
A Hardware Software In the Loop architecture for control units 
 

 

Mossaad Ben Ayed 
National Engineering School of Sfax 

University of Sfax, Tunisia 
mossaad_benayed@yahoo.fr 

Faouzi Bouchhima 
National Engineering School of Sfax 

University of Sfax, Tunisia 
f_bouchhima@yahoo.fr 

Mohamed Abid 
National Engineering School of Sfax 

University of Sfax, Tunisia 
mohamed.abid@enis.rnu.tn

 
 

Abstract—Design of continuous/discrete systems is based on 
tools coming from mathematical model of the plant. The 
industrial tool Matlab/Simulink is widely used in such 
systems. The main advantage of this tool is its ability to 
model in a common formalism the software and its physical 
environment. Unfortunately, Matlab/Simulink still suffers 
from many limits in modeling and verification. Due to the 
multidisciplinary nature of advanced systems and to 
overcome these limits in modeling and verification, several 
tools based on combined language are adopted. This paper 
describes Hardware Software In the Loop technique for 
Control Units. A synchronization model between 
Matlab/Simulink and a real board is presented. 

Keywords- HIL; Co-design; Simulator; Emulator; 
Verification; Simulink. 

I. INTRODUCTION 

As the number and the complexity of mechatronics 
components increases, tools and technologies for 
developing and verification of the Control Units (CU) are 
required. Simulink presents the widely tool used for 
continuous/discrete systems and it is a good target for 
design and verification on the earlier stage of the design. 
Matlab/Simulink is not only used in all the steps of the 
cycle of development but also played a crucial role in the 
numerical simulation of CU. The cycle development based 
on Matlab/Simulink, especially in automotive industry, can 
be divided on three steps. 

First, the Model In the Loop (MIL) [1] refers to the 
kind of testing performed to verify the expected 
performance and robustness of a control algorithm in 
model form in a closed loop environment. This step 
concerns the definition of a mathematical model of the 
plant and the control law. This model is validated using a 
numerical simulation. 

Then, the Software In the Loop (SIL) [2] step concerns 
the implementation of the control algorithm in a low 
language such as C. 

Finally, the Hardware In the Loop (HIL) [3] step 
concerns the compilation of the controller implementation 
into an executable running on a particular hardware. 

HIL involves connecting the actual CU to the real time 
simulation models, in which the CU in hardware is 
integrated with virtual models of the devices and systems 
being controlled. 

The goal of this paper is to investigate the needs and 
the possibilities concerning a combined usage of 

Matlab/Simulink and a real architecture based on co-
design development, implemented in the board. A 
Hardware Software In the Loop is announced in this paper.  

Section 2 presents the related works for design and 
verification method in Simulink. Section 3 presents the 
conventional approach and the synchronization scheme of 
the Hardware Software In the Loop technique. Section 4 
describes the different steps for implementation and the 
experimental results. Section 5 concludes the paper with a 
discussion. 

II. RELATED WORK 

There are mainly tow ways in literature to combine 
Simulink with another environment. 

A. Integration 

 There have been several studies regarding the 
integration of different environments and enabling 
different modeling frameworks to interact with each other. 
[4] is made to integrate SystemC in Matlab/Simulink 
environment using the S-function bloc. Support the 
different abstraction layers for embedded systems in 
Simulink environment is the aim of the last work. 

The work [5] integrates the Processor Expert tool in 
Simulink to use different kinds of microcontroller. The 
integrated environment has to follow the Simulink solver. 
This fact is the major problem. Indeed, the discrete 
simulation progresses with the respect of the integration 
step imposed by the solver in the continuous simulation. 

B. Co-simulation 

The co-simulation methodology is based on different 
simulation tools running simultaneously and exchanging 
information in a collaborative manner for verification 
reasons. We can cite especially Simulink/Modelsim, 
Simulink/SystemC and HIL. 

Simulink/Modelsim is adopted when the Hardware 
Description Language (HDL) is used to describe the 
behavior of the control algorithms. HDL Verifier 
automates verification by using Simulink to stimulate the 
HDL code and analyze its response [3]. 

Simulink/SystemC is adopted when the hardware 
description is modelled using SystemC. As we know, 
SystemC is a standardized modelling language intended to 
enable system level design and intellectual property 
integration at multiple abstraction layers, for systems 
containing both software and hardware components. As an 
example, CODIS (COntinuous DIscrete Simulation) [6] is 



a tool which can automatically produces co-simulation 
instances for continuous/discrete systems simulation using 
SystemC and Simulink simulators. This is done by 
generating and providing co-simulation interfaces and the 
co-simulation bus. To evaluate the performances of 
simulation models generated in CODIS, they measured the 
overhead given by the simulation interfaces [7].  

