Towards a new approach of model-based HCI Conception

ADEL MAHFOUDHI*>** — WIDED BOUCHELLIGUA** — MOURAD ABED*** —
MOHAMED ABID**

* Department of Computer Science,
Science Faculty of Sfax
Rte Soukra km 3,5 BP : 802 -- 3018 Sfax
TUNISIA
adel.mahfoudhi@fss.rnu.tn
** Computer, Electronic and Smart Engineering System Design Laboratory (CES)
National Engineering School of Sfax
Rte Soukra km 3,5 B.P. : w -- 3038 Sfax
TUNISIA
mohamed.abid@enis.rnu.tn
***% LAMIH (UMR CNRS 8530),
Université of Valenciennes.
BP : 311 — 59304 Valenciennes cedex9
FRANCE
mourad.abed@univ-valenciennes.fr

Abstract: - This paper presents our contribution to the specification and conception of interactive systems. In this
framework, the TOOD+ method (Task Oriented Object Design) proposed in this paper relies on a generic model and
based for its description on the language of object modelization UML (Unified Modeling Language). The model-based
approach and the used formalism have been chosen, to make a code multiple (C++, JAVA ...) and multi platform
(Palm, mobile telephone ...).Our work is part and parcel of many others which are based on the principle of code
generation from the specifications. Among some models, this generation corresponds to apply the MDE approach
(Model Driven Engineering. This approach is presented on an example of interactive application (the air traffic control)

Key-Words: - Task model, HCI, formal method, UML, MDE, Interactive systems conception, Interactive systems
specification.

1. Introduction The cognitive sciences propose theories for
studying human behaviour. The integration of these
sciences with computer sciences is of great utility in the
conception of HCI.

Added to that, the conception of interactive
applications in different industrial sectors presents
conceptual, technological and methodological problems.

For that reason, the HCI conception is considered,
nowadays, a research domain that necessitates
developments aiming at the resolution of these problems.
The elaborated works in this research axis led to
numerous tools, formalisms and methods ensuring a
more or less complete cover of the development cycle of
the interactive applications.

The appearance of the interactivity has developed an
important and various amount of skills, techniques and
tools coming in their majority from software
engineering, ergonomy and cognitive psychology. Yet, it
remains often difficult, in processing development, to
conjointly use models founded on cognitive sciences and
others on software engineering because their approaches
of the problems are different.

In the traditional systems of computer science, one
used to be interested mainly on the carrying out of the
software functions. Besides, it was the user who had to
provide the adaptation effort to the system. However, if
that required effort is beyond the capacities and the user
motivations, the realized system will never be used, even
if its functionality and appearance are attractive. If the 2. Previous works

system functions are not of the nature of completing the In this context, many works were dedicated to user task
user facility and their organisation does not reply to the modelisation, for example, works dedicated to the
metal structure of the resolution of the human problem, methods: MAD [17], DIANE [2], GOMS [7]. But the
then none of the presentation effects will be able to hide effective use of these tools is far from being a
these basic problems. widespread practice. One of the possible reasons is the

1/9



lack of the use of really formal methods, which allow to
bring conciseness and coherence to the task model.
Moreover, these works lack integration in a global
process of the conception covering the cycle set of the
HCI development. In order to overcome these problems,
the present research is oriented to a methodological
framework which extends from the upper stage of the
activity analysis to the detailed specification stage of the
HCL The methods MAD* [9], DIANE+ [2], GLADIS++
[16], ADEPT [10], TRIDENT [24] go in the same line of
thought. In fact, they are based on several methods (task
model, user model, interface model) and assisted by the
implementation tools of these models.

Other works conducted since mid 1990s rely on the
paradigm of the Model-Based user interface Design
(MBD) [21]. It is a description of the application
semantics and all the necessary knowledge of the
specification.

This one described in a high-level specialized
language, engenders a total or partial generation of the
application code. The environments which are in favour
of these approaches are called MB-IDE (Model Based —
Interface Development Environment) [19].

Our work enrols in this orientation emphasizing on
the formal aspect of the model representations and their
transformation following the steps of the design process.
In this project, we try to provide reply elements to the
conception problems of the HCI. In this way, we have
based our works on the MDA model (Model Driven
Architecture) (OMG, 1999) and TOOD [12], [25].

