
Soft-core reduction methodology for SIMD

architecture: OPENRISC case study

Bouthaina DAMMAK
CESlab

Sfax University (ENIS school)

Sfax,Tunisia

bouthaina.damak@gmail.com

Abstract—Multi-Processor Systems on Chip

(MPSoCs) have been proposed as a promising

solution for the increasing demand of

computational power required for recent

application. The parallelization through SIMD

(single instruction/multiple data) architectures has

been a proven solution to speed up the processing

of the recent application that exhibit massive

amounts of data parallelism. The level of

parallelism impacts the SIMD architecture

performance and it is closely related to the design

of the processing element. In this context this

paper presents a new design methodology of

designing processing element for SIMD

architecture. The scope of this work is to reduce

the pipeline stages of the soft-core processor to

reduce the size of the PEs and so that to built up a

high level parallelism architecture.

I. INTRODUCTION

SIMD [1] represents one of the earliest styles of

parallel processing. The term SIMD stands for

“Single-Instruction Multiple-Data,” which aptly

encapsulates the parallel processing model. These

architecture have established themselves as a suitable

solution for a wide range of a highly data parallel

applications [2]; they are geared toward applications

that exhibit massive amounts of data parallelism

without complicated control flow or excessive

amounts of inter-processor communication. Typical

applications for SIMD machines include low-level

vision and image processing, discrete particle

simulation, database searches, and genetic sequence

matching.

Closely related to vector processing, the basic idea is

to operate the same instruction sequence

simultaneously on a large number of discrete data sets

[1]. To achieve this functionality, a SIMD machine

basically consists of an array of fine-grained

computational units connected together in some sort

of simple network topology [3]. This processor array

is connected to a control processor (ACU), which is

responsible for fetching and interpreting instructions.

 Mouna BAKLOUTI and Mohamed ABID
CESlab

Sfax University (ENIS school)

Sfax,Tunisia

baklouti_mouna@yahoo.fr

The ACU issues arithmetic and data processing

instructions to the processor array, and handles any

control flow or serial computation that cannot be

parallelized [1].

To achieve their performance the individual

processing elements are usually very simple in nature

and targeted to the application for which they are

designed [4]. Within this methodology the PE is built

around the necessary unit of the application:

Multiplication unit, comparator unit, registers, etc [4].

The small size of PEs within this methodology allows

a high integration capability and so that a high

performance. The drawback of this method of

conception is the difficulty of conception and, long

time required to designing and the restriction of the

built PE to the given application. Therefore, with the

advance made in designing soft-core [5] processor a

new design methodology based on the use of available

IP processor is appeared. In this contest, this project

aims to propose a processor design reduction

methodology based on standard processor IPs in order

to build high parallel processor architecture. The idea

is to minimize the logical area utilization of the PE in

order to integrate a maximum number into the

architecture. To do so the PEs pipeline stages are

reduce. This reduction concerns the pipeline stage of

the Soft-core processor. The fetch and decode stages

of the PEs are eliminated and the Array Control Unit

(ACU) is the responsible of handling the

microinstructions to the PE array.

Today the FPGA presents an ideal platform for a

massively multiprocessor architecture prototyping due

to their inherent integration capacity. Therefore to test

and evaluate the proposed methodology a case study

will be proposed and an implementation test based on

Altera Stratix II FPGA will be performed.

The remainder of the paper is organized as follows.

Related work of designing processing elements is

presented in the second section. We describe our

proposed methodology in the third section. The fourth

section presents a study of the soft-core processor.

Implementation results and analyses of the developed

methodology are shown in the fifth section. Finally,

conclusions are given in the sixth section.

mailto:baklouti_mouna@yahoo.fr

II. RELATED WORK

The impact of machine structure on system

performance is a critical consideration in designing

highly integrated SIMD architectures. This issue is

highly affected by PE granularity and PE complexity.

