Design of Real Time Multiprocessor System on Chip

Kais Loukil, Nader Ben Amor, Yassine Aoudni, Mohamed Abid,
CES Laboratory
ENIS National Engineering School
Sfax, Tunisia
Email: Kais_loukil@ieee.org

Abstract— Actually, multiprocessor architecture is one of the
solutions to fulfill the heavy computational requirements of the
new applications running on embedded systems such multimedia
and 3D games. The design of such systems pose various problems
located at different level: architecture topology, lack of
multiprocessor RTOS. Hence, we suggest in this paper a new
topology of multiprocessor architecture as well as a generic layer
of inter-processor communication which allows the adaptation of
the single processor operating systems to multiprocessor
architectures. Finally, we round off this article by a comparison
between some possible architecture for the design of a system.
Those experiments are made through the 3D images synthesis
application.

Keywords: Multiprocessor, RTOS, SoC

L INTRODUCTION

With the progress of the capacity of integration of hundreds
of million transistors on one chip and the development of high
level design of the embedded processors core, new
architectures are now directed towards the integration of
several processors on the same chip, like: DSP', hardware and
software IP?, memories, shared bus, etc... We, accordingly,
speak about multiprocessors systems on chip (MPSoC?) [1, 2,
3]. Those systems are one of the solutions to answer the rising
complexity of the integrated systems used for applications
such as the multi-media applications.

Moreover, the use of real time operating system (RTOS")
become essential in the embedded systems for many reasons
[4, 5, 6]. First, the integrated systems as we mentioned above
are increasingly getting complex. Second, we witness the
presence of strong real time constraints. Third, the available
resources are limited especially in memory and also in
supplied energy, i.e. the computing power is certainly limited.
All these factors make the management of the different
embedded systems resources (computing resources, energy
resource, etc) an activity more and more complicated that
require a RTOS.

However, in spite of the large diffusion of multiprocessor
systems; it is found that the majority of the existing RTOS do
not support multiprocessor architectures wherein the need for
finding methods to fulfill the requirements of such systems.
Two solutions can be distinguished. The first one consists in

! Digital Signal Processor

? Intellectual Properties
 MultiProcessor System on Chip
* Real Time Operating System

developing new operating systems that support
multiprocessors architectures. The second (which is adopted in
this paper) one consists in extending the existing RTOS by
other functionalities so that they can support the
multiprocessor architectures.

This paper is organized in the following way. In the section
2, a study of exiting topologies of multiprocessor architecture
is presented. The section 3 shows a new topology of
multiprocessor architecture. The section 4 is devoted to the
presentation of preliminary experiments of the new
architecture.

II. TOPOLOGIES OF MULTIPROCESSOR ARCHITECTURES

In order to set up a multiprocessor system, several types of
multiprocessor architectures are planned [7]. We give
hereafter an overview of those architectures.

A. Shared memory systems

This type of memory has the advantage of allowing an
immediate division of the data, facilitating by this way the
programming of the software that manages the system (fig 1).
But this solution has many drawbacks. Firstly, the number of
processors which can be added on the same memory is limited
[8]. Secondly, as the memory bandwidth is limited, the rise of
the performance of the whole system does not follow linearly
the number of processors added. Moreover, even if the
communication software is facilitated, it remains the
programmer’s duty to check the coherence of the data by
synchronizing the accesses to the critical data. For example, it
should be avoided that two processors can modify the same
variable without taking into account the modification of the
other processor, for fear of putting in danger the coherence of
the data and thus of the result of a computation.

Processor 1 Processor 2 Processor n

Global Shared memory 1/0

Figure 1. Shared memory systems

B. Distributed memory system

In this case, each processor has its own memory. The
modification by one of the processors of its own memory does
not have a direct influence on that of the other processors.
That, as a matter of fact, presumes to set up an explicit
communication between the processors.