3. TOOD+
The TOOD method [25] defines a generic model to the
models set used to cover the development cycle. This
solution is intended to avoid the information loss and the
ambiguity engendered by the representation changes
between the development steps. The generic model
couples the formalisms of the object approach and the
Object Petri Net (OPN). Nevertheless, in the view of
automating the implementation and ameliorating the
portability of interactive applications, our works are
oriented to a platform independent specification to set up
a multiple code generation (C++, JAVA, etc.) and multi-
platform (Palm, mobile phone, etc.).

The TOOD+ model that we propose is inspired
from the MDE approach. The main objective is to supply

2/9

a generic model integrating the statistic and dynamic
aspect for the set of the taken entities in the existing
system analysis and the needs such as user tasks, the
domain data manipulated by the tasks and the resources
permitting the task realisation.

4. Development Cycle of the TOOD+

method
The TOOD+ method follows a methodological approach
based on a transformation of a series of models covering
the development process of an interactive system. Figure
1 gives an overall view of the development cycle of
TOOD+ method.

Three models on the base of which TOOD+ is
built :

o Task model (TM) and Domain Objects
Model (DOM) in the specification stage ;

e An Operational Model (OP) in the design
stage ;

e An Implementation Model (IM) in the
realization stage.

The Domain Object Model (DOM) formalizes the
system data according to static and dynamic parts.

These objects are introduced later in the Task
Model in the form input and output data and resources in
order to represent the task structure in a static model and
its behavior in the dynamic model.

In the conception stage, the Operational Model

(OM) expresses the link between the interface
applications of the system. Thus this model describes the
interactions between the interactive objects (system
resource) and the user (human resource). These are
respectively described in the Interface Local Model
(ILM) and the User Model (UM).
To test TOOD+ methodology, we have introduced an
example taken from the family of complex systems. It is
concerned with the air traffic control carried out in the
framework of the PHIDIAS project (Harmonious
Position and Integrating the Interactive Dialogue) [13].



needs
analysis

existant system
analysis

Domain
Object Model

(DOM)
(descripfor objects) (descrigtor objects)
' A4 N\
Specification Task Static Task Dynamic
P Model (TSM) Mode (TDM)

Task Model

Operational Model

N ——

Global Interface Local User Model
Design Model (ILM) (UM)
Agregatio; gememmememeemeennaany,
) Interface
Detailed Abstract Model
Design (1IAM)

J

Evali,lation

Implementation

A

|

Interface Implementation
Model (IIM)

}

Evaluation

LV development cycle

Implementation

HCI

TOOD+ development cycle J

Fig.1 : Development Cycle of the TOOD+ method

We will present afterwards the specification stage of the
interactive system which defines the Task Model (TM).
Then, we will describe the Operational Model (OM)
which depends on the construction of three models: the
Interface Local Model (ILM), the User Model (UM) and
the Interface Abstract Model (IAM).

5. Specification of the interactive system :

Task Model (TM)

In TOOD+, the specification stage of the interactive
system is based on the Task Model

The Task Model (TM) represents the task that the
user must be able to carry out through the interface. This
task is generally decomposed in a hierarchy of the task
and sub-task.

In TOOD+, the Task Model is obtained from the
decomposition of the user work to significant elements

3/9

that we call tasks. Each task is characterized by an aim
that the user wants to reach. Such a task can reach its
objective through the execution of a procedure that
defines a set of sub-tasks necessary to its
accomplishment.

By applying the specialisation principle from the
generic model, the Task Model is based on the class
called Task-Class derived from the root class of all the
entities manipulated by TOOD+, the TOOD+ Class. A
task is then an instantiation of the Task Class (see fig.2).

The particularity which characterizes the task entity
regarding other taken entities is the fact that it
necessitates a set of objects which supports its execution,
called resource. This resource is represented by a
component Class of Task class.



Descriptor

FRef

FName
Findex

rrget()

JAN

Task Name

-index Oi
-description
-is
-mother Task
-sub-tasks

1 |

input interface Resource loutput interface
input data Control trigger Reaction output data
-Priority index
+Set() +Set()

Fig.2 : Task-Class Structure and a Hierarchy of the Descriptor Objects Class

As figure.2 demonstrates, each task possesses:

A name representing the treatment which is to be
carried out, given in the form of a verb followed
by a complement (for example: "Select an
operation" );

An expressed description in a natural language
explains the aim that the user wants to reach
through the task ;

A clue that identifies the task has the form Tijj
with i as the number of the mother task and I as a
number among the daughter tasks.

