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Abstract. The implementation of complex embedded applications re-
quires a mix of processor cores and HW accelerators on a single chip.
When designing such complex and heterogeneous System on Chip
(SoCs), the HW/SW partitioning needs to be made prior to refining
the system description. Traditional system partitioning is generally done
at the early stage of system architecture, by defining the tasks to be
implemented on the embedded processor(s), and the tasks to be imple-
mented on the hardware. We describe here a new approach of On-line
Partitioning Algorithm (OPA) which consists of adapting dynamically
the architecture to the processing requirements. A scheduling heuristic is
associated to this partitioning approach. We consider soft real time data
flow graph oriented applications for which the execution time is depen-
dent on the content of input data. The target architecture is composed of
a generic processor connected to a dynamically reconfigurable hardware
accelerator. The dynamic reconfiguration allows the self adaptation of
the architecture which avoids redesigning a new architecture according
to variation of characteristics of applications algorithms. We compare
our method with an Off-line static HW/SW partitioning approach. We
present results of the OPA on an image processing application. Our ex-
periments included simulation results with SystemC for on-line schedul-
ing and partitioning approaches. An ILP solver is used to compare the
experiment results with an off-line static HW/SW partitioning approach.

1 Introduction

Modern complex embedded real-time systems require significant computational
power while guaranteeing latency and timing performance. Guaranteeing the
performance of a multi-tasked system often requires a far more powerful proces-
sor if we minimize embedded resources as well. Hybrid hardware-software
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systems have a number of advantages over traditional microprocessor-based
software systems or custom ASIC hardware solutions. The implementation of
control-flow algorithms is difficult in hardware, while algorithms involving
significant parallel arithmetic operations may be difficult to realize in a
microprocessor-based software solution. Hybrid hardware software systems al-
low the parallelism to be exploited in hardware, while leaving control of the
overall system in software. This may result in superior real-time performance, as
argued in [1]. The aim is to adjust the computational power of current multime-
dia portable devices (such as embedded camera) while keeping their flexibility.
Flexibility is required because different algorithms will run on the device, with
different architecture requirements. Moreover, it enables upgrading and down-
loading of new applications. Reconfigurable hardware meets these two require-
ments and is therefore a valid solution for this problem. Hardware/Software
partitioning is the process of dividing an application among software (run-
ning on microprocessors) and hardware units. Extensive research has shown
that Hardware/ Software partitioning can result in overall software speedups
[2, 3, and 4] as well as reducing system energy [14, 5 and 6]. Many appli-
cations, in particular in image processing (e.g. an intelligent embedded cam-
era), have dependent data execution times according to the nature of the input
to be processed. This kind of applications is often stressed by real time con-
straints, which demand adaptive computation capabilities. To partition data-
dependent tasks on a heterogeneous architecture, new design approaches are
necessary. Particularly for applications with soft real time constraints, we aim
to minimize the embedded resources so as to avoid an architecture composed
of the resources associated with the worst case execution times (WCET) of
the functionalities. There is little work in the literature, which addresses this
problem. The approach presented in [13] is based on an on-line HW/SW mi-
gration of tasks according to their execution times. This migration process is
only applied locally to the most time consuming loop of the application pro-
gram. The choice of dynamic re-allocation of the tasks presented in [13] is
manual. The primary contribution of our work, though, is an extensive exami-
nation of the number of hardware resources savings as well as possible speedups
through on line hardware/software partitioning. We have simulated our ap-
proach with a SystemC platform having a microprocessor coupled with a
configurable logic on a real time image processing applications. The paper is
organized as follows. Section 2 presents related works on HW/SW partitioning.
Section 3 introduces the advances in dynamic reconfigurable systems. Section 4
presents the on-line partitioning algorithm. Section 5 shows the experimental
results and finally we conclude in section 6.

2 Related Work

Recent works have introduced dynamic hardware/software partitioning [13].
During execution of an application, an on-chip profiling method detects criti-
cal regions of code for hardware implementation. An on-chip tool transparently
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re-implements those regions on FPGA (Field Programmable Gate Array). Re-
searchers have explored other dynamic optimization approaches. For example,
Dynamo performs dynamic software optimizations on the most frequently ex-
ecuted regions of code [1]. The ProfileMe approach [15] specialize subroutines
for common inputs and determines by runtime profiling which configuration
to call for the best performance. In [16] the performance is improved by re-
mapping frequently executed regions of code to non-interfering cache locations.
Value profiling [17] determines runtime invariant variables for constant propa-
gation and code specialization for optimized performance, or even for
reduced energy. The appearance of single-chip platforms incorporating a micro-
processor and FPGA in a single chip [7, 8 and 9] has recently made the hard-
ware/software partitioning problem even more attractive. Such platforms yield
more efficient communication between the microprocessor and FPGA than us-
ing two chip designs, resulting in improved performance and reduced power.
By considering the FPGA as a fast extension of the microprocessor, a designer
can move critical software regions from the microprocessor onto the FPGA
hardware, so as to improve performance whereas the physical architecture is
unchanged.

