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Abstract

In wireless sensor networks (WSNs), scheduling of the sensors is considered to be
the most effective energy conservation mechanism. The random and unpredictable
deployment of sensors in many WSNs in the open fields makes the sensor scheduling
problem very challenging and randomized scheduling algorithms are thus used. The
performance of these algorithms is usually analyzed using simulation techniques, which
do not offer 100% accurate results. In this paper, we overcome this limitation by us-
ing higher-order-logic theorem proving to formally analyze the coverage-based random
scheduling; a variant of the random scheduling algorithm designed for wireless sensor
networks. Particularly, we aim at formalizing this coverage-based random scheduling
within the probabilistic framework developed in the HOL theorem prover. We also
formally reason about the expected values of coverage intensity, the upper bound on
the total number of disjoint subsets, given expected coverage intensity, the lower bound
on the total number of nodes and the average detection delay inside the network.
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1 Introduction

Wireless sensor networks (WSNs) [39] have been proposed as an efficient solution to monitor
a field without any continuous human surveillance. Such networks are composed of small
tiny devices wirelessly connected and deployed over the field. The main task of sensors
consists in taking measurements of the monitored event. These measurements are physical
attributes of the environment such as light, temperature, humidity, pressure and acceleration.
According to these measurements, a decision procedure is made at the base station. WSNs
are extensively being deployed these days in a variety of critical applications like detection
of natural disasters, detection of chemical or biological attack and military tracking.

Since the sensors are usually battery-powered, using minimal energy for all the performed
tasks becomes the main constraint. Scheduling [18] of the nodes is one of the most widespread
solutions to preserve energy. It consists in splitting the network on several sub-networks
which will work alternatively. Nevertheless, achieving scheduling for WSNs results in major
challenges to avoid losing the coverage and connectivity. The coverage reflects how well an
area is monitored or tracked by sensors. Hence, at any given time, the active sensors should
cover most of the field while remaining connected. A lot of algorithms have been proposed
to solve the scheduling problem. Most of them take into account only one of the constraint
i.e. coverage [1, 34, 36, 38] or connectivity [5, 35] but rarely both. Moreover, many works
have studied different techniques to determine an eligibility rule for the activation of the
next sub-network [26] and [30].

For inhospitable fields, the sensors are deployed in a random manner, i.e., by throwing
them from an airplane. The trend is then to use a random scheduling scheme to save energy.
The idea of the random scheduling was first motivated by the work of [30] and has been
proposed by [1] and [21]. As the study of random scheduling algorithms for WSNs is recent,
the focus is to investigate more in developing new models that can satisfy both constraints
of coverage and connectivity. In general, a theoretical paper-and-pencil based model of
the proposed scheduling algorithm is developed and analyzed. After that, performance
evaluation by simulation is done in order to illustrate the theoretical results. Nevertheless,
the results obtained by simulation can never be totally accurate. Thus, simulation cannot
be considered as a reliable solution for the probabilistic analysis of WSNs especially when
applied to validate WSNs for mission-critical applications like military, buildings, health,
disaster relief, area and industrial monitoring.

In order to overcome the common drawbacks of simulation, formal methods [9] have been
proposed as an efficient solution to validate a wide range of hardware and software systems.
Formal methods increase the system reliability by rigorously using mathematical techniques
to analyze the mathematical model for the given system. They have the advantage to find out
subtle errors that cannot be revealed by traditional simulation. The need of formal methods
in the context of WSNs is illustrated in [25]. However, formal methods seem very restricted
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when used to validate probabilistic systems. The random components of the system cannot
be directly modeled within traditional formal tools. For example, it will be impossible to
reason precisely about statistical properties, such as expectation and variance, in the case of
state-based approaches. Furthermore, huge proof efforts are usually expected to be involved
in reasoning about random components of a wireless system in the case of theorem proving.

We believe that due to the recent developments in the formalization of probability theory
concepts in higher-order-logic [16, 12], the analysis of a variety of wireless systems with ran-
dom components in a higher-order-logic theorem prover [6] can be handled with reasonable
amount of proof efforts. In this paper, we demonstrate the effectiveness of the proposed
idea by formally verifying the coverage-based random scheduling algorithm of [22], which
is basically a joint scheduling method composed of a random scheduling algorithm and an
extra-on rule. This scheme has the advantage to solve at the same time the problem of sens-
ing coverage and network connectivity without any location information. We particularly
aim at formalizing this coverage-based random scheduling within the probabilistic frame-
work developed in the HOL theorem prover [12]. The intent is to verify the expected values
of coverage intensity, and deduce the upper bound on the total number of disjoint subsets,
given expected coverage intensity. We will also verify the lower bound on the total number
of nodes and the average detection delay inside the network.

The remainder of this paper is organized as follows. First, we present the probabilistic
framework developed in the HOL theorem prover. Then, we give an overview of the coverage-
based random scheduling algorithm for wireless sensor networks. In Sections 3 and 4, we
provide the formal specification and verification of the coverage-based random scheduling
algorithm respectively. Finally, we discuss related work and conclude the paper by exposing
future works.

2 Preliminaries

In this section, we first present the probabilistic framework developed in the HOL theorem
prover. Particularly, we will present the general methodology that we have to follow for
analyzing the WSN scheduling algorithm. We also illustrate the formalization of discrete
random variables in HOL, the notations used and the verified probabilistic properties that
will be needed later. At the end of this section, we will give a brief overview of the HOL
theorem prover.

2.1 Probabilistic Analysis Framework

The framework, given in Fig. 1, illustrates the inputs, outputs and the main components of
the probabilistic analysis framework based on the HOL theorem proving system [12]. The

3



Figure 1: Theorem Proving based Probabilistic Analysis Framework for Wireless Systems
[12].

shaded boxes in this figure represent the fundamental requirements for conducting proba-
bilistic analysis in a theorem prover.