A type which specifies the nature of the task
(manual, automatic, interactive or cooperative) ;
A mother task also called control task ;

A set of sub-tasks that contribute in the realisation
of the specified tasks.

In the framework of the task modeling, the Input
Interface is composed of the descriptive objects on
which the task is realized. These objects specify the
parameters of the task input. To model a task, we need to
identify:

e The triggers : are the events which instigate the
execution of the task. These events may be of two

types :
o formal or explicit producing observable tasks in
the work environment (for example,

4/9

information on screen) and considered as
obligatory tasks ;
o informal or implicit instigated on the decision of
the user inciting the facultative task.
The control data are the validated information at
the beginning or during the task execution ;
The input data are the necessary information of
the task realization.

For the input Interface class, it is composed of
descriptive objects resulting from the task realization.
The execution of the task brings about set of reactions at
a physical order capable of modifying the work
environment or mental order contributing in the
formation of new view of the situation by the user. The
realization of a task also supplies transformed or created
data.

A task then possesses a set of resources modeled by
the Resource Class. These resources are classified in two
categories; human and system resources (components of
the application). The distribution of the resources allows
to determine the task type.

The TM construction goes along the following
processes :

1. to elaborate the diagram of the user case which
picks up the system functionalities.

from the user case, to identify the class of the
root or global task ;

2.



to specify the descriptive objects and the

resources of the global Class-Task ;

to decompose the Class-Task into sub Class-

Task ;

for each sub-class, to specify the descriptive
objects necessary for its accomplishment ;

to use the constructors of table. 1 in order to
identify the relations inter-task ;
to recapitulate the stage 4 to 6 to identify all the

final Class-Task.

Constructor  Symbol Description
Sequence @ The daughter tasks of the
control task are executed in
sequence.
Choice The daughter tasks are executed

®

without preferential order.

Parallelism @

The daughter

tasks

are all

executed at the same time.

Table 1 : Inter-tasks Relations

To Plan the Traffic

Indice : String = “T1”

— //

Most often, the final tasks correspond to the directly
realizable operations by the application.

In our example of the control system of aerial
traffic, the diagram of the user case comprises three user
cases: traffic Control, traffic Planification and traffic
Management. The user case traffic Control is linked to
the other use cases by the user relation (« use »). The
corresponding static model in our example, specifies an
interactive root task "TO: to control the traffic", which
itself is decomposed into two sub-tasks "T1: to plan the
traffic" and "T2: to manage the traffic". These two tasks
are carried out concurrently. The task "T1: to plan the
traffic" is a control task and it is composed of three sub-
tasks: the task "to help the radar controller" and is
executed in parallel with the two sequential tasks "to
configurate the flight entry" and "to configurate the
flight exit" (see fig.3) etc.

To Control the Traffic

Indice : String = "T0”

Il

To Manage the Traffic

Indice : String = “T2”

To configurate the flight
entry

Indice : String = “T11”

To configurate the
flight exit

To help the radar controller|

Indice : String = "T12”

Indice : String = “T13”

—

To have knowledge of a
new flight

To make decision of a
flight

Indice : String = "T111”

Indice : String = "T112”

To verify the radar position

To analyse the exit
conditions

To make decision of the
exit conditions

Indice : String = “T113”

Indice : String = “T121” Indice : String = “T122”

conditions

To analyse the entry

To make decision of the
entry conditions

Indice : String = "T1121”

Indice : String = "T1122”

Fig.3 : Hierarchical decomposition of the task T; "to plan the traffic"

5/9



Once this decomposition is realized, the following
stage is the resolution of the descriptive objects, and
consequently, the identification of necessary domain
objects for the accomplishment of each task.

6. Conception of the interactive system :

Operational Model (OM)

The Operational Model allows to carry out the
specification transition to the conception aiming at
describing the user interface. The Operational Model
consists in three models and it is based on two steps:

The Interface Local Model (ILM) to specify the
HCI components (i.e. the interactive objects) for each
final task relying on a User Model.

The Interface Abstract Model
components are aggregated from MLI.

