Self adaptive reconfigurable system based on
middleware cross layer adaptation model

Kais Loukil, Nader Ben Amor, Mohamed Abid
CES Laboratory
ENIS National Engineering School
Sfax, Tunisia
Email: Kais_loukil@ieee.org

Abstract—The emergence of mobile multimedia
systems and the diversity of the supported multimedia
applications put new challenges for their design. These
systems must provide a maximum application quality of
service (QoS) in the presence of a dynamically varying
environment (e.g. video streaming and multimedia
conferencing) and multiple resources constraints (e.g.
remaining energy). To respond to the changing resource
availability and application demands, a new class of
adaptation method is emerged. It combines the adaptation
simultaneously upon the different layers related to the
target system. This paper presents a framework dedicated
for mobile multimedia systems. It supports application
QoS under real time and lifetime constraints via
coordinated adaptation in the hardware, OS, and
application layer. In this framework, we present a new
middleware approach based on a global and a local
manager. The global manager (GM) is used to handle
large and long-term variations whereas the local manager
(LM) is used to guarantee the real time constraint. The
GM intervenes in three layers but the LM intervenes only
in the application layer and OS layer. We have
implemented this approach on reconfigurable platform
using Altera technology.

Index Terms—Adaptation, middleware, Embedded
systems, Quality of Service.

1. INTRODUCTION

The embedded popular electronic multimedia
systems has actually been emerged and used frequently.
Their functionalities are increasingly complex and need
high performance architecture (a priori dedicated
architectures). Due to their mobility, those systems must
also function under often difficult conditions: fluctuation
of network transmission, limited energy resources, etc
which involves the wuse of programmable or
reconfigurable architectures. So, these systems must be,
on the one hand, powerful enough to treat the complex
multimedia applications. On the other hand, they must
be quite flexible to be able to adapt to the external
variable environment and to respect the functional

stringent constraints (like real time, lifetime, and quality
of service). As those constraints are generally
antagonistic, the system must find the right compromise
between performance and flexibility according to its
state (number of running applications, user choices, state
of the battery, etc).

Various adaptation techniques were proposed for the
respect of the constraints of the system while giving a
better quality of service. These techniques can intervene
on three different levels: on the application level,
operating system level or on the hardware level. As the
constraints imposed on the embedded systems are
increasingly strong (increase in the number of supported
applications and their complexities, limitation of
available energy resources, etc), it is necessary to adopt
a more global adaptation strategy which combines the
previously described adaptations methods. In this
context, our work consists of the addition of a
middleware layer, which allows the dynamic cross layer
adaptation of the system. In this paper, we present a new
approach of adaptation dedicated for embedded systems
which comprises primarily two managers (global
manager and local manager). The global manager can
intervene in the three layers in order to answer the great
variations of the system constraints whereas the local
manager intervenes only in the layers application and
operating system. It is of a great importance to mention
that the LM is set up to control the respect of the real
time constraint of the system. The LM can also question
the global manager if it does not manage to find a
solution to solve the problem.

Our work has two major contributions. First, we
propose the use of the cross layer adaptation approach.
The second contribution consists of the design and the
real implementation of the cross layer adaptation
approach on a reconfigurable system.

This paper is organized as follows: The first part is
devoted to the presentation of the state of the art. The
second part presents the adaptation model. The third part
treats the various algorithms set up for the

implementation of the approach on a real system. We
devote the last part of our paper to the validation of the
approach and the presentation of some prospects
concerning this issue.

II. STATE OF THE ART

Recently, there were many research contributions on
the auto-adaptation for the autonomous systems. These
adaptations can be applied to the following layers: the
architectural layer, the operating system layer (OS) and
the application layer. Hereafter, we will show these
various techniques, their contributions and their
limitations.

A. Adaptation at the architecture level (HW
adaptation)

Many HW adaptation techniques were proposed.
One of them is the dynamic voltage scaling (DVS). It
consists of adjusting the frequency and the power supply
of the CPU. It is based on the application workload
prediction using heuristic methods [4, 16] or worst cases
CPU time estimation [2, 3]. HW adaptation was also
applied to reconfigurable platforms. The change of the
system architecture is made according to the needs of
the application and the environmental constraints. Such
method was applied for the partitioning of the system
using two techniques: the former uses a heuristic
algorithm [13] and the latter uses a genetic algorithm
[15].

