objects and their components.
• Definition of the dynamics of the elementary tasks.
• Integration of the task competition
Static Structural Task Model (SSTM)
The structural model enables the breakdown of the user’s
stipulated work with the interactive system into significant
elements, called tasks. Each task is considered as being an
autonomous entity corresponding to a goal or to a sub-goal,
which can be situated at various hierarchical levels. This

goal remains unchanged in the various work situations. In
order to perfect this definition, TOOD formalises the
concept of tasks using an object representation model, in
which the task can be seen as an Object, an instance of the
Task Class. This representation, consequently, attempts to
model the task class by a generic structure of coherent and
robust data, making it possible to describe and organise the
information necessary for the identification and
performance of each task.
Two types of document (graphical and textual), as shown in
Figure 2, define each task class.
The task class is studied as an entity using four
components: the Input Interface, the Output Interface, the
Resources and the Body. We also associate a certain
number of identifiers to these describers, which makes it
possible to distinguish the Task Class amongst the others:
Name, Goal, Index, Type and Hierarchy. This parallel with
software engineering guarantees a strong link between a
user-centred specification based on ergonomic models and
the software design based on the object model. There are
defined as follows:
A name, action verb followed by a complement (object
treated by the task), reflecting the treatment to be
performed by the task. It is preferable for the name to
include vocabulary used by the users in order to respect the
terminology during the development of the interface.
A goal, explanation in natural language of the goal which
the user or application wishes to reach via the task.
An index, formal identifier of the task formed using the
number of the master task, to which the sequential number
corresponding to the said task is added.
A type, nature of the task; this designates its category:
human, automatic or interactive.
A hierarchy, number of task classes composing it;
represented by a series of small squares.

 Requirements
Document

Specification

Global Design

Detail Design

Task Analysis

Implementation

Extant and Requirements
 Analysis

Structural
Task
Model
(STM)

Dynamic Model
DSTM

Instance Generic ModelStatic Model
SSTM

Operational
Model
(OM)

Local Interface
Model
LIM

User Model
UM

Aggregation

Abstract
Interface

Model
AIM

H C I Implementation

Realisation
of the HCI

Implementation
Interface Model

IIM

Figure 1. TOOD and the development cycle for the interface

Name : T111 : -----
Description : -----
Decomposed from : T11 :

 into :
- T1111 : ------
- T1112 : ------
- T1113 : ------

Triggers :
- E111-1 : -----

Controls :
- C111-1 : -----
- C111-2 : ----

Input :
- I111-1 : -----
- I111-2 : -----

Output:
- O111-1 : -----
- O111-2 : -----

Reactions :
- R111-1 :-----

Resources :
- M-1 : -----
- M-3 : -----

c

Tx

Trigger

Controls

Input
Data

Output
Data

Reactions

E

C

I

Task-Object name

 Body

M

Resources

1
2
3

1
4
2
4
3 O

ut
pu

t
In

te
rf

ac
e

In
pu

t
In

te
rf

ac
e

R

O

Figure 2. Generic structure of the class-task

Table 1. Input and Output Interface components

The body : central unit of the task class. For intermediate
or hierarchical tasks, it gives the task procedure diagram,
that is to say the logical and temporal relations of the sub-
tasks. These relations reflect, in a certain way, the user’s
work organisation.
• Resources, human users and/or interactive system entities