This type of architecture (fig 2) has the advantage of
allowing a rise of the performances processors/memories more
interesting than in the case of the shared memory, but it is the
role of the programmer to manage the majority of the details
of the communication between the processors. It also makes
the complete exchanges of data structures difficult, it poses
problems of non-uniform access in time, and it makes the
coherence of data harder to maintain.

Processor 1 Processor n

Mem 1/0 Mem 1/0

Communication Network

Figure 2. distributed memory system

C. Distributed shared memory system

This type of memory is a mixture of the two first types of
architectures. In this architecture, there are several groups of
processors sharing a global memory thanks to a network. At
the same time, every processor has its own local memory. That
allows, to a certain extent, to draw the advantages from the
two preceding architectures and to reduce their disadvantages
[9].

In this model (fig 3), the various tasks share the same
addressing report; they can read and write inside in an
independent and asynchronous way. That makes it possible to
avoid the problem of the communication between the data and
the tasks. But the principal disadvantage of this model is that
the coherence of the data and the accesses must be managed
by the programmer using semaphores or bolts, with the risk of
decreasing the performances of the system if the number of
messages exchanged is very important. Moreover, each
processor uses its own local memory. The communication of
the data and the synchronization are made using messages
whose format is left to the discretion of the programmer. The
various authorities of the application distributed must be
synchronized. Indeed, the sending of a message must be the
subject of an explicit reception by the recipient.

Processor 1 Processor2 |~~~ 7" Processor n
Mem Mem Mem
global shared memory /0
Figure 3. distributed shared memory system

Architectures with shared distributed memory are very
much used within the framework of the multiprocessor
systems on chip, but this type of architecture can influence the
performances of the system especially when the number of
communications between the processors is very large. We
propose in this paper a new type of architecture which permits
simultaneous access to the memory. This new topology is
presented in the section 3.

III. DESIGN OF REAL TIME MULTIPROCESSOR ARCHITECTURE

The design of a new multiprocessor system is composed of
two main steps. The first step is the design of the HW
architecture. The second step is the set up of the software
communication layer that manages the HW architecture.

by using the principal characteristic of the avalon bus
“simultaneous multi master”

A. Design of multiprocessor architecture:

The new proposed architecture is an improvement of the
distributed shared memory systems detailed in section 2.3. In
this new topology, we propose to use for each processor
(noted Px), two memories (Cf. fig 4). The first one is specific
for Px. The second memory is shared with all the other
processors in writing operation. All the messages which are
intended to Px are stored in this memory. Processor x is the
only processor that can read its contents. Px accesses to the
shared memory must be managed by the programmer using
semaphores or bolts.

Processor 2 Processor n

Shared Shared
SsL Memory Mem Memory
Shared |
Mem Memory 1/0

Processor 1

Figure 4. distributed memory, shared distributed memory systems

We use the kit EXCALIBUR of ALTERA to implement
the new architecture. This kit is composed of :
e the NIOS-II processor,

e adevelopment board containing a STRATIX-IT FPGA,
e the Quartus-II environment of development.

We adopt as RTOS the MicroC_OS-II [10]

The NIOS II use the Avalon bus. The main characteristic of
this bus is that it is simultancous multi Masters. This
characteristic facilitates the set up of the new architecture. The
Masters can reach simultaneously their slaves and if necessary
two Masters can exchange data through a shared memory.
Generally the access to this memory is managed by the used
multiprocessor operating system [11].

To facilitate the design of multiprocessors architectures,
ALTERA recently introduce a new component. It is an
RTOS module implemented in hardware called “mutex” to
ensure the management of the access to the memories shared
between the various processors [12]. The mutex provides an
operation “test-and-set” containing material, permitting the
software, in a multiprocessor environment, to determine the
processor that possesses the access to a shared resource. The
mutex is used in the conjunction with the shared memory to
implement the coordination devices of inter complementary

processors.