B. Adaptation at the operating system level(OS
adaptation)

Much of researches have dealt with the operating
system and middleware layer to provide predictable
CPU allocation and adaptation services of the operating
system [5, 7]. In [9, 12, 17, 1] the managers of CPU
resources, provide performances guarantees in soft real
time. Schedulers further adapt the scheduling policy to
handle the variations of application runtime [5, 6, 7]. In
[1, 11, 19], the authors use a middleware layer to
facilitate the adaptation of QoS for the application
system which is submitted to the time constraints of
execution and to the supplied energy.

C. Adaptation at the application level

Several projects recommend the adaptation at the
application layer for different purposes. For example,
the authors of [18] explore the technique for adapting
the behaviour of the application to the constraints of
energy consumption. Mesarina and others discuss in [8]
how to reduce the energy for the “decoding MPEG”
application using parameter modifications. In [12, 13,
14] two approaches are proposed for the deterioration of
the quality of an object 3D to satisfy the constraints of
resources and network bandwidth.

D. Cross layer adaptation

Many researches have, recently, been elaborated to
profit from the advantages of the previously described

techniques and to reduce their restrictions. Most of these
researches were based on methods which work on the
various layers of the system such as model GRACE-1
[1] and TIMELY [20]. However, these approaches
suppose that the material layer is not reconfigurable.
The only possible adaptation to this level is on the CPU
frequency.

Our model targets a mobile system with adaptive
hardware architecture and running a set of parameter
tuned applications (which is the case of the most popular
multimedia applications). It optimizes the system
resources use under constraints of lifetime, real time and
quality of service. The suggested model uses adaptation
in the three layers hardware, operating system and
application. For the hardware layer, adaptation is done
using one of the different application implementations
called configuration that are previously set up and
characterized. Those configurations vary from a pure
SW configuration (called config sw) to a mixed
implementation with several HW components (called
config hw). As config sw involves only CPU
resources, it will consume less energy than config hw
but will less performing. So those, the system can
choose the adequate configuration according to the
constraints and the user preferences. Adaptation at
application layer is performed by modifying the
application parameters or algorithm according to the
imposed constraints. The third adaptation level is made
at the operating system layer in order to allocate
necessary time CPU for each task (we suppose that each
task is an one application).

I1I. ADAPTATION MODEL

In this section, we present our cross layer adaptation
models. We present also the interaction between the
various layers. We end the section by the presentation of
the different conditions of activation of the adaptation
task.

A. Hardware adaptation model

At the hardware layer, an offline step is used to
characterize the different configurations (their energy
consumption and execution time). Those information’s
stored in a database are used on line to choose the most
suitable configuration. As the system performance
(energy consumption and execution time) may vary
from test conditions (made off line) to real conditions
(on line) even using the same architectural and
application parameter, we may notice a difference
between real values and stored database ones. As the
system performs frequent real measures, database
information can be easily updated.

B. Operating system adaptation Model

The execution of any task requires a number of CPU
cycles. In order to respect the real time constraint, we
must allocate, for each task, a number of CPU cycles.
However, the same task can consume various numbers

of CPU cycles according to its implementation
(hardware or software or mixed), the data types, etc.
Hence there is a need for allocating, for each task, a
well-defined number of cycles according to the
applicative and architectural parameters. This time is
estimated by using the profiling technique.

C. Application adaptation model

The adaptation at the applicative level is made by
changing the parameters and/or the treatment algorithm.
This adaptation technique is more and more used since
many of multimedia applications such as MPEG, H264,
speech coding or 3D image processing have different
working modes and functional parameters. For instance,
in the application of 3D synthesis images, an object can
be generated using various polygons number and
different shade algorithm (Gouraud, flat, Phong) so with
different visual qualities.

At this stage, an offline study must be also
investigated to get different performance model (energy
consumption and execution time) according to the
application parameters and modes.