involved in the performance of the task
The input interface specifies the initial state of the task. It
defines the necessary data to the task execution. These data
are considered as the initial conditions to be satisfied at the
beginning of the task. It is composed of three categories of
information (table 1).
The output interface specifies the final state of the task. It is
composed of two types of data (table 1).
The resources and the information of the input and output
interfaces are modeled by objects, called “describer
objects”, instances of describer classes (Figure 2).
Once all future system tasks are identified, the second stage
of TOOD concerns the specification which defines all the
execution conditions and the effects of each task-object. It
consists in listing and identifying all the descriptors or
attributes. The resulting document of this specification
includes two kinds of descriptions: a graphic description
and a textual one (figure 3).
Dynamic Structural Task Model (DSTM)
The Dynamic Structural Task Model (DSTM) aims at
integrating the temporal dimension (sequencing,
synchronisation, concurrency, and interruption) by
completing the static model. The dynamic behaviour of
tasks is defined by a control structure, called TCS (Task
Control Structure), based on an Object Petri Net (OPN). It
is merely the transformation of the static structure. This
TCS describes the input interface’s describer objects, the
task activity, and the release of describer objects from the
output interface as well as the resource occupation.

Each TCS has an input transition t1 and an output transition
t2 made up of a selection part and an action part. The
functions associated with each transition allow the selection
of objects and define their distribution in relation to the task
activity (Figure 4).
The selection part of transition t1 is made up of three
functions: δ, β, χ
• Priority function δ makes it possible to select the

highest priority trigger for the task. This function is
the basis of the interruption system. It allows the
initiation of a task performance, even if another lower
priority task is being carried out. However, the
performance of the task in relation to this trigger
remains subject to the verification of the
completeness and coherence functions.

• Completeness function β checks the presence of all
the describer objects relating to an observed event,
that is to say the input data, the control data and the
resources used to activate the task class in relation to
a given trigger event.

• Coherence function χ assesses the admissibility of
these describers in relation to the conditions
envisaged for the task. This function is a set of
verification rules which use simple logical or
mathematical type operators and which obey a unique
syntax making their formulation possible.

The selection part of transition t2 has a completeness
function ρ which checks the presence of output data and
resources associated with the reactions released by the body
of the task.
The hierarchical tasks are considered to be control tasks
for the tasks of which they are composed. Consequently,
the action parts of the input and output transitions of their
TCS possess respectively an emission function φ and a
synchronisation function σ.

 Description
Triggers Events which bring about the performance of the task. They are classed into two categories :

• Formal or explicit trigger events, which correspond to external triggers. They appear in an observable way
in the work environment (information on screen, button press, communication, …). The tasks triggered by
this type of event are considered as being compulsory; that is, their performance is vital.

• Informal or implicit trigger events, which correspond to triggers, brought about following a user decision,
from information characterising its work situation. Unlike the formal events, they are not visible to an
outside observer, but may be expressed verbally

Contextual
conditions

Information which must be checked during the performance of the task. These conditions affect the way in which
the task is performed.

Input
Interface

Input data Information necessary during the performance of the task.
Reactions Results produced by the performance of the task. Their content indicates the following type of modification :

• Physical and, in this case, it indicates the modification of the environment (application call, change of state,)
• Mental, indicating the modification or a new representation of the situation by the user.
The Reactions thus determine whether the aims are attained or not and, in such a case, the task will be repeated
after a possible development of the situation.

Output
Interface

Output data Data transformed or created by the performance of the task..

Figure 3. Graphic and textual specification of the task-object

« T11 : to configure the flight entry »

T11 To configure the flight entry

M1-1
M1-2
M1-3
M1-4
M1-5

E1-1
E1-2
E1-3
E1-4
E1-5

C1-1
C1-2
C1-3
C1-4

I1-1
I1-2
I1-3
I1-4
I1-5

T111 SU
P
(E
1-
1,
E1
-2,
E1
-3,
E1
-4,
E1
-5)

