
ARTICLE IN PRESS
Please cite thi

(2006), doi:10

0026-2692/$ - se

doi:10.1016/j.m

�Correspond
Tunisia, Sfax. T

E-mail addr
Microelectronics Journal ] (]]]]) ]]]–]]]

www.elsevier.com/locate/mejo
RTDT: A static QoS manager, RT scheduling, HW/SW
partitioning CAD tool

H. Tmara,b,�, J.-Ph. Digueta, A. Azzedinea, M. Abidb, J.-L. Philippea

aLESTER Lab, University of South Britanny, France, Lorient
bGMS Lab, National Engineers school of Sfax, Tunisia, Sfax
Abstract

The hardware/software partitioning/scheduling relies on two subtasks: the cost function and the real time (RT) analysis. Besides these

two subtasks, the proposed generic framework, also called RT design trotter (RTDT), processes the problem of the Quality of Service

(QoS) management. The aim is to add a new dimensions to solution selection, namely the guarantee of QoS from both application

quality and RT issue points of view. The proposed framework defines an iteration loop of three steps that solve the sub-problems. The

cost function takes into account the system on chip (SoC) area and the static and dynamic power dissipation. We show how our tool can

be used to rapidly evaluate the impact of the application quality and the RT constraints choices (QoS parameters) over the final cost.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: RT system; Power model; RT scheduling; Static QoS manager; SoC
1. Introduction

CAD tools are now crucial for System On Chip (SoC)
industry in order to get back a vital benefit from the joint
evolution of applications and VLSI circuits. Basically the
issue is no more the amount of transistors available on
chips but the way to follow up the potential they offer with
reduced design delays and low cost methodologies. The
questions related to the complexity of SoC are many-fold
and include different issues like reliability, design delay,
power and real time constraints (RTCs). As previously
performed in other industrial domains like avionics and
automotive, the microprocessor industry is evolving
towards unavoidable knowledge management methods in
order to reduce design cost and delay while focusing on few
real value-added innovations [1]. In the domain of SoC the
designers rely on reuse of a reconfigurable software (SW)
or hardware (HW) intellectual property blocks (IP). IP
based framework for simulations are available in both
academic [2] and industry [3] areas. However, exhaustive IP
s article as: H. Tmar et al., RTDT: A static QoS manager, RT

.1016/j.mejo.2006.07.028

e front matter r 2006 Elsevier Ltd. All rights reserved.

ejo.2006.07.028

ing author. GMS Lab, National Engineers School of Sfax,

el.: +216 74 276 400; fax: +21674 274 437.

ess: tmar@iuplo.univ-ubs.fr (H. Tmar).
libraries with qualified components in terms of power and
execution time for various targets, offer a real interest only
if CAD tools can speed up the associated design space
exploration and validate the set of selected solutions. The
objective of this work is to provide a framework for low
power real time embedded systems codesign in order to
rapidly select promising architectures.
This kind of systems is typically reactive, real time,

increasingly control dominated, and data dependent for
optimization purposes. The design of such complex systems
requires high-level design tool in order to rapidly select and
synthesize promising architectures. Due to hard RTCs,
HW implementation (e.g. IP based) of critical functions
must be performed. It is then necessary to use a SW/HW
codesign approach, which must allow a minimal design
cost and a minimum time to market. In order to ultimately
avoid costly redesigns, the system architecture has to more
or less meet timing requirements, on the first try, at an early
phase in the design process. Where there have been some
research efforts which addressed this problem, the
approaches used remain more pessimistic than necessary.
They are based on worst case analysis technique [4–7], that
consists of a priori time slot reservation for each task,
namely, worst case execution time (WCET) consideration
scheduling, HW/SW partitioning CAD tool, Microelectronics Journal

www.elsevier.com/locate/mejo
dx.doi.org/10.1016/j.mejo.2006.07.028
dx.doi.org/10.1016/j.mejo.2006.07.028
mailto:tmar@iuplo.univ-ubs.fr


ARTICLE IN PRESS
H. Tmar et al. / Microelectronics Journal ] (]]]]) ]]]–]]]2
to guarantee RTCs. While this technique is necessary for
hard RT systems, it is less justified for soft RT systems,
where methods based on probabilistic schedulability
analysis are more and more studied in the embedded SW
systems design domain [8–13]. Thus, the solution which
appears is no longer a real time management but rather a
QoS management [14]. For these reasons, we propose to
use a notion of QoS instead of RT during the partitioning/
scheduling step. Thus, we add a new category of task for
periodic and aperiodic ‘‘soft RT’’ tasks. This kind of tasks
respect the RT constraints with a given probability. The
rest of the paper is organized as follows.

In the next section, we place our work within the state
of the art. In Section 3 we specify the problem. The
architecture model is presented in Section 4. In Section 5
the generic design space exploration framework is detailed
including area and power models, and the basic RT
scheduling assumptions. Section 6 presents the QoS model.
A football player robot application is experimented in
Section 7. Finally we draw conclusions and perspectives.

2. Related work

Our research results can be viewed in the context of two
areas of related works: high-level HW/SW partitioning-
scheduling for RT embedded systems, and quality of
service management. The codesign literature is an active
domain that embraces various topics like system specifica-
tion, area/power/delay estimations for HW/SW candidates,
HW/SW partitioning, HW/SW communication synthesis
and cosimulation. A recent overview of the different
domains can be found in [15]. The specific topic addressed
in this paper is related to the automatic HW/SW
partitioning issue under QoS constraints based on an
optimization cost function involving power and area. Some
other important features relative to our work are the multi-
rate, the task preemption (or switching) overhead and the
aperiodic task scheduling from a RTOS point of view, the
multi-granularity regarding the design space exploration,
and finally the genericity of the architecture/application
specification concerning the CAD tool.