The coordination of the adaptation in the three layers
offers a “cross layer adaptation model”. Specifically, to
have a quality of service for a given application which
consumes a quite fixed quantity of energy, we need the
configuration of adequate architecture in the hardware
layer, the allowance of a number of processor cycles for
each task in the operating system layer and the suitable
applicative parameters in the application layer.

D. Adaptation triggers

We consider in this paper two modes of adaptation
activation. The first adaptation mode is related to the
execution of the task of the GM. It occurs in four cases.
The first one occurs when there is a change of the
number of tasks in the system. The second one takes
place when there is an unexpected change of the energy
level in the battery. The third one is when there is a
modification of the user preferences (level of QoS,
Lifetime). The last one occurs when there is a request
from the LM. The second adaptation mode, is related to
the execution of the task of the local manager. This task
is activated in the event of deadline missing.

IV. CROSS LAYER ADAPTATION MODEL

This section presents the design of the cross layer
adaptation approach. So we shall describe the
architecture and the operating mode of this approach.

A. Overview

The proposed adaptation technique is integrated in a
framework which coordinates the adaptation in the three
layers. The figure 1 presents an overview of this
framework. It is primarily made up of a global manager,
a local manager, an adapter of task for each task, an OS
adapter, an architecture adapter, a battery monitor and a
configurations database.

The global manager coordinates between the three
layers based on the supplied energy and the user
preferences (desired level of the quality of service and
lifetime).

The local manager coordinates between the
application layer and the operating system in order to
guarantee the real time constraint.

The task adaptor makes it possible to adjust the
parameters or the algorithm of the task.

The OS adaptor makes it possible to adjust the
number of affected CPU cycle for each task.

The architecture adaptor deals with the change of
hardware architecture system.

The battery monitor gives an indication of the
remaining energy of the battery.

The database of the configurations contains all the
possible mixed configurations (hardware or software)
for our system.

As mentioned above, the adaptation approach must
have a minimum cost. Thus, the challenge is to provide
best possible quality of a system while respecting the
constraints of the system with a minimum overhead. To
address this problem, our approach uses three
techniques. The first one is an automatic adaptation
when a new task is activated in the system or an existing
one is stopped. In the case of a newly added task, the
GM configure the hardware layer with adequate
architecture, to assign to the application the suitable
applicative parameters and to allocate with each task a
number of cycles CPU (in the case of a new activated
task). In the case of a stopped of finished task, the GL
reallocate its architecture resources. The second
adaptation technique is the use of estimation technique
for lifetime computation. As the battery monitor activity
consumes non negligible energy, estimation technique
can be used to reduce direct measures (and their relative
energy and time costs). When the prediction gives
correct results, period of direct measures can be
increased. The battery monitor is activated all the
periods of time (Pa). The found value is compared with
estimated value. If they are close to each other, the
system increases the period of direct measures
((Pat+=n*Pa) with n>0). In the opposite case, direct
measure period is readjusted. The third technique used
to reduce the total cost of the adaptation approach
consists of the use of a local manager which allows
changing the applicative parameters of a task in the
event of a deadline miss. This permit a more local
adaptation (restricted to real time constraint) that does
not a heavy cost whole system architecture
reconfiguration. In case where the local manager does
not find a solution for the system it can activate the
global manager. In the following section, we give more
details on these three techniques.

Task adaptor Adapt - Task
e 4
Application Application parameters Application layer
" parameters| T ""_‘:T_____ _______________________
User el
¢ Real time constraints
preferences Global manager Local manager schedule
[Life time, Edade T
QoS min] t 4 : Execution
_________________ — _____tme _ ! __ | Middleware layer
Adapt !
Config 05 Adaptor _ Operating
list i system
Power Architecture 05 layer
Battery Configurations Architecture Adapt | Architecture
base adaptor g

Figure 1.

B. Global manager “GM”:

The global manager is activated only in three events:
1) when a task appears or leaves the system, ii) when the
residual energy level in the battery reaches a breaking
value or iii) to answer a request of the local manager. In
such a case, the GM coordinates between the three
layers (application, OS, hardware) to choose the best
system requirements starting from the base of
configuration, which makes it possible to provide the
best quality of service while respecting the preferences
of the user.

