A UML/MARTE-based design pattern for semi-partitioned scheduling analysis

Amina Magdich*, Yessine Hadj Kacem®, Adel Mahfoudhi*, and Mickaél Kerboeuf!
*University of Sfax, ENIS, CES Laboratory, Soukra km 3,5 B.P: 1173-3000 Sfax, Tunisia
Email: amina.magdich, yessine.hadjkacem, adel.mahfoudhi@ ceslab.org
TUniversity of Brest (France), Lab-STICC, MOCS Team
Email: kerboeuf@univ-brest.fr

Abstract—The scheduling of Real-Time Embedded Systems
(RTES) is a challenging step that requires vast knowledge and
expertise about the domain, which makes difficult the step of
complex systems scheduling modeling. This paper presents a
design pattern intended to support and facilitate the scheduling
modeling of multiprocessor systems. The contribution of this
pattern is that is designed to i) support semi-partitioned
scheduling allowing tasks migration ii) model all the tasks
features/types and criteria of scheduling in the same view (only
one pattern is used) iii) specify the system properties using
a high-level modeling language UML/MARTE (Modeling and
Analysis of Real-time and Embedded systems).

Keywords-semi-partitioned scheduling; scheduling algo-
rithms; scheduling analysis; design pattern; UML/MARTE.

I. INTRODUCTION

RTES are integrating more and more functionalities sat-
isfying the users’ requirements. This requires the increase
in the amount of computing resources to improve the per-
formance of executions. Thereby, it is beneficial to use a
multiprocessor architecture, but that makes the scheduling
step difficult.

What is worthwhile to note is that three multiproces-
sor scheduling approaches are available in the literature
[10][15]; the partitioned approach, the semi-partitioned ap-
proach and the global approach. Regarding the partitioned
approach, it affects each task to be executed on one proces-
sor. Accordingly, tasks are not allowed to migrate between
processors. CPU utilization is therefore not optimal. As for
the global approach, it enables a full migration of tasks
such that every task may be allocated ,not simultaneously,
on different processors. Although the full migration allows
reaching optimality, it may cost in terms of context switch-
ing. With respect to the the semi-partitioned scheduling ap-
proach, it enables a controlled tasks migration. It reduces the
number of migrations and then offers a compromise between
the number of migrations and the processors occupation. It
will be the adopted approach in this paper.

In fact, the increasing complexity of RTES and the difficulty
of their scheduling has led designers to use techniques that
improve the software process quality, reduce the develop-
ment time and cost, improve the reuse of models, etc.
The use of high-level modeling methods is considered to
be a technique fulfilling these constraints. In this context,

a design pattern [6] is an appropriate solution to address
these requirements. In fact, it facilitates complex systems
modeling, allows reuse of models, reduces modeling and
maintenance costs and improves software process quality.
The design pattern to propose in the present paper is
intended to be used for systems scheduling. It represents
a generic illustration supporting the modeling of features to
be used while scheduling multiprocessor systems using the
semi-partitioned approach. The proposed design pattern will
be modeled and annotated using UML/MARTE profile.
The remainder of this paper is structured as follows. Section
2 emphasizes the various related works. In section 3, the
UML/MARTE profile is defined and the importance of its
use in the context of design pattern modeling is shown.
Section 4 gives an overview of the proposed design pattern
and presents the corresponding view. Section 5 exposes a
case study of the suggested design pattern application. In
section 6, we discuss and evaluate our proposal. Finally,
section 7 provides a summary and conclusions.

II. RELATED WORKS

Different research studies have focalized on the use of
design patterns to be exploited in different fields. In [16],
the authors have suggested design patterns that support
the modeling of structural and behavioral properties of
concurrent systems and Real-Time databases. These patterns
are modeled using UML/MARTE and especially the sub-
profiles NFP (Non-Functional Properties), Alloc (Allocation
Modeling) and HLAM (High-Level Application Modeling).
Other studies have been focused on the use of patterns to
overcome concurrent systems complexity such as in [3]. In
[3], the authors have proposed architectural design patterns
dealing with concurrency, resources, distribution and secu-
rity. In [4], the authors have suggested a design pattern meant
to be used in the context of a Design Space Exploration step
(DSE) allowing to reduce the time of the DSE models built.
To achieve this, they used UML to represent the pattern
view and POOSL (Parallel Object-Oriented Specification
Language) for pattern mathematic definition. The proposed
pattern allows the tasks modeling, the target architecture and
the Software/Hardware binding. They will also be exploited
as templates that may be applied in different situations.
RTES are facing a set of modeling difficulties among