A complete framework for automatic HW/SW partition-
ing is detailed in [4]. It includes multi-granularity selection
in the context of performance optimization. In the context
of real time scheduling, static non-preemptive scheduling
[5,6] is usually adopted in embedded real-time systems since
dynamic scheduling cannot guarantee the RTCs and incurs
a computational overhead. The objectives formulated in
[16,17] are quite close to ours; the multi-rate issue is
handled and preemptive scheduling is considered. It also
includes the RTOS overhead but does not take into
account preemptions due to the access to critical or shared
resources. The cost function includes area and power but
with a very simple model based on average power
dissipation. The method is extended to aperiodic tasks
where the time slots are reserved within the hyperperiod.
This technique uses inter-instance minimum delay which
Please cite this article as: H. Tmar et al., RTDT: A static QoS manager, RT

(2006), doi:10.1016/j.mejo.2006.07.028
means a pseudo-periodization, it can lead to very costly
design if the tasks are rarely launched or if their execution
is not critical. An interesting clustering method is used to
reduce the partitioning complexity.
QoS has been often addressed in multimedia, video, and

networking research communities, but rarely in the design
community. However, where there have been some
research efforts for co-synthesis of multi-task embedded
systems only a few research results exist for QoS manage-
ment. Previous works, which can be found in the domain of
PC-based servers for video tracking [18] or web applica-
tions [19], propose an interesting close-loop approach for
QoS and CPU Bandwidth adaptation. In the domain of
mobile system, Agile [20] proposes some extensions to the
eOS NetBSD for media delivering. The authors have
implemented the concept of fidelity to drive the QoS
management in term of video cadence and picture quality.
The main conceptual result in system design literature was
presented in [21]. The authors study how multiple voltages
can be used to simultaneously satisfy HW requirements
and minimize power consumption while preserving the
requested level of QoS; in that case satisfying latency and
synchronization requirements. Given task sets and a
processor with multiple voltages, they search all the feasible
competitive schedules with the minimal energy consump-
tion and memory requirement assuming that two schedules
are competitive if neither outperforms the other in both
energy consumption and memory requirement. However,
they do not consider the resource sharing possibility
between tasks and assume that all tasks are run on the
processor. Compared with this last previous approach, our
work differs in three aspects: first we address the domain of
RT HW/SW co-synthesis. Second, we process the problem
of QoS in terms of application quality and RT constraints
choices. Third, we consider the possibility of HW resource
and coprocessor sharing between tasks.
3. Problem specification

Globally we address the partitioning of a dependent task
graph over a multi-processor architecture in a real time
context. Solving this question directly is extremely complex
and heuristics can lead to oversized solutions if dynamic
systems are considered. This aspect is becoming more
critical since we observe a trend toward systems with very
unprecise WCET. This unpredictability is increasing in
modern embedded systems for various reasons that can be
related to the adaptive or data dependent task specification
or to the complexity of processor architectures [22]. Given
that fact, we have split the problem and defined realistic
methodology and tool, which are interactive and based on
a four steps strategy.
�

sc
PACM clustering: the first step consists in assigning a set
of tightly dependent and communicating tasks to an
enhanced processor architecture (PACM cf. Fig. 1);
heduling, HW/SW partitioning CAD tool, Microelectronics Journal

dx.doi.org/10.1016/j.mejo.2006.07.028


ARTICLE IN PRESS
H. Tmar et al. / Microelectronics Journal ] (]]]]) ]]]–]]] 3
�

P

(2
QoS selection and Trade-off tuning: the second step
interacts with the designer in order to select a category
for each task: Hard, soft or non-real time. It uses the
Radha Rathan Tool [23] to get the time constraint
interval for each task;
lease cite this article as: H. Tmar et al., RTDT: A static QoS manager, RT

006), doi:10.1016/j.mejo.2006.07.028

Fig. 1. Task graph assignation to the target architecture.

For(i=1 to N) //N l

For(j=1 to K) //

Process_Pix

Granularity 

Granularity leve

Granularity level 1

Task T2 loop nest
Video
Acquisition

Image
Processing

SW

HW

(a) (b)

Fig. 2. Multi-granularity hardwa
�

sc

ines

K co

el (i

leve

l 2

re s
HW/SW partitioning and real time scheduling: the third
step proceeds the HW/SW partitioning within a real
time context. At this level, the designer controls the cost
function in terms of Area/Power tradeoff and the IP
candidates for each task.

�
 Post-partitioning memory optimization: finally, memory-

merging opportunities are analyzed, this step cannot be
included in the partitioning/scheduling loop but can be
efficiently performed over a small set of solutions.

This paper specifically addresses the second and third
steps.

4. Monoprocessor architecture model

In this section, we describe the PACM architecture. Note
that the PACM architecture is composed by one Processor
Accelerators, Coprocessors and Memories. Then, we detail
our approach for SW/HW communication modeling.

4.1. PACM architecture

Fig. 1 presents the PACM model. Basically our
architecture is built around a processor core (e.g. IP
NIOS), which offers configurations opportunities for
adding coprocessors acceded through the processor regis-
ters. The processor is communicating with dedicated HW
accelerators through a standard bus (e.g. Avalon). Hence,
three families of implementations can be considered: (i)
SW, (ii) SW with coprocessors that can be shared with
other tasks and (iii) dedicated HW.

4.2. HW/SW communications

4.2.1. General case

The communications between HW and SW are imple-
mented as a particular new task during the partitioning/
scheduling process. The period of the communication task
depends on the granularity level of the HW implementa-
tion as indicated in Fig. 2. If we consider two tasks,
producer task TP produces a data for the consumer task
TC, four cases can be distinguished (see Fig. 3):
heduling, HW/SW partitioning CAD tool, Microelectronics Journal

lumns

, j);

l 3

(c)

olutions for a loop nest.

dx.doi.org/10.1016/j.mejo.2006.07.028


ARTICLE IN PRESS

(a) (b) (c) (d)

Fig. 3. Memory and tasks implementations for HW/SW communications.