Using this probabilistic framework, it is possible to formally analyze probabilistic aspects
of any wireless system following these steps:

• Building a model describing the system to verify by specifying its random components
as higher-order-logic functions. Since random variables are always defined in term of
their PMF and CDF, we need first to express these mathematic characterizations in
the HOL theorem prover,

• Expressing the properties of the system as higher-order-logic theorems. The proper-
ties are mainly related to the expectation and variance of the corresponding random
variable. Therefore, the mathematical definitions of expectation and variance for the
two kinds of random variables (discrete and continuous) have to be formalized. The
figure shows that the framework distinguishes the properties related to discrete ran-
dom variables from the ones related to continuous random variables. This distinction
is made for simplicity purposes,

• Formally verifying the theorems, developed in the previous step, using the HOL the-
orem prover. The output of the framework, depicted by the rectangle with dashed
edges, represents the formal proofs of the system properties. These proofs certify the
correctness of the formalized probabilistic properties for the given system.
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2.2 Formalization of Discrete Random Variables and Verification
of their PMF

A random variable is called discrete if its range, i.e., the set of values that it can attain,
is finite or at most countably infinite [37]. Discrete random variables are mathematically
specified by their PMF which is the probability that a random variable X is exactly equal to
some value x, i.e., Pr(X = x). In higher-order-logic, discrete random variables are formalized
as deterministic functions with access to an infinite Boolean sequence B∞; a source of infinite
random bits with data type (num → bool)[16]. According to the result of popping the top
most bit in the infinite Boolean sequence, these deterministic functions make random choices.
They may pop as many random bits as they need for their computation. At the end of the
computation, they return the result along with the remaining portion of the infinite Boolean
sequence to be used by other functions. Thus, a random variable that takes a parameter of
type α and ranges over values of type β can be represented in HOL by the function:

F : α→ B∞ → β ×B∞.

As an example, the Bernoulli(1
2
) random variable that returns 1 or 0 with equal proba-

bility can be modeled as follows

` bit = λs. (if shd s then 1 else 0, stl s).

where the variable s represents the infinite Boolean sequence and the functions shd and stl

are the sequence equivalents of the list operation ’head’ and ’tail’. The function bit accepts
the infinite Boolean sequence and returns a pair with the first element equal to either 0 or 1
and the second element equal to the unused portion of the infinite Boolean sequence, which
in this case is the tail of the sequence.

Random variables can also be expressed in a more compact form using the general state-
transforming monad where the states are the infinite Boolean sequences.

` ∀ a,s. unit a s = (a,s)

` ∀ f,g,s. bind f g s = g (fst (f s)) (snd (f s)).

The HOL functions fst and snd above return the first and second components of a pair,
respectively. The unit operator is used to lift values to the monad, and the bind is the
monadic analogue of function application. All monad laws hold for this definition, and the
notation allows us to write functions without explicitly mentioning the sequence that is
passed around, e.g., function bit can be defined as

` bit monad = bind sdest (λb. if b then unit 1 else unit 0).
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where sdest gives the head and tail of a sequence s as a pair (shd s, stl s).
Some formalizations of the measure theory in [16] can be used to define a probability

function called prob which operates from sets of infinite Boolean sequence to the set of
real number between 0 and 1. The domain of prob is the set E of probability events.
Consequently, the formalization of prob and E can be used together to prove probabilistic
properties of random variables such as:

` prob {s | fst (bit s) = 1} =
1

2
.

where the HOL function fst selects the first component of a pair and {x|C(x)} represents
a set of all elements x that satisfy the condition C.

By following the methodology described above, most of the commonly used discrete ran-
dom variables which are frequently used have been specified in the HOL theorem prover.
The corresponding PMF of each of these discrete random variables has been also verified.
For example, HOL definitions and PMF theorems for the Bernoulli, Uniform, Binomial and
Geometric random variables can be found in [16, 12]. In this paper, we will need to use
the first three random variables enumerated above, i.e., the Bernoulli, Uniform and Bino-
mial. The HOL functions used to describe them are called respectively: prob bernoulli,
prob uniform and prob binomial.

2.3 Formalization and Verification of Expectation Properties for
Discrete Random Variables in HOL

The expectation of a discrete random variable, which attains values in the positive integers
only, is specified as follows [19]:

Ex fn[f(R)] =
∞∑
n=0

f(n)Pr(R = n). (1)

where R is the discrete random variable and f represents a function of the random variable
R. The function f maps the random variable R to a real value. The above definition of
expectation holds only if the summation is well defined, i.e., finite. The above equation can
be formalized in HOL as follows:

Definition 1:

` ∀ f R. expec fn f R = suminf (λn.(f n) prob {s | (fst (R s) = n)}).

The definitions of R and f are the same as in (1). The HOL function suminf represents the
infinite summation of a real sequence [11]. The function expec fn accepts two parameters,
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the function f of type (num→ real) and the positive integer valued random variable R and
returns a real number.

The expectation of a discrete random variable that attains values in positive integers
would be a particular case of the above definition where the function f is instantiated by
the identity function (λn.n). The corresponding HOL function is specified in Definition 2.

Definition 2:

` ∀ R. expec R = expec fn (λn.n) R.

After formalizing the expectation of a positive valued discrete random variable, it is very
interesting to check the correctness of some related properties, which will greatly facilitate
the probabilistic analysis. In fact, the proof of the linearity of expectation of a function of a
discrete random variable, specified in (2), has been provided in [12].

Ex fn[af(R) + b] = aEx fn[f(R)] + b (2)

The corresponding HOL theorem is expressed by Theorem 1.

Theorem 1:

` ∀ a,b,R,f.