The entries for the GM are the user preferences (see
figure 2). For the moment, we consider two parameters,
the desired lifetime “Lt” and the minimum level of
quality of service accepted “LQoSmin”. Through these
preferences the user seeks to maximize the level of
quality of service of the multi-media application running
for a fixed given lifetime.

Hardware layer

Cross Layer adaptation approach

(LS — (Taski, Pi)

| |

Glohal Manager

]

Avalable power Configuration base

Life time (Lt) —

» Configuration
LQoSmin g

Figure 2. Global Manager

We suppose that the system executes N concurrent
task. Each task noted as “Ti”, 1<i<n, requests a number
of CPU cycles noted as “Nci” of period called “Pi” and
consumes an energy “Eci” during one period. We note
with “ED” the quantity of energy available in the
battery.. The Global Manager seeks to find a
configuration that provides a quality of service “Qi” and
lifetime “Lt” according to the equation 1 to equation 4.

Maximize Q (Q1, , Qn) Equation 1
Under constraint :
(" Qi>=LQoSmin Equation 2
. .. LT .
Z Eci*—<=Ed Equation 3
SO Pi
N N(.:l <=1 Equation 4
. ‘T P1

Equation 1 and 2 guarantee to provide to the user the
best quality of service which must be higher than the
fixed minimum QoS level. Equation 3 guarantees the
satisfaction of the lifetime constraint. Equation 4
represents system scheduling constraint. This constraint
requires that the execution time of all the tasks divided
by period should not exceed 1 since we use the EDF
scheduling algorithm. The global manager will have to
select the adequate configuration for each task
(architecture + applicative parameters) from the
configuration database which will have to contain
information related to each configuration such as the
levels of QoS, the number of required CPU cycles, and
the quantity of power consumption for one period. Thus,
in order to choose the best configuration of each task,
the GM is in front of an Np-complete problem, since it
will have to extract all the possible combinations which
can answer the already quoted constraints. For example,
if it is considered that our system executes three
concurrent tasks and we have “N” possible
configurations for each task the GM will have to check
n’ solutions to extract all the possible combinations to
fulfil the requirements of the system. As the adaptation
task must have a very small overhead, the resolution of
this problem even with heuristic techniques can have a
big impact of the adaptation cost. So, we try to find out
another solution simpler to solve this problem. We use a
more local method based on energy and execution time
budgets, allocated to each task, in order to reduce the
search time of the adequate configuration.

The desired Lt is divided in equal periods of a fixed
value called Quantum Q which corresponds to the
moments of energy measurements. This quantum is a
multiple of the hyper period (lowest common multiple
of all the periods) system and can vary during the
system operation (as it is mentioned above). In each
Quantum, there is a budget of energy and CPU cycles
(processing time) allocated which should not be
exceeded (under penalty of not satisfying the constraints
Lt and real time) (see figure 3).

T0,Ed0 T1,Ed1 i, Edj

Desired lifetime

t
Quantum Q.

Figure 3. Quantum and energy budget

It should be noted that:

e We treat the case where the system
executes several applications during the
Quantum Q.

e Each application can be running one or
more time during Q.

e The power consumption depends on the
number of execution time of the application
during Q

e The system has several constraints: Lt, real
time and QoS.

1) Allocation of CPU cycles to each task
In order to respect the real time constraint, all the
tasks must be running at each period. Thus, in the hyper
period “h” of the system, the task Ti of period pi will

have to be running ni =— times. Thus, the problem
1

amounts assigning to each task Ti an execution time Tei
is given by equation 5 where n is the number of
applications

= .
Z Tei*ni<=h. Equation 5
i=1

Generally, we must satisfy the equation6:

n h . .
Z_. *Tei <=h Equation 6
i1 P1

In this manner, we guarantee that all the tasks are
running in the hyper period of the system witch satisfies
the equation3.

The GM is in front of a great number of possible
solutions whose constraints need to be respected. The
challenge is establish a mechanism which can find a
good solution for the system with an acceptable
overhead. The solution installation is based on the
assignment of a budget of time for each task. Then, we
choose the configuration which uses the nearest
execution time and which respects the other constraints
of system (QoS and LT).

