
Usability Driven Model Transformation

Lassaad Ben Ammar
University of Sfax, ENIS, CES Laboratory

Soukra km 3,5, B.P: 1173-3000
Sfax TUNISIA

benammar_lassaad@hotmail.com

Adel Mahfoudhi
University of Sfax, ENIS, CES Laboratory

Soukra km 3,5, B.P: 1173-3000
Sfax TUNISIA

adel.mahfoudhi@fss.rnu.tn

Abstract—Model Driven Engineering (MDE) is a software ap-
proach which promotes the use of models and model transforma-
tions as primary artifacts in the development process. Recently,
there has been wide interest in applying MDE approach in the
Human Computer Interaction (HCI) field. It has been proved that
MDE is an appropriate technique to generate as automatically as
possible the final user interface from the conceptual model. Given
a source model, there may be several ways to transform it into
target model. Alternative target models are equivalent from the
functional perspective and may differ in their usability attributes.
Driven the model transformation process by the usability prop-
erties is as yet unexplored territory. This study attempts to enter
this territory by showing how the control of the selection of the
alternative transformations based on the desired usability criteria
can be an appealing way to ensure the usability of the generated
artifact.

Keywords—User Interface; Usability Driven Model Transfor-
mation; Parameterized Transformation; Design Decision Control

I. I NTRODUCTION

In recent years, the software development is moving to-
wards Model Driven Development (MDD) process. It provides
an automatic process that builds the software system based
on the construction and maintenance of models at several
abstraction levels to drive the development process [1]. Within
this context, the Model Driven Engineering (MDE) initiative
has attracted the interest of the Human Computer Interaction
(HCI) community. It has gained a wide acceptance as an
appropriate approach for the development of user interface
which are able to adapt their layout with respect to the context
of use wherein the interaction takes place [2]. Calvary et al.
[3] used the termMulti-target to indicate this kind of user
interface.
Usually, the MDE development process transforms a platform-
independent model (PIM) into one or more platform-specific
models (PSM), which are transformed into code (code model
- CM) [1]. So, a model transformations process basically
converts one model (source model) to another (target model).
There are several ways to transform a source model into a
several target models which may be equivalent from the func-
tional perspective but may differ in their usability. Therefore,
there is a need to identify those transformations that produce
models with the desired usability attributes.
To address this issue, this paper presents an approach for
driven the model transformations process by usability criteria.
The selection of the appropriate alternatives can greatly differ

depending on the usability criteria that are chosen.
The proposed approach is composed of two stages: the rule
definition stage and the transformation stage. During the first
stage, the designer establish the relation between the alterna-
tives transformation rules and the usability criterion which are
able to meet. In the second stage, the model transformations are
executed to ensure the usability of the user interface artifact.
The aim of the proposed approach is to provide a practical
support to improve current model transformations practices
targeting the user interface adaptation to the context of use
where usability issues are neglecting.
We structure the remainder of this paper as follows. Firstly, a
brief look to the related works is presented in section 2. Next,
section 3 details the proposed approach. Section 4 shows a case
study illustrating the application of the proposed approach.
Finally, the proposed approach is briefly outlined and future
perspectives are given.

II. RELATED WORK

This section presents an overview of the most cited
research studies in the literature that deal with usability in an
MDE approach. The analysis of these proposals gives us a
framework to propose our contribution.
In fact, recent studies have begun to explore the problem
of integrating the usability issues in an user interface
development process which follow MDE principles. Some
proposals have demonstrated that assessing usability early
at the development process (since the conceptual model) is
an appealing way to ensure the usability of the generated
user interface. We quote for example the proposition of [4]
and that presented in [5]. The usability is evaluated since
the conceptual model to detect potential problems. Then,
some changes are recommended at the design. By means
of model transformation and explicit traceability between
models, the performed changes directly reflected into the
intermediate artifact avoiding usability problems in any
future user interface obtained as part of the transformation
process. Besides the lack of details about how to measure the
usability attributes and to interpret their scores, these methods
exclusively focus their research efforts on the evaluation and
ignore the improvement issue.
The proposal of [6] is among the pioneers that address the
usability issues during the adaptation process. It exploits
the mapping notion to control the user interface adaptation
according to explicit usability criteria. The transformation
was done by pattern to ensure homogeneity-consistency.
This proposition lacks of any detail about its feasibility and
does not specify the relation between usability attributes and978-1-4673-5637-4/13/$31.00c© 2013 IEEE