(summable (λn. (f n)prob bern {s | fst (R s) = n})) ∧
(R IN indep fn) ⇒
(expec fn (λs.(a×fst (f(R) s) + b, snd (f(R) s))) =

&a×expec fn (f(R)) + &b).

where a and b are two positive integers, R is a positive valued random variable and snd

is the function that returns the second component of a pair. The operator & is used to
transform a positive integer to its corresponding real value. The HOL function summable

used in the assumptions ensures that the expectation of the function of the random variable
R is well-defined, i.e., the summation of (1) is finite. The second assumption states that
the random variable must be independent. Based on Hurd’s formalization infrastructure, a
random variable can be verified to be a measurable function if it accesses the infinite Boolean
sequence using only unit, bind and sdest primitives.

The proof of the above theorem relies on two important intermediate results. The first
one illustrates that the expectation of a random variable multiplied by a positive integer is
equal to the positive integer multiplied by the expectation of the random variable (3). This
theorem has been also verified in HOL [12].

Ex fn[af(R)] = aEx fn[f(R)] (3)

The second theorem is related to the expectation of a sum of two random variables which
is equal to the sum of their respective expectations. The generalization of this theorem is
given in (4) where Ex designates the expectation.
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Ex[
n∑

i=1

Ri)] =
n∑

i=1

Ex[Ri] (4)

For illustration purposes, the formalization of expectation was used to verify the expec-
tation of the Bernoulli, Uniform, Binomial and Geometric random variables [12].

2.4 The HOL Theorem Prover

The HOL theorem prover is a proof assistant of higher-order-logic [31]. The verification
approach of HOL is composed of three main steps: describing the system verified in higher-
order logic, formalizing the properties to be verified as theorems of higher-order-logic and
finally verifying these properties within HOL. The HOL theorem prover includes a very rich
library of theories. A theory can be defined as a set of pre-verified theorems for a given
domain, function or operation. When needed, a HOL theory can be loaded and used. Thus,
an experiment user can make proofs much easier by efficiently using the existing theories. In
addition, users may be assisted by automatic proof procedures [10] which are sets of gathered
steps executed in a single command.

Despite the existence of all these theories and automatic procedures, most of the time,
proofs in HOL are interactive and require the intervention of user. Direct proofs are limited
to very simple theorems. Various proof techniques can be used to achieve a proof such as
rewriting, simplification, specialization, generalization and mathematical induction.

The table below summarizes some of the HOL symbols used in this paper and their
corresponding mathematical interpretation [7].

HOL Symbol Standard Symbol Meaning
∧ and Logical and
∨ or Logical or
∼ t ¬t Not t

SUC n n+ 1 Successor of a num
x pow n xn real x raised to num power n
ln x ln x Neperian logarithm on x
exp x ex Exponential logarithm on x
λx.t λx.t Function that maps x to t(x)

{x|P (x)} {λx.P (x)} Set of all x that satisfy the condition P

Table 1: HOL Symbols
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Figure 2: An example of the randomized coverage-based algorithm [22].

3 Formalization of the Coverage-based Randomized

Scheduling Algorithm

According to the probabilistic framework given in [15], we have to specify the higher-order-
logic functions describing the random components of the wireless system, and then verify
the theorems which formalize the desired properties. In this section, we develop the HOL
formalization of the coverage-based random scheduling algorithm for WSNs. This formal-
ization is basically inspired by the paper-and-pencil based analytical analysis presented in
[22].

3.1 Overview of the Coverage-based Randomized
Scheduling Algorithm

The WSN considered deploys n sensors over a field of size a. All the sensors have the same
task; gathering data and routing it back to the base station. The deployment of nodes over
the two-dimensional field is random so that no location information is available. The size of
the sensing area of each sensor is denoted r. A sensor can only sense the environment and
detect events within its sensing range. We say that a point of the monitored field is covered
when any event occurring at this point can be detected by at least one active sensor. The
probability that each sensor covers a given point is r/a. This probability is called q.

Given a natural number k, the random scheduling of the nodes assigns each sensor to one
of the k sub-networks with equal probability 1/k. At time slot Ti, only the nodes belonging
to the sub-network i will be active and can cover an occurring event. Hence, the disjoint
sub-networks created will work alternatively. We denote also by: Si, the set of sensors that
belongs to the sub-network i and covers a specific point inside the field, S, the set of nodes
covering a specific point inside the field, and, c, the cardinality of S.

For illustration purpose, Fig. 2 shows how the scheduling algorithm splits arbitrarily
a network containing eight sensor nodes to two sub-networks. The eight nodes, randomly
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deployed in the monitored region, are identified by IDs ranging from 0 to 7. The two sub-
networks are called S0 and S1. Each node chooses at random between 0 and 1 in order to be
assigned to one of these two sub-networks. Suppose that nodes 0; 2; 5; 6 select the number
0 and join the subset S0 and nodes 1; 3; 4; 7, choose the number 1 and join the subset S1.
Thus, the two sub-networks will work alternatively. In other words, when the nodes 0; 2;
5; 6, which sensing ranges are denoted by the solid circles, are active, the nodes 1; 3; 4; 7
illustrated by the dashed circles will be idle and vice versa.

3.2 Formalization of the Network Coverage Intensity

The challenge in the random scheduling algorithm described below, is to select a value of
k so that the energy can be saved with a good coverage. Therefore, the performance of
this algorithm depends essentially on the chosen value of k. A large k will imply a lot of
sub-networks which would in turn result in few nodes in each of these sub-networks, and
hence a poor coverage. However, a small k will imply few sub-networks with a lot of points
covered simultaneously by a lot of nodes, so a waste of energy.

The random scheduling algorithm suggests several random variables. The first one dis-
tributes uniformly the nodes over the sub-networks. It is formalized by the HOL function
rd subsets which generates recursively a list of Uniform random variables, and accepts
two parameters: c, the number of sensors that covers a specific point inside the field, and
k, the number of sub-networks. In this definition, we use the predefined HOL function
prob uniform which takes as input a natural k and generates a Uniform random variable.
The function rd subsets is described as follows:

Definition 3:

` (∀ k. rd subsets 0 k = []) ∧
(∀ c,k. rd subsets (SUC c) k = (prob uniform k)::(rd subsets c k)).