H. Tmar et al. / Microelectronics Journal ] (]]]]) ]]]–]]]4
�

P

(2
If TP and TC are SW, there is no need for communica-
tion task neither additional memory.

�
 If TP and TC are HW there is no need for communica-

tion task, however a communication memory (output
for TP and input for TC) is added.

�
 If TP is SW and TC is HW, a new communication task is

created, this task writes the data produced by TP in a
new input HW memory.

�
 If TP is HW and TC SW, a new communication task is

created, this task reads the data produced by TP in a new
output HW memory.

4.2.2. Communication task features

The first point is the period value and the amount of data
to transmit. The period of a communication task Tcom

between two tasks TP and TC equals to the smallest period
of the two dependent tasks. The amount of data
transmitted during the minimal period equals to the
amount of data produced or consumed during this period.
The second point relies to the communication task
execution time Ccom, which is computed as follows:

If DataWidthoBusWidth:

Ccom ¼ Ncycles_init þ
NData

BusWidth
DataWidth

� � Ncycles_com

 !
ClockBus

ð1Þ

Else:

Ccom ¼ Ncycles_init þNData
DataWidth

BusWidth

� �
Ncycles_com

� �
ClockBus,

ð2Þ

where Ncycles_init is the number of cycles required to initiate
the data transfer NData is the amount of data to transmit,
Ncycles_com is the number of cycle per data transfer. All
these parameters are generic and can be easily specified.

4.2.3. Memory implementation

The task schedulability is computed while considering
independent tasks; actually the question of task dependen-
cies is solved by shifting release dates of consumer tasks
[24]. However, this assumption is valid only if the
communication memories have been correctly selected.
Two main issues must be considered.
lease cite this article as: H. Tmar et al., RTDT: A static QoS manager, RT

006), doi:10.1016/j.mejo.2006.07.028
�

sc
Data availability. The memory size must be large
enough to store, without overwritten data, the produced
data to be read by the consumer task.

�
 Data access conflicts. This problem is solved by the

RTOS when tasks are SW but if one of the tasks is HW
then conflicts can occur. Our framework proposes two
solutions to address this problem. In the first one the
communication memory is implemented as a critical
resource with priority ceiling. In such a case, the task
that accesses the memory cannot be interrupted by
another one when the data writing (or reading) is not
accomplished. In the second one, the communication
memory is implemented in a pipeline way with two
memories alternatively used for writing and reading
exchanged data.
The default implementation (without any designer
directive) is non-blocking communications, in that case
the memory size MS is computed as follows (P: producer
C: consumer):

If PPXPCðPP ¼ n PC and nX1Þ

MS ¼ 2N Dataout_P ¼ 2 n N DataIn_C, ð3Þ

Else if PPoPCðn PP ¼ PC and n41Þ

MS ¼ 2 n N Dataout_P ¼ 2N DataIn_C, ð4Þ

where PP and PC are the periods of the producer task and
the consumer task, respectively.
4.2.4. Multiple inputs/outputs

Including memory reuse optimization during the parti-
tioning/scheduling process incurs a complexity gap, which
is not acceptable. Moreover memory optimization can
efficiently be performed afterwards over a small set of
promising solutions. So, in case of multiple dependencies,
(1 producers and several consumers 1 consumer with
several producers), HW/SW, HW/HW and SW/HW
communications are implemented as single links with one
dedicated memory. A shared memory must be explicitly
defined by the designer within the specification task graph.
heduling, HW/SW partitioning CAD tool, Microelectronics Journal

dx.doi.org/10.1016/j.mejo.2006.07.028


ARTICLE IN PRESS
H. Tmar et al. / Microelectronics Journal ] (]]]]) ]]]–]]] 5
5. Design space exploration and evaluation

In this section, we outline some basic RT scheduling
assumptions. Then, we detail the generic design space
exploration framework including area and power model.
5.1. Real time scheduling strategy

5.1.1. Task classification

Usually, the real-time embedded systems require a
simple and safe scheduler, which can guarantee that critical
aperiodic or periodic tasks meet their deadlines. For these
reasons, a static high priority first (HPF) scheduling policy
has been adopted where the fixed priorities are computed
as the inverse of the task period. The worst-case response
time is computed with an exact analysis [25].

In a first approach we consider two kinds of tasks (we
will show in Section 6 how the QoS management can bring
a third kind of task). The first category is composed by the
periodic tasks that are scheduled by means of hard RTCs
and by sporadic tasks with hard RTC. Like in [16] we
consider the sporadic task as periodic task with period
equals to the minimum delay between two subsequent
executions, this value is provided by the Radha Ratan tool
[23]. The second category includes the non-critical sporadic
tasks, which are handled, by a server task with the lowest
priority that can be fixed by the designer. The priority is
computed as the inverse of the period task. The dependen-
cies, which can be related to precedence constraints, are
eliminated by modifying absolute deadlines and release
dates, as detailed in our previous work [24]. The computa-
tions of new release dates are performed in the precedence
order within the task graph. More formally, the schedul-
ability analysis is performed while considering independent
tasks, then when an implementation solution is found, the
new release dates RDi are computed in order to respect the
assumption, namely the precedence constraints. The
computations are performed in the precedence order within
the task graph, for example, regarding the tasks Ti and Tj

from Fig. 4.
If Tj is mapped on HW and Ti is mapped on SW; or Tj

and Ti are mapped on HW following the HW/SW
Please cite this article as: H. Tmar et al., RTDT: A static QoS manager, RT

(2006), doi:10.1016/j.mejo.2006.07.028

Fig. 4. Precedence generalized constraints.
partitioning decision, then:

RDi ¼ maxfRDi; RDj þ ðn� 1ÞPj þ Cjg

For the three remaining cases (Tj is a SW task and Ti is a
HW task, Tj and Ti are a SW tasks with theTj priority is
higher than the Ti priority, and Tj and Ti are a SW tasks
with the Ti priority is higher than the Tj priority) refers
to [24].
In Fig. 4, Pj is the period, Dj is the deadline, Rj the

response time, RDj is the release date, TQoSj[x1j,y,xNj] is
the QoS vector where xkj is a ratio representing different
aspects of QoS measurement (detailed in Section 6) and

½C
kj¼0
j ; . . . ;Ckj

j � is the execution vector where C
kj
j is the

delay associated to the kjth implementation of task j.