transformation rules.
Other proposals evaluate the usability of a user interface
generated with an MDE approach. We quote for example
proposals presented in [7], [4] and [8]. The usability evaluation
is based on the system code and on the generated interface.
This makes their application during the model transformations
process difficult.
Considering the research works just mentioned, it becomes
clear that drive the model transformation process by usability
criteria is still an immature area. Therefore many more
research works are needed. In order to covers this need, the
present paper goes beyond the current proposals and shows
how model transformations can be a suitable environment to
ensure the usability of the generated artifact. By analogy to
some attempts to drive the model transformation by others
quality attributes as mentioned in [9] and [10], we propose
to drive the model transformation process by the desired
usability criteria. A set of practical usability criteria is inserted
as a parameter to the transformation engine. The objective is
to make the selection of the alternative transformations based
on these criteria.

III. PROPOSED METHOD TO ENSURE USABILITY

In a model driven development approach, models and
model transformations are the primary artifact of the devel-
opment process. The mode transformations execution takes
as input a model transformation definition. The model trans-
formations definition contains transformation rules that relate
constructs from the source model to constructs in the target
model. When a construct from the source model have more
than one possible transformation we talk about alternative
transformations. We propose to select the adequate alternative
transformations depending on the usability criterion which is
able to meet (maximize).

A. Overview

Our proposal extends the model transformation process
proposed in the Cameleon framework [3]. In fact, we opted
for the extension of the Cameleon framework since it present
a unifying framework for the development of multi-target user
interface. The applicability of our method is shown in this
paper through the Cameleon-compliant method presented in
[11]. The choice of such method is motivated by two main
criteria. It follows the MDE principles and uses the BPMN [12]
notion to define the user interface models. The BPMN notation
is built on the Petri networks, which allows the validation of
the user interface models.
The Cameleon framework initiates three types of model
transformations: reification, translation and abstraction. In the
present paper, we focus our interest on the reification process.
In particular, we concentrate on the reification step which
takes as input the Abstract User Interface (AUI) model and
generate the Concrete User Interface (CUI) model (AUI2CUI).
We believe that our proposal can be extended to covers the
others step of the reification process.
The AUI2CUI reification step associates to each Abstract
Interaction Object (AIO) coming from the source model a
Concrete Interaction Object (CIO) in the target model. Given
an AIO, there may me several correspondent CIO allowing

the same functionality but with different usability properties.
For example, user interfaces of Fig. 1 are equivalent from
the functional perspective. However, from the non-functional
perspective they do not satisfy the same usability criteria.
Solution b) allows better user guidance than solution a). It
displays the measurement unit of the temperature and the range
of accepted values. Hence, thepromptingproperty is well ad-
dressed (satisfied) in solution b). In solution c), user is prevent
to make error (i.e. typos) while entering the temperature value.
Thus, theerror preventionusability property is well fulfilled
in solution c).

Fig. 1. Three functionally-equivalent user interface that differ from the set
of usability criteria used to produce them.

It becomes clear that given a construct from the source model
there may be several alternative transformations. Each one
contributes to reach (maximize) a specific usability criterion.
Starting from this report, we adapt the reification process of the
Cameleon framework by adding a set of usability criteria on
which the selection of the adequate alternative transformations
will be done (see Fig. 2).

Fig. 2. The Extended Cameleon Framework.

The basic idea of our proposal is to insert a set of practical
usability criteria (properties) as a parameter to the model
transformations engine during the specification of the trans-
formation rules. To do this, we reformulate the parameterized
transformation principles initiated by [13]. It consists on a
model transformation based on a parameter. The aim is to
improve new functionalities (values, properties, operations)

or to change the application behavior (activities). For that
purpose, the designer has to specify the parameter which is
intended to be inserted during the transformation definition
phase. In the present paper, the parameter is a usability model
which contains the desired usability criteria to be satisfied
(maximized) by the generated model.
Next, we detail the main activities of the proposed model
transformation technology.