This proposed new architecture is implemented using
ALTERA kit as shown in figure 5. The architecture is
composed of a group of sub-systems which can communicate
together through divided memories from which the access is
protected by mutex Hardware.

T
.|

T]

>

A\

ute:

Mutex2 Shared memory 2

Figure 5. proposed topology of multiprocessor architecture

B. Generic interprocessor communication layer

Within the framework of a multiprocessor system, it is
necessary that the processors communicate one with the other.
This communication is achieved by sending messages
(Message Passing) [13].

Generally, the communications can be synchronous or
asynchronous, blocking or not blocking. The synchronous
communications are slower and are generally blocking, i.e. the

two processors engaged in the communication must wait for
the end of the communication to continue.

On the other hand the asynchronous communications are
most of the time not blocking. In fact, when a processor wants
to send a message to another, it sends the message, and it can
immediately take again its execution without worrying about
the other processor when it receives the message. It is the main
advantage of the asynchronous communications.

In our case we consider a shared memory whose access is
protected by the mutex hardware and a message line (Queuing
Message) through which the processes of the nodes send and
receive messages. Thus, the layer of developed
communication is a whole of routines making it possible to
send and receive messages in various ways by combining the
following parameters:

e Send/Receive blocking and not blocking;

e Send/Receive of single or composed messages;
e Send of messages synchronous or asynchronous.

Hence, we could implement a layer of interprocessor
communication. The whole communication routines are
implemented according to the following parameters":
communication mode (blocking or not blocking), the
communication type (sending or reception) and the message
type (single or composed). More details about this
communication layer will be given in future publications.

IV. EXPERIMENTAL RESULTS:

In this section, we present preliminary experiments using
our new multiprocessors design. The aim of these experiments
is to study the exploration of architecture design for the 3D
graphic pipeline application (without texture mapping). (Cf.

fig6) [14].
texture

Transformation
Figure 6. 3D graphic pipeline

lights
Calculations

Clipping

We conceive a set of architectures for this application using
one and two processors respectively equipped with specialized
HW accelerators and coprocessors. For monoprocessor
architectures, we carried out the implementation in hardware
of some module of this application in the form of accelerators
and coprocessors (implemented as custom instructions). For
this, a study of this application was made to release the SW
tasks which are computationally intensive and which are
repeated several times. Those critical taks were implemented
in hardware as accelerators and interfaced with the bus Avalon
through the PIO° technique. We implement complex

> Paralel Input Output

mathematic operations (such as multiplication, division) as
coprocessors to accelerate their execution locally.

The synthesis application of 3D image was decomposed
into 11 tasks (corresponding to the 8 stages shown in figure 6)
which cooperate between each other to fulfill the total function
of the system. A manual stage of partitioning is performed to
assign to each processor the tasks to be carried out and the
data to be exchanged with the other processors.

The Tablel presents the results of the execution of the 3D
synthesis images application on various architectural targets.

TABLE I. EXPERIMENTS RESULTS OF ON A SET OF ARCHITECTURES
RUNNING 3D IMAGE SYNTHESIS
Tepu+deo Icpu+dcoproc lepu+
Lepu Proc leputace +ace 2opu 4eoprac
{;““] 3505 376 54 5425 9020 9153
Aluts
Utilisation
ratio of T, o L1 o L1 L1
e &% 8% 10% 18% 18%
ALUTS
Total
memory | 371136 | 371136 | 571136 371136 657920 | 637920
hits
Utilisation
ratia of 2% 2% 2% 2% 25% 25%
memory
Execution | 107100562 | 720223058 | 707872710 | 490876436 | 717162354 | 570376431
time (tic)
legl;g“ 000% | 37% | 3391% $417% W% | 46,74%

We notice, according to the table above, that by using two
processors, we will have the same profit (in execution time)
obtained as with one processor equipped with accelerators or
coprocessors, but, conversely, we will find that we lost, in
terms of circuit surface, considering the increase in the number
of resources used.