which the tasks scheduling can be stated. In this context,
different research works pertaining to the conception of
design patterns to be used in a scheduling context have been
carried out. In [5], a thread-based design pattern intended
to be exploited in the context of RTES is presented. This
pattern, integrated in a scheduling methodology, allows the
automatic generation of scheduling, but it is used only for
simple systems having small sizes. In [9], a design pattern of
an adaptive scheduling for dynamic environments has been
elaborated to encapsulate the code associated with multiple
tasks versions. The modeling of this pattern is based on
UML. What is worthy to mention is that tasks migration was
not dealt with in their work. Since the choice of feasibility
tests is considered as a hard step for engineers, in [8], the au-
thors have proposed a design pattern-based methodology to
support the automatic choice of scheduling algorithms. Their
approach integrates five design patterns based on AADL
(Architecture Analysis and Design Language) such that each
pattern is intended for a specialized use. The approach pro-
posed in this paper is based on the compliance of the AADL
architecture to the design pattern. In the same vein, in [2],
the authors have explained how to check automatically this
compliance test. In [8] and [2], researchers have suggested
design patterns that are used to deal only with a partitioned
approach and there is no consideration of all the tasks
types (periodic/sporadic, dependent/independent, etc). Be-
sides dealing with the scheduling issue, designers have to use
five design patterns. To validate their design patterns, they
have made use of the Cheddar ADL. In these two papers,
the Cheddar tool which does not support semi-partitioned
and global scheduling is used for tasks scheduling. It is
in this context that the authors have proposed, in [17], an
extension for Cheddar to support multiprocessor scheduling
algorithms: partitioned and global scheduling algorithms.
In [7], the authors have mentioned the process for design
patterns composition as they explained with details the five
design patterns used throughout their approach. «Ravenscar»
pattern is used to deal with communication and synchro-
nization between tasks and access to shared resources.
It enables asynchronous task communication using mutex
or semaphores. Besides, «Ravenscar» supports only static
and off-line scheduling. «Time-triggered communications»
deals with task communication based on a shared but not
protected memory, and supports only independent tasks. As
regards «Blackboard», it allows only the use of reader/writer
communication protocol and supports only periodic tasks.
«Queued buffer» implements the communication based on
the producer/consumer protocol and supports only periodic
tasks. «Unplugged» models only periodic and independent
tasks.

In the present paper, we contribute by the proposition of
a design pattern intended to undergo the semi-partitioned
scheduling that allows controlled tasks migration. Our intu-
itive idea is to propose only one design pattern, based on

UML/MARTE [11], containing all the data needed for semi-
partitioned scheduling and supporting all the tasks types.
This facilitates the modeling step and the future compliance
test. In fact, it is easier to check the compliance of a
model according to one pattern than checking it according
to various patterns. The use of MARTE, which is gathering
a big set of annotations, makes designers able to model all
the scheduling features in only one pattern encompassing
software and hardware criteria. Moreover, MARTE is a
graphical modeling language, so it facilitates the modeling
of patterns compared to textual modeling languages.

III. UML/MARTE AND SCHEDULING ANALYSIS
A. System Model for scheduling analysis

This section proposes a definition of systems to be mod-

eled through the proposed design pattern to deal with mul-
tiprocessor scheduling allowing controlled tasks migration.
We consider the semi-partitioned scheduling of complex
systems composed of n tasks T={Ty,T5,...,T,} to be al-
located upon m processors P={ Py, Ps, ..., P,,,}. Each task
is characterized by four principal parameters (C;,D;,P;,R;)
where C; is the worst execution time, D; is the deadline
and R; is the activation date. If a task is periodic, P;
will represent its period, and in case of sporadic tasks, P;
will specify the inter-arrival time between two consecutive
releases of a task Tj;.
It is important to mention that in case of periodic tasks,
all the parameters C;, D;, P; and R; are known before the
application startup (i.e. D;=critical_delay+R;). For sporadic
tasks, the activation date is to be predicted during the future
behaviour of the application. So, for a sporadic task, only C;
and the critical delay must be known before the application
launching. Besides, the deadline and the period must be
computed after detecting the activation dates. For aperiodic
tasks, only C; is known before the application starting.