Remark. . Tasks being periodic, each period is a fixed
quantity. Absolute task deadlines are assumed to lie within
the periods and, for simplification here, to coincide with the
next task request. Uncertainty in computation time is being
taken care of by letting each C to be a random variable
characterized by a probability distribution. Regarding
aperiodic tasks, the period means the minimum delay
between two successive executions of the task. So in the
case of hard RTC, this delay is the lowest bound but with
soft RTC this delay is an average value.
5.1.2. Response time computation

The exact response time is computed iteratively with the
following equation:

8Tj 2 HPðiÞ; 9RipDi\Ri ¼ ðCi þ BiÞ

þ
X

j2HPðiÞ

Ri

Pj

� �
ðCj þ CswÞ, ð5Þ

where HP(i) is the set of tasks with higher priority
comparing to task i; Ri the worst case response time of
task i; Ci the execution time of task i; Bi the longest time
that task i can be delayed by lower priority tasks (e.g.
resource sharing), Pj the period of task j, Csw ¼ d0+Skd(k)
with d0 is the context switching overhead without
any coprocessor and dk is the overhead due to the
coprocessor k.

The context-switching overhead is the delay between the
suspension of a given task and the activation of another
task. The difficulty is that dsw depends not only on the
target processor and on the RTOS and its configuration
but also on the number of tasks in the system and on the
number of co-processors which both are evolving during
the HS/SW partitioning. The influence of the number of
tasks is not insignificant but can be neglected compared to
the coprocessor context saving influence. Moreover, with-
out coprocessor, the available overhead metric is usually an
average value estimated with different task sets. The
influence of a co-processor is obviously related to the
number of data and registers status.
scheduling, HW/SW partitioning CAD tool, Microelectronics Journal

dx.doi.org/10.1016/j.mejo.2006.07.028


ARTICLE IN PRESS
H. Tmar et al. / Microelectronics Journal ] (]]]]) ]]]–]]]6
5.2. Design space exploration for HW/SW partioning

5.2.1. Cost function

The cost function takes into account the global area of
the SoC and its energy consumption. At a high level of
abstraction only relative estimations can be used for SW
and HW IPs, the cost function is used to guide the selection
of reduced set of solutions where the designer should be a
‘‘good’’ solution after the refining steps. In order to
eliminate units, relative costs are used to evaluate the cost
value for a given schedulable solution S:

CostðSÞ ¼ a
AreaðSÞ �MinArea

MinArea
þ b

PwðSÞ �MinPw

MinPw
,

(6)

with aþ b ¼ 1 and where MinArea is the schedulable
solution with minimal area without any power considera-
tion and MinPw the schedulable solution with minimal
power without any area consideration. Note that the area
cost influences the power consumption through the static
power evaluation so the parameter a also act on the power
optimization.

5.2.2. Area cost

The area cost includes the data and code memory size for
SW implementations, the area of coprocessors that can be
shared by various tasks, the area of HW accelerators and
finally the area of memories added for communications.

5.2.3. Power cost

The model for power evaluation is much more complex.
Firstly the dynamic power consumption depends on the
SoC activity, which is strongly related to the task
scheduling and switching. Secondly, the evolution of VLSI
technology shows that static power consumption [26],
especially in FPGAs, can no more be neglected. Finally, in
mobile embedded systems the important metric is the
system life span. It means that the energy use must be
optimized. However, in our context of periodic tasks the
energy optimization is equivalent to the average power
minimization over the hyper period. Our power model for
an implementation S is given by

PwðSÞ ¼ Pwd þ Pws, (7)

where Pwd is the average dynamic power dissipated during
a hyperperiod TG and Pws the average static power.

5.2.4. Dynamic power/energy metric

Let Pwd the average dynamic power dissipated during a
hyperperiod TG.

Pwd ¼
Ed

TG
, (8)

Ed ¼ EdðswÞ þ EdðhwÞ==Ed:

consumed during a period : TG, ð9Þ
Please cite this article as: H. Tmar et al., RTDT: A static QoS manager, RT

(2006), doi:10.1016/j.mejo.2006.07.028
EdðswÞ ¼ EdðidleÞ þ EdðswitchÞ þ EdðexeÞ, (10)

EdðexeÞ ¼ TG

X
i2SW

PwdðiÞ
Ci

Pi

==PwdðiÞ:

average power for task i, ð11Þ

EdðswitchÞ ¼ TGPwdðswitchÞ
X
i2SW

Csw

Pi

==PwdðswitchÞ:

avg task switching power; ð12Þ

EdðidleÞ ¼ PwdðidleÞTG 1�
X
i2sw

Ci þ Csw

Pi

 !
==PwdðidleÞ:

avg proc: idle power; ð13Þ

EdðhwÞ ¼ TG

X
i2HW

PwdðiÞ
Ci

Pi

. (14)

Important note: For flexibility and genericity concerns,
the task average dynamic power values Pwd(i) are normal-
ized versus the supply voltage and clock frequency and the
average task static power is expressed by area unit (W/gate
or W/mm2 as indicated in [27]).
5.2.5. Static power/energy metric

The available static power, usually given by means of
mW/area, depends mainly of the leakage power, the supply
voltage, the transistor count and a technology-dependent
parameter:

Pws ¼ f ðN trKdesignI leakageVddÞ.