This result can be explained with the sequential nature of
the target application. Indeed, to get the best results form
multiprocessor architectures, the application must have a
spatial parallelism. The total acceleration of this sequential
application depends on the acceleration of its critical stages
using HW accelerators and coprocessors. This shows that the
nature of the target application can deeply influence the
performance of the system even equipped with high
performance architecture. We are planning to use a high level
codesign tool “Design Trotter” [15] to select the more suitable
applications for multiprocessing applications.

V. CONCLUSION

The work undertaken enabled us to examine in advance
the constraints and the problems brought about by the
prototyping of the multiprocessors real time systems on
reconfigurable architectures using a monoprocessor RTOS.
Our aim is the set up of a multiprocessor platform and the
proposal of a generic layer of inter-processor communication
which allows the adaptation of the operating systems single
processor for multiprocessor architectures. In this paper we
focus on the first aim. The second aim is the object for our
future publication. We set up a new multiprocessor platform
and we validate it through the 3D image processing

application. As a future work, we plan to analyze the benefit
of the new architecture over the existing architectures using
more suitable application for multiprocessor’s architecture.

REFERENCES

[1] Bambha, N. Kianzad, V., Khandelia, and Bhattacharrya, “Intermediate
Representations for Design Automation of Multiprocessor DSP
Systems”. In Design Automation for Embedded Systems, vol. 7, 307-
323, Kluwer Academic Publishers, 2002.

[2] L.Wang and N. Manjikian. “A performance study of chip
multiprocessors with integrated dram”. In Proc. 2003 Symp. on Perf.
Eval. of Computer and Telecommunications Systems, Montreal,
Quebec, July 2003.

[3] N. Manjikian. “Multiprocessor enhancements of the SimpleScalar tool
set”. ACM Computer architecture News, 29(1):8—15, March 2001.

[4] Le Moigne, R. Pasquier, O. Calvez, J.-P. “A generic RTOS model for
real-time systems simulation with systemC”, Design, Automation and
Test in Europe Conference and Exhibition, Feb. 2004.

[5] D. Shin and J. Kim. “Power-Aware Scheduling of Conditional Task
Graphs in Real-Time Multiprocessor Systems. In Proc”. International
Symposium on Low Power Electronics and Design (ISLPED), August
2003.

[6] MDARTS: “A Multiprocessor Database Architecture for Hard Real-
Time Systems” IEEE transactions on knowledge and data engineering,
VOL. 12, NO. 4, JULY/AUGUST 2000

[7] “Conception d’un systéme a haute performance, le calcul parallele” ,
CETMEF 2004.

[8] Amer BAGHDADI: “Exploration et conception systématique
d’architectures multiprocesseurs monopuces dédi¢es a des applications
spécifiques”thése PhD, TIMA France.

[91 W. Daniel Hillia and Lewis W.Tucker “The CM-5 Connection
Machine : A Scalable Supercomputer”. Communication of the ACM,
November 1993, Vol. 36, No. 11.

[10] J.J. Labrosse, “Micro C/OS-II, the Real-Time Kernel”, Second Edition.

[11] http:// www.altera.com

[12] K. loukil, Y. aoudni, G. Gogniat, M.abid, J.L. philippe, “Estimation du
tesmps d’exécution des systémes sur puce temps réel”. GEI 2007

[13] G. Krawezik “Présentation rapide de MPI : Message Passing Interface ,
LRI - Université de Paris Sud, EADS CCR — Blagnac, 28 Octobre 2003.

[14] K. Loukil et H. ben chikha : “Conception d’accélérateurs pour le
traitement d’images 3D . rapport Juin 2003

[15] Y. le moulec, J.P. Diguet, N. B. Amor, T. Gourdeaux and J. L. Philippe,
“Algorithmic-level Specification and Characterization of Embedded

Multimedia Applications with Design Trotter”, Journal of VLSI Signal
Processing 42, 185-208, 2006