In order to assign a budget of execution time to each
task we proceed as follows:

We calculate the maximum total execution time of
all the applications Smax as shown in equation 6.

n .
. . Equation 6
Smax = Z Temaxi * ni d

i=l

With Temaxi the maximum execution time for a task
i among all the possible configurations of the system

If the Smax is lower than the hyper period of the
system, we can affirm that all the possible
configurations represent a solution for our state. On the
opposite case, we calculate the occupation “Oci” of
Temaxi in Smax for each task according to equation 7

Equation 7

We apply the found value Oci to the amount of time
exceeded:

Equation 8
Tdepi = Oci * (Smax - h) aramen

The budget of time assigned to the spot Ti is:

. . Tdepi
Tei = Temaxi - .p Equation 9
ni
Otherwise:
Temaxi* Smax -h
Tei = Temaxi - Tema)‘(l 0L (Smax - h)
ni

Equation 10

In this way, it is guaranteed that all the tasks can be
running by the necessary number of times in a hyper
period. However, it was not guaranteed that each task is
running by all the periods once. For example if a task
which has a little high execution time compared to the
other tasks we can maintain the CPU for two periods of
another task. To allow this possibility, we use the EDF
(Earliest Deadline First) scheduling algorithm. The task
which has the smallest execution time will be running
initially.

2) Allocation of the energy budgets :

The energy management is done in an interval of
time equal to Q. In each quantum Q, there is a budget of
energy “Beq” that should be not exceeded. The energy
consumption depends on the applications in the course
of execution. The budget of energy for a quantum is
given by equation! 1:

Beq=—+
q NQ

Where ED is the remaining energy in the battery and
NQ is the number of quantum to reach desired Lt.

Equation 11

We divide the assigned budget with a quantum on all
the applications. Since the tasks do not consume the
same quantity of energy, we proposed to use a factor of
assignment of energy for each task. This factor must be
fixed by the designer of the system and reflect its
priority for the various tasks execution.

The budget of energy for a task Ti:

, facteur affecter *100
z facteurs

Bei=Beq

Since each application will be running several times
in a quantum, it is necessary to divide the budget
allocated for each application by the number of times
that it will be running by ni.

The Budget of energy for each application during
one period will be given by equation 13.

Bei Equation 13

Bei=—

ni

Thus, all the data are ready to choose the adequate
configuration for our system (acceptable level of QoS
provided by the user, the number of cycle CPU as well
as the assigned budget of energy to each task).

3) Search of the solution:

The search of the best solution wuses the
configurations database. It contains all necessary
informations such as the applicative and architectural
parameters, the worst case execution time, the level of
QoS as well as the quantity of power consumption by
each configuration. The best solution for each task
offers the best QoS while respecting the following
constraints:

e Eci<=Bei
e Tei<Btei
e NQoS>NQoSmin
The algorithm proposed allows:

e to ecliminate the states which have an
unacceptable level of quality by the user
(NQoS< NQoSmin)

e to propose values for the execution time of
each application.

e To affect the budgets of energy

e To check if the states giving best quality
(best effort) for all the tasks respect the user
constraints. If yes, we can choose these
states directly as a solution for the system,
if not we seek in the configurations base a
solution for each application whose
execution time is closest to the time already
calculated with the proviso of respecting
the assigned budget of energy.

e To start again a new iteration in order to
improve the quality of service of some
tasks by gathering the differences between
the allocated budgets and the values of the
selected configurations.

Equation 12

Once the GM chooses a new state for the system, it
will have to send its instructions to the adapters of
architecture, OS and application in order to change the
system requirements.