β

(E
1-
1)
=
<C
1-
1,
C1
-2,
C1
-3,
C1
-4,
I1-
1,
I1-
2,
M
1-
1,
M
1 β

(E
1-
2)
=
<I
1-
3,
I1-
4,
M
1-
3,
Mβ

(E
1-
3)
=
<I
1-
3,
I1-
4,
M
1-
3,
Mβ

(E
1-
4)
=
<I
1-
3,
I1-
4,
M
1-
1,
Mβ

(E
1-
5)
=
<I
1-
5,
M
1-
1,
M χ

(E
1-
3)
=
(I1
-4
=
A
UTχ

(E
1-
4)
=
(I1
-4
=
M
A ρ

(R
1-
1)
=
<O
1-
1,
O1
-2,
O1
-3,
M
1-
1,
M
1 ρ

(R
1-
2)
=
<O
1-
4,
O1
-5,
M
1-
3,
M
1 ρ

(R
1-
3)
=
<O
1-
4,
O1
-5,
M
1-
1,
M
1 ρ

(R
1-
4)
=
<O
1-
6,
M
1-
1,
M

R1-1
R1-2
R1-3
R1-4

O1-1
O1-2
O1-3
O1-4
O1-5,
O1-6

E1-1

E1-4

T112

T113

R1- 1
et
R1-2
et
R1-4
R1-1
et
R1-3
et
R1-4

E1-4

E1-2

E1-3

t1 t2 Activity

δ
β χ φ ρ

σ

Figure 4. TCS : Task Control Structure

Function φ defines the emission rules (constructors of the
input transition) for transition t1, for the activation of the
sub-tasks, as well as the distribution of data used by these
sub-tasks. Function σ defines the synchronisation rules
(constructors of the output transition) for the sub-tasks.
OPERATIONAL MODEL (OM)
This stage has as an objective the automatic passage of the
user tasks description to the specification of the HCI. It
completes the external model describing the body of
terminal task-objects in order to answer the question how to
execute the task? (in terms of objects, actions, states and
control structure).
At this level we integrate resources of every terminal task-
object in its body. These resources become, in this way,
component-objects, belonging to the classes Interface,
Machine, Application and Human Operator. The modeling
of the class application is not addressed in this paper.
The specification of the UI passes through two stages. The
first corresponds to the specification of component-objects
of every terminal task, and by a process of aggregation of
these component-objects. The second stage makes it
possible to specify the UI objects.
Specification of components-object
All the component-objects cooperate in a precisely defined
manner in order to fulfill the aim of the terminal task-object
in response to a given functional context. A component-
object shall be defined from its class (Interface or Operator)
and provided with a set of states and a set of operations (or
actions) which allow the change of these states. For
example, from the P3 state (strip selected) of the
component-object “new strips table” the operator has the
possibility to carry out two actions: t3 (open a road-zoom)
or t5 (temporize the new strip), as shown in figure 5. On the
other hand, the set of states and operations of an Operator
component-object represents the different possible
procedures for the execution of the terminal task. Indeed,

the procedure represents the different activity phases of a
human operator: situation apprehension, goals
identification, preparation of an action plan, application of
this action plan, control of the situation, correction [16].
Graphically, the component-object is presented in an
identical structure to the one of a task-object in the
structural model. However its internal control structure
called Object Control Structure “ObCS” is modeled by an
Object Petri Net “OPN”. The OPNs are characterized by
the fact that the tokens which constitute the place markings
are neither atomic nor similar entities, but they can be
distinguished from each other and take values, making it
possible to describe the characteristics of the system.
In addition to its formal aspect, the ObCS enjoys a simple
and easily understood graphical representation; making is
possible to represent, with the places of the OPN, all the
possible states of the component-object, and with the
transitions, to represent all the operations and actions that
can be taken from these states. The graphic representation
used for the ObCS is inspired by the cooperative and
interactive objects formalism proposed by [15].
The communication between the component-objects is
carried out through their input and output interfaces. So, an
action “A” executed by a component-object “X” (operator)
on the component-object “Y”(interface) can be read as the
component-object “X” executes its operation reaction
corresponding to the query of the action A. This execution
is rendered by a reaction R in the output interface of the
component-object X. The output interface transmits the
reaction R to the input interface of the component-object Y.
So the reaction R becomes an event E. And lastly this event
activates the service operation of the component-object Y
corresponding to the action A asked by the component-
object X.