B. UML/MARTE capabilities for scheduling analysis

MARTE is a specification of UML (Unified Modeling
Language) providing support for the specification, modeling,
and early verification of RTES. It offers a big set of sub-
profiles, stereotypes and attributes facilitating the systems
modeling and properties specification.

During the specification of design patterns, various criteria
must be considered. Indeed, in the context of schedul-
ing we must take into account all the tasks features and
types, tasks communications, tasks/processors communica-
tions, tasks states, access to shared resources, etc. Indeed,
MARTE enables designers to include all these specifications
in the same model (pattern). The proposed pattern must take
into consideration the specification of features linked to the
semi-partitioned scheduling approach such as the controlled
tasks migration between processors.

Originally, MARTE supports only the modeling of the sys-
tems to be scheduled according to the partitioned approach.

In the same vein, [14] and [13] have proposed extensions
for MARTE profile to enable the modeling of features to be
used within the migration context. Our pattern is based on
the use of these extensions to incorporate the tasks migration
features in the modeling view.

IV. PROPOSED DESIGN PATTERN

In this section, we describe the importance of the proposed
design pattern employment in a scheduling context.

A. Real-Time scheduling pattern specification

The modeling of RTES for scheduling stage is a crit-
ical step, which may be overcome using UML/MARTE-
based design pattern intended for a semi-partitioned schedul-
ing. The proposed pattern is represented through two
UML/MARTE views; a static and dynamic views. Never-
theless, in this paper we will only expose the static view.

1) Overview: A pattern is aimed to support the modeling
of complex systems, and may be used to design different
systems in the same field without ever being adopted twice
similarly. Every pattern must deal with a well-defined prob-
lematic. It represents a solution that solves an issue and
supports the modeling of complex systems. In the context
of semi-partitioned scheduling, the proposed pattern must
support all the features that may be required by semi-
partitioned scheduling algorithms.

2) Context: The intention of our scheduling design pat-
tern is to help designers to specify all the properties to
be used in the context of a semi-partitioned scheduling
approach allowing controlled tasks migration.

3) Problem: Scheduling patterns existing in the literature
are intended to be used in the context of partitioned schedul-
ing inhibiting tasks migration. Besides, there is no pattern
that supports all the tasks types and all the scheduling criteria
(communication between tasks, tasks/processor, and access
to shared data or resource) in the same view.

4) Solution: The purpose of the suggested pattern is to
support semi-partitioned scheduling and all the tasks types, it
specifies all the criteria needed for semi-partitioned schedul-
ing in the same view. The pattern modeling is based on
UML/MARTE as a high-level modeling language providing
a big set of stereotypes to annotate the built views.

B. UML view of the proposed design pattern

The present design pattern is modeled through a static
view annotated with MARTE (Figurel). It represents a
modeling of the different entities with their relationships as
it specifies the corresponding properties that are needed for
semi-partitioned scheduling. This view is annotated espe-
cially through NFP, SRM (Software Resource Modeling),
HRM (HardWare Resource Modeling) and Alloc.

The static view of the proposed design pattern is composed
of a set of entities defining Software and Hardware items,
such as Tasks, execution hosts (processors), schedulers, mu-
tual exclusion resources, communication means, memories

and batteries. A task annotated «swSchedulableResource»
is characterized by its name, type (e.g. periodic), deadline,
period (i.e. for periodic tasks, we use the attribute «period»,
otherwise this attribute represents the minimal duration
between two activation dates of a sporadic task), laxity and
number of its jobs (resMult) (i.e. A task may be divided into
different jobs).

A big set of attributes is offered by MARTE to annotate
tasks. For example, the attribute «isStaticSchedulingFeature»
is used to explore if the scheduling parameters (e.g. priority,
deadline, etc) of a task are static or dynamic. The attribute
«isPreemptable» specifies if the task may be preemptable
by another concurrent resource that has a higher priority. To
mention the task activation number allowed in the system,
we use the attribute «activationCapacity».

In a semi-partitioned scheduling context, a task may migrate
between processors. We use the attribute «P_Host» to iden-
tify on which processor a task can be allocated. This is to
restrict the task migration to all the processors in order to
optimize the scheduling cost. The execution time of a task
depends on the processor on which a task is allocated. This
will be represented by the attribute «P_execT».

