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Abstract—Multi-Processor Systems on Chip 

(MPSoCs) have been proposed as a promising 

solution for the increasing demand of 

computational power required for recent 

application. The parallelization through SIMD 

(single instruction/multiple data) architectures has 

been a proven solution to speed up the processing 

of the recent application that exhibit massive 

amounts of data parallelism. The level of 

parallelism impacts the SIMD architecture 

performance and it is closely related to the design 

of the processing element.  In this context this 

paper presents a new design methodology of 

designing processing element for SIMD 

architecture. The scope of this work is to reduce 

the pipeline stages of the soft-core processor to 

reduce the size of the PEs and so that to built up a 

high level parallelism architecture. 

I. INTRODUCTION 

SIMD [1] represents one of the earliest styles of 

parallel processing. The term SIMD stands for 

“Single-Instruction Multiple-Data,” which aptly 

encapsulates the parallel processing model. These 

architecture have established themselves as a suitable 

solution for a wide range of a highly data parallel 

applications [2]; they are geared toward applications 

that exhibit massive amounts of data parallelism 

without complicated control flow or excessive 

amounts of inter-processor communication. Typical 

applications for SIMD machines include low-level 

vision and image processing, discrete particle 

simulation, database searches, and genetic sequence 

matching.  

Closely related to vector processing, the basic idea is 

to operate the same instruction sequence 

simultaneously on a large number of discrete data sets 

[1]. To achieve this functionality, a SIMD machine 

basically consists of an array of fine-grained 

computational units connected together in some sort 

of simple network topology [3]. This processor array 

is connected to a control processor (ACU), which is 

responsible for fetching and interpreting instructions.  
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The ACU issues arithmetic and data processing 

instructions to the processor array, and   handles any 

control flow or serial computation that cannot be 

parallelized [1]. 

To achieve their performance the individual 

processing elements are usually very simple in nature 

and targeted to the application for which they are 

designed [4]. Within this methodology the PE is built 

around the necessary unit of the application: 

Multiplication unit, comparator unit, registers, etc [4]. 

The small size of PEs within this methodology allows 

a high integration capability and so that a high 

performance.  The drawback of this method of 

conception is the difficulty of conception and, long 

time required to designing and the restriction of the 

built PE to the given application. Therefore, with the 

advance made in designing soft-core [5] processor a 

new design methodology based on the use of available 

IP processor is appeared. In this contest, this project 

aims to propose a processor design reduction 

methodology based on standard processor IPs in order 

to build high parallel processor architecture. The idea 

is to minimize the logical area utilization of the PE in 

order to integrate a maximum number into the 

architecture. To do so the PEs pipeline stages are 

reduce. This reduction concerns the pipeline stage of 

the Soft-core processor. The fetch and decode stages 

of the PEs are eliminated and the Array Control Unit 

(ACU) is the responsible of handling the 

microinstructions to the PE array.  

Today the FPGA presents an ideal platform for a 

massively multiprocessor architecture prototyping due 

to their inherent integration capacity. Therefore to test 

and evaluate the proposed methodology a case study 

will be proposed and an implementation test based on 

Altera Stratix II FPGA will be performed.  

The remainder of the paper is organized as follows. 

Related work of designing processing elements is 

presented in the second section. We describe our 

proposed methodology in the third section. The fourth 

section presents a study of the soft-core processor. 

Implementation results and analyses of the developed 

methodology are shown in the fifth section. Finally, 

conclusions are given in the sixth section. 
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II. RELATED WORK 

The impact of machine structure on system 

performance is a critical consideration in designing 

highly integrated SIMD architectures. This issue is 

highly affected by PE granularity and PE complexity. 

To meet this need, SIMD machines are usually based 

on the use of simple PEs designed to the application 

for which the architecture is built.  

In reference [6] Takashi Komuro & al have proposed 

a PE architecture called S3PE (Simple and Smart 

Sensory Processing Elements) targeted to vision 

algorithm. The PE architecture consists of an ALU, 

local memory and three registers. This simple PE 

architecture has a general purpose utility and permits a 

high integration level on a chip. But the function of 

the ALU and the size of the local PE memory are not 

enough for recent complicated visual application. 

Reference [7] proposes VBMSE architecture to 

compute the motion estimation vector of a video 

frame for the H.264/AVC. This architecture is 

composed of a systolic array of regular data 

processing elements (PE). Each PE is composed of 

three units: Fixed Block (FB), Comparator Unit (CU) 

and the Reuse Unit (RU). The architectures of these 

units are well organized to produce in a final step the 

value of the SADMIN.  