Let X the random variable denoting the total number of non-empty Sj. X is defined as
follows:

X =
k−1∑
j=0

Xj. (5)

where Xj is the Bernoulli random variable describing a non-empty subset. The variable Xj
is based on the recursive HOL predicate subset empty which describes an empty subset by
looking for an index j in a given list. The function subset empty, given in Definition 4,
takes as inputs a natural number denoted j and a list called L having the format (h :: t),
and returns true only if j is not an element of the list L. Later, when we call the predicate
subset empty, the list L will be substituted by the above function rd subsets.
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Definition 4:

` (∀ j. subset empty j [] = UNIT T) ∧
(∀ j,h,t. subset empty j (h::t) = bind h (λa.

bind (subset empty j t) (λb.
unit (∼(a = j) ∧ b)))).

Now, the variable Xj, used in (5), is specified in Definition 5 through the function
subset non empty which takes three parameters: j, a natural number, c, the number of
sensors that covers a specific point inside the field, and k, the number of sub-networks.
The event {s | fst (subset empty j (rd subsets c k) s) = F}, used in this function,
designates the event ”The subset Sj is non-empty”.

Definition 5:

` ∀ j,c,k. subset non empty j c k = bernoulli num

(prob bern {s | fst (subset empty j (rd subsets c k) s) = F}).

A given sub-network Sj is empty if the Uniform random variable never generates the
number j, i.e., the random scheduling doesn’t assign any sensor to the sub-network Sj. If
applied to the set S defined below, the random scheduling will affect each sensor node in S
to one of the k disjoint subsets. A subset Sj will be empty if all the c sensors of S miss this
subset. Indeed, a node joins Sj with the probability 1/k. It will miss the same Si with the
probability (1− 1/k). Since the c sensors miss independently the subset Sj, the probability
that Sj is empty, is then: (

1− 1

k

)c

. (6)

In order to define the random variable X given in (5), we define first the following function
which recursively generates a list by accepting the following parameters: k, the length of the
list, c, the number of sensors that covers a specific point inside the field, and m, the number
of sub-networks. After that, a pre-defined function of the HOL probability theory, called
sum rv lst, accepts this list of random variables and returns their sum as a single random
variable.

Definition 6:

` (∀ c,m. subset non empty lst 0 c m = [subset non empty 0 c m]) ∧
(∀ k,c,m. subset non empty lst k c m =

(subset non empty (SUC k) c m)::(subset non empty lst k c m))).

The coverage intensity for a specific point Cp can now be defined as the average time
during which the point is covered by the total length of the scheduling cycle. The variable
Cp is expressed in (7).
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Cp =
E[X]× T
k × T

. (7)

where E[X] designates the expectation of the random variable defined in (5). The variable
Cp is formalized in HOL as follows:

Definition 7:

` ∀ c,k. cvrge intsty pt c k =

(expec (sum rv lst (subset non empty lst k c (SUC k))))/&(SUC k).

The above definition specifies the coverage intensity for a specific point using the HOL
function cvrge intsty pt. This function takes as parameters: c, the number of sensors
that covers a specific point inside the field, and k, the number of sub-networks. Added to
the function subset non empty lst, this definition uses two other predefined HOL func-
tions which are expec, for the expectation of a discrete random variable (Definition 2), and
sum rv lst, for the summation over random variables. More explanations about these two
functions can be found in the preliminaries section and in [12].

It has been shown that Cp is equal to:[
1−

(
1− 1

k

)c]
. (8)

We recall that the variable c is initially the number of nodes covering a specific point inside
the field. Covering a point or not can be assimilated to a Bernoulli trial with the probability
q. If we consider the variable c among the n nodes of the network, it becomes a Binomial
random variable with the following probability:

Pr(c = j) =
n!

j! (n− j)!
qj(1− q)n−j. (9)

where q is the probability that each sensor covers a given point.
Therefore, Cp is also a random variable. Particularly, Cp is a function of the random

variable c. Since the random deployment strategy distributes independently the nodes over
the area and the random scheduling makes a uniform distribution of the same sensors, the
expectation of Cp for any point inside the area is the same and its value is Cn. The variable
Cn is defined as follows:

Cn = Ex fn[Cp] (10)

where Ex fn designates the expectation of a function of a random variable. The correspond-
ing HOL function formalizing (10) is:
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Definition 8:

` ∀ q,n,k. cvrge intsty network q n k =

expec fn (λi. 1 + (-1)×(1 - 1/&(SUC k))x) (prob binomial p n q).

The above function cvrge intsty network accepts as inputs q, the probability that a sensor
covers a point, n, the number of sensors deployed inside the field, and k the number of sub-
networks. This function specifies the expectation of a function of random variable and thus
needs two parameters: the input function which basically describes the variable Cp and is
specified by the first parameter of the above function expec fn, and the random variable
which is the Binomial of (9).