Our model uses Pws(sw) and Pws(hw) for SW and HW
parts, respectively. A dynamic strategy can be adopted for
static power management if HW accelerator power supply
can be switched off when unused. In such a case the
average static power dissipation is given by

Pws ¼ PwoffSW AreaðSWÞ þ PwoffHW

X
i2HW

AreaðiÞ
Ci

Pi

.

Without HW dynamic power supply management, we
obtain:

Pws ¼ PwoffSW AreaðSWÞ þ PwoffHW

X
i2HW

AreaðiÞ.

5.2.6. Partitioning algorithm

5.2.6.1. Solution evaluation. The main difficulties during
the partitioning/RT scheduling algorithm are firstly the size
of the design space, especially, since multiple granularity
solutions can be considered for each HW task implementa-
tion, and secondly the iterative scheduling of task worst
case response time.
A solution is valid if firstly all tasks meet their deadlines

and secondly if the current cost belongs to the N first best
costs. Contrary to the response time computation, the cost
is not iterative and must be evaluated first. Thus the
schedulability is computed in a three steps (see Fig. 5) in
scheduling, HW/SW partitioning CAD tool, Microelectronics Journal

dx.doi.org/10.1016/j.mejo.2006.07.028


ARTICLE IN PRESS

Fig. 5. Schedulability test.

H. Tmar et al. / Microelectronics Journal ] (]]]]) ]]]–]]] 7
order to restrict the use of iterative response time
computations. The algorithm first test if the processor rate
is lower than 1. As a second test, the fast rate monotonic
analysis (RMA) is performed; it gives a sufficient but not
necessary condition for schedulability. Finally if the first
tests are valid an exact analysis is performed. Note that the
designer can specify the CPU ratio rs to be guarantied for
the server task.
5.2.7. Design space exploration

Two methods are currently available, the first one is
exact and based on the Branch & Bound algorithm, the
second one is heuristic and uses a simulated annealing
approach (SA). The B&B starts with a left edge branch
representing a complete SW solution and progresses
towards a complete HW solution with the finest granularity
degree, the tasks are ranked in a branch according to the
priority order. On a given branch, for each task added, the
cost is first evaluated; if the cost is lower than the best
current solution then the task schedulability is computed
according to the method described in Fig 5. When the cost
is larger than the best value or when the solution is not
schedulable then a new task implementation is evaluated. If
no more implementation is available, another implementa-
tion is considered for the previous task in the current
branch and so on. The main difficulty occurs when a HW
solution with a fine granularity implies the insertion of a
communication task with a shorter period than its
predecessor in the branch. In such a case the schedulability
of previous tasks with a lowest priority must be computed
again. The B&B is efficient even for large graphs (100
tasks) when there are a few schedulable solutions, but its
computation is prohibitive when numerous solutions are
proposed for each task. When the response time computa-
tion dramatically slows down the design space exploration,
the SA heuristic can efficiently relay the B&B.
5.3. Generic codesign framework

One of our objectives was to carry out an interactive tool
for designers to easily test various configurations in terms
Please cite this article as: H. Tmar et al., RTDT: A static QoS manager, RT

(2006), doi:10.1016/j.mejo.2006.07.028
of tasks versions and architectural implementations. Our
flow is described in Fig. 6.
We have opted for the task graph defined in [23] in order

to use the Radha/Ratan tool to obtain internal task
constraints from Input/Output system constraints. The
uncertainty on I/O events and periods are expressed as a
period intervals [Pmin, Pmax] for each system task.
Each task is described in a C code file, the Design Trotter

framework [28] first generates a hierarchical data flow
graph (HDFG) from which different kind of estimation
can be produced like delay/area of FPGA HW components
[29] or power SW estimation by hierarchically combining
of CData Flow Graph from [30]. Another solution consists
in using qualified SW or HW IP specification.
By combining estimations data, the initial task graph

and designer choices, a new file is generated, this ‘‘file.cde’’
(see Fig. 6) includes the task constraints selected and the
description of all task implementations. The ‘‘file.Arch’’
gives the architectural parameters, like the Vdd/clock
modes Vdd, for HW and SW parts, the bus protocol and
so on.
The final solutions selected after the partitioning/

scheduling step are finally stored in the ‘‘file.imp’’.

6. Static QoS manager

In this section, we present the justifications and
components of the QoS model. Then, we address the
coherence checking for the static QoS manager and the
feedback scheduling analysis.

6.1. Context definition

One of the major issues in real time embedded systems is
the question of task execution time which can vary
depending on data and on environment events The second
point is the question of periodic and aperiodic tasks with
very versatile inter-iteration delays. In such uncertain
context, the choice of the worst case can lead to very
costly and oversized implementations. As systems are
growing in complexity, this overestimation become unac-
ceptable and new method must be considered.

6.2. Model

We propose to insert a new step within the codesign flow.
This step is based on a QoS model and produces the
specification file according to the designer choices. Thus,
we add a new kind of tasks for periodic and aperiodic soft
real time tasks. This category of tasks respects the RTCs
with a given probability, the aim is to avoid worst case
assumptions and deterministic guarantees for periodic and
aperiodic tasks with soft RTCs by means of probabilistic
scheduling. Each task can be represented by a QoS array of
N parameters:

TQoSi½x1; . . . ; xN �,
scheduling, HW/SW partitioning CAD tool, Microelectronics Journal

dx.doi.org/10.1016/j.mejo.2006.07.028


ARTICLE IN PRESS

Fig. 6. RTDT codesign flow.

H. Tmar et al. / Microelectronics Journal ] (]]]]) ]]]–]]]8
where xi is a ratio representing different aspects of QoS
measurement. In this paper we consider two dimensions:

TQoSðiÞ½AQoS;RTQoS�.