Based on the same principle of generic model
specification, these three models are presented in two
parts : Static and dynamic parts.

(IAM) whose

6.1. User Model and Interface Local Model

6.1.1. User Model (UM)

The integration of the user in the interface conception
allows, certainly, to produce interfaces of better quality.
Through the User Model, TOOD+ formalizes the user
behavior.

We will devote this paragraph to describe the
dynamic behavior of this model facing a task. The User
Dynamic Model is inspired fundamentally from the
qualitative model of Rasmussen [15]. The decisional
scale of the Model of Rasmussen consists of four steps:
to detect, to evaluate, to decide, to execute. The user
behavior either based on the rules to solve a current
situation, or on the knowledge to solve a new situation.
As figure 4 demonstrates, the states of the diagram
State/Transition can be labeled by three states of
operators: Perception (Lecture), Cognition (Evaluation)
or Action. These states correspond to three chief sub-
systems of human operators (visual, cognitive and
motive). Thus, the transition models the action that the
user comes to undertake in order to execute the final task
in question, and which allows to develop an operator
state or another.

6.1.2. Interface Local Model (ILM)

The Interface Local Model describes the behavior of the
interactive object. These objects help the user in
achieving the states/transitions UML defines the
dynamic of these interactive objects. The states of the
diagram represent the different states of the objects. The
behavior of the interactive objects is defined by the chain
of states and transitions. In fact, the transition is
conditioned by the guard having the form Event

6/9

[Condition]/Action, which can execute an action and
generate the event. The field Event and Condition of the
guard of the transition are formed from the descriptive
objects identified for the final task (Task Static Model)
to which the interactive object belongs.

-

T111

~

To have knowledge of a new
flight

[ )

Organic Controler (OC)

Consult the indicative

Consult the flight level

Consult the road
Information Lecture Eﬁ —

Evaluate the
acquired level of
info.

Situation Evaluation }w,,\?@

Ask
supplementary

E2-1/ Consult the NF,

Read basis info.

Make decision
of the NF

Temporize the NF

info.

Action
’70pen road zoom Open indicative loom—‘

N
~

Ask supplementary info.

~

New Strips Table (NST)

Indicative zoom
opened

E1-3/ Open
indicative zoom |

®- ‘
~_ |
-
E1-1/ Display the NS —
.* pey e NS E1-4/ Tentporize the NS
dispyed

E1-2/ Open
road zoom

| close indicative
|oom

Close road zoom

Road zoom
opened

J

Fig.4 : Operational Model of final task object
Ti11 @ "to have knowledge of a new flight"

6.2. Interface Abstract Model (IAM)

The Interface Local Model is built by the specification of
the interactive objects related to the final task
independently from one another. Actually, the user
interface, and therefore each interactive object, is not
limited to a specific task or a particular transition. In
order to do that, we should define the Interface Abstract
Model which describes the HCI classes. The
construction of an object class HCI suggests the
aggregation of the interactive objects with the same
name of Interface Local Model.

The procedure of aggregation is incremental, i.e. it
takes the two first local models of the entry/input in
order to produce an aggregated model which will be
eventually integrated with a third local model of the
interface etc...



7. The implementation of the HCI
Interface Implementation Model (IIM)

The implementation model of the Interface of TOOD
methodology is the specification of low level abstraction
and the presentation of the final interface as it will be

seen by the user.

The construction of the Implementation Model
(IM) is deduced from the task model and the operational
model. In order to do that, a set of rules is established

such as :
Rule 1 : to associate to each root and terminal task a
window ;
Rule 2: to hide the useless windows which

correspond to control tasks (managing task found at a

hierarchical level);

Rule 3 : the associated buttons to each window are
issued from the user model (for each possible action
by the user, we associate a button which holds the
name of the action) ;

Rule 4 : the interactive objects which support each
terminal task will be put in containers before being
placed in window ;
Rule 5 : the user objects will equally be placed in the
window associated to each terminal task. They will
be grouped in the tab of the interactive object wich
manipulate them;
Rule 6 : for the root task and the control task, we
base our work on the inter-task relations (see table 1).
In the case where we have a choice relation, we
associate radio buttons which allows the selection of
the task which is done. In the case where we have a
sequencing relation, the window associated to a
mother task will be useless and therefore it will be
hidden. However, for a parallelism relation, the
windows associated to daughter tasks are shown at
the same time and the window associated to the
mother task will be hidden.

