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Abstract—Multi-Processor  Systems on  Chip
(MPSoCs) have been proposed as a promising
solution for the increasing demand of
computational power required for recent
application. The parallelization through SIMD
(single instruction/multiple data) architectures has
been a proven solution to speed up the processing
of the recent application that exhibit massive
amounts of data parallelism. The level of
parallelism impacts the SIMD architecture
performance and it is closely related to the design
of the processing element. In this context this
paper presents a new design methodology of
designing  processing element for SIMD
architecture. The scope of this work is to reduce
the pipeline stages of the soft-core processor to
reduce the size of the PEs and so that to built up a
high level parallelism architecture.

l. INTRODUCTION

SIMD [1] represents one of the earliest styles of

parallel processing. The term SIMD stands for
“Single-Instruction  Multiple-Data,” which aptly
encapsulates the parallel processing model. These
architecture have established themselves as a suitable
solution for a wide range of a highly data parallel
applications [2]; they are geared toward applications
that exhibit massive amounts of data parallelism
without complicated control flow or excessive
amounts of inter-processor communication. Typical
applications for SIMD machines include low-level
vision and image processing, discrete particle
simulation, database searches, and genetic sequence
matching.
Closely related to vector processing, the basic idea is
to operate the same instruction sequence
simultaneously on a large number of discrete data sets
[1]. To achieve this functionality, a SIMD machine
basically consists of an array of fine-grained
computational units connected together in some sort
of simple network topology [3]. This processor array
is connected to a control processor (ACU), which is
responsible for fetching and interpreting instructions.
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The ACU issues arithmetic and data processing
instructions to the processor array, and handles any
control flow or serial computation that cannot be
parallelized [1].

To achieve their performance the individual
processing elements are usually very simple in nature
and targeted to the application for which they are
designed [4]. Within this methodology the PE is built
around the necessary unit of the application:
Multiplication unit, comparator unit, registers, etc [4].
The small size of PEs within this methodology allows
a high integration capability and so that a high
performance. The drawback of this method of
conception is the difficulty of conception and, long
time required to designing and the restriction of the
built PE to the given application. Therefore, with the
advance made in designing soft-core [5] processor a
new design methodology based on the use of available
IP processor is appeared. In this contest, this project
aims to propose a processor design reduction
methodology based on standard processor IPs in order
to build high parallel processor architecture. The idea
is to minimize the logical area utilization of the PE in
order to integrate a maximum number into the
architecture. To do so the PEs pipeline stages are
reduce. This reduction concerns the pipeline stage of
the Soft-core processor. The fetch and decode stages
of the PEs are eliminated and the Array Control Unit
(ACU) is the responsible of handling the
microinstructions to the PE array.

Today the FPGA presents an ideal platform for a

massively multiprocessor architecture prototyping due
to their inherent integration capacity. Therefore to test
and evaluate the proposed methodology a case study
will be proposed and an implementation test based on
Altera Stratix 1l FPGA will be performed.
The remainder of the paper is organized as follows.
Related work of designing processing elements is
presented in the second section. We describe our
proposed methodology in the third section. The fourth
section presents a study of the soft-core processor.
Implementation results and analyses of the developed
methodology are shown in the fifth section. Finally,
conclusions are given in the sixth section.


mailto:baklouti_mouna@yahoo.fr

1. RELATED WORK

The impact of machine structure on system
performance is a critical consideration in designing
highly integrated SIMD architectures. This issue is
highly affected by PE granularity and PE complexity.
To meet this need, SIMD machines are usually based
on the use of simple PEs designed to the application
for which the architecture is built.

In reference [6] Takashi Komuro & al have proposed
a PE architecture called S3PE (Simple and Smart
Sensory Processing Elements) targeted to vision
algorithm. The PE architecture consists of an ALU,
local memory and three registers. This simple PE
architecture has a general purpose utility and permits a
high integration level on a chip. But the function of
the ALU and the size of the local PE memory are not
enough for recent complicated visual application.
Reference [7] proposes VBMSE architecture to
compute the motion estimation vector of a video
frame for the H.264/AVC. This architecture is
composed of a systolic array of regular data
processing elements (PE). Each PE is composed of
three units: Fixed Block (FB), Comparator Unit (CU)
and the Reuse Unit (RU). The architectures of these
units are well organized to produce in a final step the
value of the SADMIN.