No
 Strip

New Strip
displayed

Display NS
In:=1;Tp:=1;Cd:=1;
Eb:=1;Rt=1;Nv:=1;

Z-Rt:=0; C:=0;

Select
the new strip

P2

P1

P3

Road-zoom
opened

P4

t1

t2

Close the
Road-zoom

t4

t5

R1,1
R1,2
R1,3

E1,1
E1,2
E1,3
E1,4

I1-1

E1,1 I1,1

R1,1

R1,2

E1,2

E1,4

E1,3

Open a Road-
zoom t3

R1,3

A new strips table

Strip
selected

Temporize
the new strip

Z-Rt=1

Z-Rt=0

C:=0

No
treatment

Consult the NS

Ch:=Rt v Nv

Ch=Rt v Z-Rt

Consult the Road
Ch=Nv

Consult the level

Read basic info.

Ch:=Rt v Nv

Evaluate the
information level

Information
reading

Ask for additional Info.

Ch:=Z-Rt

Action

Temporize the NS

situation
evaluation

Analyse the
entrance conditions

Ch=Z-RT
Open a road-zoom Select the NS

Organic Controller OC

R2,1
R2,2
R2,3
R2,3

E2,1
E2,2
E2,3

R2,4

E2,1

Read additional Info.

E2,3

E2,2

R2,3 R2,2

R2,1

Take knowledge of a new flight T 111

R2,1

I1-1

E1,1

Figure 5 : A graphic Specification of the component-objects "New Strips Table" and "Organic Controller"

An example from air traffic control, corresponding to the
terminal task-object “take knowledge the new flight” taken
from [10], needs the use of two component-objects: “a New
Strips Table: NST” and “Organic Controller: OC” (figure
5). The behaviour of the component-object “a New Strips
Table” is defined by four states P1, P2, P3 and P4. From
each state the Organic Controller can carry out a group of
actions (transitions). From the P3 state (strip selected), for
example, he has the possibility to achieve two actions: t3
(open a road-zoom) or t5 (temporize the new strip).
For the component-object “Organic Controller”, the set of
states and operations represents the different possible
procedures to execute the terminal task “Take knowledge
of a new flight” in reply to a given functional context. So,
the display of a New Strip NS in the component-object
"new strips table" invokes, by the event E2,1, the operation
service "Consult the NS" of the component-object "Organic
Controller OC". According to his selection "Ch=", the
organic controller carries out a first reading of the NS
information ("Consult the road" or "Consult the level").
After this reading, he changes his state into cognition in
order to evaluate his information level. Then he decides to
"read again the basic information" or to "ask for additional
information". The asking for additional information
expresses itself by a change of his state into "Action" in
order to "select the NS" and to "open the Road-Zoom".
Both actions transmit R2,2 and R2,3 reactions to the
component-object "new strips table". It should be noted that
the organic controller carries out the action "open a road-
zoom" only after receiving the event E2,2 confirming that
the action "Select the NS" has been carried out. Once the
Road-Zoom has been opened, the Organic Controller
changes his state into "information reading" in order to read

the additional information and then into the "situation
evaluation" state to decide either to read the information
again, or "to temporize the NS" or to invoke the terminal
task-object "T112: to analyze the entrance conditions".
Aggregation Mechanism
In order to realize the HCI in its real structure, the
construction of the object classes of the HCI suggests the
aggregation of the different component-objects which have
the same name, specified during the description of the
internal model of each terminal task-object. This
aggregation mechanism is comparable to the composition
relation of the HOOD method called the parent/child
relation.
Thus, an object class of the HCI is built according to the
duplication of all the elements (triggers, contextual
conditions, input data, reactions, output data and ObCSs) of
the component-objects which have the same name.
The explanatory example in figure 5 corresponds to the
class “new strips table” constructed by aggregation of the
component-objects “new strips table” of the terminal task-
object " T111: To take knowledge of a new strip ", and the
one of the terminal task-object " T1122: To take decision
on conditions of entrance ".
HCI IMPLEMENTATION
The HCI implementation model in the TOOD methodology
is the presentation specification of the final interface as it
will be seen by the user. It corresponds to the specification
of the Presentation components of the Seeheim model or
presentation and action languages.
The construction of this model takes place through the
translation of objects, states, actions and ObCS to screens,
menus, windows, icons, This translation depends on a