An example of the application of these rules is

given in the fig.5.
/T To have knowledge of a new )
111 .
flight \
é Organic Controler (OC) \\
\
Consult the indicative
Consult the flight level \
Consult the road \
e T \
E2-1/ Consult the NF,
= ion Lecture = A
) AN — \
Evaluate the \
acquired level of Read basis info.
info.
Make decision k \
of the NF
Situation Evaluation }7—77,>© \
Temporize the NF
Ask \
supplementary \
info. \
B— Action — \
\
Open road zoom Open indicative zoom \
K Ask supplementary info. j -T \ ~—
sk supplementary info. - \ -
~ ~
. - ol - =
4 New Strips Table (NST) .~ TT—— B
Pz NS List us
/s 1 a > Display NS
Indicative zoom / NS 2 = — l AN
opened \\ NS 3 — > ciose = N
E1-3/ Open/| % N - 4 =2 Open Open
indicative zoom | close indicative ~ -0+ — Tomorizo -I— %indicatil\’/e zoom| roadpzeoom |
i} |— —fzeom S~ —F T == eicnt
\ | “-—/%_—ézi_—/—____——————‘——/“/
—_— i ~o _ A A
E1-1/ Display the NS - — ~<J _— :‘ ﬂ
.7 — E1-4 / Temporize the NS ~< -——
S
e — I I —tf-— N~
E1-2/Open e P R T ==
road zoom _— — - T 7+ - — _
cl —i . -
—~ fe road zoom —— /ﬂ- _VJ
— — -
—— = —
Road zoom B e x| - _, Close Close
opened—_/_ T e — indicative zoom| road zoom
_________ -
\ j T Exit

Fig.5 : The generation of the Implementation Model

7/9



The objective of this work is the amelioration of the
specification model and the TOOD conception based on
the new conception approaches and the development
based on the models. For that reason, and in order to
inspire the MDA approach, we have specified the
behavior of the man-machine interaction from the UML
specification. The following stage of the MDA defines a
set of operations in order to make the models pass from
the additional stage to the productive stage. Among these
operations, we opt for the succession of the models
which correspond to the passage of the graph from a
model to a linear model. As a result, the XMI standard
allows the representation of the UML models in the form
of XML. In fact, XMI defines a set of rules which allows
to build a DTD (Document Type Definition) from the
UML model. Therefore, the operation of the concession
allows to have a specification in a light language of the
type XML. This type of specification allows to establish
a generation of multiple code and multi-platform.

8. Conclusion

We have demonstrated in this article that the
development of the Man-Machine Interface based on the
models presents many advantages, especially, when we
consider the plasticity of the HCI for which the change
in platform is dynamic. Our crucial objective was the
unification of model-directed works taken from
engineering with those of Man-Machine Interface.

The stress on the correspondences between the
models is not sufficient and does not mean here an
operational vision. It is interesting to use a
transformation  language  for  modelling and
implementing this transformation.

Moreover, the TOOD+ method can contribute to
help the communication between the different
interventions in the conception. The operational model
leads to the specification then to HCI generation. This
model is considered as a continuation of the structural
model using the same formalisms, which privilege the
semantic stability of TOOD+ method.

9. Bibliographie

[1] Atkinson C., T. Kiihne: Model-Driven Development:
A Metamodeling Foundation. IEEE Software.

Septembre 2003.

[2] Barthet, M.F. (1988), Logiciels interactifs et
ergonomie : modeles et méthodes de conception,
Dunod.

[3] Bézivin J., M. Blay, M. Bouzeghoub, J. Estublier,
and J.-M. Favre. Rapport de synthése. Action

8/9

spécifique CNRS sur I’Ingénierie Dirigée par les
Modgles, janvier 2005.

[4] Bézivin J.: In Search of a Basic Principle for Model-
Driven Engineering. Journal Novatica,Issus Spécial.
Mars- Avril 2004.

[5] Bézivin J., X. Blanc . MDA : Vers un important
changement de paradigme en génie logiciel.
Développeur Référence — juillet 2002

[6] Bézivin J., O. Gerbé: Towards a Precise Definition
of the OMG/MDA Framework. ASE'01 Automated
Software Engineering, San Diego, USA, 26-29
Novembre, 2001.