3.3 Formalization of the Average Detection Delay

The average detection delay is another performance metric which can be relevant in evalu-
ating the random scheduling algorithm. It is defined as the expectation of the time elapsed
from the occurrence of an event to the time when the event is detected by some sensor nodes.
The average detection delay for an event arriving at any time slot with equal probability
and lasting for duration longer than (k − 1)× T , is defined as:

delays =
k−1∑
i=1

T∫
0

1

T
× Pr(H0 ∩H1 ∩ ... ∩Hi)× (i× T − t)dt. (11)

where:

• Hi : the event that none of the c covering sensor nodes belongs to the working subset i

• Hi: the event that at least one of the c covering sensors belongs to the working subset
i

• T : the duration of a time slot

• k : the number of disjoint subsets

Table 2 shows the state of a WSN within a complete scheduling cycle. A scheduling
cycle is a succession of time slots Ti. Time slot Ti corresponds to the working shift of
the sub-network i, denoted Si. With the coverage-based random scheduling algorithm, the
network is divided into k sub-networks. At any given time slot, only one subset is working.
Let an event e happens at time t and detected within the time slot T2; the working shift
of the sub-network S2. Detecting the happening event within the time slot T2 means that
at least one of the c covering sensors belong to the subset S2. Consequently, none of the c
covering sensors belongs to the past subsets which are S0 and S1. By generalization, at the
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Table 2: The WSN state within a scheduling cycle
Time slot Ti T0 T1 T2 ...... Ti ...... T(k−1)
Working subset Si S0 S1 S2 ...... Si ...... S(k−1)
Nbr. Remaining subsets k (k − 1) (k − 2) ...... (k − i) ...... 1

time slot Ti, the working subset is Si and it remains (k−i) subsets to which may belong the
c covering nodes.

Subsequently, we clarify (11) through a concrete example. Particularly, we emphasize
that the term ”expectation”, used in the initial definition, means basically ”average” and is
not related to the expectation as a statistical quantity. We consider the same event e above.
The exact time elapsed for the detection of the event e is then (2T−t). This quantity must
be weighted by the probability that ”at least one of the c covering sensors belongs to the
working subset S2” which is ”Pr(H0∩H1∩H2)”. Hence, the average time for the detection
of the event e is the average value of the function ”Pr(H0 ∩ H1 ∩ H2) × (2T − t)”. This
can be found by using the mean value theorem for integrals. Nevertheless, the event e can
happen at any time slot of the scheduling cycle, a summation over all time slots is provided
by generalization.

By analogy to the manner of computing the probability of an empty subset in (6), the
probability of the event Hi stating that ”none of the c covering sensor nodes belongs to the
working subset Si within Ti” will be then:(

1− 1

(k − i)

)c

. (12)

Now, defining the HOL context for the verification of the average detection delay needs
to specify correctly the set (H0 ∩H1 ∩ ... ∩H(i− 1) ∩Hi) as a higher-order-logic function.
The main idea consists in dividing this set into two parts: the first one must define the
intersection of the (i − 1) first events while the second has to illustrate the event that ”the
ith working sub-network is non-empty within Ti”. The intersection is introduced in HOL by
the conjunction ”and”.

The function compl intersection, given in Definition 9, illustrates the first part of the
required final set. It builds the intersection of events describing the (i−1) first empty subsets.
If we make a list of the needed random variables (function subset non empty rv list)
by satisfying the independence criteria (function indep rv list), we can then create the
disjunction and then the conjunction of all the elements of the list as required. The function
compl intersection takes as parameters: i, a natural index, c, the number of sensors that
covers a specific point inside the field, and k, the number of sub-networks.

Definition 9:
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` ∀ i,c,k. compl intersection i c k =

bind (indep rv list (subset non empty rv list i c k))

(λx. unit (disj list x)).

The function subset non empty rv list, specified in Definition 10, generates recursively
a list of subset non empty random variables. This definition seems to have the same goal
as Definition 6. However, the inputs are different. Indeed, in this new definition, we have to
take into account that the subsets are working alternatively within a given scheduling cycle
and consequently the number (k− i) of remaining subsets is decreasing when we move ahead
in the cycle.

Definition 10:

` (∀ c,k. subset non empty rv list 0 c k = []) ∧
(∀ i,c,k. subset non empty rv list (SUC i) c k =

(subset non empty (k-i-2) c (k-i))::(subset non empty rv list i c k)).

We ensure the independence of the random variables of a given list by the following
function indep rv list.

Definition 11:

` (indep rv list [] = unit []) ∧
(∀ h,t. indep rv list (h::t) = bind h (λx. bind (indep rv list t)

(λy. unit (x::y)))).

Finally, the function disj list, provided in Definition 12, is used to create the disjunc-
tion of all the elements of a given list.

Definition 12:

` (disj list [] = F) ∧
(∀ h t. disj list (h::t) = (&h = 1) ∨ disj list t).

The second part of the final set can be described by the random variable subset non empty

(Definition 5) which can express also the event of an empty subset. Thus, the final set is
described by the following HOL function final set which takes the same parameters as the
function compl intersection.

Definition 13:

` ∀ i,c,k. final set i c k =

bind (compl intersection i c k) (λx.
bind (subset non empty (k-i-1) c (k-i)) (λy.
unit (∼x ∧ (y = 1)))).
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Regarding the integral used in (11), we need to define the corresponding primitive func-
tion. This primitive is specified by the HOL function dint val fct. Its inputs i, c and k
have the same signification as in Definition 9. The parameter tm denotes the time slot Ti
and x is the variable of the primitive function.

Definition 14:

` ∀ i,c,k,tm,x. dint val fct i c k tm x =

((1/tm)prob bern {s | fst (final set i c k s) = T})
((&itmx)-((1/2)(x2))).

When computing the integral, we will need to substitute the variable x of the above
definition by the edges of the integral. This operation is expressed in the following function
dint vals which takes the same parameters as the above function.

Definition 15:

` ∀ i,c,k,tm. dint vals i c k tm =

((dint val fct i c k tm tm) - (dint val fct i c k tm 0)).

4 Formal Verification of the Random Scheduling Algo-

rithm

We use the defined HOL functions in order to formally verify the main statistical properties
regarding the network coverage intensity and the average detection delay. We will describe
the verified theorems in a backward chaining approach, i.e., we will present first the main
goal then we will detail as much as possible the intermediate needed theorems and the
corresponding proofs.

