

I. Context:
This paper entitled “Methodology of conception of

adaptive multi-constraints system” talks about the adopted
methodology to design adaptive multi-constraints system . This
system uses the Kais Loukil and Al [1] approach and extends it
to run time reconfigurable architectures. This paper is
composed by a state of art, the adopted approach, the realized
work and finally the future tasks to do.

II. State of Art:
The Embedded multimedia system emerges in different

fields. The emergency of multimedia applications particularly
in mobile embedded systems puts new challenges for the
design of such systems.

The major difficulty is the embedded system’s reduced
energy and computational resources that must be carefully used
to execute complex applications (Video flow, 3D applications,
Video compression applications…) often in unpredictable
environments (dust, vibration…). The augmented reality is a
very promising 3D embedded multimedia application. It’s
based on the addition of specific 3D’s animations on a video
flow.

 Many fields are concerned by the 3D multimedia
application.

In industry, we use it in conception plan of architectural
project such France’s Nice Metro [2] project. Many other
industrial examples can be cited such as automotive
applications. The whole production chain is created virtually
and the technicians are formed to understand how to do their
job properly. They learn how to find different components and
how to add or retire them. It’s also used in reeducation and
health domain. The simulation of the chirurgical operation
helps doctors to the application of medical theory.

In personal field, the applications are different. It touches
the video games in which the user becomes an entire part of the
game. He’s projected in an immersion world and he’s reactive
with the game environment. Many wars, sports, driving and
RPG games are used the AR to make their game real.[3]

The chosen application introduces a 3D object to a video
flow. This object is similar to the added objects in Virtual

Reality. The described work concerns the 3D objet. We have to
adapt our object to the application different constraints.

In the next paragraph, we’ll talk about the adopted
approach.

III. Adopted approach :
In this work as cited previously, we were inspired by the

Kais Loukil & Al approach. The chosen application for this
work is based on adding a 3D object on a video flow.

In his approach, Kais Loukil used a cross layed adaptation
as described in figure 1.

Figure 1: Cross Layer adaptation approach

In his approach, Loukil the global manager coordinates
between the hardware, OS and application layers. The local
manager is coordinating between the application and the OS
layer to guarantee the real time constraint. The task adaptor
adjusts the parameters or the algorithm of the task. The OS
adaptation adjusts the number of affected CPU cycles for each
task while the architecture adaptor deals with the change of
hardware architecture system.

The database of the configurations contains a set of
characterized configurations (hardware or software) for our
system. [1]

We need to add a network adaptation. Due to the
environmental noises, we can have network problems. This
problem consists on the broadband decrease. To remedy to this
problem the use of a dynamically partial reconfiguration is the

Methodology of conception of adaptive multi-
constraints system

 Tarek FRIKHA, Nader BEN AMOR, Ines

BENHLIMA, Kais LOUKIL, Mohamed ABID
Sfax University, National Engineering School of Sfax

CES-Laboratory
Sfax TUNISIA

tarek.1982@gmail.com

Jean-Philippe DIGUET
Lab-STICC

University Bretagne Sud,
Lorient, FRANCE

jean-philippe.diguet@univ-ubs.fr

technical adequate chosen network layer. One of the most
important problems of the Loukil &Al approach is that he had
to implement all the bitstreams in the FPGA. These
implemented architectures requires many FPGA spaces and
consumes energy that’s why we have to use an architecture
based on dynamically partial reconfiguration to optimize the
consumptions.

IV. The realized work:
a. The adapted architecture:

The virtual reality application which is the chosen
application consists on adding a 3D object to the video flow.
This application will be finalized by a demonstrator.

This demonstrator is composed by two parts: a transmitter
and a receiver. A camera is used for video acquisition. This
camera transmits a video flow to the transmitter. The
transmitter is composed of a video flow transformation bloc
and a MJPEG coder (embedded in a first ML 507 FPGA
board) which is used to compress the video. The 3D
animations specifications are multiplexed with the encoded
video. They are sent over the TCP IP network using an XML
file. At the reception, the video is decoded; 3D animations are
computed using XML specifications and mixed with the
decoded file. The figure 2 reperesents the 3D adaptation
technique. According to the 3D object characteristics we add
the appropriate hardware blocs. The final data are saved on a
memory blocs. The blocs are the geometric shader and the
vertex shader. The 3D application characteristics are described
in the next part.

SW : Software, HW : Hardware, G Geometric, DP: Dessine

Polygon

Figure 2: Architecture used accelerators

b. The 3D application characteristics:
We use a 3D application available as a C code. In this

application the object rotates around different axis. Due to its
complexity, the software application version can be displayed
but are so slow.

 To hardware candidate functions, we analyze the functions
and particularly used arithmetic operations that consume the
major part of execution time.