3 Advances in Dynamic Reconfigurable Systems

In the literature, some reconfigurables architectures have been proposed to im-
plement a dynamic partitioning approach. The architecture proposed in [11] is
formed by a reconfigurable logic targeted by the dynamic HW/SW partitioning.
During the design of this architecture, the main goal was to minimize the run-
time of the on line reconfigurable placement and routing. In [12] an approach
of tasks re-allocation between hardware and software units is presented. It de-
tails the communication after switching the implementation of a task from a
unit to another. An embedded operating system has been used to manage the
different communications, context saving, the placement/routing and memory
management.

The target architecture in our approach is composed of a processor connected
to a Reconfigurable Computing Unit (RCU) through an intelligent interface con-
ceived by the CEA1 and called ICURE [10]. This architecture is schematized in
figure 1. The considered embedded processor can be of any type provided that it
allows an efficient coupling with the RCU. The RCU reconfiguration is achieved
by a dedicated unit situated in the ICURE interface. The reconfiguration data
are stored in a structure called Contexts. This latter contains the bit-stream, the
routing information and the object code necessary to the reconfiguration and ex-
ecution of the hardwired mapped tasks. The CPU has access to ICURE function-
alities through API (Application Programming Interface) allowing a transparent
utilization of the reconfigurable resources.

1 CEA: Commissariat lEnergie Atomique (Research Comitee on atomic energy).



182 F. Ghaffari et al.

Fig. 1. The generic architecture

4 The On Line Partitioning Algorithm (OPA)

4.1 General Description

On-line HW/SW Partitioning has several important advantages over off-line ap-
proaches. OPA allows for a system to be optimized based on runtime behaviors
and values, which may be hard to determine using off-line methods or costly sim-
ulations, and which also may change according to the environment with which
the system interacts. Furthermore, on-line optimizations require no designer in-
tervention and are applied transparently during runtime. In applications such as
image processing, the execution of data dependent tasks consumes time accord-
ingly to the characteristics of the incoming image. This time variation results
from one or more Correlation Parameters (CP) in every processed image. An ex-
ample of CP is the number of white pixels in an image or the number of moving
objects. The goal of the On-line Partitioning Algorithm (OPA) is to dynami-
cally allocate resources of the architecture to the tasks and schedule them such
that the constraints are not violated. The OPA considers periodically the set of
available embedded resources in the architecture.

The normal execution flow of the system on a sequence of input data In-1, In,
In+1,... is illustrated in figure 2. During period In-1 the execution time of each
task and of the whole application (Te) for the next period is estimated. While
no violation of time constraints is estimated (Te ¡ Tmax), the current mapping
and scheduling will be saved for the next period. Otherwise, a new partition-
ing/scheduling of the tasks is computed as depicted in period In in figure 2.
The new mapping must deal with the available resources in the reconfigurable
hardware unit and must provide a solution with an execution time less than the
time constraint.

Partitioning is needed when violation of constraints are predicted. The basic
idea consists to consider the current mapping and to carry out migrations of
tasks between resources to satisfy the overall constraints (see period In+1 in
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Fig. 2. Adaptation of partitioning to the processing need