The first term AQoS represents the QoS specific to the
task, namely the application quality. For instance, it can be
a data rate for network management task or a number of
bits for pixel coding. The second term RTQoS is related to
the RTCs and means the minimum ratio of deadlines that
must be met. It means that the execution time W(i)
considered for task i during RT analysis is such as

ProbabilityðRL� Execution� TimeðiÞpW ðiÞÞ

¼ RTQoSðiÞ,

where RL�Execution�Time means the real life execution
time of task i. Regarding the RTQoS dimension, the
designer must choose the minimum ratio of deadline that
must be met for each task. According to the appropriate
probability law, the correspondent execution time is
computed and considered. For example, if the RTQoS(i)
is set to 1, then we consider the WCET(i) for task i. The
QoS task choices are usually not independent and the QoS
specification step must check the relation that exists
Please cite this article as: H. Tmar et al., RTDT: A static QoS manager, RT

(2006), doi:10.1016/j.mejo.2006.07.028
between task application qualities according to these
choices. Regarding the real time issue, a task with a
RTQoS equals to 1 (W(i) ¼WCET(i)) should not be
delayed by another to miss its deadline.

6.3. QoS decision and generation step

In this subsection, we detail the QoS specification and
checking step that is shown in Fig. 7. The entry of that step
is a tasks configurations file, in which we save all the
possible versions for each task. As mentioned above, a
version or a QoS task choice of a task is an application
quality/W(i) couple. By combining estimation data from
the implementation library and the designer choices, a new
file is generated. This ‘‘file.cde’’ (see Fig. 6) includes the
tasks constraints selected and the description of all task
implementations.
The QoS coherence checker tests three cases that can

lead to a QoS inconsistency:
�

sc
Test 1: Data dependency

�
 Test 2: Resource sharing

�
 Test 3: Task priority
heduling, HW/SW partitioning CAD tool, Microelectronics Journal

dx.doi.org/10.1016/j.mejo.2006.07.028


ARTICLE IN PRESS
H. Tmar et al. / Microelectronics Journal ] (]]]]) ]]]–]]] 9
For each QoS dimension i, the designer can select the
exclusive rule that he wants to be applied regarding QoS

homogenization:
�

P

(2
Rule l: QoS Round down

�
 Rule 2: QoS Round up

�
 Rule 3: QoS Unchecked
lease cite this article as: H. Tmar et al., RTDT: A static QoS manager, RT

006), doi:10.1016/j.mejo.2006.07.028

Fig. 7. QoS specification and checking.

Fig. 8. Football player
designer must configure the QoS checker in order to verify

If we consider AQoS as a minimum data-rate, then the

QoS homogenization. Namely, for Test1 the designer will
select Rule1, or Rule2 if he wants to favour power
optimization or application quality respectively. In that
particular case, the task priority and resource sharing tests
can be ignored since they do not influence the AQoS. For
example, if power optimization is favoured, the QoS
checker is configured as follows for AQoS dimension:
{(Test1,Rule1); (Test2,Rule3); (Test3,Rule3)}
The RTQoS dimension is only influenced by priority

assignment and resource-sharing tests since the data
dependency question is solved during the RT scheduling
analysis as explained in Section 5.1. Thus, the QoS checker
must perform the Test2 and Test3 with Rulel or Rule2
depending on the designer choices. Besides these test/rule
specifications, the QoS checker must verify that, for all
couples of tasks Ti and Tj, if priority(Ti)opriority(Tj), then
RTQoS(Ti)oRTQoS(Tj). Similarly, tasks that share re-
sources must have the same RTQoS. If these tests are not
valid, then Rule1 or Rule2 must be performed. For
example, if power optimization is favoured, the QoS
checker is configured as follows for dimension RTQoS:
scheduling, HW/SW partitioning CAD tool, Microelectronics Journal

robot application.

dx.doi.org/10.1016/j.mejo.2006.07.028


ARTICLE IN PRESS
H. Tmar et al. / Microelectronics Journal ] (]]]]) ]]]–]]]10
{(Test1,Rule3); (Test2,Rule1); (Test3,Rule1)}. The QoS
aware codesign flow is illustrated in Section 7.
6.4. Feedback scheduling analysis

After the HW/SW RT partitioning/scheduling step, a
timing analysis report is returned to the designer. This
report contains the probability scheduling results, it
indicates the scheduling safety rate (SSR), namely, the rate
of success of the server task capacity to support the
probably deadlines violations, such as

Probability
X
i2SW

RL� Execution� TimeðiÞ

 

p T s þ
X
i2SW

W ðiÞ

 !!
¼ SSR;
Please cite this article as: H. Tmar et al., RTDT: A static QoS manager, RT

(2006), doi:10.1016/j.mejo.2006.07.028

Fig. 9. RL-execution-time distribution.

Table 1

TQS [AQoS, RTQoS] tradeoffs

Sol 1 2 3 4

APQoS(x) 100% 100% 100% 40%

RTQoS(y) 100% 75% 50% 100%

Period Pmin Pmin Pmin Pmed

Exec time Tmax Topt Tavg Tmax

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

R
el

at
iv

e 
P

o
w

er
, A

re
a

Sol 1 Sol 2 Sol 3 Sol 4

HRT

Fig. 10. QoS/power
where Ts is the server task delay, RL�Execution�Time(i)
is the real life execution time, and W(i) is the execution time
considered for SW taski, as mentioned above.

7. Case study: a football player robot application

The case study described in Fig. 8 is a football player
robot application with video tasks for object detection,
wireless communications for message exchanging with
other devices, motors controls, sensor acquisition, image
processing and decision computation. Various HW with
different granularities, SW and SW with coprocessor
implementations are considered for the set of tasks. Note
that Tw is the server task with the lowest priority; it
includes all aperiodic SW tasks with soft RTCs or without
RTCs.
Regarding the period values, the video tasks T1,y,T11

have lower priorities than the other remaining tasks
T12,y,T18. We consider that all tasks from 12 to 18 are
hard real time namely:

8i 2 f12; . . . ; 18g;TQoSi ¼ ½1; 1�.