Reference [8] proposes the morphosys architecture
targeted for image processing applications. It is
composed of a reconfigurable array, a control
processor, a data buffer and a DMA controller. The
reconfigurable array is an 8 by 8 array of
reconfigurable cells operating in SIMD fashion and
constitutes the processing element array. Each cell has
an ALU-multiplier, a shift unit, and two multiplexers
for ALU. The RC Array functionality and
interconnection network are configured through 32-bit
context words.

The [7] and [8] reference architectures are more
efficient than [6] architecture but their PE design is
targeted to the desired application.

This method of conception usually responses to the
required performance but faces the problem of
difficulty and a long time of conception as well as a
limitation of utilization for a specific application.
Therefore, with the efforts made in designing Soft-
core processor which provide sufficient performance
with less cost, a new design methodology based on the
use of Soft-core processor was appeared.

Reference [9] proposes a parallel processor
architecture that is based on the use of the picoblaze
processor. This architecture contains the following
core elements: a processor field composed of 1-bit
processing elements (PEs), the control unit and an
image buffer.

The PE of this architecture is a reduced picooblaze
from Xilinx. Some of the characteristics of the
PicoBlaze are the 16 registers, the 64-byte internal
RAM, the CALL/RETURN stack and the on-chip
program memory with 1024 instructions implemented
as BRAM. The PE is built as a reduced Picoblaze. The

reduction included the arithmetic operations, the shift
and rotates instructions, the interrupt handling as well
as the internal memory. All this leads to a reduced
PicoBlaze which needs a few number of slices. The
limitation of this method is the reduction of the
processor instructions which limits the application
complexity.

1. REDUCTION METHODOLOGY

As mentioned in the previous section the use of
personalized methodology in designing PEs limits
their use to the applications for which they are
designed and requires a relatively long time for
conception.

Therefore IP based methodology has been proposed to
tackle the problem revealed from the use of
personalized PEs. And in order to overcome the
relatively high logic utilization raising from the use of
soft-core processor, our idea is to reduce the pipeline
stages which consist in eliminating the fetch and
decode stages. In fact, the ACU is responsible for
fetching and decoding the instructions and issues
parallel microinstruction treatment to the PEs array.
To ensure the scent of the parallel microinstruction to
the PEs array, the ACU will be built up as a modified
Soft-core processor. Our proposed methodology will
be splitted into five steps

A. First step : processor test

After downloading the processor it is necessary to
study it (component, simulation environment, etc).
This processor could be either distributed standalone
or available in a soc distribution. The first distribution
only involves the soft-core processor which should be
connected to an on-chip RAM in order to test and
simulate it.

The second distribution is a collection of extra-
modules like RAM, UART, Ethernet and VGA. Some
examples of this distribution are the leon2 and the
OpenRISC processor.

To test and simulate the processor, for the standalone
distribution, the Soft-core must be connected to a
RAM. For the soc distribution the optional modules
can be eliminated from the soc top-level.

B. Second step: Processor optimization

The processor optimization involves two steps. The
first step consists in the optimized processor
configuration; the processor configuration is made
through a configuration file which contains the
definition of several parameters. The implementation
of each of the module depends on its parameter
definition.

The second step is to check the possibility to eliminate
complementary modules which are not included in the
configuration file such as the Tick timer. Once
optional modules are eliminated and in order to ensure
the processor functionality, it is necessary to check the
processor interface; eliminate the 1/0 interface signals
related to the eliminated modules.



C. Third step : Study of processor components

To success the ACU and PE design, the functionality
of the processor modules must be understood and then
associated to its pipeline stage. Then a specific focus
must be given to the connection between the
fetch/decode stage and the execution stages: the
direction of all input/output signals of the fetch and
decode stage modules must be studied.

D. Forth step : ACU and PE building

This step requires specific concern as well as high
understanding level of the third step.