B. USABILITY CRITERIA SPECIFICATION

Usability is a difficult concept to quantify. It has several
dimensions and several factors seem to impact upon it. Previ-
ous studies [14], [5], [15] have identified a number of factors
that contribute to usability of the user interface.
In this paper, the problem we intend to address is to isolate
the most important of these criteria and work out a means of
characterizing the impact of each of them to the alternative
transformation selection. During the extraction of the most
relevant usability criteria, the relation between each of them
and the context features such as the user experience or the
screen size of the platform being used is kept in mind. As is
already mentioned, the objective is to enhance the usability of
a multi-target user interface during the development process.
Moreover, we only select usability criteria which can be
measured quantitatively and can be modeled in a formal way.
This will allow the full automation of the development process.
We note that the user experience is closely related to usability
criteria that should increase the user guidance means available
in the user interface. Hence, usability criteria such asprompt-
ing anderror preventionare crucial to take into consideration
during the user interface design.
Interactive system is a system that allow certain level of control
by the human agent. Hence, the computer must process only
actions requested by the users and only when requested to do
so. Therefore, usability criterion such asexplicit user action
is crucial and must be considered.
The screen size of the interactive platform (device) may affect
some usability criteria such as theinformation densityand the
brevity. A large screen size is generally characterized by a
high information density and low brevity. Thus, it is essential
to investigate the impact of such usability criteria in our case.
It should be noted that although we only used few usability
criteria to better explain their impact to the model transforma-
tion, our model can be extended to covers many more usability
criteria in further works.
In order to formalize our proposal, we propose a usability
metamodel1 which is composed of hierarchy with two levels:
subcharacteristics and attributes.

• Subcharacteristic: A set of abstract concept used to
define usability.

• Attribute: An entity which can be ensured during the
model transformation process.

It is compliant with the ISO/IEC 9126-1 model [16]. In fact,
the ISO/IEC 9126-1 usability model deals with the charac-
teristics of the product itself and can be used to evaluate the
intermediate artifacts. Fig. 3 show our proposal metamodel.

1A metamodel is a language that can express models. It defines the concepts
and relationships between concepts required for the expression of the model.

Fig. 3. The Proposed Usability metamodel.

The next section shows the impact of the specified usability
criteria to the transformation alternative selection according to
the underlying method.

C. USABILITY AND THE DESIGN DECISIONS CONTROL

We used Kermeta (Kernel meta-modeling) [17] as a trans-
formation language to implement our approach. It allows the
description of both structure and behavior of models.

1) Prompting.: The Promptingusability property refers to
the means available to advise, orient, inform, instruct, and
guide the users throughout their interactions with a computer.
A simple example of the prompting property is illustrated by
the addition of specific information to inform user about the
required format while specifying data. The Listing 1.1 shows
the kermeta code of our proposition to ensure the prompting
property.

o p e r a t i o n U I F i e l d T r e a t m e n t (AUIModel : A b s t r a c t U s e r I n t e r f a c e ,
u i c : Co l lapsedUIUn i t , uiw : UIWindow) i s do

va r lnk : Link i n i t g e t A l l L i n k s (AUImodel) . d e t e c t { c | c .
u icomponent . name == u i c . name}

va r componen tna tu re : Na tu rei n i t u i c . n a t u r e
i f (componen tna tu re == Natu re . S p e c i f y)t hen

c r e a t e F i e l d I n (uiw , u ic , l nk)
i f (P rompt ingSuppor t (paramModel)t hen

c r e a t e S t a t i c F i e l d (uiw , u ic , l nk . name , lnk .
u i componen tanno t . d a t a f o r m a t)

e l s e
c r e a t e S t a t i c F i e l d (uiw , u ic , l nk . name ," ")

end
end

Listing 1. ThePrompting implementation

Having restored the annotation attached to the abstract compo-
nent through the linklnk, all information about the component
(name, nature, required format, etc.) is available. If the in-
put abstract component has the natureSpecify, the program
associates with this component and edit field and a label in
the concrete user interface model. If the prompting property
is required in the target model, the program adds the specific
information (the required data format in the example) to the
label.