Hardware In the Loop:  

The more traditional application of the HIL concept is 
controller design and testing, in which a CU in hardware is 
integrated with virtual models of the devices and systems 
being controlled. Most famous techniques of HIL are 
MathWorks’ solution xPC Target [8] [9] and Real-Time 
Windows Target [10], where the model is executed on a 
dedicated system or on a windows system, respectively. 
The last consists of synchronizing the clocks of the virtual 
subsystems with the clocks of the real subsystems and 
achieving determinism in the overall system. 

The HIL is adopted in verification and testing for many 
advantages: 

• Control and regulation functions can be tested 
in early stages of development, even before a 
test carrier. 

• Typical test drives under low conditions 
(ambient, snow, ice) can be performed 
repeatedly. 

• Failures and errors that could have devastating 
effects in a real system can be simulated and 
tested systematically. 

• The experiments performed in the HIL system 
can be reproduced precisely, and 
automatically repeated as often as required. 

However, the modeling language provided and the 
different advantages of the HIL, these solutions have not 
been designed for hardware/software co-design purposes. 
There are several weaknesses that motivate us to develop a 
new standard target based on FPGA board [11]. 

• Only few targets exist and therefore far from 
all CU families and derivates are supported. 

• Each CU target has its own block set. This 
fact prevents the reusability and the portability 
of the model using these HW specific blocks. 

• The way in which the peripheral HW is 
handled by the generated code is predefined 
by the target developers and it can not be 
changed by the user. 

• Wiring harness HIL simulation platform 
needs to be redone each time the hardware 
interface of a CU changes. 

The next section presents the Hardware Software In the 
Loop (HSIL) proposed. 

III.  CONVENTIONAL APPROACH 

Control embedded systems are mostly heterogeneous 
devices. Their design is based on hardware and software 
components. Each part needs to be aware of the 
characteristics of other parts, in order to provide optimized 
components. The best strategy adopted is co-design, since 
it allows us to develop HW/SW components concurrently. 
The main idea is to set the HSIL to overcome the limits of 
the HIL. 

Our method described in the next section, improves the 
HIL, and has many advantages such: 

� Expand the HIL to attend the Co-design strategy. 

� Use of one and same S-function for every CU. 
This fact lets the reusability and the portability of the 
model. 

� Able to verify multiple CU in the same system and 
to modify one without modify the architecture. 

Figure 1 describes the global idea of HSIL. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1. Hardware Software In the Loop architecture 

S-Function : 
HSIL 

Communication : USB link 

FPGA board 
SW Controller 

Target Architecture 

Bus 

Continuous model 
Input Signal Output Signal 

Discrete model 



Routine Number 
(RN) 

Size 
(S) 

Data 
(D) 

Time stamp 
(TS) 

     
     Header          Body 

Two issues are essential for the HSIL architecture: the 
communication and the synchronization models. 

A. Communication model 

This section gives a brief introduction to the 
communication model. A USB link is used in the 
communication between Simulink and FPGA because this 
kind of communication has better speed than PCI which it 
adopted in emulation [12].   

This communication is based on packets which are 
constructed by the communication interface using S-
Function between Simulink and board. An S-Function is a 
computer language description of a Simulink block. It uses 
syntax of call allowing us to interact with Simulink 
solvers. 

A Data packet, figure 2, is used to perform the 
synchronization scheme between the Simulink simulator 
and the emulator. 

 
 
 
 

Figure 2: Communication packet 

Data packet comprises a header and the Body. The 
header contains the routine number and the data size. The 
routine number corresponds to the CU that will be 
executed in the target architecture. The body is composed 
with data and the time stamp to synchronize when it is 
necessary. 

Note that any packet received by the board side 
generates an USB interruption that can be exploit in the 
implementation phase to interrupt the target processor each 
time a packet is received.    

B. Synchronization model 

Because the heterogeneity of systems, analog-digital 
(AD) and digital-analog (DA) converters are used. These 
converters are integrated in synchronization bloc (S-
function), see figure 3. 

 

 

 

 

Figure 3: Synchronization bloc 

The ADC is used to transform the analog input to 
digital signal based on equation (1). 

)1(
2

)(
][

N

tX
kkX =  

Where: 

X(t) = Analog input 

X[k] = Digital output code  

N = Number of digital input bits (resolution) 

k∈{1,…..,N} 

The DAC is used to transform the digital signal after 
the processing step to analog output based on the transfer 
function shown in (2). 