1) ACU building
As the ACU is responsible for the handling of micro-
instruction to the PEs, it is necessary to modify the
processor interface by adding an 1/O interface that is
intended to communicate with the PE. To develop this
concept of ACU building, we must proceed as follow:

a) Allocate specific instructions at the start of
each type treatment. So that the ACU will be able to
differentiate  between parallel and sequential
treatment.

b) Adding a test process sensitive to the RAM
output data within the decode module, that allows the
decode stage to recognize the type of treatment; this
test compare each new instruction to the specific
instruction of the sequential and parallel treatment.

c¢) Rectify the fetch and program counter
module; the fetch and pc counter module signals that
are connected to the execute stages (gray dotted fetch
and gen-pc signals in Fig.l) must be declared as
global 1/0 (gray fetch and gen-pc signals in Fig. 1) of
the ACU to ensure the communication of the fetch
stage with the PE execute stages.

d) In the decode block, a new 1/0O interface is
added (Fig.1). The signal definition of this interface is
similar to the initial communication signals between
the ACU decode and execute stages with the
difference that these signal are activated for a parallel
treatment whereas the initial signals are activated in
the case of sequential treatment. Therefore the
implementations of the initial signals are modified:
they are activated if the result of the test indicates a
parallel treatment otherwise they are disabled.
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FIGURE 1. ACU DESIGN

2)  PE building

To ensure the ACU-PE communication an 1/O
interface must be created. The input created interface
actually contains the ACU decode and fetch pipeline
module outputs that are intended to be connected to
the execute stages of the PE (studied in the third step).
The communication signals between the soft-core
output fetch/decode modules and the execute modules
ought to be replaced by the new created interface
signals (Fig. 2). The output created interface contains
the ACU fetch and decode stages inputs and intended
to be connected the PES (studied in step 3). This
output interface will be driven as input to the ACU in
order to ensure the running of its decode and fetch
stages in case of parallel treatment (Fig. 2).

Getting all these modifications established the fetch
and decode block must be eliminated from the
processor top level and so the PE build up is
accomplished.
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FIGURE 2. PE DESIGN

E. Fifth step : Design Test

At this final step it is intended to test the running of
the ACU and PE in order to approve the built system
approach.
The test procedure consists in:

e Establishing the connection between the

ACU and a number of PEs.

e  Simulating the system using a parallel code.
The test should result in recording the results of the
executed program in the PEs memory. If the review
of the recorded data find out unexpected results or the
record has not been done, the ACU-PE
communication or the PE /ACU building must be
verified.

V. CASE STUDY
A. Overview

To choose the suitable soft-core processor to test the
developed methodology, a comparative study of three
soft-core processors was achieved: LEON2 from
Gaisler Research, MicroBlaze from Xilinx and
OpenRISC 1200 from OpenCores was established.
The OpenRISC was chosen for its performance and its
less logical area utilization

The OpenRISC 1200 [10] is written in the Verilog
hardware description language. It is a 32-bit scalar
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RISC processor with Harvard micro architecture,
wishbone interface, five bit integer pipeline, virtual
memory support (MMU) and basic DSP
capabilities [11]. The tool chain of the OpenRISC
requires the orlK_binutils, orlK_gcc, orlK_gdb and
the orlK_sim. The C can be cross compiled and the
hex file is obtained.

B. OpenRISC CASE STUDY

The Case study was based on a SoC implementation
based on the OpenRISC 1200 processor, known as
ORPSo0C (the OpenRISC Reference Platform System-
on-Chip).The steps of the developed methodology
(section 111) was applied to the ORPSOC design. The
ORPSOC design was optimized and the Soft-core
pipeline stages were reduced. The specific instructions
used to differentiate parallel and sequential treatment
are l.add r7,r7,r0 (for the parallel treatment) and l.addi
r7,r7,0(for the sequential treatment). A SIMD
architecture based on the reduction methodology was
built and was tested with different assembler and c
code. The next section will present the experimental
results of the reduction methodology applied to the
OpenRISC processor.

V. EXPERIMENTAL RESULTS

Within this section, it is intended to evaluate the
implementation results and the execution time
efficiency of the SIMD proposed architecture.