For tasks from 1 to 11, different tradeoffs are
experimented. Three video rates are considered: 40ms
(High: Pmin), 100ms (Medium: Pmed) or 200ms (Low:
Pmax).
The SW RL-Execution-Time is obviously different for

all these tasks, it also vary within the interval [Tmin,
WCET]. For instance, the video acquisition and the Bayer
interpolation delay variation are reasonably limited, but
scheduling, HW/SW partitioning CAD tool, Microelectronics Journal

5 6 7 8 9

40% 40% 20% 20% 20%

75% 50% 100% 75% 50%

Pmed Pmed Pmax Pmax Pmax

Topt Tavg Tmax Topt Tavg

Sol 5 Sol 6 Sol 7 Sol 8 Sol 9

QoS[AQoS, RTQos]

Power
Area

/area tradeoffs.

dx.doi.org/10.1016/j.mejo.2006.07.028


ARTICLE IN PRESS

Table 2

QoS tasks configuration

Taski T1 T3 T5 T7 T9 T11

TQoSi[AQoS,RTQoS] [1, 0.6] [1, 0.8] [1, 0.9] [1, 0.7] [1, 0.65] [1, 0.9]

H. Tmar et al. / Microelectronics Journal ] (]]]]) ]]]–]]] 11
for tasks like filtering interpolation or object positioning,
the gap is much more important (e.g. from 90 to 450ms for
T5). Regarding the RTQoS, we usually consider a Gaussian
G(Tavg, s) RL�Execution�Time distribution for each of
these tasks as presented in Fig. 9. Four particular values
can be distinguished: Tmin, Topt, Tavg, and WCET such as
�

P

(2
Probability (RL�Execution�TimeoTavg) ¼ 0, 50

�
 Probability (RL�Execution�TimeoTopt) ¼ 0, 75

�
 Probability (RL�Execution�TimeoWCET) ¼ 1
Various QoS tradeoffs have been evaluated with our
codesign framework. The different solutions are detailed in
Table 1. The case 1, 4 and 7 correspond to hard real time
conditions (RTQoS ¼ 1) with three different video data
rates (AQoS ¼ 1; 0.4; 0.2).

The results are presented in Fig. 10 with a cost function
tuned with a ¼ 0:3 (area) and b ¼ 0:7 (power). We present
relative values to show out the influence of QoS choices.
Thus we observe in Fig. 10 that the power and the area
costs can be efficiently reduced when the QoS constraints
are relaxed. For instance, by reducing the video data rate,
we observe that 40% of power reduction can be obtained
for a medium quality. Another point is the cost of hard RT
(HRT), actually if a soft RT (SRT) is used and tune to 75%
of the WCET we note that meaningful power and area
savings are achieved.

Suppose that the designer wants to optimize the power
consumption, so he configures the QoS cheker for AQoS
and RTQoS dimensions, respectively, as follows:

{(Test1,Rule1); (Test2,Rule3); (Test3,Rule3)}, {(Tes-
t1,Rule3); (Test2,Rule1); (Test3,Rule1)}. The QoS config-
urations for football player robot application tasks are
presented in Table 2. We assume that the QoS array is set
to [1,1] for all remaining tasks. The server task delay is set
to 0.017ms. However, the goal here is mainly the
illustration of the feedback analysis. The solution obtained
following the partitioning/scheduling step shows that tasks
T1,T3,T5,T7,T9,T15,T16,T19 are assigned to the processor.
For this solution, eight communication tasks are created
and also assigned to the processor. The rate of success of
the server task capacity to support the probably deadlines
violations, so-called SSR generated for this solution, equals
to 0.97.

8. Conclusion

The design space related to embedded systems is
extremely large, it involves functional specification deci-
sions, implementations choices including SW, HW with
lease cite this article as: H. Tmar et al., RTDT: A static QoS manager, RT

006), doi:10.1016/j.mejo.2006.07.028
various granularities and coprocessors choices and also low
level Clock frequency-Vdd couple alternatives, moreover it
requires a complex real-time analysis. A tool is required to
handle the problem complexity but this tool must be
controllable by the designer in an interactive way. In this
paper, a HW/SW co-synthesis framework is proposed for
multitask RT embedded systems. The proposed iterative
co-synthesis procedure with user interaction consists of
three main steps: selection of QoS choices, HW/SW
partitioning and schedulability test. Unlike current meth-
odologies for RT SoC that are based on worst case design
approach, and when dealing with QoS driven applications,
a probabilistic approch for schedulability analysis of fixed
priority driven preemptive SW system tasks with uncertain
computation time is proposed. We have shown that the
proposed approach for QoS management performs well
with nine QoS versions. It can lead to 40% of power
reduction by reducing the video data rate. The proposed
approach for static QoS management can be used as a
starting point for the development of a dynamic QoS
manager which is the subject of our future work.
References

[1] M.J. Bass, M. Christensen, Customization and speed-to-market will

drive the industry from the bottom up, IEEE Spectrum 39 (4).

[2] The soclib project, /http://soclib.lip6.fr/S (2004).

[3] Cadence virtual component co-design (vcc), /http://www.cadence.

comS (2004).

[4] P. Eles, Z. Peng, K. Kuchcinski, A. Doboli, System level hardware/

software partitioning based on simulated annealing and tabu search,

Kluwer Journal on Design Automation for Embedded Systems 2 (1)

(1997) 5–32.

[5] R. Gupta, Co-Synthesis of Hardware and Software for Digital

Embedded Systems, Kluwer Academic Publishers, Dordrecht, The

Netherlands, 1995.

[6] T.Y. Yen, W. Wolf, HardwareSoftware Co-Synthesis of Distributed

Embedded System, Kluwer Academic Publishers, Dordrecht, The

Netherlands, 1997.

[7] J. Hou, W. Wolf, Process partitioning for distributed embedded

systems, in: Fourth International Workshop on H/S Codesign, 1996.