collection of criteria and ergonomic rules [2], of guides
[23] and of heuristics [12].
The following figure (figure 6) schematizes the prototype
of simulation of the future objects oriented interface of the
PHIDIAS system (HEGIAS) that corresponds to the
development of the Implementation Model. This
development, made by the CENA, concerns the position of
the Organic Controller (OC). It includes four objects:

• A radar picture that displays the limits of the
controlled sector, the plane tracks, and labels
associated with the plane tracks. A clock
(HH:MM) is presented in a permanent way,

• A new strips table, situated in the upper left
part of the screen. Strips are presented
according to an automatic ordering by

geographical flow.
• A built-in strips table, situated in the left

bottom part of the screen,
• A work zone, situated in the right bottom part

of the screen. It is reserved for displaying one
of the following entries: the list of flights in
account, help in entrance, help in exit or strips
withdrawn by anticipation.

There are four input tools: a mouse, two tactile screens, and
a mini-keyboard. With these tools, the OC has the
possibility to act directly on the interface. He can integrate
a new flight, consult a road-zoom, consult help in entrance
or in exit for a flight, etc.

 10:54

EFL

P répa
CFL

TFL

S FLES C

FIN
0

1 2 3

4 5 6

7 8 9 A id e
Ent rée

A id e
So rt ie

Vo ls en
Co mpte

Pou bel le

Ne tt.

S TR IPS
Au to

Flu x

Manu el

CON FLIT

TFL

Pann

Le nt

N iv

Autre

A LARME

Excentremen t

Couche s Es pac e s

C art es

F I U S

C 1 C 2 C3
VecteurV itess e
0 6 91 3

In fo rmat ion s
RF L DEPA DE ST

TYPE INDI C F RE Q

S TD- +
Ne tt. Radar

Ne tt. Strips

P OS.
PAS.

Figure 6. Simulation Prototype of the future air traffic control interface (HEGIAS) specified by TOOD

CONCLUSION
The use of the object oriented approach and object Petri
nets presents several advantages for the modeling of the
user task. Indeed, the TOOD task model, through its static
and dynamic description, allows the modularity of
specifications, the expression of interruptions and
concurrency. The addition of describer objects to the task
entity enables a connection to a programming language,
which simplifies the passage to implementation.
Moreover, the TOOD method can contribute towards
helping with communication between the different actors in
the design process through its formal description.
The operational model leads to the specification then to the
generation of the HCI. This model is developed from the
structural model while using the same formalisms which
ensures the semantic stability of the TOOD method.
REFERENCES
1. Barthet, M.F. (1988), Logiciels interactifs et ergonomie:

modèles et méthodes de conception, Dunod.
2. Bastien J.M.C. & Scapin D.L. (1995), Evaluating a User

Interface With Ergonomic Criteria. International Journal
Of Human-Computer Interaction, 7(2), pp. 105-121.

3. Card, S.K, Moran, T.P, Newell A. (1983), The
Psychology of HCI. In Lawrence Erlbaum Ass (Ed.).
London.

4. Coleman, D., Arnold, P., Bodoff, S., Dollin, C.,
Gilchrist, H., Hayes, F. et Jeremaes, P. (1994). Object-
Oriented Development : The Fusion Method. Prentice
Hall.

5. Delatour, J. & Paludeto, M. (1998), De HOOD/PNO à
UML/PNO : Une méthode pour les systèmes temps
réels basée sur UML et objets à réseaux de Petri.
Rapport LAAS N° :98248.