The working strategy begins with the ORPSOC
design optimization and an FPGA StratixIl based
implementation .Then the implementation results of
the SIMD proposed architecture and the replication
methodology is performed. And finally the evaluation
of the execution time of the proposed architecture
resulted of different parallel algorithms is performed.

A. Design optimization

In order to minimize the logic utilization of the Soft-
core processor design, the optimization task is
essential and an implementation results comparison of
the initial design and the optimized one will be
informative. The extra-modules were eliminated and
the optimal processor configuration was achieved.
The functionality of the optimized design was tested
and verified. The particular FPGA used for the test
was an Altera StratixI1-2S180. This chip is made up of
an array of 180 000.

TABLE 1. IMPLEMENTATION RESULTS OF THE
OPTIMIZED ORPSOC DESIGN

The initial design | Optimized design
Device EP2S180F1020 | EP2S180F1020
C3 C3
Logical use 5% 3%
Combinationa | 6396/ 143 520 3524/ 143 520
I ALUTs
Openrisc 5904 3338
logic
utilization

The table 1 shows that the design optimization greatly
affects the logic utilization which decreases from 6396
Luts for the initial design to 3524 Luts for the
optimized one. The suitable OpenRISC optimization
results on a decrease of the OpenRISc processor
utilization from 5904 to 3338 Lults.

In order to proof the utility of the PE pipeline stage
reduction, a comparison between the reduction
methodology and a replication method will be
presented. The replication is based on a collection of
the soft-core processor. The only modification is made
to handle the instructions from the ACU to the PEs;
The PEs decode stage receives the instructions from
the ACU.

B. Comparison between the two methodology
implementation results

To obtain architecture with a high parallelism level,
the PES number was increased for each one until the
design could no longer fit on the FPGA. The table 2
shows the implementation results of the replication
and reduction methodologies on FPGA.

TABLE 2. IMPLEMENTATION RESULTS OF THE
REPLICATION AND REDUCTION METHODOLOGY

Replication Reduction
methodology methodology
2 PEs 8% 6%
8 PEs 28% 17%
24 PEs 78% 42%
32 PEs Can’t fit on FPGA 58%
40 PEs Can’t fit on FPGA 2%

The first observation raised from table 2 is that the
maximum number of implemented PEs to each
architecture is different. For the replication methodology
the maximum number was 24 with 78 % and 40 PEs
within the reduction methodology with 72%.

The second observation is that the augmentation average
of the logical area utilization between the two
methodologies is different (Fig. 3). The slope of the red
curve is much more important than the blue one.
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FIGURE 3. EVOLUTION OF THE LOGICAL OCCUPATION


http://en.wikipedia.org/wiki/System_on_a_chip

This difference is the result of the difference of the PE
logical size within each methodology. The table 3
shows the implementation detail of a SIMD
architecture composed of an ACU and two PE within
the replication and reduction methodology.

TABLE 3. IMPLEMENTATION DETAILS WITHIN THE
REDUCTION AND REPLICATION METHODOLOGY

Replication Reduction

methodology | methodology
ﬁ;iciiszationlogic 3564 3117
EEI%zationlogic 3512 2789
EtI;:IzizaLtionIogic 3514 2751

The table 3 shows the difference of the PEs size
within the two methodolThogies. The reduction of the
pipeline stages and so that the elimination of the fetch
and decode modules effects greatly the size of the PE
within the reduction methodology.

C. Execution time performance

The previous section revealed the advantages of the
developed methodology in term of logic occupation.
The present section aims to evaluate the execution
time performance of the developed methodology. To
do so, two algorithms are selected; Matrix-vector
multiplication and the correlation application.

The execution of these parallel algorithms will be
performed with a 100 MHz frequency.
1) Matrix-vector multiplication
a) Overview

We consider a square matrix of size n and X a vector of
size n and Y is the multiplication resulting vector. The
element i of the resulted vector is the multiplication of the
line i of the matrix A with the vector X. The
parallelization of the multiplication consists in dividing
the calculation of the Z elements among the PEs. If the
parallel architecture is composed of p PEs, each PE uses
N/p lines of X to calculate N/P elements of Y (Fig. 4).
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FIGURE 4. PARALLEL MATRIX-VECTOR MULTIPLICATION

b) Results

The features of the matrix and vector used in the
Matrix-vector multiplication running are:

A00 -+ A0128
Matrix A(128,128) : ( g : )

[

VectorY: | . |
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The serial algorithm was executed on the OpenRISC
processor with 19 619 us. Then the parallel ¢ code was
running on SIMD architecture with different PEs
number. The serial and parallel execution time allows
the calculation of the speed up which measure the
performance gains of the parallel algorithms over the
serial algorithm. The table 4 presents the execution
time and the Speed up of MPPSOC architecture with
different  PE number for the Matrix-vector
multiplication code.