For a semi-partitioned scheduling, we need to use two types
of schedulers: a global scheduler and schedulers associated
with processors. The global scheduler annotated, in the
task class, «host:scheduler» affects tasks to be scheduled
through the other schedulers. As a task/job can migrate in a
semi-partitioned scheduling, between execution hosts, some
attributes may change following the switching context (e.g.
deadline, period, scheduler, processor, execution times in
the context of heterogeneous processors) and then we take
advantage of a multiplicity of [0..*] for all these attributes
(for more details see [14][13]).

A computing resource on which a task may be allocated for
its execution is represented by the entity Execution Host an-
notated through «<hwComputingResource» and «scheduler».
Different types of computing resources are available, such
as processor «hwProcessor» or ASIC «hwAsic». The entity
Execution Host specifies both the computing resource and
the scheduler that is associated with. The entity Execution
Host is characterized by its name, utilization, number of
cores, etc. The scheduler annotated «scheduler» is defined
by a set of attributes from which we specify the host («host:
ComputingResource[0..1]») on which a scheduler is running,
its speed factor, the set of schedulable resources that are
waiting to be scheduled, etc.

In the semi-partitioned context, designers have to use a
global scheduler and other schedulers associated with pro-
cessors. A global scheduler annotated «GaExecHost» is used
to partition tasks on the different schedulers. The entity
ExclRes annotated «SwMutualExclusionResource» specifies
the mutual exclusion resources that are used to protect
the concurrent access to shared resources. Such entity is
marked by an integer value. The communication between

1.

« mutualExclusionResource »
ExclRes

(1.1

TASK

« swSchedulableResource »

« saCommStep »

(1.1

(1.7

1.1

« allozate »
{Nature=timeScheduling}

« GaExecHost »

1.7

(1.1

« hwComputingResource,
scheduler »
Execution Host

[

I

[Global Scheduler (1] ‘ ‘
« hwProcessor, « hwAsic,
(1.4 1.1 scl;)e[({lglér » schz(élilgr »
« hwMemory » « hwCommunicationResource »
1.1
Memory CommRes
1.7
f 1.7 (1.4
| | | |

« hwDrive » |« hwRAM » | « hwBattery» « hwMMU »| |« hwEndPoint » |« hwMedia » « hwArbiter »

DRIVE RAM Battery MMU ENDPOINT MEDIA ARBITER

« hwROM »| |« hwCache » « hwBus » |« hwDMA »

ROM CACHE BUS DMA
Figure 1: Static view of the proposed scheduling design pattern

the different components of an RTES is established through TaSkTIfame %1 (él]2)6 ;1)
a communication resource «hwCommunicationResource» T2 016 15115
which may be a bus of communication «hwBus», Direct T3 0 | 13] 40 | 40
Memory Access «DMA», end point «hwEndPoint» (e.g. T4 0 115140 | 40
TS 0 6 30 | 30
antenna) or a memory «hwMemory» (e.g. RAM, ROM). T6 0 T 12120 20
T7 0 8 20 | 20
V. CASE STUDY TS 0 [102571 25
. T9 0 6 10 | 10
To evaluate our proposal, we provide an example of T10 01 8 [201 20

systems to be modeled using the proposed design pattern.
The same example is used in [15] to validate a semi-
partitioned scheduling algorithm. The parameters used in
this example are those of Marvell’s XScale technology-based
embedded processor PXA270 [1].

The studied system is used to be simple and helpful to
clarify the proposed design pattern. The system is composed
of ten real-time, periodic and independent tasks as well as
an architecture target including four identical processors,
a communication bus, two memories, a battery and of
course schedulers. Each processor is protected by a mutual
exclusion resource («mutualExclusionResource» class). The
concurrence between the tasks to lock a shared resource
is better illustrated using a dynamic view. In the static
pattern, the concurrence is illustrated using associations and

Table I: Tasks parameters

operations (annotated through stereotypes and attributes).
In this example, tasks are independent so that there is no
send or receive of data between them. Nevertheless, the
communication between tasks may be represented in a static
view using an association linking tasks annotated through
«saCommStep». Under the stereotype «saCommStep», a
big set of attributes is available to specify the criteria of
communication. It is to be noted that this system allows only
the migration of tasks and prohibits that of jobs. To handle
semi-partitioned scheduling, the studied system needs one
global scheduler running on an independent execution host