Fig. 3. Dynamic reconfigurable platform

figure 2). Assume that time constraint violation is predicted at period In and
the task Ti is assigned to the processor. The current available area in the HW
unit is Sn. A migration of Ti to the HW at the next period leads to a benefit of
?i on its execution time and the available area will be reduced to Sn+1 ¡ Sn. The
On-line partitioning and scheduling are time consuming operations. Therefore
the challenge is to develop fast efficient algorithms that can interact with the
application functionalities and respect the time constraints of the application.
Data flow-based applications are good candidates for this new approach. For
example, while the system processes the image n, OPA performs the partitioning
and the schedule of the estimations for image n+1. The figure 3 illustrates the
functionalities embedded in an OPA system composed of two parts: the resources
dedicated to the application itself and the OPA loop. The former is data flow
oriented such as video, image, sound or any iterative data processing application
with data dependent execution time. The application has its own internal data
communications between dependant tasks, but only the exchanged data with
the OPA loop subsystem is shown. The tasks of the application are executed
according to the order given by the Scheduler. The execution time of each task
and the associated CP value are collected in a database. At the end of each
period, the OPA estimates the run time of each application task for the next
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period based on the measures in the database. If the estimated schedule respects
the timing constraints, the OPA loop will stop and the system executes the next
period. In the other case the algorithm runs the Partitioning function and tries to
find a partition which respects the constraints. This global view of the algorithm
leads to questions about its integration in the whole system, and how complex
will be its implementation.

4.2 System Model

To model the application we consider a Data Flow Graph (DFG), where nodes
are processing functions (tasks) and edges describe communication between
tasks. The size of the DFG depends on the number of tasks and edges that
have a great effect on the execution times of the partitioning and scheduling op-
erations. A low processing granularity of the DFG makes the system easy to be
predictable because data dependent task execution time can depend on a single
CP. In opposite a low granularity DFG needs more computing to complete the
algorithm loop on a DFG of great size, leading to overstep the image process-
ing period. Each node of the DFG represents a specific task in the application,
and it can run either on software (processor) or on hardware (RCU). The aim
of using reconfigurable hardware is simply obtaining the same flexibility while
executing an application task on hardware as on software. By migrating a task
from software to hardware and conversely, we make a significant change on the
execution time. Any migration of task to the software will free the reconfigurable
area, but will consequently increase the task run time. In opposite, any migra-
tion of task to hardware will have the reverse effects. Thus, it is important to
have the suitable choices of task migration, and the choices are made in the lap
of time between two periods. If the video processing constraint is 40 ms for each
image, then the application execution time and the OPA execution time should
be under that limit. Another difficulty lies on having low resources OPA cost
compared with the cost of the resources needed to execute the application tasks;
else, it will not be beneficial to overload the system with the OPA approach. To
resume, the On-line Partitioning Algorithm tries to update the partition of an
application when it is running. The algorithm must make choices between all
tasks migrations and schedule them. Its cost (run time and resources) must be
small compared with the overall cost of the system. The following sections will
explain clearly each OPA function in the figure 3.

4.3 Prediction Algorithm

The efficiency of the system depends on the estimation accuracy. With the es-
timated values, for the next period, the OPA decides if the partition has to
be changed. To estimate the future execution time of a task (TEXE), we have
considered a simple interpolation equation. The approach of estimating with an
interpolated function considers tasks whose execution time depends only on one
Correlation Parameter. The estimation of such task could be done by a polyno-
mial equation, which is found in an off-line analysis or profiling of the task code.
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The CP is the only unknown variable in the equation, consequently only the
estimation of the CP is needed to know the estimated execution time. For each
task, the equation could be different according to the implementation. Estimat-
ing the execution time with a polynomial equation is rather simple and efficient
but an off-line analysis is required to deduce the coefficients of the polynomial
equation.

4.4 Partitioning Algorithm

The partitioning is required when a violation of the constraints is predicted.
The OPA performs migrations of tasks from SW to HW in order to decrease the
execution time under the time constraint limit. Conversely, when the processing
units remain idle before the end of execution of the current period, OPA performs
a HW to SW migration in order to free resources from the RCU.

Up-speeding migration. The period (or iteration) time constraint includes
the application execution time and the OPA execution time. For a video applica-
tion, period takes 40ms; this should include the image processing and the OPA
execution. If the OPA maximum run time is 1 ms, then the application is allowed
to run for 39 ms. So if the application execution is predicted to run for more
than 39 ms, then the partitioning must accelerate one or more tasks to reduce
that time. In practice we consider a lower limit allowed to the application execu-
tion to avoid constraint violation due to errors in estimation and prediction. On
line partitioning is performed in OPA by a migration process that changes the
allocation of tasks, one task at once, until time constraints are met. Indeed, par-
titioning is not performed from scratch, it consist of an updating of the current
mapping in order to take into account of local variations of execution times. The
migration of a task consists of choosing a faster implementation among the set
of contexts embedded in the system. The efficiency of the on-line partitioning
depends on the right speed-up vs resources implementations selected in an of-
fline profiling analysis and synthesis. For each potential migration the algorithm
evaluates the parameter G defined as the product of the time benefit and the
number of resources remaining free after migration. To examine the potential
migration of the tasks we start by sorting the candidates’ implementations by
the decreasing order of G (Figure 4). If this up-speeding migration does not
satisfy the time constraint then the next candidate migration is performed until
the temporal constraint is satisfied or when the reconfigurable is fully exploited.
Then we created a version of the application with all the critical tasks moved to
the reconfigurable hardware.