C. Local manager

Local manager “LM” can be considered as a “watch
dog” which permits to detect any overtaking in the
expiry time of the tasks. Since the embedded multi-
media systems are often subject to hard real time
constraints, if one of the tasks misses its deadline, the
LM must check if this overtaking influences the system
operation (i.e. if all the tasks are running normally
throughout the hyper period of the system). If there is no
influence, the LM does not intervene and the system
continues to function with the same parameters. On the
contrary case, initially, the LM will have to check if it
has a configuration in the base which can solve the
problem without a costly hardware system
reconfiguration. If it finds an adequate configuration it
sends its instructions to both application and OS
adapters to change their parameters. Otherwise, the LM
will request to the GM to reconfigure the totality of the
system. We give more explanations through a simple
example shown in figure 4. We consider a system which
runs three consecutive tasks T1, T2, T3 of respective
period: 160, 40, and 80. The hyper period of the system
is thus 160. Consequently, task T1 is executed once, T2
twice and T3 four times during one hyper period. The
starting configuration chosen by the GM has assigned
for the three tasks the respective execution times: 50, 10,
and 30. We note, according to the execution diagram of
these three tasks using EDF scheduling (see figure 4),
that:

e During the first hyper period all the tasks are
carried out in their expiries.

e During the second hyper period we note that task
T1 exceeded the assigned execution time, but
without an influence on the execution time of the
other tasks. Thus the local manager does not
intervene and the system continuous to function
with the current parameters.

e At the time of the third hyper period we note that
the tasks T1 and T2 have overtaken (noted as Dep
in figure 4) the assigned execution time. But in
this case, task T1 could not be carried out during
the hyper period of the system. At this time the LM
must intervene to search a new configuration for
the system either or by activating the GM without
finishing the execution of task T1 in order not to
cause a delay of the complete system.

e The system begins execution again with the new
configuration.

Figure 4. Local manager intervene

V. IMPLEMENTATION

We plan to validate the proposed adaptation model
on a reconfigurable platform based on ALTERA FPGA
(including NIOSII as a processor soft core).

A. Configuration Database set up

We use QUARTUS software as development
environment for the HW design and NIOS IDE for
software implementation. This environment includes
also the real time operating system (RTOS)
MicroC_OS-II. This development tool allows us to build
a set of heterogeneous configurations around the NIOS
processor: purely SW configurations using only the
NIOS or other configurations using NIOS II with
specific HW functions implemented as internal
coprocessors or HW accelerators via the NIOS Avalon
extension bus (see figure 5).

HW accelerators can be applied through two
methods. The first one is by using specific
communication lines called PIO (parallel input output).
In this case the accelerator is slave. The second method
consists in manually interfacing the accelerator directly
on the Avalon bus. In this case the accelerator can be
master or slave. The two methods make it possible to
accelerate differently the treatment of a task. Master
accelerator is quicker since it can reach the memory,
read the data, make its treatment and write the result in
the memory without direct intervention of the main
processor. At the end of computations, the master sends
an interruption to the processor.

Coprocessors - -

4—p Accelerator2

—p Acceleratorl

On chip Avalon Bus

Flash Memory

Main Memory

_ ¥

Figure 5. Hardware architecture

The choice of candidate HW task from all
application is critical to have an efficient and optimized
HW configuration. From a pure software application
description, we detect most called tasks using profiling
techniques. Further tests are made to select the most
suitable tasks for a HW implementation [22].

Unfortunately, contrary to Xilinx, Altera FPGA does
not allow dynamic reconfiguration. We cannot change
the system hardware architecture during the system
running by a dynamic reconfiguration involving a
complete modification of the architecture. At present,
the change of configuration is made simply by a switch
between HW components or using a load of another SW
code (in the case of application adaptation).

To set up the configurations base for our system, we
make some off-line tests to determine some settings
which are used to characterize each state.

Figure 6 and 7 show time execution model based on
off-line measures for the 3D application using both flat
and Gouraud shading method. NbPoly represent the
polygon number of the 3D object. HW implementation
correspond to a one HW accelerator

Texe=f(triangle_nb) (Flat shading)

70 - /
60
13
<40 7
3 30 A
K
20 -
101 -___.,__.—n—l—-—'/.
0 ——— : :

62 86 114 146 191 266 366
triangle_nb

—e— Texe_SW(ms)
—=— Texe_ HW(ms)

Figure 6. Texe/triangle nb variation for flat shading

Texe=f(triangle_nb) (Gouraud Shading)

100

80

0
£ 60 - —o—Texe_SW(ms)
% 40 _a—Texe_HW(ms)
2 //

20 +—4

0 A - - .

62 8 114 146 191 266 366
triangle_nb

Figure 7. Texe/triangle nb variation for Gouraud shading

Figure 8 shows the consumed power model based on
real measure in the board for both Flat and Gouraud
shading method in HW/SW implementation.