To meet this need, SIMD machines are usually based

on the use of simple PEs designed to the application

for which the architecture is built.

In reference [6] Takashi Komuro & al have proposed

a PE architecture called S3PE (Simple and Smart

Sensory Processing Elements) targeted to vision

algorithm. The PE architecture consists of an ALU,

local memory and three registers. This simple PE

architecture has a general purpose utility and permits a

high integration level on a chip. But the function of

the ALU and the size of the local PE memory are not

enough for recent complicated visual application.

Reference [7] proposes VBMSE architecture to

compute the motion estimation vector of a video

frame for the H.264/AVC. This architecture is

composed of a systolic array of regular data

processing elements (PE). Each PE is composed of

three units: Fixed Block (FB), Comparator Unit (CU)

and the Reuse Unit (RU). The architectures of these

units are well organized to produce in a final step the

value of the SADMIN.

Reference [8] proposes the morphosys architecture

targeted for image processing applications. It is

composed of a reconfigurable array, a control

processor, a data buffer and a DMA controller. The

reconfigurable array is an 8 by 8 array of

reconfigurable cells operating in SIMD fashion and

constitutes the processing element array. Each cell has

an ALU-multiplier, a shift unit, and two multiplexers

for ALU. The RC Array functionality and

interconnection network are configured through 32-bit

context words.

The [7] and [8] reference architectures are more

efficient than [6] architecture but their PE design is

targeted to the desired application.

This method of conception usually responses to the

required performance but faces the problem of

difficulty and a long time of conception as well as a

limitation of utilization for a specific application.

Therefore, with the efforts made in designing Soft-

core processor which provide sufficient performance

with less cost, a new design methodology based on the

use of Soft-core processor was appeared.

Reference [9] proposes a parallel processor

architecture that is based on the use of the picoblaze

processor. This architecture contains the following

core elements: a processor field composed of 1-bit

processing elements (PEs), the control unit and an

image buffer.

The PE of this architecture is a reduced picooblaze

from Xilinx. Some of the characteristics of the

PicoBlaze are the 16 registers, the 64-byte internal

RAM, the CALL/RETURN stack and the on-chip

program memory with 1024 instructions implemented

as BRAM. The PE is built as a reduced Picoblaze. The

reduction included the arithmetic operations, the shift

and rotates instructions, the interrupt handling as well

as the internal memory. All this leads to a reduced

PicoBlaze which needs a few number of slices. The

limitation of this method is the reduction of the

processor instructions which limits the application

complexity.

III. REDUCTION METHODOLOGY

As mentioned in the previous section the use of

personalized methodology in designing PEs limits

their use to the applications for which they are

designed and requires a relatively long time for

conception.

Therefore IP based methodology has been proposed to

tackle the problem revealed from the use of

personalized PEs. And in order to overcome the

relatively high logic utilization raising from the use of

soft-core processor, our idea is to reduce the pipeline

stages which consist in eliminating the fetch and

decode stages. In fact, the ACU is responsible for

fetching and decoding the instructions and issues

parallel microinstruction treatment to the PEs array.

To ensure the scent of the parallel microinstruction to

the PEs array, the ACU will be built up as a modified

Soft-core processor. Our proposed methodology will

be splitted into five steps

A. First step : processor test

After downloading the processor it is necessary to

study it (component, simulation environment, etc).

This processor could be either distributed standalone

or available in a soc distribution. The first distribution

only involves the soft-core processor which should be

connected to an on-chip RAM in order to test and

simulate it.

The second distribution is a collection of extra-

modules like RAM, UART, Ethernet and VGA. Some

examples of this distribution are the leon2 and the

OpenRISC processor.

To test and simulate the processor, for the standalone

distribution, the Soft-core must be connected to a

RAM. For the soc distribution the optional modules

can be eliminated from the soc top-level.