Up-freeing migration. This type of migration is necessary to avoid the sat-
uration of the reconfigurable caused by successive SW to HW migrations. The
method is analogous to the up-speeding migration. We choose the task which
has the minimum benefits of time on the Hardware and that make free the max-
imum of hardware resources. The partitioner will repeat this process until the
total execution time is in between HL (High Level) and the LL (Low Level).
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Fig. 4. Up-speeding Migration Approach

4.5 Scheduling Algorithm

To evaluate a partitioning solution, we must calculate the total execution time
of the application on that partition. The objective is to find an execution order
for the application. Due to the data dependencies in the DFG (described by the
edges between tasks) and the sequential nature of the SW processor, the eval-
uation of the total execution time requires determining a schedule of the DFG.
This schedule is based on the estimated execution times of the tasks according to
the potential allocation provided after partitioning. Independent tasks allocated
to hardware can run in parallel. The migration of task is considered only if there
are enough free resources in the hardware. Scheduling decisions are thus related
to tasks allocated to the processor. The task can have two states: waiting and
scheduled. The waiting state remains until all the task predecessors are sched-
uled. If a task is to implement on hardware, then it goes in the scheduled state. If
it is allocated to software, then the scheduler needs to check if the timing allows
the task to be scheduled. There are three possible cases: 1. when the software
resource is free and only one software task to be scheduled, 2. when the software
resource is free and there is more than one software task to schedule, 3. when
the processor is busy. In the first case, the task is scheduled because it is the
only one that requires the processor. In the third case, all the tasks wait for
the software resource to be free. All this tasks add a new sequencing dependency
to their data dependencies. In the second case, the scheduler must choose the
software task to be scheduled first. For this a priority table is constructed. The
tasks priorities are affected according to the algorithm shown in figure 5. The
value of a priority is only based on the successors of the task. The task with most
critical successors has the highest priority. A task is critical if it has at least one
hardware successor. The highest estimated execution time of all the hardware
successors determines the first level of priority. If there is still more than one
task having the same urgency then the second level of priority is the task which
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Fig. 5. New HW/SW scheduling approach

has the lowest execution time. In the DFG example shown in figure 6, there are
two possible scheduling paths: after scheduling the task A on the processor, we
can schedule B or C on the processor. This is because the computation of ASAP
(As Soon As Possible) time and the urgency of tasks are as follows: The task B
is more urgent than the task C because its successor is the more critical tasks in
the DFG. The task D is a hardware task and its execution time is the highest
one so its beneficial to schedule it as soon as possible. Given the complexity
of the scheduling algorithm, we choose to implement it on hardware. Thus the
computation time of the scheduling algorithm is neglected.

The scheduler architecture is fully synthesisable, and it was done with a XIL-
INX Virtex II Pro FPGA tools. The size needed (number of CLB: Configurable
Logic Bloc) depends upon the number of tasks, and the complexity of their inter-
connections. Moreover, the data bus size influences the whole synthesis process
as much as the connections routing. To have a clear idea, the synthesis is done
with the target core Virtex II Pro vp100: For the Data Bus Size of 10 bits the
Whole Scheduler block takes:

– Number of Slices: 1677 out of 44096 3
– Number of Slice Flip Flops: 230 out of 88192 0
– Number of 4 input LUTs: 3088 out of 88192 3
– Minimum period: 11.336ns (Maximum Frequency: 88.211MHz)
– Minimum input arrival time before clock: 5.879ns
– Maximum output required time after clock: 23.875ns
– Maximum combinational path delay: 23.630ns
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Fig. 6. Scheduling with urgency criteria

The idea of accelerating the scheduler makes the loop Partitioning-Scheduling
more feasible in real application. By doing this, the gain of time is great and the
cost of hardware is not excessive. All the results are obtained by simulating with
Modelsim and Xilinx synthesis tools. The results satisfy the requirements for this
OPA, which is minimising the cost of the Estimation-Scheduling-Partitioning
time consumption.