)2()(
2

][
)( tX

kY
tY

N
=  

Where:  

Y(t) = Analog output 

Y[k] = Digital input code  

N = Number of digital input bits (resolution) 

X(t) = Reference Value (full-scale ) 

A key issue of the proposed approach is the time 
synchronization between the Simulink simulator and the 
processor emulated on the FPGA board. The verification 
method is based on the following synchronization scheme 
which respects the interaction style that can be involved 
between continuous and discrete model, figure 4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Synchronization scheme for HSIL 

� The Continuous model waits the end of the 
hardware/software task. 

When a hardware/software components is emulated by 
the board, the continuous model uses a waiting loop for 
data (see figure 4). Once controller task is finished, the 
emulator sends data to the simulator and a switch context 
from the board to Simulink simulator is taken. At this time, 
the continuous model receives data and resumes the 
execution. Note that the Simulink and the emulator need to 
usually exchange information about the time. 

The next section drafts the implementation and her 
details. 

IV.  EXPERIMENTAL RESULTS 

The application example, figure 5, consists in a DC 
Motor Speed Modeling in Simulink with a PID regulator. 
The following equation (3) in open-loop transfer function 
is 

)3(
sec/

))(()(

)(
)(

2 






+++
=Θ=

•

V

rad

KRLsbJs

K

sV

s
sP  

Where: 

Discrete model: 
Control 

component 

Simulator  
Continuous model 

Emulator  
Discrete model 

Continuous 
model Data packet 

Data packet 
 

      Time   Physical Time 

Wait()   

Y(t) 
 
 
Synchronization (S-Function) 

Digital 
processing   X(t) X[k] Y[k] 

N N 
ADC DAC 



� The rotational speed is considered the output 
and the armature voltage is considered the 
input. 

� (J)     moment of inertia of the rotor     

� (b)     motor viscous friction constant     

� (Ke)    electromotive force constant        

� (Kt)    motor torque constant               

� (R)     electric resistance                 

� (L)     electric inductance      

Then, a PID regulator is added to control the DC motor 
speed. Figure 6 shows the diagram of the global system. 

        

 

 

 

 

 

 

 

 

  

 

Figure 6: Diagram of DC motor speed regulator 

 

d/dt(i) i

d/dt(theta)d2/dt2(theta)

0.1

damping

V

Sum1

Sum Scope

Kd.s  +Kp.s+Ki2

s

Régulateur PID

1

Resistance

-K-

Kt

-K-

Ke

1
s

Integrator1

1
s

Integrator

-K-

Inertia

-K-

Inductance

 
Figure 5: DC motor speed regulator 

The aim as mentioned bellow is to verify the controller 
units. In this case, the model has two integrators and one 
PID that will be considered as SW applications. Three 
steps are essential for the implementation. 

Step 1: Target architecture  

The verification idea is based on combined tools to 
satisfy continuous and discrete models. For the discrete 
model an FPGA type ALTERA DE2-70 is used as a board 
and QuartusII, NIOSII IDE as tools. The first step is to set 
the architecture model. Figure 7 shows the architecture 
chosen. It contains the NIOSII processor [13], Avalon bus, 
memory and the ISP1362 USB controller [14]. 

The integrator and the PID controller are described as 
SW applications that will be executed in the last 
architecture. 

Step 2: Integration of synchronization bloc 

A C++ S-function bloc is used to implement the 
synchronization scheme between Simulink simulator and 
the target architecture in the FPGA board. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Architecture target 

The Synchronization bloc is an interface that creates 
break points which must be reached accurately by a solver. 
These points are the time stamps of the input signal from 
continuous model. When a signal is received, this interface 
blocks the solver and makes a switch context to the board. 
At first, the last activates the USB link with interruption 
mode and sends the data packet. Then a wait() function is 
executed until the reception of data from the board. After 
resuming execution the interface Synchronization sets the 
next activation time. 

Step 3 : Simulation results 

The simulation was performed using the 
synchronization scheme, since the continuous model 
generates state events and the signals update events are not 
periodic. 

 

U
S

B
 D

e
vi

ce
 P

or
t 

 P
hi

lip
s 

IS
P

1
36

2 

NIOS II 

Memory 

Avalon Bus 

 

RSL +.

1

 

tK

 

- 
+ - + SK

S

K
K d

i
p .++

 
- + 

LT
 Ta

 
i
 

eK

 

V
 

e
 

r
 

y
 

y
 

θ
 

DC motor PID regulator 

bSJ +.

1

 



At first, the new DC motor speed scheme, figure 8, is 
described using the following parameter: J=0.01; b=0.1; 
K=0.01; R=1; L=0.5. 

d/dt(i )

d/dt(theta)d2/dt2(theta)

0.1

damping

V

Sum1

Sum Scope

Synchronization

Régulateur PID

1

Resistance

-K-

Kt

-K-

Ke

Synchronization

Integrator1

Synchronization

Integrator

-K-

Inertia

-K-

Inductance

 
Figure 8: New DC motor speed model 

Figure 9 shows the whole operation between Simulink 
and the NIOSII IDE environment. 