Reference [8] proposes the morphosys architecture 

targeted for image processing applications. It is 

composed of a reconfigurable array, a control 

processor, a data buffer and a DMA controller. The 

reconfigurable array is an 8 by 8 array of 

reconfigurable cells operating in SIMD fashion and 

constitutes the processing element array. Each cell has 

an ALU-multiplier, a shift unit, and two multiplexers 

for ALU. The RC Array functionality and 

interconnection network are configured through 32-bit 

context words. 

The [7] and [8] reference architectures are more 

efficient than [6] architecture but their PE design is 

targeted to the desired application. 

This method of conception usually responses to the 

required performance but faces the problem of 

difficulty and a long time of conception as well as a 

limitation of utilization for a specific application. 

Therefore, with the efforts made in designing Soft-

core processor which provide sufficient performance 

with less cost, a new design methodology based on the 

use of Soft-core processor was appeared. 

Reference [9] proposes a parallel processor 

architecture that is based on the use of the picoblaze 

processor. This architecture contains the following 

core elements: a processor field composed of 1-bit 

processing elements (PEs), the control unit and an 

image buffer.  

The PE of this architecture is a reduced picooblaze 

from Xilinx. Some of the characteristics of the 

PicoBlaze are the 16 registers, the 64-byte internal 

RAM, the CALL/RETURN stack and the on-chip 

program memory with 1024 instructions implemented 

as BRAM. The PE is built as a reduced Picoblaze. The 

reduction included the arithmetic operations, the shift 

and rotates instructions, the interrupt handling as well 

as the internal memory. All this leads to a reduced 

PicoBlaze which needs a few number of slices. The 

limitation of this method is the reduction of the 

processor instructions which limits the application 

complexity.  

III. REDUCTION METHODOLOGY 

As mentioned in the previous section the use of 

personalized methodology in designing PEs limits 

their use to the applications for which they are 

designed and requires a relatively long time for 

conception.  

Therefore IP based methodology has been proposed to 

tackle the problem revealed from the use of 

personalized PEs. And in order to overcome the 

relatively high logic utilization raising from the use of 

soft-core processor, our idea is to reduce the pipeline 

stages which consist in eliminating the fetch and 

decode stages. In fact, the ACU is responsible for 

fetching and decoding the instructions and issues 

parallel microinstruction treatment to the PEs array. 

To ensure the scent of the parallel microinstruction to 

the PEs array, the ACU will be built up as a modified 

Soft-core processor. Our proposed methodology will 

be splitted into five steps 

A. First step : processor test 

After downloading the processor it is necessary to 

study it (component, simulation environment, etc).  

This processor could be either distributed standalone 

or available in a soc distribution.  The first distribution 

only involves the soft-core processor which should be 

connected to an on-chip RAM in order to test and 

simulate it.  

The second distribution is a collection of extra-

modules like RAM, UART, Ethernet and VGA. Some 

examples of this distribution are the leon2 and the 

OpenRISC processor. 

To test and simulate the processor, for the standalone 

distribution, the Soft-core must be connected to a 

RAM. For the soc distribution the optional modules 

can be eliminated from the soc top-level. 

B. Second step: Processor optimization 

The processor optimization involves two steps. The 

first step consists in the optimized processor 

configuration; the processor configuration is made 

through a configuration file which contains the 

definition of several parameters. The implementation 

of each of the module depends on its parameter 

definition. 

The second step is to check the possibility to eliminate 

complementary modules which are not included in the 

configuration file such as the Tick timer. Once 

optional modules are eliminated and in order to ensure 

the processor functionality, it is necessary to check the 

processor interface; eliminate the I/O interface signals 

related to the eliminated modules.     



C. Third step : Study of processor components 

To success the ACU and PE design, the functionality 

of the processor modules must be understood and then 

associated to its pipeline stage. Then a specific focus 

must be given to the connection between the 

fetch/decode stage and the execution stages: the 

direction of all input/output signals of the fetch and 

decode stage modules must be studied. 

D. Forth step : ACU and PE building  

 This step requires specific concern as well as high 

understanding level of the third step. 