The table 4 shows the evolution of the execution time
with the PEs number increase. This time decrease
from 19 619us for serial computation to 5100 us for
parallel computation with 32 PEs .The efficiency of
the SIMD architecture increase from 1, 5 with 2 PES
to 3, 8 with 32 PEs. This speed up is relatively
comparable to the results presented in [12] although it
is designed from personalized PEs and was
programmed with the assembler language .

A1280 A128 128

TABLE 4. MATRIX-VECTOR MULTIPLICATION RESULTS
ON SIMD ARCHITECTURE WITHIN THE REDUCTION

METHODOLOGY
Execution Speedup
time(us)
Serial algorithm 19619
Parallel algorithm 12960 1,5
Parallel algorithm 7672 2,6
(8 PEs)
Parallel algorithm 5644 3,5
(16 PEs)
Parallel algorithm 5100 3,8
(32 PEs)

2) Correlation
a) Overview
The correlation allows for radar to detect an object in its
field. The radar sends and receipt signals. The correlation
allows, knowing the sent data, to detect objects within the
field of the radar. The radar has a code constituted of 1023
coefficient; each one is stored on a one bit. It continuously
sends its code and stores the received data stored in 4. The
formula to calculate a correlation is:



1023

St=Y - Ci)* yi+1) . 1)

If in a given moment we Consider that 64 Y are
received from the radar, it’s necessary to calculate 64
correlations. Each correlation is calculated as follow:

1023
St= Z C(i-tmod1023) * y(©).  (2)
k=1
If an object is actually in the field of radar, there is a
peak among the 64 correlation results

b) Execution time

The evaluation of the algorithm parallelization
requires the calculation of the execution time of the
serial algorithm. The code of the serial correlation
calculation was written and executed.

The difference between the parallel algorithm and the
sequential one is that during iteration the number of
correlation calculated is equal to the number of PEs
within the parallel architecture while only one
correlation is performed during iteration for the serial
execution.

Within the parallel treatment, the number of PEs was
increased and the execution time and the efficiency
related to the architectures was measured (table 5).
The table 5 shows the important decrease of the
execution time with the augmentation of the PEs
number. This time decreases from 134 409 us for the
serial execution to 7 591 us obtained with 32 PEs. The
speed up also increases significantly with the PE
number augmentation, its value increase from 1, 6 to
29, 5. The architecture is considerably efficient since
the speed up is approximately equal to the PEs
number.

TABLE 5. CORRELATION ALGORITHM RESULTS ON SIMD
ARCHITECTURE WITHIN THE REDUCTION

METHODOLOGY
Execution Speedup
time(us)
Serial algorithm 224 016
Parallel algorithm 134 409 1,6
(2 PEs)
Parallel algorithm
(8 PEs) 28 888 7,7
Parallel algorithm
(16 PEs) 15031 14,9
Parallel algorithm
(32 PEs) 7591 29,5
VI. CONCLUSION

The originality of the work described here lies in the
use of a new PE design methodology to build up
SIMD architectures.

The main difference with other SIMD architectures is
the use of a soft-core processor to design the
processing elements. In this way the problem of
personalized PEs are avoided (restriction of use,
difficulty of conception, long time to market). The use
of a reduced soft-core ensures a general use of the
designed architecture and a high parallelism level. In
addition the performance of the soft-core processor
permits the conception of an efficient processing
element that supports the assembler and ¢
programming language. These benefits have been
verified with a case study of the OpenRISC processor.
As expected work, we aim to integrate an
interconnection network bus to solve the problem of
the ACU and PE memory connection and to run more
complicated parallel data application.
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