B. Second step: Processor optimization

The processor optimization involves two steps. The

first step consists in the optimized processor

configuration; the processor configuration is made

through a configuration file which contains the

definition of several parameters. The implementation

of each of the module depends on its parameter

definition.

The second step is to check the possibility to eliminate

complementary modules which are not included in the

configuration file such as the Tick timer. Once

optional modules are eliminated and in order to ensure

the processor functionality, it is necessary to check the

processor interface; eliminate the I/O interface signals

related to the eliminated modules.

C. Third step : Study of processor components

To success the ACU and PE design, the functionality

of the processor modules must be understood and then

associated to its pipeline stage. Then a specific focus

must be given to the connection between the

fetch/decode stage and the execution stages: the

direction of all input/output signals of the fetch and

decode stage modules must be studied.

D. Forth step : ACU and PE building

 This step requires specific concern as well as high

understanding level of the third step.

1) ACU building

As the ACU is responsible for the handling of micro-

instruction to the PEs, it is necessary to modify the

processor interface by adding an I/O interface that is

intended to communicate with the PE. To develop this

concept of ACU building, we must proceed as follow:

a) Allocate specific instructions at the start of

each type treatment. So that the ACU will be able to

differentiate between parallel and sequential

treatment.

b) Adding a test process sensitive to the RAM

output data within the decode module, that allows the

decode stage to recognize the type of treatment; this

test compare each new instruction to the specific

instruction of the sequential and parallel treatment.

c) Rectify the fetch and program counter

module; the fetch and pc counter module signals that

are connected to the execute stages (gray dotted fetch

and gen-pc signals in Fig.1) must be declared as

global I/O (gray fetch and gen-pc signals in Fig. 1) of

the ACU to ensure the communication of the fetch

stage with the PE execute stages.

d) In the decode block, a new I/O interface is

added (Fig.1). The signal definition of this interface is

similar to the initial communication signals between

the ACU decode and execute stages with the

difference that these signal are activated for a parallel

treatment whereas the initial signals are activated in

the case of sequential treatment. Therefore the

implementations of the initial signals are modified:

they are activated if the result of the test indicates a

parallel treatment otherwise they are disabled.

FIGURE 1. ACU DESIGN

2) PE building

To ensure the ACU-PE communication an I/O

interface must be created. The input created interface

actually contains the ACU decode and fetch pipeline

module outputs that are intended to be connected to

the execute stages of the PE (studied in the third step).

The communication signals between the soft-core

output fetch/decode modules and the execute modules

ought to be replaced by the new created interface

signals (Fig. 2). The output created interface contains

the ACU fetch and decode stages inputs and intended

to be connected the PES (studied in step 3). This

output interface will be driven as input to the ACU in

order to ensure the running of its decode and fetch

stages in case of parallel treatment (Fig. 2).
Getting all these modifications established the fetch

and decode block must be eliminated from the

processor top level and so the PE build up is

accomplished.

FIGURE 2. PE DESIGN

E. Fifth step : Design Test

At this final step it is intended to test the running of

the ACU and PE in order to approve the built system

approach.

The test procedure consists in:

 Establishing the connection between the

ACU and a number of PEs.

 Simulating the system using a parallel code.

The test should result in recording the results of the

executed program in the PEs memory. If the review

of the recorded data find out unexpected results or the

record has not been done, the ACU-PE

communication or the PE /ACU building must be

verified.

IV. CASE STUDY

A. Overview

To choose the suitable soft-core processor to test the

developed methodology, a comparative study of three

soft-core processors was achieved: LEON2 from

Gaisler Research, MicroBlaze from Xilinx and

OpenRISC 1200 from OpenCores was established.