5 Experimental Results

We have simulated our partitioning approach with SystemC on an image process-
ing application. The motion object detection on fixed image background requires
resources for data processing in order to process images in a real time. ICAM
(Intelligent CAMera) is an algorithm developed by the C.E.A, used for embed-
ded camera to detect objects motion (figure 7). Such application can be used for
parking supervising, identification, and pieces selection according to the shape
The choice of having ICAM as the test application for the OPA can be resumed
to its complexity and its variable execution time. The algorithm of detection is
based on the difference between the current input and a reference image. If there
is an object on the image but not on the reference then ICAM considers it as
object in motion. The given ICAM application is sequential on execution, thus
we have modified its DFG. This later has been improved by adding virtual tasks
running in parallel with the original ones. Each virtual task would simulate task
behaviors with a time and resource consuming. Moreover, the new DFG per-
mits to validate the scheduler algorithm and the behavior of the OPA against a
complex system. The virtual tasks could have fixed or varying execution time.
ICAM is considering as application with twenty tasks as depicted in the figure 7.
Each of them could run on software as well as on hardware. The model in Sys-
temC of this application must have the software and the hardware parts. On
the software part, each task is a function which is called by the processor when
needed. On the hardware side, each task is an independently hardware block
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Fig. 7. DFG application

with inputs and outputs for data communications. The application running is
controlled by a kernel function, thus the software and hardware parts of the
ICAM have a direct communication with the Kernel function. Processed data
must circulate from task to task, and this is done by memory communications.
It has been considered that the ICAM tasks share the data through a dedicated
memory, and then there should have no direct data transmission from software
to hardware application tasks.
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The communication with memories is only for image data. The communication
with the Kernel function is control data: measured execution times and CP
values. The execution time is measured with the simulating platform processor
clock: the modeling and simulating have been done under a Pentium Centrino
1.5 GHz with MS Windows XP as O.S. The behavior of the system can change
with the speed of the processor and the used O.S to run SystemC. Only software
execution times are measured. The hardware execution times are deduced from
the software by dividing this later over a fixed coefficient. The following table
shows the execution time of all OPA functions:

Algorithm Average execution time (ms)
Partitioning 0.330
Scheduling 0.002
Estimator 0.421

Database updating 0.010
Application 33.565

According to the table above, we notice that the OPA timing cost is neglected
as compared with the execution time application. For our experiment the next
CP value is computed by adding 5 percent to the precedent one. A comparison
between measured and estimated execution time proves the efficiency of the
estimator method. Figure 8 shows the execution time variation of the estimator
algorithm on various iterations. As mentioned in the table above, this algorithm
takes 0.421ms in average.

As depicted in figure 9, the Database management never exceeds the 0.012ms.

Fig. 8. Estimator computing time per iteration
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Fig. 9. Time computing of data management function

We remind that the OPA approach has for objective to adapt on-line the
partitioning result with the processing requirements. This is shown clearly in
the figure 10: the OPA limits always the application execution time between the
high level time and the low level time by updating the HW/SW partitioning
result.

We compare our partitioning approach with an optimal off-line partitioning
method based on ILP (Integer Linear Programming) solver. The ILP based ap-
proach can solve the partitioning problem optimally. The partitioning problem
is formulated as follows: The objective function is to minimize the number of
hardware resources to be used by the application. The main constraint is that
the total execution time must respect the real time constraint. The ILP is a
static partitioning method based on the Worst Case Execution Times (WCETs)
of the application tasks. As it is assumed in OPA, the communication delays
between tasks are neglected. The table hereafter shows the differences between
the two approaches results:

Approach Resources used Nbre Image lost Off-line work Resources added flexible
ILP 852 0 Yes No No
OPA 300 0.35 percent Limited Yes Yes

As depicted on the table above, ILP demands more resources for the applica-
tion than OPA since it tries to reach the optimal solution. The OPA approach
tries only to satisfy the constraints.
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Fig. 10. Application total execution time per iteration

6 Conclusions

Results of our approach show the efficiency of the adaptation of partitioning
to needs of treatment. The dynamics reconfiguration of the FPGA allows the
architecture to accept several contexts of reconfiguration as results of HW/SW
partitioning. A dynamic Hardware /software partitioning approach have many
advantages over traditional partitioning approaches. Dynamic partitioning can
adapt to an applications constraints dynamically at run time. We presented
a HW/SW partitioning approach based on on-line reallocation tasks. We also
presented our approach of scheduling based on a criticality parameter chosen on-
line. Our future work consists in validating these approaches on real applications
and industrial platform.
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