2) Error Prevention.:TheError Preventionproperty refers
to the available means to prevent data entry errors. We propose
to create a dropdown list (or radio button) instead of an edit
field when the data to be inserted has a set of possible values.

i f (E r r o r P r e v e n t i o n S u p p o r t (paramModel)t hen
i f (l nk . u i componen tanno t . conceptNB > 5)then
crea teDropDownL is t (uiw , u ic , l nk)
e l s e

from var i : I n t e g e r i n i t 0 u n t i l i == conceptNB
loop

c r e a t e R a d i o B u t t o n (uiw , u ic , l nk)
end

end
end

Listing 2. TheError Preventionimplementation

The number of the manipulated concept is the main factor
that affects the choice of the target element. If the number
of manipulated concepts is greater than a threshold (5 in the
example) the input element will be realized by a dropdown
list. Otherwise it will be realized by a set of radio button.

3) Information Density.:The Information Densityrefers to
the degree in which information will be display to the user
in each interface. User interface should not be too dense.
Information density can be measured with respect to the total
number of interface elements which should not exceed a
threshold. Having a total number that exceed the threshold,
we propose to associate a window to each unit suite2 which is
usually realized by a panel. In the kermeta code of the Listing
1.3, we used an example of 20 elements as a threshold [5].

va r T o t a l e l e m e n t : I n t e g e r i n i t I n t e g e r . new
T o t a l e l e m e n t := NBelemnt (AUImodel)
i f (S u p p o r t I n f o r m a t i o n D e n s i t y (paramModel))t hen

i f (To ta l e l emen t >20) then
u ig . u i u n i t s u i t . each { u i u s |
va r uiw : UIWindow i n i t UIWindow . new
uiw . name := u ig . name
r e s u l t . uiwindow . add (uiw)
u i u s . c o l l a p s e d u i u . each { cu iu | c r e a t e U I F i e l d (

inputModel , cu iu , uiw) }
}

end
end

Listing 3. TheInformation Densityimplementation

4) Explicit User Action.: The Explicit User Actionrefers
to the relationship between the computer processing and the
actions of the users. The computer must process only actions
requested by the users and only when requested to do so. For
example, each data entry (edit field, radio button, check box,
dropdown list) should be ended by an explicit validation action
by the user. The Listing 1.4 shows the implementation such
property to the check box element.

o p e r a t i o n createCheckBoxP (u ip : UIPanel , u i c : Co l lapsedUIUn i t
, l nk : Link) i s do

va r dd l : UICheckBox i n i t UICheckBox . new
dd l . name := lnk . u icomponen tanno t . d a t a
dd l . i t e m s := lnk . u icomponen tanno t . enumValues
u ip . u i f i e l d P . add (dd l)
i f (S u p p o r t E x p l i c i t U s e r A c t i o n (paramModel))t hen

c r e a t e B u t t o n P (uip ," Ok")
end

end

Listing 4. TheExplicit User Actionimplementation

2unit suite: a set of interaction elements grouped in logical groups from the
interaction perspective

5) Brevity.: The Brevity concerns workload with respect
to the number of step (keystrokes) necessary to accomplish a
goal or a task. The reduction of the effort needed to perform a
task can be materialized by the elimination of the navigation
between windows with respect to the relationship. If the
relationship is «simultaneous» both group (source and target)
will be concretized by a panel in the same window. If the
relationship is «sequential» the target group will be concretized
by a panel in the window associated to the source group.

i f (S u p p o r t B r e v i t y (paramModel))t hen
var r s p : U I R e l a t i o n S h i p i n i t U I R e l a t i o n S h i p . new
r s p := AUImodel . u i s p a t i o t e m p o r a l r e l a t i o n s h i p . d e t e c t { r s | r s

. s o u r c e == u ig . name}
i f (r s p . t ype . e q u a l s (" S imu l t aneous")) t hen

var uiw : UIWindow i n i t UIWindow . new
uiw . name := " Genera l Window"
r e s u l t . uiwindow . add (uiw)
va r s r c p a n e l : UIPanel i n i t UIPanel . new
s r c p a n e l . name := u ig . name
uiw . u i p a n e l . add (s r c p a n e l)
va r t r g p a n e l : UIPanel i n i t UIPanel . new
t r g p a n e l . name := r s p . t a r g e t
uiw . u i p a n e l . add (t r g p a n e l)

e l s e
va r uiw : UIWindow i n i t UIWindow . new
uiw . name := u ig . name
r e s u l t . uiwindow . add (uiw)
va r t r g p a n e l : UIPanel i n i t UIPanel . new
t r g p a n e l . name := r s p . t a r g e t
uiw . u i p a n e l . add (t r g p a n e l)

end
end

Listing 5. TheBrevity implementation

D. Discussion

The examples already mentioned are intended to give a
clear outlook to the impact of some usability criteria on the
selection of the adequate design decisions (alternative transfor-
mations). The objective is to ensure that the generated model
includes concrete component fulfilling the desired usability
properties.
The last stage in our method which is the execution of the
model transformations is illustrated using a case study in the
next Section.