The OpenRISC was chosen for its performance and its

less logical area utilization

The OpenRISC 1200 [10] is written in the Verilog

hardware description language. It is a 32-bit scalar

http://en.wikipedia.org/wiki/OpenRISC_1200
http://en.wikipedia.org/wiki/Verilog
http://en.wikipedia.org/wiki/Hardware_description_language

RISC processor with Harvard micro architecture,

wishbone interface, five bit integer pipeline, virtual

memory support (MMU) and basic DSP

capabilities [11]. The tool chain of the OpenRISC

requires the or1K_binutils, or1K_gcc, or1K_gdb and

the or1K_sim. The C can be cross compiled and the

hex file is obtained.

B. OpenRISC CASE STUDY

The Case study was based on a SoC implementation

based on the OpenRISC 1200 processor, known as

ORPSoC (the OpenRISC Reference Platform System-

on-Chip).The steps of the developed methodology

(section III) was applied to the ORPSOC design. The

ORPSOC design was optimized and the Soft-core

pipeline stages were reduced. The specific instructions

used to differentiate parallel and sequential treatment

are l.add r7,r7,r0 (for the parallel treatment) and l.addi

r7,r7,0(for the sequential treatment). A SIMD

architecture based on the reduction methodology was

built and was tested with different assembler and c

code. The next section will present the experimental

results of the reduction methodology applied to the

OpenRISC processor.

V. EXPERIMENTAL RESULTS

Within this section, it is intended to evaluate the

implementation results and the execution time

efficiency of the SIMD proposed architecture.

The working strategy begins with the ORPSOC

design optimization and an FPGA StratixII based

implementation .Then the implementation results of

the SIMD proposed architecture and the replication

methodology is performed. And finally the evaluation

of the execution time of the proposed architecture

resulted of different parallel algorithms is performed.

A. Design optimization

In order to minimize the logic utilization of the Soft-

core processor design, the optimization task is

essential and an implementation results comparison of

the initial design and the optimized one will be

informative. The extra-modules were eliminated and

the optimal processor configuration was achieved.

The functionality of the optimized design was tested

and verified. The particular FPGA used for the test

was an Altera StratixII-2S180. This chip is made up of

an array of 180 000.

TABLE 1. IMPLEMENTATION RESULTS OF THE

OPTIMIZED ORPSOC DESIGN

The table 1 shows that the design optimization greatly

affects the logic utilization which decreases from 6396

Luts for the initial design to 3524 Luts for the

optimized one. The suitable OpenRISC optimization

results on a decrease of the OpenRISc processor

utilization from 5904 to 3338 Luts.

In order to proof the utility of the PE pipeline stage

reduction, a comparison between the reduction

methodology and a replication method will be

presented. The replication is based on a collection of

the soft-core processor. The only modification is made

to handle the instructions from the ACU to the PEs;

The PEs decode stage receives the instructions from

the ACU.

B. Comparison between the two methodology

implementation results

To obtain architecture with a high parallelism level,

the PEs number was increased for each one until the

design could no longer fit on the FPGA. The table 2

shows the implementation results of the replication

and reduction methodologies on FPGA.

TABLE 2. IMPLEMENTATION RESULTS OF THE

REPLICATION AND REDUCTION METHODOLOGY

 Replication

methodology

Reduction

methodology

2 PEs 8% 6%

8 PEs 28% 17%

24 PEs 78% 42%

32 PEs Can’t fit on FPGA 58%

40 PEs Can’t fit on FPGA 72%

The first observation raised from table 2 is that the

maximum number of implemented PEs to each

architecture is different. For the replication methodology

the maximum number was 24 with 78 % and 40 PEs

within the reduction methodology with 72%.

The second observation is that the augmentation average

of the logical area utilization between the two

methodologies is different (Fig. 3). The slope of the red

curve is much more important than the blue one.

FIGURE 3. EVOLUTION OF THE LOGICAL OCCUPATION

 The initial design Optimized design

Device EP2S180F1020

C3

EP2S180F1020

C3

Logical use 5% 3%

Combinationa

l ALUTs
6396/ 143 520 3524/ 143 520

Openrisc

logic

utilization

5904

3338

http://en.wikipedia.org/wiki/System_on_a_chip

This difference is the result of the difference of the PE

logical size within each methodology. The table 3

shows the implementation detail of a SIMD

architecture composed of an ACU and two PE within

the replication and reduction methodology.