« GaExecHost »
Sched : Global Scheduler

« scheduler, hwProcessor »
Procl : PROC

« swSchedulableResource »
T1:TASK

« swSchedulableResource »
T2 : TASK

T

« mutualExclusionResource »

« swSchedulableResource »
T3 : TASK

« swSchedulableResource »
L T4 : TASK

-

Resl: ExcRes

« scheduler, hwProcessor »
Proc2 : PROC

« swSchedulableResource »
T5: TASK

« swSchedulableResource »
T6 : TASK

TG
« hwCommunicationResource,
hwBus » Bus : BUS

« mutualExclusionResource »
Res2: ExcRes

[

« swSchedulableResource » | | « swSchedulableResource »
T7 : TASK T8 : TASK

« scheduler, hwProcessor »
Proc3 : PROC

—L
-

| « mutualExclusionResource »
« swSchedulableResource » | |« swSchedulableResource » Res3: ExcRes
T9 : TASK T10: TASK —T
« scheduler, hwProcessor »
Proc4 : PROC
-)
« hwRAM » « hwROM » « hwBattery» | « mutualExclusionResource »

ramMemory : RAM

romMemory : ROM

battery : Battery Res4: ExcRes

Figure 2: An example of the proposed pattern reuse

and four schedulers associated with processors.

Table I specifies the different tasks parameters that are
needed for scheduling. In fact, R; represents the activation
date of every task, C; is the Worst execution time, D; repre-
sents the deadline and P; is the corresponding period. These
parameters must be entered in the «swSchedulableResource»
classes to guide the scheduling step.

Figure 2 specifies an application of the proposed pattern and
specifies the different tasks and the target architecture.

As specified before, task T1 is periodic, which is indicated
through the attribute «type: ArrivalPattern» that is set on
«periodic». The possible processors to which T1 can migrate
are P1 and P2. The estimated execution times are specified
using «P_execT» attribute. The required scheduling type is
static, which is mentioned by setting the value of «isStatic-
SchedulingFeature» on «true».

VI. DISCUSSION AND EVALUATION

Although design patterns currently exist in the literature to
support scheduling, they are used to handle monoprocessor
or partitioned scheduling inhibiting tasks migration. They
are designed through textual and graphical languages such as

AADL or UML profile. In this paper, we proposed a design
pattern used to support semi-partitioned scheduling enabling
tasks migration. Its design was done through UML/MARTE
profile. The use of MARTE has facilitated the designing
step since it is a high-level modeling language supporting a
big set of stereotypes and attributes. Another contribution of
the present paper is the use of only one pattern, rather than
five [7], to support semi-partitioned scheduling. The use of
only one pattern, including all the scheduling criteria, makes
simple the compliance test between the pattern and a model.
In fact, it is easier to check the compliance between the
proposed pattern and a model than between many patterns
and a model (for example, in [2] to check the compliance of
a model, five compliance tests must be done. In our proposal
only one compliance test is used to check the compliance
of a model to a pattern).

For the evaluation of the suggested design pattern, we aim to
validate the two major issues: the applicability of the design
pattern on systems that may be scheduled using the semi-
partitioned scheduling approach and the importance of the
use of MARTE profile within the context of design patterns
modeling. In the case study elaborated in section 4, we have

designed a static pattern instance that models a multipro-
cessor system allowing tasks migration. This instance has
shown the ability of the suggested design pattern to support
semi-partitioned scheduling (restricted tasks migration) and
multiprocessor architectures. It has also shown the ability of
the pattern to specify any tasks parameters and criteria. The
specification of tasks or architecture parameters was easy to
do due to the use of MARTE profile that includes a big set
of attributes. The case study investigated in this paper has
also shown that in only one pattern, it is possible to specify
all the criteria needed for the scheduling analysis step.

VII. CONCLUSIONS AND FUTURE WORKS

This paper proposes a design pattern providing support for
multiprocessor RTES semi-partitioned scheduling modeling.
This pattern was modeled using UML and annotated via the
MARTE profile. It was represented through a static view.
A case study has been performed to validate the use of our
pattern in a scheduling modeling context.