IV. CASE STUDY

This section investigates a case study in order to illustrate
the feasibility of our proposal. The purpose is to allow us
to learn more about the potentialities and limitations of our
proposal. The research question addressed by this case study
is: Does the proposal ensures the usability of the generated
user interface artifact?
The object of the case study is a Tourist Guide System (TGS).
The scenario is adapted from [18]. The mayor’s office of
a touristic town decides to provide visitors a tourist guide
system. The system allows the visitors to choose the visit
type (tourism, shopping, work, etc.).
During the visit, the TGS offers tourists several choices of
visit traverses, indicate the paths to follow and provides
information about the nearby points of interests. Tourists can
use the system to find places (restaurant, hotel, etc.) and know
the itineraries of visits.
The system will run on terminals of visitors (laptop, PDA,
mobile phone, etc.). Therefore, the user interface must adapt
its layout to the context of use. As example of the context
of use elements we quote the computing devices being used,

the tourist language, preference, etc. It should be able also to
bring a feeling of comfort and ease of use in order to increase
the user satisfaction degree.
Since the tourist guide system is large, we focus our interests
in the generation of the concrete user interface for the «Search
itinerary» task. We suppose to have the abstract user interface
from Fig 4 as a result of the transformation of the task
model «Search itinerary» following the model transformation
explained in details in [11]. The result of the transformation is
an XML file which is in accordance with the AUI metamodel.
To better clear up the user interface layout, we develop an
editor with the Graphical Modeling Framework (GMF) of
eclipse. The sketch of the user interface presented by the
editor is shown in the right part of Fig. 4.

Fig. 4. Abstract User Interface.

The abstract user interface contains aUIGroup called «Search
itinerary» which gives access to twoUIUnitSuit called «Enter
Coordinates» and «Result». The «Enter Cordinates» container
gives access to specify the starting point and the destination
point. The tourist should choose the category (Address,
Landmark, and Station) before specifying the starting or the
destination point. The validation of the coordinates allows
tourist to choice the planning (Pedestrian, Cyclable, Vehicule,
Metro, Train, and Bus). After that, the TGS system shows the
list of possible itineraries. The TGS system can shows the list
in a map.
To better explain our proposal, we start by an ordinary
transformation which takes as input the abstract user interface
model. This transformation allows the creation of the concrete
user interface model which illustrated in Fig. 5. It should be
noted that this transformation was done taken into account
a context of use defined by the analyst. The context is
the following: a laptop as an interactive device (medium
screen size), an Englishman as a tourist with a low level
of experience. After evaluating the concrete user interface
and detected potential problems, we execute a second
transformation parameterized by desired usability criteria.
Although the generated concrete user interface fulfilled their
objectives, it does not satisfy some usability properties.
Usability properties such asInformation Densityand Error
Preventionare not supported. So, the second transformation

Fig. 5. Concrete User Interface (Large screen size).

will be parameterized by a usability model that conveys these
criteria.
As already mentioned, the take into account of the
Error Prevention is materialized by the association
of UIDropDownList with the «Choose Category»
CollapsedUIUnit instead ofUIRadioButton. This remodeling
of the user interface model reduces the total number of
concrete components in the concrete model. Hence, both
Error Prevention and Information Densityare increased by
this remodeling.
The generated concrete model is shown in Fig. 5.

Fig. 6. Usable Concrete User Interface for large screen size.

The migration to the PDA platform «iPAQ Hx2490 Pocket
PC» raises a new redistribution of the user interface elements.
The small screen size (240x320) is not sufficient to display
all information. TheInformation Densityis the main usability
property that must be taken into account in this case. The
number of the concrete component to be grouped is limited to
the maximum number of concepts that can be manipulated (5
in the case of «iPAQ Hx2490 Pocket PC»). Fig. 7 shows the
deduced concrete user interface for the underlying platform.
We note that the take into account of theInformation Density
property has influenced negatively theBrevity property. This
raises a new issue about the contradictory effect of the
usability properties. In addition, thresholds considered to
select between alternative transformations are also influenced
by the screen size. For example, the threshold used for the
Information Densityis influenced by the screen size of the
platform being used and the maximum number of manipulated
concept. Therefore, it is recommended to conduct many more
experiments in order to produce a repository that relate
each usability property with the context feature which may
influence it.