TABLE 3. IMPLEMENTATION DETAILS WITHIN THE

REDUCTION AND REPLICATION METHODOLOGY

 Replication

methodology

Reduction

methodology

ACU logic

utilization
3564 3117

PE1 logic

utilization
3512 2789

PE2 logic

utilization
3514 2751

The table 3 shows the difference of the PEs size

within the two methodolThogies. The reduction of the

pipeline stages and so that the elimination of the fetch

and decode modules effects greatly the size of the PE

within the reduction methodology.

C. Execution time performance

The previous section revealed the advantages of the

developed methodology in term of logic occupation.

The present section aims to evaluate the execution

time performance of the developed methodology. To

do so, two algorithms are selected; Matrix-vector

multiplication and the correlation application.

The execution of these parallel algorithms will be

performed with a 100 MHz frequency.

1) Matrix-vector multiplication

a) Overview

We consider a square matrix of size n and X a vector of

size n and Y is the multiplication resulting vector. The

element i of the resulted vector is the multiplication of the

line i of the matrix A with the vector X. The

parallelization of the multiplication consists in dividing

the calculation of the Z elements among the PEs. If the

parallel architecture is composed of p PEs, each PE uses

N/p lines of X to calculate N/P elements of Y (Fig. 4).

FIGURE 4. PARALLEL MATRIX-VECTOR MULTIPLICATION

b) Results

The features of the matrix and vector used in the

Matrix-vector multiplication running are:

Matrix A(128,128) :

Vector Y:

The serial algorithm was executed on the OpenRISC

processor with 19 619 us. Then the parallel c code was

running on SIMD architecture with different PEs

number. The serial and parallel execution time allows

the calculation of the speed up which measure the

performance gains of the parallel algorithms over the

serial algorithm. The table 4 presents the execution

time and the Speed up of MPPSOC architecture with

different PE number for the Matrix-vector

multiplication code.

The table 4 shows the evolution of the execution time

with the PEs number increase. This time decrease

from 19 619us for serial computation to 5100 us for

parallel computation with 32 PEs .The efficiency of

the SIMD architecture increase from 1, 5 with 2 PES

to 3, 8 with 32 PEs. This speed up is relatively

comparable to the results presented in [12] although it

is designed from personalized PEs and was

programmed with the assembler language .

TABLE 4. MATRIX-VECTOR MULTIPLICATION RESULTS

ON SIMD ARCHITECTURE WITHIN THE REDUCTION

METHODOLOGY

2) Correlation

a) Overview

The correlation allows for radar to detect an object in its

field. The radar sends and receipt signals. The correlation

allows, knowing the sent data, to detect objects within the

field of the radar. The radar has a code constituted of 1023

coefficient; each one is stored on a one bit. It continuously

sends its code and stores the received data stored in 4. The

formula to calculate a correlation is:

Execution

time(us)

Speedup

Serial algorithm 19619

Parallel algorithm 12960 1,5

Parallel algorithm

(8 PEs)

7672 2,6

Parallel algorithm

(16 PEs)

5644 3,5

Parallel algorithm

(32 PEs)

5100 3,8

St

. (1)

If in a given moment we Consider that 64 Y are

received from the radar, it’s necessary to calculate 64

correlations. Each correlation is calculated as follow:

St –

 (2)

If an object is actually in the field of radar, there is a

peak among the 64 correlation results

b) Execution time

The evaluation of the algorithm parallelization

requires the calculation of the execution time of the

serial algorithm. The code of the serial correlation

calculation was written and executed.

The difference between the parallel algorithm and the

sequential one is that during iteration the number of

correlation calculated is equal to the number of PEs

within the parallel architecture while only one

correlation is performed during iteration for the serial

execution.