The proposed pattern may be used to deal with ordinary
scheduling analysis (check the schedul ability of a system)
by mapping the features of the MARTE view to a scheduling
tool such as in [12]. It may also be exploited to endure an
automatic choice of semi-partitioned scheduling algorithms.
Indeed, the choice of the appropriate algorithm to schedule
RTES is a critical task for engineers. Consequently, we
will seek to integrate the proposed design pattern in a
methodology enduring the automation of the suitable semi-
partitioned algorithm choice for the multiprocessor systems.

REFERENCES

[1] Marvell’s xscale microarchitecture.
http://www.marvell.com/.

[2] Pierre Disseaux, Alain Plantec, Mickael Kerboeuf, and
Frank Singhoff. AADL design patterns and tools
for modelling and performance analysis of real-time
systems. In 5th european congress ERTSS Embedded
Real-Time Software and System., France, May 2010.

[3] Bruce Powell Douglass. Real-Time Design Pat-
terns: Robust Scalable Architecture for Real-Time Sys-
tems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[4] Oana Florescu, Jeroen Voeten, Marcel Verhoef, and
Henk Corporaal. Reusing real-time systems design
experience through modelling patterns. In FDL, pages
375-381, Darmstadt, Germany, September 19-22 2006.

ECSIL
[5] René Fritzsche, Christian Ristig, and Christian
Siemers. An approach and design pattern for intra-

application scheduling. Technical Report IfI-10-11,
Clausthal University of Technology, 2010.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable

(7]

(8]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

Object-oriented Software. Addison-Wesley Profes-
sional, Boston, MA, USA, 1 edition, 1995.

Vincent Gaudel, Frank Singhoff, Alain Plantec, Pierre
Dissaux, and Jérome Legrand. Composition of design
patterns : from the modeling of rtos synchronization
tools to schedulability analysis. In EWiLi’l13, The
3rd Embedded Operating Systems Workshop, Toulouse,
France, August 26-27 2013. ACM SIGBED.

Vincent Gaudel, Frank Singhoff, Alain Plantec,
Stephane Rubini, Pierre Dissaux, and Jerome Legrand.
An ada design pattern recognition tool for aadl perfor-
mance analysis. In Proceedings of the 2011 Annual
International Conference on Special Interest Group on
the Ada Programming Language, SIGAda 11, pages
61-68, Denver, Colorado, USA, 2011. ACM.

Rodrigo Gongalves, Romulo Silva de Oliveira, and
Carlos Montez. Design pattern for the adaptive
scheduling of real-time tasks with multiple versions in
rtsj. In SCCC, pages 65-73. IEEE Computer Society,
November 2005.

Joél Goossens. Introduction a I’ordonnancement temps
réel multiprocesseur. In Ecole d’été Temps Réel, pages
157-166, 2007.

OMG Object Management Group. A uml profile for
marte: Modeling and analysis of real-time embedded
systems. standard, June 2008.

Yessine HadjKacem, Adel Mahfoudhi, Amina
Magdich, Walid Karamti, and Mohamed Abid. Using
mde and priority time petri nets for the schedulability
analysis of embedded systems modeled by uml activity
diagrams. In ECBS, pages 316-323, April, 2012.
Amina Magdich, Yessine Hadj Kacem, and Adel Mah-
foudhi. Extending uml/marte-grm for integrating tasks
migrations in class diagrams. In Roger Y. Lee, ed-
itor, SERA (selected papers), volume 496 of Studies
in Computational Intelligence, pages 73—84. Springer,
2013.

Amina Magdich, Yessine Hadj Kacem, Adel Mah-
foudhi, and Mohamed Abid. A MARTE extension for
global scheduling analysis of multiprocessor systems.
In the 23th IEEE International Symposium on Software
Reliability Engineering (ISSRE), pages 371-379. IEEE
Computer Society, November 2012.

Bhatti Muhammad Khurram, Belleudy Cécile, and
Auguin Michel. Two-level hierarchical scheduling
algorithm for real-time multiprocessor systems. JSW,
6(11):2308-2320, 2011.

Saoussen Rekhis, Nadia Bouassida, Rafik Bouaziz,
Claude Duvallet, and Bruno SADEG;. Modeling real-
time applications with reusable design patterns, 2010.
Stephane Rubini, Christian Fotsing, Frank Singhoff,
Hai Nam Tran, and Pierre Dissaux. Scheduling analysis
from architectural models of embedded multi-processor
systems. EWiLi Workshop, 2013.