Fig. 7. Usable Concrete User Interface for small screen size.

Learned Lesson.
The case study has been useful in that it has allowed us to
learn more about the potentialities and limitations of our
proposal and how it can be improved.
The usability driven model transformation process may
be an appealing way to enhance the usability during the
transformation process. It is highlighted that the selection
of alternative transformations based on the usability criteria
they are able to meet is an appealing way to ensure that the
generated artifact contains components that fulfil (maximize)
these criteria.
The aim of this paper is to show the feasibility of applying
our proposal in an MDE approach. The accuracy is the
main question to solve in further works. The thresholds
are extracted from existing studies that does not take into
account the context variation. For example, the information
density indicators are strongly influenced by the screen size.
Therefore, many more experimentations are needed in order
to propose a repository of thresholds in several cases (medium
screen size, small screen size, large screen size). The same
things for other metrics which are influenced by the context
variation.
Another important aspect which should be solved is the
contradictory affect of usability attributes. For example, for
computing platform with small screen size the information
density and the brevity has a contradictor affect. Increasing
the information density will decrease certainly the brevity
attribute. Therefore, many more experiments are needed to
provides a catalog which can guide the analyst about the most
relevant usability attributes to consider during the usability
specification step.
Finally, the case study was very useful since it allows
highlighting the benefits and limitations of our proposals. It
illustrate the feasibility of our proposal; We can state that the
method presented in this paper can be a building block of a
model transformation technology where the usability criteria
are taken into account during an adaptation process of a user
interface to the context of use wherein the interaction takes
place.
We believe that our contribution can be a building block to
provide a practical support for current model transformations

technologies targeting the user interface adaptation to the
context of use where usability issues are neglecting.

V. CONCLUSIONS AND FUTURE WORK

In this paper, an extension of the Cameleon reification
process is presented. The main motivation of the extension
is to keep in mind usability issues during the transformation
process. The objective is to ensure that the generated user
interface fulfill the desired usability properties. To reach this
objective, we build our proposal on the parameterized transfor-
mation technique. In such transformation, a parameter model
is required to communicate the usability requirement. The
specification of the transformation rules is made up follow-
ing the desired usability properties. Consequently, the design
decisions are controlled by the desired usability properties. The
selection of the adequate alternative transformations depends
on the usability criteria we want to maximize in the generated
artifact. The case study presented is useful since it highlight
the benefits and limitations of our proposal. We argue that
our proposal provides a practical support to existing tendency
addressing usability treatment during the development process.
The usability driven model transformation concept initiated
in the present paper is the main advantage of our proposal
if comparing with existing one. The model transformations
definition is accompanied by a proper level of detail. The
execution of the model transformations is illustrated through
a practical case study. However, this cannot hide the limita-
tions of our proposals which are generally raised during the
execution of the case study. We can note mainly the selection
of multiple usability attributes which are not compatible and
have a contradictory effect.
Several research studies can be considered as a continuation of
this work. As an example, further research works are intended
to perform an automatic evaluation process of the intermediate
artifacts in order to detect potential usability problems. To
do that, we have to propose a consolidated usability model
gathering all properties which can influence the usability of a
user interface. Usability attributes are intended to be evaluated
at the intermediate artifact. Thus, only quantitative measures
are needed. This can help in the formalization of the usability
model in order to automatically evaluate the intermediate
artifact. The interrelation between usability properties and the
contradictory effects of properties can also be targets of attack
for future work. We have to think about usability properties
which can be inserted in the others level (from Task & Domain
to AUI and from CUI to FUI) of the Cameleon framework.

REFERENCES

[1] D. C. Schmidt, “Model-driven engineering,”IEEE Computer,
vol. 39, no. 2, February 2006. [Online]. Available:
http://www.truststc.org/pubs/30.html

[2] J. Coutaz, “User interface plasticity: Model driven engineering to the
limit!” in ACM, Engineering Interactive Computing Systems (EICS
2010) International Conference. Keynote paper.ACM publ., 2010,
pp. 1–8, keynote paper.