1) ACU building 

As the ACU is responsible for the handling of micro-

instruction to the PEs, it is necessary to modify the 

processor interface by adding an I/O interface that is 

intended to communicate with the PE. To develop this 

concept of ACU building, we must proceed as follow: 

a) Allocate specific instructions at the start of 

each type treatment. So that the ACU will be able to 

differentiate between parallel and sequential 

treatment.  

b) Adding a test process sensitive to the RAM 

output data within the decode module, that allows the 

decode stage to recognize the type of treatment; this 

test compare each new instruction to the specific 

instruction of the sequential and parallel treatment. 

c) Rectify the fetch and program counter 

module; the fetch and pc counter module signals that 

are connected to the execute stages (gray dotted fetch 

and gen-pc signals in Fig.1) must be declared as 

global I/O (gray fetch and gen-pc signals in Fig. 1) of 

the ACU to ensure the communication of the fetch 

stage with the PE execute stages.  

d) In the decode block, a new I/O   interface is  

added (Fig.1). The signal definition of this interface is 

similar to the initial communication signals between 

the ACU decode and execute stages with the 

difference that these signal are activated for a parallel 

treatment whereas the initial signals are activated in 

the case of sequential treatment. Therefore the 

implementations of the initial signals are modified: 

they are activated if the result of the test indicates a 

parallel treatment otherwise they are disabled.  

 

FIGURE 1. ACU DESIGN 

2) PE building 

To ensure the ACU-PE communication an I/O 

interface must be created. The input created interface 

actually contains the ACU decode and fetch pipeline 

module outputs that are intended to be connected to 

the execute stages of the PE (studied in the third step). 

The communication signals between the soft-core 

output fetch/decode modules and the execute modules 

ought to be replaced by the new created interface 

signals (Fig. 2). The output created interface contains 

the ACU fetch and decode stages inputs and intended 

to be connected the PES (studied in step 3). This 

output interface will be driven as input to the ACU in 

order to ensure the running of its decode and fetch 

stages in case of parallel treatment (Fig. 2).  
Getting all these modifications established the fetch 

and decode block must be eliminated from the 

processor top level and so the PE build up is 

accomplished. 

 

FIGURE 2. PE DESIGN 

E. Fifth step : Design Test 

At this final step it is intended to test the running of 

the ACU and PE in order to approve the built system 

approach.  

The test procedure consists in:  

 Establishing the connection between the 

ACU and a number of PEs.  

 Simulating the system using a parallel code.  

The test should result in recording the results of the 

executed program in the PEs memory.  If the review 

of the recorded data find out unexpected results or the 

record has not been done, the ACU-PE 

communication or the PE /ACU building must be 

verified. 

IV. CASE STUDY  

A. Overview 

To choose the suitable soft-core processor to test the 

developed methodology, a comparative study of three 

soft-core processors was achieved: LEON2 from 

Gaisler Research, MicroBlaze from Xilinx and 

OpenRISC 1200 from OpenCores was established.  

The OpenRISC was chosen for its performance and its 

less logical area utilization  

The OpenRISC 1200 [10] is written in the Verilog 

hardware description language. It is a 32-bit scalar 
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RISC processor with Harvard micro architecture, 

wishbone interface,  five  bit  integer  pipeline,  virtual  

memory  support  (MMU)  and  basic  DSP  

capabilities [11]. The tool chain of the OpenRISC 

requires the or1K_binutils, or1K_gcc, or1K_gdb and 

the or1K_sim. The C can be cross compiled and the 

hex file is obtained. 

B. OpenRISC CASE STUDY 

The Case study was based on a SoC implementation 

based on the OpenRISC 1200 processor, known as 

ORPSoC (the OpenRISC Reference Platform System-

on-Chip).The steps of the developed methodology 

(section III) was applied to the ORPSOC design. The 

ORPSOC design was optimized and the Soft-core 

pipeline stages were reduced. The specific instructions 

used to differentiate parallel and sequential treatment 

are l.add r7,r7,r0 (for the parallel treatment) and l.addi 

r7,r7,0(for the sequential treatment). A SIMD 

architecture based on the reduction methodology was 

built and was tested with different assembler and c 

code. The next section will present the experimental 

results of the reduction methodology applied to the 

OpenRISC processor. 

V. EXPERIMENTAL RESULTS 

Within this section, it is intended to evaluate the 

implementation results and the execution time 

efficiency of the SIMD proposed architecture. 