4.1 Formal Verification of the Network Coverage Intensity

We have already noticed from the specification section that the network coverage intensity
is defined as a statistical measure of the coverage intensity for a specific point (see (10)).
Hence, we need to verify first that the coverage intensity for a specific point, defined in (7),
is really equal to the expression given in (8). The HOL theorem formalizing this property
can be expressed as follows:

Theorem 2:

` ∀ c,k. cvrge intsty pt c k = 1 - (1 - (1/&(SUC k)))c.

The verification of the above theorem is based on Theorem 3 which gives the value of the
expectation of the sum of the random variables subset non empty.
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Theorem 3:

` ∀ c,k. expec (sum rv lst (subset non empty lst k c (SUC k))) =

&(SUC k) × (1 - (1 - (1/&(SUC k)))c).

The proof of Theorem 3 needed mainly three intermediate theorems. The first one,
Theorem 4, rewrites the right hand side of Theorem 3, verifying that the expectation of the
sum of the random variables subset non empty is the sum of their respective expectations.
The proof of Theorem 4 uses Theorem 1, the pre-verified theorem formalizing (2), which
further requires the verification of two other basic conditions. The first condition proves
that each element of the list subset non empty lst is independent while the second says
that each of these elements is "summable".

Theorem 4:

` ∀ c,k. expec (sum rv lst (subset non empty lst k c (SUC k))) =

sum (0,LENGTH (subset non empty lst k c (SUC k)))

(λ. expec(EL (LENGTH (subset non empty lst k c (SUC k))-(x+1))

(subset non empty lst k c (SUC k)))).

Theorem 5, the second theorem needed for the proof of Theorem 3, determines the length
of the list of random variables. The proof of this theorem was straightforward by induction.

Theorem 5:

` ∀ c,k,m. (1 ≤ m) ∧ (k ≤ m) ⇒
(LENGTH (subset non empty lst k c m) = (SUC k)).

Finally, the following theorem is the third theorem needed for the proof of Theorem 3.
It verifies the expectation value of each element of the list subset non empty lst.

Theorem 6:

` ∀ c,m,k,j. (1 ≤ m) ∧ (k ≤ m) ∧ (j ≤ k) ⇒
(expec (EL j (subset non empty lst k c m)) = 1 - (1 - (1/&m))c).

The proof of Theorem 6 requires first to verify that each element of the list subset non empty lst

is a Bernoulli random variable. This is expressed in Theorem 7.

Theorem 7:

` ∀ c,m,k,j. (1 ≤ m) ∧ (k ≤ m) ∧ (j ≤ k) ⇒
(EL j (subset non empty lst k c m) = bernoulli num (1-(1-(1/(&m)))c)).

The proof of Theorem 7 is done by induction besides using the PMF of the HOL func-
tion subset non empty which is given in Theorem 8. The assumptions of Theorem 8 are
essentially related to the call of the function rd subsets which in turn calls the Uniform
random variable. The assumptions on this random variable must be hence satisfied. The
HOL proof of Theorem 8 is based on some reasoning associated to the function independence,
the transformation of probabilistic sets and classical real results.
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Theorem 8:

` ∀ j,c,k. (1 ≤ k) ∧ (j ≤ k) ⇒
(prob bern {s | fst (subset non empty j c k s)=1} = (1-(1-(1/&k))c)).

At the end, we use Theorem 7 jointly with the expectation theorem for the Bernoulli
random variable, verified in [12], and some mathematical reasoning in order to complete the
proof of Theorem 6.

Theorem 9 is the second main theorem. It verifies the network coverage intensity. The
steps needed for the proof of Theorem 9 are detailed further down.

Theorem 9:

` ∀ n,q,k. (0 ≤ q) ∧ (q ≤ 1) ∧ (1 ≤ n) ⇒
(cvrge intsty network q n k = (1 - (1 - (q/&(SUC k)))n)).

As we have indicated in Definition 8, the HOL function cvrge intsty network is a function
of random variable. The proof of Theorem 9 requires the application of the linearity of
expectation property (see Theorem 1). The two supplied conditions for this theorem are
related to the independence of the Binomial random variable which is already verified in [12]
and the finite summation of the corresponding function multiplied by the probability.

Theorem 10 formalizes the finite summation of the corresponding function multiplied by
the probability. We verify the following theorem in HOL and the proof is primarily based on
the PMF of the Binomial random variable, verified in [12], and some mathematical reasoning
related to the real summation.

Theorem 10:

` ∀ q,k,n. (0 ≤ q) ∧ (q ≤ 1) ∧ (1 ≤ n) ⇒
summable (λi. (1-1/&(SUC k))i ×
prob bern {s | fst (prob binomial n q s)=i}).

In order to achieve the verification of Theorem 9, we need also to verify the expectation of
the function (λi. (1-1/&(SUC k))x) of the Binomial random variable. This is illustrated
in Theorem 11.

Theorem 11:

` ∀ q,k,n. (0 ≤ q) ∧ (q ≤ 1) ∧ (1 ≤ n) ⇒
(expec fn (λi.(1-1/&(SUC k))i)(prob binomial n q) = (1-q/&(SUC k))n).

The proof of the above theorem is based on the Binomial theorem for reals, described in
Theorem 12, which was not available in the existing HOL libraries and thus we also had to
prove it.
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Theorem 12:

` ∀ a,b,n. (n ≤ 1) ⇒
((a + b)n = sum (0,SUC n) (λi. &(binomial n i) × (an−i× bi))).

The two corollaries expressed in (13) and (14) can be easily inferred from Theorem 9.
Corollary 1 gives the lower bound on the number n of sensors such as the network coverage
intensity is of at least t. It states that:

n ≥

[
ln(1− t)

ln
(
1− q

k

)] . (13)

which is verified in:

Corollary 1:

` ∀ n k q t. (1 ≤ n) ∧ (0 ≤ k) ∧ (0 ≤ q) ∧ (q ≤ 1) ∧ (0 ≤ t) ∧
(t ≤ 1) ∧ (t ≤ cvrge intsty network q n k) ⇒
((ln (1 - t)/ln (1 - q)/&(SUC k)) ≤ &n).