[8] A. Burns, G. Bernat, I. Broster, A probabilistic framework for

schedulability analysis, in: Third International Workshop on

Embedded Software, 2003.

[9] S. Monolache, P. Eles, Z. Peng, Memory and time efficient

schedulability analysi of task sets with stochastic execution times,

in: 13th Euromicro Conference on Real-Time Systems, 2001.

[10] A. Leulseged, N. Nissanke, Probabilistic analysis of multiprocessor

scheduling of tasks with uncertain parameters, in: Ninth Interna-

tional Conference on Real-Time Embedded Computing Systems and

Application, 2003.

[11] A. Atlas, A. Bestravros, Statistical rate mnotonic scheduling, in: 19th

IEEE Real-Time Systems Symposium, 1998.
scheduling, HW/SW partitioning CAD tool, Microelectronics Journal

http://soclib.lip6.fr/
http://www.cadence.com
http://www.cadence.com
dx.doi.org/10.1016/j.mejo.2006.07.028


ARTICLE IN PRESS
H. Tmar et al. / Microelectronics Journal ] (]]]]) ]]]–]]]12
[12] I. Broster, A. Burns, Random arrivals in fixed priority analysis, in:

First International on Probabilistic Analysis Techniques for Real-

time Embedded Systems, 2004.

[13] L. David, I. Puaut, Statistic determination of probabilistic execution

times, in: 16th Euromicro Conference on Real-Time Systems,

2004.

[14] /http://www.artistembedded.org/Overview/S, 1ST ARTIST (2002).

[15] G. Micheli, R. Ernst, W. Wolf, Readings in hardware/software

codesign, Morgan Kaufman Publishers, 2004.

[16] P. Dave, N.K. Jha, CASPER: Concurrent hardware-software co-

synthesis of hard real-time aperiodic specification of embedded

system architectures, in: Design, Automation & Test in Europe Conf,

Paris, France, 1998.

[17] B.P. Dave, G. Lakshminarayana, N.K. Jha, COSYN: Hardware-

software co-synthesis of heterogeneous distributed embedded sys-

tems, IEEE Trans. VLSI Sys. 7 (1) (1999) 92–104.

[18] B. Li, K. Nahrstedt, A control-based middleware framework for

quality of service adaptation, IEEE J. Select. Area Commun,

September 1999.

[19] C. Lu, J. Stankovic, G. Tao, S. Son, Feedback control real-time

scheduling: framework, modeling and algorithm, J. Control-Theor.

Approach. Real-Time Comput. (special issue of RT Systems) 23 (1/2)

(2002) 85–126.

[20] B. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton, J. Flinn,

K.R. Walker, Agile application-aware adaptation for mobility, in: 16

ACM Symposium on Operating Systems Principles, 1997.
Please cite this article as: H. Tmar et al., RTDT: A static QoS manager, RT

(2006), doi:10.1016/j.mejo.2006.07.028
[21] J.L. Wong, G. Qu, M. Potkonjak, An on-line approach for power

minimization in QoS sensitive systems, in: ASP-DAC, 2003.

[22] P. Marti, J. Fuertes, G. Foliler, K. Ramamritham, Jitter compensa-

tion for real-time control systems, in: IEEE Real-Time Systems

Symposium, London, UK, 2001.

[23] A. Dasdan, Timing analysis of embedded real-time systems, Ph.D.

Thesis, University of Illinois, Urbana-Champaign, USA, November

1999.

[24] A. Azzedine, J.-Ph. Diguet, J.-L. Philippe, Large exploration for hw/

sw partitioning of multirate and aperiodic real-time systems, in: 10th

International Symposium on H/S Codesign, Estes Park, USA, 2002.

[25] M. Joseph, P. Pandya, Finding response time in a real-time system,

IEEE Design Test Comput. 29 (5) (1986) 390–395.

[26] J.A. Butts, G. Sohi, A static power model for architects, in: 33rd

AcM/lEEEInt. Symposium on Microarchitecture, 2000.

[27] S.I. Association, International technology roadmap for semiconduc-

tors, /http://public.itrs.net/Files/2003ITRS/Home2003.litmS 2003.

[28] Y. Moullec, N. Amor, J.-Ph. Diguet, P. Koch, Follow-up Modelling

for Wireless Personal Communication Systems, in: Seventh Interna-

tional Symposium on Wireless Personal Multimedia Communica-

tions, Abano, Italy, 2004.

[29] S. Bilavarn, G. Gogniat, J.-L. Philippe, L. Bossuet, Fast prototyping

of reconfigurable architectures from a c program, in: IEEE ISCAS,

Bangkok, 2003.

[30] J. Laurent, N. Julien, E. Senn, E. Martin, Power consumption

modeling and characterization of the ti c6201, IEEE Micro 23(5).
scheduling, HW/SW partitioning CAD tool, Microelectronics Journal

http://www.artistembedded.org/Overview/
http://public.itrs.net/Files/2003ITRS/Home2003.litm
dx.doi.org/10.1016/j.mejo.2006.07.028

	RTDT: A static QoS manager, RT scheduling, HW/SW �partitioning CAD tool
	Introduction
	Related work
	Problem specification
	Monoprocessor architecture model
	PACM architecture
	HW/SW communications
	General case
	Communication task features
	Memory implementation
	Multiple inputs/outputs


	Design space exploration and evaluation
	Real time scheduling strategy
	Task classification
	Response time computation

	Design space exploration for HW/SW partioning
	Cost function
	Area cost
	Power cost
	Dynamic power/energy metric
	Static power/energy metric
	Partitioning algorithm
	Solution evaluation

	Design space exploration

	Generic codesign framework

	Static QoS manager
	Context definition
	Model
	QoS decision and generation step
	Feedback scheduling analysis

	Case study: a football player robot application
	Conclusion
	References