4000
3500 /)<
3000 /
E 2500 - —
S 2000 / / —e—FlatsW
2 5l
5) -
8 1500 / A Flat HW
/ e Gouraud SW
1000
o —<—Gouraud HW
500 - :
=
0 : : ; ‘
4] 100 200 300 400
triang_nb
Figure 8. Power/triangle_nb variation for HW/SW Flat/Gouraud

shading

For QoS computation, we use a model inspired from
[21] to quantify the QoS of a 3D image. This model was
modified to add Gouraud influence of the original
model. Figure 8 shows this model.

1,2

. v
Lz
L

©S8B8R8:8B8RBZRE LR Y

————— &

Figure 9. QoS model for the 3D image synthesis

Thus, we can build our configurations base. It
contains, for each state, the type of implementation (HW
or SW), the number of polygons, the type of the shade
algorithm and the execution time.

B. Adaptation module implementation

We integrated the approach in a middleware layer
which is a transition layer between the operating system
and application layer and which uses components of
these two layers.

The implementation of the software part was made
by using the C language and the MicroC_OS-II routines.
It uses a pre-emptive scheduling with fixed priority
which is not adapted for our adaptation model which
needs the EDF (earliest deadline first) scheduling. As
this RTOS is open source we can easily do necessary
modifications.

We created two tasks Local Manager and
Global Manager which are blocked on standby event.
We used a controller piloted by a hardware timer to
supervise the execution of the various tasks throughout
the hyper period “H” of the system. Whenever a
deadline miss event occurs, the controller creates an
event to activate the Local Manager task.

The adaptation approach was tested using a
configuration database. Tests are made by a
modification of the system constraints (lifetime) and the
user preferences.

VI. CONCLUSION

This paper presents a cross layer adaptation
approach for the embedded multi-media reconfigurable
systems. This approach makes it possible to improve the
quality of service of a system while respecting its
constraints (energy, real time, QoS) and the user
preferences (level of minimum QoS, lifetime). The
problem is to provide an approach which allows the co-
ordination between the different system layers,
hardware, OS and application, in order to maximize
system QoS for desired lifetime. This approach present
an acceptable overhead which not degrade the
performances of the system. With an aim of addressing
this problem, we proposed to add to the system a
middleware layer which comprises primarily: (1) a
global manager who coordinates between the three
layers according to the system constraints and the user
preferences by choosing the adequate configuration of
the system starting from a configuration base; (2) a local
manager who allows to guarantee the real time aspect of
the system. This last intervenes only in the application
and operating system layers.

The implementation of this approach was made
through Altera EXCALIBUR development
environment. We validated our approach through 3D
synthesis images applications. Each time we change the
system constraints and we observe the behaviour of our
adaptation model. Our future work consists in (1)
validating this approach through two applications. For
this, we chose the 3D synthesis images application and
MPEG II. (2) evaluating the performances and the
overhead approach through these applications (3) and
validating the same work on a dynamic reconfigurable
platform via Xilinx.

REFERENCES

[1] Wanghong Yuana, Klara Nahrstedta, Sarita V. Advea, Douglas
L. Jonesb, Robin H. Kravets “Design and Evaluation of a Cross-
Layer Adaptation Framework for Mobile Multimedia Systems”
Appears in SPIE/ACM Multimedia Computing and Networking
Conference (MMCN), 2003

[2] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for
low-power embedded operating systems,” in Proc. of 18th
Symposium on Operating Systems Principles, Banff, Canada,
Oct. 2001.

[3] R. Melhem, N. AbouGhazaleh, H. Aydin, and D. Mosse,
“Power management points in power-aware real-time systems,”
in Power Aware Computing, R. Graybill and R. Melhem, eds.,
Plenum/Kluwer Publisher, 2002.

[4] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling
for reduced CPU energy,” in Proc. of USENIX Symposium on
Operating Systems Design and Implementation, 13-23, Nov.
1994.