[7] Card, S.K, Moran, T.P, Newell A. (1983), The
Psychology of HCI. In Lawrence Erlbaum Ass (Ed.).
London.

[8] Favre J.M., NGuyen T., Towards a Megamodel to
Model Software Evolution Through Software
Transformation, Workshop on Software Evolution
through Transformation, SETRA 2004, Rome, Italy,
Electronic Notes in Theoritical Computer Science,
Volume 127, Issue 3, ENTCS ELSVIER , October 2,
2004.

[9] Gamboa-Rodriguez, F. Spécification et

implémentation d'ALACIE: Atelier Logiciel d'Aide a

la Conception d'Interfaces Ergonomiques. Thése en

sciences: Université Paris XI. 1998.

[10] Johnson, P., Johnson, H. Wilson, S. (1995),
Scenario-based design and task analysis. In Carroll,
J.M. (Ed.). Scenario-based design: Envisioning work
and technology in system development. Willey.

[11] Kleppe A., Warmer J., Bast J.: MDA Explained-
The Model Driven Architecture: Practice and
Promise. Addison-Wesley, 2003.

[12] Mahfoudhi A., Abed M., Tabary D. From the
Formal Specifications of Users Tasks to The
Automatic Generation of the HCI Specifications. In
People and Computer XV - Interaction without
Frontiers. Blandfort A., Vanderdonckt J., Gray P.
(eds) pp. 331-348. ISBN : 1-85233-515-7. Springer
2001.

[13] Mahfoudhi, A. (1997), TOOD : Une méthodologie
de description orientée objet des tiches utilisateur
pour la spécification et la conception des interfaces
homme-machine. Thése en automatique. Université
de Valenciennes.



[14] OMG, 1999 Object Management Group : The
Common Object request Broker : Architecture and
Specification. CORBA 1IOP 2.4.1 / Format/00-11-
07, Framingham, MA.

[15] Rasmussen, J : The human as a system component.
In Smith, H.T.Green, TRG (Eds.), J., Rouse, W.B.
(Eds.), Human detection and diagnostic of system
failures. Plenum Press, N.Y. 1980.

[16] Ricard, E. & Buisine, A. (1996), Des taches
utilisateur au dialogue homme-machine: GLADIS++,
une démarche industrielle. IHM96, pp71-76.

[17] Scapin, D.L. & Pierret-Golbreich, C. (1990),
Towards a method for task description: MAD. Work
with Display Unit'89 in Berlinguet, L & Berthelette,
D. (Eds.) CAP.

[18] Seidewitz E.: “What Models
Software. Septembre 2003

[19] Selic B.. «The Pragmatics of Model-Driven
Development ». IEEE Software, (5):19-25, 2003

Mean”. IEEE

[20] Sottet J-S., Calvary G., Favre J-M. « Ingénierie de
I’interaction homme-machine dirigée par les
modéles ». IDM’05 Premiéres Journées sur
I’Ingénierie Dirigée par les Modg¢les, Paris 30 juin, 1
juillet 2005.

9/9

[21] Szekely, P. (1996). Retrospective and challenge for
Model Based Interface Development. [CADU’96],
Namur, pp.xxi-xliv.

[22] Tarby, J-C & Barthet, M-F. (1996), The Diane+
Method in CADUI'96, pp95-119.

[23] Terrase M., Savonnet M., E. Leclercq, T. Grison,
G. Beker. « Points de vue croisées sur les notions de
modéle et métamodéle». IDM’05 Premiéres
Journées sur I’Ingénierie Dirigée par les Modéles,
Paris 30 juin, 1 juillet 2005.

[24] Vanderdonckt, J. Conception assistée de Ila
présentation d'une interface homme-machine
ergonomique pour une application de gestion
hautement interactive. Thése, Faculté Notre Dame de
la Paix Louvain, Belgique, 1997.

[25] Mahfoudhi A., Abed M., Abid M., Towards a User
Interface Generation Approach Based on Object
Oriented Design and Task Model TAMODIA"2005 :
4th International Workshop on TAsk MOdels and
DIAgrams for user interface design For Work and
Beyond Gdansk, Poland ¢ September 26-27, 2005