Within the parallel treatment, the number of PEs was

increased and the execution time and the efficiency

related to the architectures was measured (table 5).

The table 5 shows the important decrease of the

execution time with the augmentation of the PEs

number. This time decreases from 134 409 us for the

serial execution to 7 591 us obtained with 32 PEs. The

speed up also increases significantly with the PE

number augmentation, its value increase from 1, 6 to

29, 5. The architecture is considerably efficient since

the speed up is approximately equal to the PEs

number.

TABLE 5. CORRELATION ALGORITHM RESULTS ON SIMD

ARCHITECTURE WITHIN THE REDUCTION

METHODOLOGY

 Execution

time(us)

Speedup

Serial algorithm 224 016

Parallel algorithm

(2 PEs)

134 409 1,6

Parallel algorithm

(8 PEs)
28 888 7,7

Parallel algorithm

(16 PEs)
15 031 14,9

Parallel algorithm

(32 PEs)
7 591 29,5

VI. CONCLUSION

The originality of the work described here lies in the

use of a new PE design methodology to build up

SIMD architectures.

The main difference with other SIMD architectures is

the use of a soft-core processor to design the

processing elements. In this way the problem of

personalized PEs are avoided (restriction of use,

difficulty of conception, long time to market). The use

of a reduced soft-core ensures a general use of the

designed architecture and a high parallelism level. In

addition the performance of the soft-core processor

permits the conception of an efficient processing

element that supports the assembler and c

programming language. These benefits have been

verified with a case study of the OpenRISC processor.

As expected work, we aim to integrate an

interconnection network bus to solve the problem of

the ACU and PE memory connection and to run more

complicated parallel data application.

REFERENCES

[1] Michael Sung, ”SIMD Parallel Processing : Architectures
Anonymous”, February 22, 2000

[2] http://en.wikipedia.org/wiki/Data_parallelism

[3] Parallel algorithms in Scientific computing Parallel
architecture Spring 2009

[4] Parallel and Distributed Processing , Stephen S. Wilson,
”NEURAL COMPUTING ON A ONE DIMENSIONAL
SIMD ARRAY,” 110 Parkland Plaza, Ann Arbor, MI 48103

[5] http://en.wikipedia.org/wiki/Soft_microprocessor

[6] Takashi Komuro, Idaku Ishii, and Masatoshi Ishikawa,
”Vision Chip Architecture Using General-Purpose
Processing Elements for 1ms Vision System,” Department of
Mathematical Engineering and Information Physics,
University of Tokyo.

[7] H. Parandeh-Afshar, P.Brisk, and P.Ienne ,” Scalable and low
cost design Approach for variable Block size Motion
Estimation, ” Ecole Polytechnique Fédérale de Lausanne
(EPFL).

[8] Hartej Singh, Ming-Hau Lee, Guangming Lu, Fadi J.
Kurdahi, Nader Bagherzadeh, and Tomas Lang, “MorphoSys:
An Integrated Re-configurable Architecture,” University of
California, Irvine.

[9] Frank Schurz, Dietmar Fey and Friedrich-Schiller, ”A
Programmable Parallel Processor Architecture in FPGAs for
Image Processing Sensors,” Integrated Design and Process
Technology (IDPT), University Jena, June 2007.

[10] http://en.wikipedia.org/wiki/OpenRISC

[11] Damjan Lampret, ”OpenRISC 1200 IP Core Specification,“
September 6th 2001

[12] Xizhen XU and Sotirios G. Ziavras, “ A Configurable and
Scalable SIMD Machine for Computation-Intensive
Applications,” Department of Electrical and Computer
Engineering New Jersey Institute of Technology Newark,
NJ 07102 USA.

http://en.wikipedia.org/wiki/Data_parallelism
http://en.wikipedia.org/wiki/Soft_microprocessor
http://en.wikipedia.org/wiki/OpenRISC