6. Gamboa-Rodriguez, F. (1998), Spécification et
implémentation d'ALACIE: Atelier Logiciel d'Aide à la
Conception d'Interfaces Ergonomiques. Thèse en
sciences: Université Paris XI.

7. Jaaksi, A. (1995). Object-Oriented Specification of User
Interfaces. Software – Practice & Experience, Vol.25,
No.11, pp.1203-122.

8. Johnson, P., Johnson, H. Wilson, S. (1995), Scenario-
based design and task analysis. In Carroll, J.M. (Ed.).
Scenario-based design: Envisioning work and
technology in system development. Willey.

9. Mahfoudhi A., Abed M. & ANGUE J-C. (1995), TOOD
: Task Object Oriented Description for Ergonomic
Interfaces Specification. IFAC/IFIP/IFOR/IEA
SYMPOSIUM on Analysis, Design and Evaluation of
Man-Machine Systems at MIT-Combridge, MA USA,
June 27-29.

10. Mahfoudhi, A (1997). TOOD: Une méthodologie de
description orientée objet des tâches utilisateur pour la
spécification et la conception des interfaces homme-

machine. PhD dissertation, University of Valenciennes,
France.

11. Mahfoudhi A., Abed M., Tabary D., (2001) From the
formal specification of users tasks to the automatic
generation of the specification of MMI. IHM-HCI
2001 : Interaction without borders. 10-14 September
2001 Lille, France.

12. Nielsen J. & Molich R. (1990), Heuristic evaluation of
user interfaces. Proceedings CHI’90, Seatle, ACM New
Yoek, pp. 349-356.

13. Norman, D. & Draper, (1986), User centered system
design, Lawrence Erlbaum Associates, Publishers.

14. Palanque, P. Spécifications formelles et systèmes
interactifs, Habilitation à diriger des recherches,
university of Toulouse I, France (1997)

15. Palanque, P., Bastide, R & Paterno, F. (1997), Formal
specification as a tool for objective assessment of
safety-critical interactive systems. In proceedings of the
IFIP TC13 conference on HCI, Interact’97, pp 323-330.
Sydney.

16. Paludetto, M. & Benzina, A. (1997), Une méthodologie
orientée objet HOOD et réseaux de Petri. : Concepts et
outils pour les systèmes de production in J-C. Hennet
(ed.) Cépadués, p293-325.

17. Pinheiro da Silva, P., Paton, N.W. (2000). UMLi : The
Unified Modeling Language for Interactive applications.
3rd Int. Conference on the Unified Modeling Language.
LNCS, 1938, pp. 117-131.

18. Scapin, D.L. & Pierret-Golbreich, C. (1990), Towards a
method for task description: MAD. Work with Display
Unit'89 in Berlinguet, L & Berthelette, D. (Eds.) CAP.

19. Sibertin-Blanc, C. High-level Petri nets with Data
Structure. 6th EWPNA, Espoo (Finland), (1985)

20. Tabary D., Abed M., Mahfoudhi A. (2001). Towards a
design based on the User Task of human interfaces in
cockpit. PIC’2001: PEOPLE IN CONTROL - An
international conference on human interfaces in control
rooms, cockpits and command centers. UMIST,
Manchester, UK: 19 – 21 June 2001

21. Tarby, J-C & Barthet, M-F. (1996), The Diane+ Method
in CADUI'96, pp95-119.

22. Ricard, E. & Buisine, A. (1996), Des tâches utilisateur
au dialogue homme-machine: GLADIS++, une
démarche industrielle. IHM96, pp71-76.

23. Vanderdonckt J. (1994), Guide ergonomique de la
présentation des applications hautement interactives.
Press universitaire de Namur.

24. Vanderdonckt, J. (1997), Conception assistée de la
présentation d'une interface homme-machine
ergonomique pour une application de gestion hautement
interactive. Thèse, Faculté Notre Dame de la Paix
Louvain, Belgique.