The proof of the above corollary has required intermediate results associated especially to
the two mathematical functions of power and logarithm.

Similarly, we can deduce Corollary 2 which states that for a given n and providing a
network coverage intensity of at least t, the upper bound on the number of disjoint subsets
k is:

k ≤ q

1− e
ln(1−t)

n

. (14)

which is verified in HOL by:

Corollary 2:

` ∀ n k q t. (1 ≤ n) ∧ (0 ≤ k) ∧ (0 ≤ q) ∧ (q ≤ 1) ∧ (0 ≤ t) ∧
(t ≤ 1) ∧ (t ≤ cvrge intsty network q n k) ⇒
&(SUC k) ≤ (q /(1 - (exp (ln (1-t)/&n)))).

The proof of the above corollary was straightforward and is based on pre-verified theorems
from the two HOL theories of real and exponential.
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4.2 Formal Verification of the Average Detection Delay

The formal verification of the average detection delay has needed a good approach in order
to be able to verify the gauge integral given in (11). In fact, the HOL reasoning support for
the gauge is not strong enough to handle this function. Therefore, we have to go through
theorems defined for the derivative. The derivative is formalized by the HOL function diffl

and has many pre-verified results which can be used to facilitate our task.
The final goal giving the final average detection delay, is stated in Theorem 13. The proof

of this theorem has required a lot of reasoning related to the derivative function and the
real summation. Added to that, the proof is based on two important intermediate theorems
which will be detailed further down.

Theorem 13:

` ∀ c,i,k,tm. (0 ≤ tm) ∧ (2 ≤ k) ∧ (2 ≤ c) ⇒
(sum (1,SUC (k-2)) (λi. dint vals i c k tm) =

1/2×tm×((&(k-1)/&k)c + 2×sum (2,SUC (k-2)) (λi. (&(k-i)/&k)c))).

Theorem 14 is the first intermediate theorem verified. It expresses the complement of the
probability specified in (12). The proof of this theorem is straightforward; it uses the PMF
of the random variable subset non empty which has been already established in Theorem
8.

Theorem 14:

` ∀ j,c,k. (1 ≤ (k - i)) ∧ (j ≤ (k - i)) ⇒
(prob bern {s | fst (subset non empty j c (k-i) s) = 1} =

(1 - (1 - (1/&(k-i)))c)).

The next theorem to verify must reduce the probability of a set of independent events to
the product of their respective probabilities. This is expressed in Theorem 15. The proof of
Theorem 15 has required reasoning related to the transformation of probabilistic sets and to
the independence theorem of probability. Under some assumptions, this last theorem trans-
forms the probability of the intersection of two independent events into the product of their
respective probabilities. Besides that, the proof of Theorem 15 has needed another impor-
tant intermediate theorem which gives the PMF of the HOL function compl intersection.
The function product val, used in Theorem 15, is a recursive function giving the product
of a sequence of elements of the same function.

Theorem 15:

` ∀ i c k. (2 ≤ k) ∧ (1 ≤ (k - i)) ⇒
(prob bern {s | fst (final set i c k s) = T} =

product 0 i (λj. (1 - (1/&(k-j)))c)×(1 - (1-1/&(k-i))c)).
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Our results demonstrate the effectiveness of the approach based on theorem proving
for the verification of randomized scheduling algorithms for WSNs. We have been able to
demonstrate the most important probabilistic properties of interest associated to the network
coverage intensity. The capabilities of theorem proving certify that the obtained results are
100% accurate; a novelty which is not available in simulation. This accuracy is due to the
rigorous mathematical notations and the inherent soundness of the approach.

While other techniques like simulation make restriction on the number of simulated nodes
or the number of disjoint subsets, our results are completely generic. These results are in
fact valid for all values of n, k and q. It is clear that other techniques such as simulation can
never have this kind of flexibility. Similarly, due to the high expressibility of higher-order
logic, we have been able to formally reason about statistical properties of the problem that
cannot be analyzed using a probabilistic model checker.

The above mentioned additional benefits, associated with the theorem proving approach,
are attained at the cost of the time and effort spent, while formalizing the randomized
scheduling algorithm and formally reasoning about its properties, by the user. This analysis
consumed approximately 200 man-hours and 1500 lines of HOL code by an expert user. The
fact that we were building on top of already verified probability theory related results helped
significantly in this regard.

5 Related Work

Hurd’s PhD thesis [16] can be considered as a pioneering work in the context of implementing
a theorem proving based probabilistic analysis framework. It presents a methodology for the
formalization and verification of probabilistic algorithms in the HOL theorem prover. Ran-
dom variables are basically probabilistic algorithms and thus can be formalized and verified,
based on their probability distribution properties, by following the methodology proposed
in [16]. In fact, [16] presents the formalization of some discrete random variables along
with their verification, based on the corresponding PMF properties. Building upon Hurd’s
formalization framework [16], the sampling algorithms of few continuous random variables
based on their Cumulative Distribution Function (CDF) properties have been successfully
verified in [12]. For comparison purposes, it is frequently desirable to summarize the charac-
teristic of the distribution of a random variable by a single number, such as its expectation
or variance, rather than an entire probability distribution function. For example, it is easier
to compare the performance of two wireless communication protocols based on the expected
values rather than the CDFs of their message transmission delays. In [12], Hurd’s formaliza-
tion framework has been extended with a formal definition of expectation. This definition is
then utilized to formalize and verify the expectation and variance characteristics associated
with discrete random variables that attain values in positive integers only.
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To show the practical effectiveness of the probabilistic framework, Hurd successfully verify
the Miller-Rabin primality test; a well-known and commercially used probabilistic algorithm
[17]. Recently, the HOL probabilistic theorem proving framework has been greatly enriched
so that it has been efficiently used to verify the stop-and-wait protocol [14], a stuck-at
fault model for reconfigurable memory arrays [13] and the automated repeat request (ARQ)
mechanism at the logic link control (LLC) layer of the General Packet Radio Service (GPRS)
standard for Global System for Mobile Communications (GSM) [15]. In all these case studies,
the authors illustrate the formal verification of some key statistical properties through the
already formalized statistical quantities like the expectation and variance.