[3] G. Calvary, J. Coutaz, and D. Thevenin, “A unifying reference
framework for the development of plastic user interfaces,” in
Proceedings of the 8th IFIP International Conference on Engineering
for Human-Computer Interaction, ser. EHCI ’01. London, UK,
UK: Springer-Verlag, 2001, pp. 173–192. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645350.650727

[4] S. Abrahão, E. Iborra, and J. Vanderdonckt, “Usability evaluation of
user interfaces generated with a model-driven architecture tool,” in
Maturing Usability, 2008, pp. 3–32.

[5] J. I. Panach, N. Condori-Fernández, T. E. J. Vos, N. Aquino, and
F. Valverde, “Early usability measurement in model-driven develop-
ment: Definition and empirical evaluation,”International Journal of
Software Engineering and Knowledge Engineering, vol. 21, no. 3, pp.
339–365, 2011.

[6] J.-S. Sottet, G. Calvary, J. Coutaz, and J.-M. Favre, “Engineering
interactive systems,” J. Gulliksen, M. B. Harning, P. Palanque, G. C.
Veer, and J. Wesson, Eds. Berlin, Heidelberg: Springer-Verlag, 2008,
ch. A Model-Driven Engineering Approach for the Usability of Plastic
User Interfaces, pp. 140–157.

[7] N. Aquino, J. Vanderdonckt, N. Condori-Fernández, O. Dieste,
and O. Pastor, “Usability evaluation of multi-device/platform
user interfaces generated by model-driven engineering,” in
Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement. New York,
NY, USA: ACM, 2010, pp. 30:1–30:10. [Online]. Available:
http://doi.acm.org/10.1145/1852786.1852826

[8] A. Fernandez, E. Insfran, and S. Abrahão, “Integrating a usability
model into model-driven web development processes,” inProceedings
of the 10th International Conference on Web Information Systems
Engineering, ser. WISE ’09. Berlin, Heidelberg: Springer-Verlag, 2009,
pp. 497–510.

[9] M. Matinlassi, “Quality-driven software architecture model
transformation,” in Proceedings of the 5th Working IEEE/IFIP
Conference on Software Architecture, ser. WICSA ’05. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 199–200. [Online].
Available: http://dx.doi.org/10.1109/WICSA.2005.56

[10] E. Insfran, J. Ángel Carsí, S. Abrahão, M. Genero, I. Ramos, and
M. Piattini, “Towards quality-driven model transformations: A repli-
cation study,” 2008.

[11] W. Bouchelligua, A. Mahfoudhi, N. Mezhoudi, O. Dâassi, and M. Abed,
“User interfaces modelling of workflow information systems,” inEO-
MAS, 2010, pp. 143–163.

[12] “Bpmn: Business process modeling notation version 1.0.
(2004). availabe: http://www.bpmn.org.” [Online]. Available:
http://www.bpmn.org

[13] S. Vale and S. Hammoudi, “Context-aware model driven development
by parameterized transformation,” inProceedings of the First Interna-
tional Workshop on Model Driven Interoperability for Sustainable In-
formation Systems (MDISIS’08) held in conjunction with the CAiSE’08
Conference. Springer-Verlag, 2008, pp. 121–133.

[14] S. Abrahao and E. Insfran, “Early usability evaluation in model
driven architecture environments,” inProceedings of the Sixth
International Conference on Quality Software. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 287–294. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1190618.1191343

[15] A. Seffah, M. Donyaee, R. B. Kline, and H. K. Padda, “Usability
measurement and metrics: A consolidated model,”Software Quality
Control, vol. 14, pp. 159–178, June 2006. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1132324.1132342

[16] ISO/IEC, ISO/IEC 9126. Software engineering – Product quality.
ISO/IEC, 2001.

[17] “Kermeta, kernel meta-modeling framework. available :
http://www.kermeta.org.” [Online]. Available: http://www.kermeta.org

[18] M. Hariri, Contribution à une méthode de conception et génération
d’interface homme-machine plastique, 2008. [Online]. Available:
http://books.google.tn/books?id=OKhpXwAACAAJ