 
Figure 9: Simulink/NIOSII simulation/emulation 

To verify the efficiency of the synchronization model, 
three figures issued by each synchronization bloc are used 
as shown in figure 10.  

For this sample the Simulink simulator performs 24 
switch context to the board. The simulation time is 1 
second calculated by the simulator. 

 
a) Signal of motor speed 

 
b) Signal of current i 

 
c) Output signal of the regulator 

Figure 10: critical signal 

V. CONCLUSION 

This paper proposed a Hardware Software In the Loop 
technique using a simulation / emulation framework for 
continuous/discrete systems, based on generic interface. 
The simulation / emulation integrated currently in this 
framework is based on FPGA board (for the discrete parts) 
and Simulink (for the continuous parts).  

The HSIL architecture improves not only the HW/SW 
design in CU but also ensure the reusability and the 
portability of CU. To evaluate the proposed approach, 
simulation / emulation results for a discrete/continuous 
application were illustrated.  

REFERENCES 
[1] Melih Çakmakc, Yonghua Li and Shuzhen Liu.”Model-in-the-

Loop Development for Fuel Cell Vehicle”, 2011 American 
Control Conference on O'Farrell Street, San Francisco, CA, USA 
June 29 - July 01, 2011 

[2] Vitalijs Osadcuks, Ainars Galins. “Software In the Loop 
simulation of autonomous hybrid power system of an agricultural 
facility”, Engineering for rural development, Jelgava, 24.-
25.05.2012. p 500-505 

[3] M. Bacic, “On hardware-in-the-loop simulation,” in 44th IEEE 
Conference on Decision and Control, 2005 and 2005 European 
Control Conference. CDC-ECC’05, 2005, pp. 3194–3198 

[4] Walid Hassairi, Moncef Bousselmi, Mohamed Abid and Carlos 
Valderrama, “Matlab/SystemC for the New Co-Simulation 
Environment by JPEG Algorithm” , MATLAB – A Fundamental 
Tool for Scientific Computing and Engineering Applications – 
Volume 2, p 120-138.2012 

[5] Roman Bartosinski, Zdeněk. Hanzálek, Petr Stružka, and Libor 
Waszniowski, “Integrated Environment for Embedded Control 
Systems Design”, Parallel and Distributed Processing 
Symposium, 2007. IPDPS 2007. IEEE International 

[6] F. Bouchhima, M. Brière,  G. Nicolescu,  M. Abid,  E. M. 
Aboulhamid, “A SystemC/Simulink Co-Simulation Framework 
for Continuous/Discrete-Events Simulation”, Behavioral 
Modeling and Simulation Workshop, Proceedings of the 2006 
IEEE International 

[7] Dogan Fennibay_y, Arda Yurdakuly and Alper Seny, 
“Introducing Hardware-in-Loop Concept to the 
Hardware/Software Co-design of Real-time Embedded Systems”, 
The 7th IEEE International Conference on Embedded Software 
and Systems, ICESS 2010. 

[8] MathWorks. (2013) xpc target. [Online]. Available: 
http://www.mathworks.com/products/xpctarget/ 

[9] Hosam K. Fathy, Zoran S. Filipi, Jonathan Hagena and Jeffrey L. 
Stein , “Review of Hardware-in-the-Loop Simulation and Its 
Prospects in the Automotive Area” , Modeling and Simulation 
for Military Applications, edited by Kevin Schum, Alex F. Sisti 
Proc. of SPIE Vol. 6228, 62280E, (2006).  

[10] MathWorks. (2010) Real-time windows target. [Online]. 
Available: http://www.mathworks.com/products/rtwt/  

[11] Roman Bartosinski, Zdeněk. Hanzálek, Petr Stružka, and Libor 
Waszniowski, “Integrated Environment for Embedded Control 



Systems Design”, Parallel and Distributed Processing 
Symposium, 2007. IPDPS 2007. IEEE International, p 1-8 

[12] Soha Hassoun, Murali Kudlugi, Duaine Pryor, and Charles 
Selvidge, “A Transaction-Based Unified Architecture for 
Simulation and Emulation”, IEEE transactions on very large 
scale integration (VLSI) systems, vol. 13, no 2, 2005. 

[13] NIOS II Processor Reference. (2013) [Online]. Available: 
http://www.altera.com 

[14] ISP1362 Single-chip Universal Serial Bus On-The-Go controller. 
(2013) [Online]. Available: http://www.cs.columbia.edu 

 