Probabilistic model checking can be an alternative solution to probabilistic theorem prov-
ing. It is one of the first formal methods to be used for probabilistic analysis of wireless
systems [29]. It has the same principle as the traditional model checking: the mathemat-
ical model of the probabilistic system is exhaustively tested to check if it meets a set of
probabilistic properties. This technique has been successfully used to validate many aspects
of wireless sensor networks. For example, the probabilistic model checker PRISM [28] has
been frequently used for the verification of MAC layer protocols designed for WSNs. Thus,
this tool has verified the S-MAC [2] and the ECO-MAC [40] protocols. In addition to its
accuracy, the main advantage of probabilistic model checking method is its mechanization.
However, it also suffers from some major shortcomings, such as the common problem of state
space explosion [3] and the inability to reason accurately about statistical properties.

Simulation is the most common technique to perform the analysis of random schedul-
ing algorithms designed for wireless sensor networks. In general, the approach consists in
building a computer based mathematical model of the given algorithm and then evaluating
it through rigorous sampling. Since the scheduling algorithms proposed are probabilistic,
the simulation tools must essentially provide some probabilistic features in order to per-
form realistic simulations. Hence, the random elements have to be modeled by functions
which approximate random variables for probability distributions, and the algorithm to be
evaluated has to be analyzed using computer simulation techniques [4], such as the Monte
Carlo Method [23] . The main idea of this method is to approximately answer a query on a
probability distribution by analyzing a large number of samples. Statistical quantities, such
as expectation and variance, may then be calculated, based on the data collected during the
sampling process, using their mathematical relations in a computer.

In the literature, many works deal with the coverage-based random scheduling algorithm
of [22]. In the original work, the algorithm has been analyzed by a mathematical model
which has been then evaluated on a Java simulator. The same work has been simulated in
MATLAB where the authors have focused on the second part of the algorithm by showing the
efficiency of the proposed extra-on rule [24]. Finally, the work of [20] has tried to enhance the
coverage-based scheduling model by eliminating some blind points. The simulation results
have been made on a Java simulator used in [22]. The authors have shown that they can
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significantly improve the coverage quality of the randomized scheduling. In [32], a similar
scheduling scheme is proposed. The effectiveness of this scheme in terms of energy has been
established by using the simulation tool NS-2. Another probabilistic algorithm proposed
in this context is called the optimal geographical density control (OGDC) algorithm for
WSNs [27]. The authors advocate that the OGDC algorithm can maintain complete sensing
coverage and connectivity of a region based on the nodes scheduling. When simulated in
the NS-2 simulator, the OGDC algorithm has shown its great robustness as it outperforms
all the past algorithms. Nevertheless, OGDC is considered to be very sophisticated because
it has to take into account a lot of geometric information such as the relative location of
each node which is a very costly information in the scope of WSNs. The same OGDC
algorithm has been also simulated and formally validated in the Real-Time Maude [33]
tool where the authors have successfully analyzed the common performance metrics such
as the network coverage intensity and lifetime [27]. The Real-Time Maude tool provides a
spectrum of analysis methods including simulation, reachability analysis and temporal logic
model checking. Although the formal analysis has shown the effectiveness of the RT-Maude
tool within WSNs, two major limitations persist. First, the number of simulated nodes was
limited because of the state-based approach. Second, the probabilistic aspect of the OGDC
algorithm has not been really taken into account. Therefore, the authors of [27] suggest the
use of PMaude [8] as an alternative tool to perform the probabilistic analysis of OGDC.

Due to the inherent nature of simulation coupled with the usage of computer arithmetic,
the probabilistic analysis results attained by the simulation approach can never be termed
as completely accurate. Moreover, the model checking approach usually suffers from the
common limitations cited above. To the best of our knowledge, none of the past works
about the random scheduling algorithm for WSNs or one of its variant have incorporated a
formal probabilistic technique based on model checking or theorem proving. In this paper,
we overcome the limitations of both simulation and model checking techniques by using the
probabilistic framework developed in the HOL theorem prover to validate a variant of the
randomized scheduling of nodes in the context of WSNs.

6 Conclusions

Due to the deployment constraints of WSNs, we are more motivated to provide algorithms
characterized by a probabilistic behavior. Such a characteristic is impossible to cover using
classic validation procedures like simulation, which do not ascertain 100% accuracy. In this
paper, the purpose was to provide reliable validation by using an accurate verification tool,
which is the probabilistic framework developed in HOL. We formally analyzed the coverage
and the average detection delay of a variant of a nodes scheduling algorithm designed for
randomly deployed wireless sensor networks. We particularly verify the expected values of
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the coverage intensity, the upper bound on the total number of disjoint subsets, the lower
bound on the total number of nodes and the average detection delay inside the network.

To the best of our knowledge, this paper presents the first formal analysis of a ran-
domized scheduling problem using a probabilistic formal method. The successful reasoning
about statistical properties clearly demonstrates the practical effectiveness of the proposed
approach compared to probabilistic model checking, where such a feature is not available.
Once the HOL probabilistic framework is enriched with possibilities to reason about statis-
tical properties of multiple continuous random variables, it will be promising to extend the
formal analysis of the coverage-based scheduling algorithm. We can for example think to
formally verify the network lifetime which is a crucial aspect in the WSNs context or the
impact of clock asynchrony on the coverage quality.
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