The working strategy begins with the ORPSOC 

design optimization and an FPGA StratixII based 

implementation .Then the implementation results of 

the SIMD proposed architecture and the replication 

methodology is performed. And finally the evaluation 

of the execution time of the proposed architecture 

resulted of different parallel algorithms is performed. 

A.   Design optimization 

In order to minimize the logic utilization of the Soft-

core processor design, the optimization task is 

essential and an implementation results comparison of 

the initial design and the optimized one will be 

informative. The extra-modules were eliminated and 

the optimal processor configuration was achieved.  

The functionality of the optimized design was tested 

and verified. The particular FPGA used for the test 

was an Altera StratixII-2S180. This chip is made up of 

an array of 180 000. 

TABLE 1. IMPLEMENTATION RESULTS OF THE 

OPTIMIZED ORPSOC DESIGN 

The table 1 shows that the design optimization greatly 

affects the logic utilization which decreases from 6396 

Luts for the initial design to 3524 Luts for the 

optimized one. The suitable OpenRISC optimization 

results on a decrease of the OpenRISc processor 

utilization from 5904 to 3338 Luts.  

In order to proof the utility of the PE pipeline stage 

reduction, a comparison between the reduction 

methodology and a replication method will be 

presented. The replication is based on a collection of 

the soft-core processor. The only modification is made 

to handle the instructions from the ACU to the PEs; 

The PEs decode stage receives the instructions from 

the ACU. 

B. Comparison between the two methodology 

implementation results  

To obtain architecture with a high parallelism level, 

the PEs number was increased for each one until the 

design could no longer fit on the FPGA. The table 2 

shows the implementation results of the replication 

and reduction methodologies on FPGA. 

TABLE 2.  IMPLEMENTATION RESULTS OF THE 

REPLICATION AND REDUCTION METHODOLOGY 

 Replication 

methodology 

Reduction 

methodology 

2 PEs 8% 6% 

8 PEs 28% 17% 

24 PEs 78% 42% 

32 PEs Can’t fit on FPGA 58% 

40 PEs Can’t fit on FPGA 72% 

The first observation raised from table 2 is that the 

maximum number of implemented PEs to each 

architecture is different. For the replication methodology 

the maximum number was 24 with 78 % and 40 PEs 

within the reduction methodology with 72%. 

The second observation is that the augmentation average 

of the logical area utilization between the two 

methodologies is different (Fig. 3). The slope of the red 

curve is much more important than the blue one. 

 

 
 

FIGURE 3. EVOLUTION OF THE LOGICAL OCCUPATION 

 The initial design Optimized design 

Device EP2S180F1020

C3 

EP2S180F1020

C3 

Logical use   5% 3% 

Combinationa

l ALUTs 
6396/ 143 520 3524/ 143 520 

Openrisc 

logic 

utilization 

5904 

 

3338 
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This difference is the result of the difference of the PE 

logical size within each methodology. The table 3 

shows the implementation detail of a SIMD 

architecture composed of an ACU and two PE within 

the replication and reduction methodology. 

TABLE 3. IMPLEMENTATION DETAILS WITHIN THE 

REDUCTION AND REPLICATION METHODOLOGY 

 Replication 

methodology 

Reduction 

methodology 

ACU logic 

utilization 
3564 3117 

PE1 logic 

utilization 
3512 2789 

PE2 logic 

utilization 
3514 2751 

 

The table 3 shows the difference of the PEs size 

within the two methodolThogies. The reduction of the 

pipeline stages and so that the elimination of the fetch 

and decode modules effects greatly the size of the PE 

within the reduction methodology. 

C. Execution time performance 

The previous section revealed the advantages of the 

developed methodology in term of logic occupation. 

The present section aims to evaluate the execution 

time performance of the developed methodology. To 

do so, two algorithms are selected; Matrix-vector 

multiplication and the correlation application. 

The execution of these parallel algorithms will be 

performed with a 100 MHz frequency. 

1) Matrix-vector multiplication 

a) Overview 

We consider a square matrix of size n and X a vector of 

size n and Y is the multiplication resulting vector. The 

element i of the resulted vector is the multiplication of the 

line i of the matrix A with the vector X. The 

parallelization of the multiplication consists in dividing 

the calculation of the Z elements among the PEs. If the 

parallel architecture is composed of p PEs, each PE uses 

N/p lines of X to calculate N/P elements of Y (Fig. 4). 