[5] A. Bavier and L. Peterson, “The power of virtual time for
multimedia scheduling,” in Proc. of 10th International

(6]

(7]

(8]

]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Workshop for Network and Operating System Support for
Digital Audio and Video (NOSSDAYV), June 2000.

H. H. Chu and K. Nahrstedt, “CPU service classes for
multimedia applications,” in Proc. of IEEE Int. Conf. On
Multimedia Computing and Systems (ICMCS’99), Florence,
Italy, pp. 296-301, June 1999.

S. Banachowski and S. Brandt, “The BEST scheduler for
integrated processing of best-effort and soft real-time
processes,” in Proc. of SPIE Multimedia Computing and
Networking Conference, San Jose, CA, Jan. 2002.

M. Mesarina and Y. Turner, “Reduced energy decoding of
MPEG streams,” in Proc. of SPIE Multimedia Computing and
Networking Conference, San Jose, CA, Jan. 2002.

A. Vahdat, A. Lebeck, and C. Ellis, “Every joule is precious: A
case for revisiting operating system design for energy
efficiency,” in Proc. of 9th ACM SIGOPS European Workshop,
Kolding, Denmark, Sept. 2000.

B. Li and K. Nahrstedt, “A control-based middleware
framework for quality of service adaptations,” IEEE J. Select.
Areas Commun., 17(9) , pp. 1632-1650, Sept. 1999.

J. Flinn, E. de Lara, M. Satyanarayanan, D. Wallach, and W.
Zwaenepoel, “Reducing the energy usage of office
applications,” in Proc. of Middleware 2001, Heidelberg,
Germany, Nov. 2001.

Pham Ngoc, G. Lafruit, J-Y. Mignolet , G. Deconinck, and R.
Lauwereins “QOS aware HW/SW partitioning on run-time
reconfigurable multimedia platforms” Proceedings of the
International Conference on Engineering of Reconfigurable
Systems and Algorithms, ERSA'04, June 21-24, 2004, Las
Vegas, Nevada, USA. CSREA Press 2004, ISBN 1-932415-42-
4

W. Van Raemdonck, G. Lafruit, E.F.M. Steffens, C.M. Otero
Pérez, R.J. Bril “Scalable graphics processing in consumer
terminals” Multimedia and Expo, 2002. ICME '02. Proceedings.
2002 IEEE International Conference

N. Pham Ngoc, W. van Raemdonck, G. Lafruit, G. Deconinck,
and R. Lauwereins “A QoS framework for interactive 3D
applications” Proceedings of the ninth international conference
on 3D Web technology 2004

N. Pham Ngoc, G. Lafrui, G. Deconinck, and R. Lauwereins
“Terminal QOS management on run-time reconfigurable
platforms” Third PA3CT-symposium 22-23 September 2003

Wanghong Yuan, Klara Nahrstedt “A Middleware Framework
Coordinating Processor/Power Resource Management for
Multimedia Applications” Proc of Globecom 2001

M. Corner, B. Noble, and K. Wasserman, “Fugue: time scales of
adaptation in mobile video,” in Proc. of SPIE Multimedia
Computing and Networking Conference, San Jose, CA, Jan.
2001.

J. Flinn and M. Satyanarayanan, ‘“PowerScope: A tool for
profiling the energy usage of mobile applications,” in Proc. of
2nd IEEE Workshop on Mobile Computing Systems and
Applications, Feb. 1999.

S. Brandt and G. J. Nutt, “Flexible soft real-time processing in
middleware,” Real-Time processing in middleware,” Real-Time
Systems 22(1-2), 2002.

V. Bharghavan, K. Lee, S. Lu, S. Ha, J. Li, and D. Dwyer, “The
TIMELY adaptive resource management architecture,” IEEE
Personal Communications Magazine, 5(4) , Aug. 1998.

Y.Pan, I.Cheng, A Basu., “Quality Metric for Approximating
Subjective Evaluation of 3-D Objects”, IEEE transactions on
multimedia, Vol. 7, N°. 2, avril 2005 p. 269.

N.Ben Amor, Y. Le Moullec, J-Ph Diguet., J-L Philippe,
M.Abid, « Design of a multimedia processor based on metrics

computation», Special Issue for "Advances in Engineering
Software", volume 36 (2005) p 448-458.