The 3D application study divides the function in two
important parts:
• Geometric shader: describes the geometrical

characteristics such as rotations, translations, scale …
• Vertex shader: describes how to fill the pixel colors.

The figure 3 represents the application code functions. The

C code is profiled to know which functions are the greediest in
term of time and cycles consumption. After this profiling we
found that calculnormal (Normal) et Transformation
(Transform), dessine poly (DP) and barycentre (bary) are used
3*nb of polygons time and are have the most important time of
execution. That’s why we’ll transform them into hardware
accelerators. These accelerated functions are reconfigured
dynamically depending on the 3D application characteristics.
The future works will talk about the dynamically partial
reconfiguration.

Figure 3: 3D application functions figure

3D 3D
 adaptation

Geometric shader

SW
G1

G2

DP

 HW

 Geormetric shader

SW
G1

G2

DP

 HW

Vertex Shader

SW
DP

DP

DP

 HW

Saved data

Geometric shader

Preparepal

Vertex shader

Ident_matrice

Echelle

Ident_matrice

Mult_matrice

Copie_matrice

Copie_matrice

Copie_matrice

Rotation1
Ident_matrice

Mult_matrice

Copie_matrice

Copie_matrice
Ident_matrice

Mult_matrice

Copie_matrice

Copie_matrice
Rotation2

Translation

Ident_matrice

Mult_matrice

Copie_matrice

Copie_matrice

Copie_matrice

Échelle

Ident_matrice

Mult_matrice

Copie_matrice

Copie_matrice

Copie_matrice

es_perspectiveesFrustum

Mult_matrice Copie_matrice

Transformation

Vectoriel

Normalise
Calcnormal

Dessine_objet
Ordre

Scalaire
dessine_poly

Z_buffer

Virtuel
barycentre

Copie_matrice

Load asc

V. The future work:
In this section, we describe the proposed reconfigurable

architecture. This architecture will be implemented on the
FPGA. We’ll compare the static architecture with the dynamic
one.

The adopted reconfigurable architecture is described in the
figure 5. There are 3 hardware accelerator zones.

The zone 1 (Z1) contains Normal #1 and Transform #1 as
described in Section III, C and b). These functions represented
the geometric shader. This zone is a permanent one. This zone
is attached to the microblaze via FSL. The data will be sent to
the zone 2 or zone 3 for vertex shading. The microblaze (µB) is
the Xilinx softcore.

The zone 2 is the reconfigured one. It can be used for not
only geometric shader but also a vertex one. The zone 2 is like
the zone 1 if the application contains many rotations,
translations and scaling data. The used FIFO becomes virtual.
We don’t need to use it. This zone can be also a vertex
pipeline. This pipeline needs a FIFO to save the data on it. The
Reconfigurable zone needs to have the same input and output
despite the configuration type. That’s why the FIFO is always
used in the second zone. This zone is also connected to the
microblaze via FSL. If the Z2 is similar to Z1 (moved object),
the FSL send data to microblaze to be treated after that by the
zone 3 (Z3). If the Z2 is similar to Z3 (textured object), the
output are saved on FIFO.

The third and final zone contains three blocks. The
barycenter block. This block determinates the input of the
Dessine-Poly (DP) block. These data are saved on FIFO to be
ready for the DP treatment. The Z3 or/and Z2 results are saved
after treatment on a FIFO. The two blocks can be used in
parallel. For this reason we use the FIFO to save data.

The µB*, is used to transfer data from FIFO to VGA IP (IP
permitting to display the saved data in the screen) via the
Processor Local Bus.

Figure 5: Reconfigurable proposed architecture

This architecture will be implemented to obtain a
dynamically partial optimized architecture.

VI. Conclusion:
In conclusion, this paper represents our work which is

based on dynamically partial reconfiguration architecture. This
architecture is optimized to make us obtain a 3D object which
is implemented on a video flow with 25 frames by second. To
transfer this data on the network, we’ll need to compress it
using the H264 algorithm.

References:
[1] Phd, Kais Loukil, “Approche de gestion de performances/contraintes

pour les systèmes embarqués temps réel”, december 2011
[2] http://www.enodo.fr
[3] P. Fuchs, B. Arnaldi, and J. Tisseau. La réalité virtuelle et ses

applications,chapter 1, pages 3–52. Les Presses de l’Ecole des Mines de
Paris, 2003.

µB

I Normal #1

II Transform #1

III Normal #2

IV Transform #2

Z1

Z2

V Bary # 1 FIFO VI D.P # 1 Z3

III Bary # 2 FIFO IV D.P # 2 Z2

F
I
F
O

F
I
F
O*

µB*

PLB

IP VGA

FSL 1

FSL 2

FSL 1

FSL 3

FSL 2