               

FIGURE 4. PARALLEL MATRIX-VECTOR MULTIPLICATION 

 

b) Results 

The features of the matrix and vector used in the 

Matrix-vector multiplication running are: 

Matrix A(128,128) :   
          
   

               
  

Vector Y:    

 

 
 

  
 
 
 

     

 
 

 

The serial algorithm was executed on the OpenRISC 

processor with 19 619 us. Then the parallel c code was 

running on SIMD architecture with different PEs 

number. The serial and parallel execution time allows 

the calculation of the speed up which measure the 

performance gains of the parallel algorithms over the 

serial algorithm. The table 4 presents the execution 

time and the Speed up of MPPSOC architecture with 

different PE number for the Matrix-vector 

multiplication code. 

The table 4 shows the evolution of the execution time 

with the PEs number increase. This time decrease 

from 19 619us for serial computation to 5100 us for 

parallel computation with 32 PEs .The efficiency of 

the SIMD architecture increase from 1, 5 with 2 PES 

to 3, 8 with 32 PEs. This speed up is relatively 

comparable to the results presented in [12] although it 

is designed from personalized PEs and was 

programmed with the assembler language . 

TABLE 4. MATRIX-VECTOR MULTIPLICATION RESULTS 

ON SIMD ARCHITECTURE WITHIN THE REDUCTION 

METHODOLOGY 

2) Correlation 

a) Overview 

The correlation allows for radar to detect an object in its 

field.  The radar sends and receipt signals. The correlation 

allows, knowing the sent data, to detect objects within the 

field of the radar. The radar has a code constituted of 1023 

coefficient; each one is stored on a one bit. It continuously 

sends its code and stores the received data stored in 4. The 

formula to calculate a correlation is: 

 
Execution 

time(us) 

Speedup 

Serial algorithm 19619  

Parallel algorithm 12960 1,5 

Parallel algorithm 

(8 PEs) 

7672 2,6 

Parallel algorithm 

(16 PEs) 

5644 3,5 

Parallel algorithm 

(32 PEs) 

5100 3,8 



St                
    

   
.  (1) 

If in a given moment we Consider that 64 Y are 

received from the radar, it’s necessary to calculate 64 

correlations. Each correlation is calculated as follow:  

St         –                   
    

   
   (2) 

If an object is actually in the field of radar, there is a 

peak among the 64 correlation results 

b) Execution time 

The evaluation of the algorithm parallelization 

requires the calculation of the execution time of the 

serial algorithm. The code of the serial correlation 

calculation was written and executed. 

The difference between the parallel algorithm and the 

sequential one is that during iteration the number of 

correlation calculated is equal to the number of PEs 

within the parallel architecture while only one 

correlation is performed during iteration for the serial 

execution. 

Within the parallel treatment, the number of PEs was 

increased and the execution time and the efficiency 

related to the architectures was measured (table 5).  

The table 5 shows the important decrease of the 

execution time with the augmentation of the PEs 

number. This time decreases from 134 409 us for the 

serial execution to 7 591 us obtained with 32 PEs. The 

speed up also increases significantly with the PE 

number augmentation, its value increase from 1, 6 to 

29, 5. The architecture is considerably efficient since 

the speed up is approximately equal to the PEs 

number. 

TABLE 5.  CORRELATION ALGORITHM RESULTS ON SIMD 

ARCHITECTURE WITHIN THE REDUCTION 

METHODOLOGY 

 Execution 

time(us) 

Speedup 

Serial algorithm 224 016  

Parallel algorithm  

(2 PEs) 

134 409 1,6 

Parallel algorithm  

(8 PEs) 
28 888 7,7 

Parallel algorithm 

(16 PEs) 
15 031 14,9 

Parallel algorithm 

(32 PEs) 
7 591 29,5 

 

 

VI. CONCLUSION 

The originality of the work described here lies in the 

use of a new PE design methodology to build up 

SIMD architectures. 

The main difference with other SIMD architectures is  

the use of a soft-core processor to design the 

processing elements. In this way the problem of 

personalized PEs are avoided (restriction of use, 

difficulty of conception, long time to market). The use 

of a reduced soft-core ensures a general use of the 

designed architecture and a high parallelism level. In 

addition the performance of the soft-core processor 

permits the conception of an efficient processing 

element that supports the assembler and c 

programming language. These benefits have been 

verified with a case study of the OpenRISC processor.  

As expected work, we aim to integrate an 

interconnection network bus to solve the problem of 

the ACU and PE memory connection and to run more 

complicated parallel data application. 
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