Anatomy of a Continuous/Discrete Simulation Model for an Accurate Simulation of Heterogeneous Systems 
(To appear in “Global Specification and Validation of Embedded Systems”, Springer publisher)
1. Introduction

Modern systems like MEMS (micro-electro-mechanical) systems, mixed-signals systems and real-time controllers integrate discrete and continuous components. These systems may be found in various domains like defense, medical, electronic, communication and automotive. The design process of these systems need to be improved, ITRS announcing that “shortage of design skills and productivity arising from lack of training and poor automation with needs for basic design tools” as one of the most daunting challenges in this domain [1]. 

Presently, in order to respect the tight constraints of time-to-market, cost and performance, the heterogeneous systems are designed by reusing pre-designed components. Thus the design flow may be characterized by two main aspects (1) building components that may be reused and (2) helping in their integration. This type of design represents an important challenge [2], [3] one of the key issues being the integration of the pre-built components specific to different application domains (ex. electrical, mechanical, optical, etc.). In order to overcome this difficulty, the conception of new CAD tools, offering the global view of the systems to be designed and enabling their overall validation, is mandatory. In the other hand, designers build different components to be integrated by using powerful existing tools specialized for an application domain (ex. SystemC or VHDL for the electronic digital part, Matalb/Simulink for the mechanical part, etc.) and they often prefer to keep their current tools. Consequently, new CAD tools for heterogeneous systems must be based on global simulation models defined independently of the specification languages and then to provide implementations enabling integration of different existing tools in order to exploit their features.
One of the main difficulties in the definition of new CAD tools for continuous/discrete (C/D) systems is due to the heterogeneity of concepts manipulated by the discrete and the continuous components. Thus, in the case of validation tools several execution semantics have to be taken in consideration, by the global simulation model, in order to perform the global validation. This implies that the new techniques used for the heterogeneous systems validation have to be applied also for the C/D systems. Currently, co-simulation is the most popular validation technique for heterogeneous systems. This technique was successfully applied for hardware/software discrete systems [4], but very few applied it for C/D systems. It allows joint simulation of heterogeneous components with different simulations models. This requires the elaboration of a global simulation model, as illustrated in Figure 1. In this model, the co-simulation bus is in charge of the interconnects’ interpretation and the simulation interfaces performs models adaptation. 
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Figure 1 Co-simulation Principle
In this chapter, a new framework for C/D systems co-simulation is proposed. It is based on a generic simulation model. The last one integrate synchronization models providing good accuracy/performances compromise. These models are the result of a depth study of discrete and continuous models and the concepts involved in continuous/discrete simulation like time, events management, etc. 

2. Continuous models simulation Vs discrete models simulation 
Discrete systems and continuous systems have different physical properties and modeling paradigms. For example, mechanical systems and analog circuits behavioral are usually modeled by analog equations derived from Newton's laws and respectively Kirchhoff's laws while discrete systems behavioural is based on mathematical logic modeled by Boolean, logic and arithmetic equations. 
2.1 Discrete systems modelling and simulation 

We introduce the concurrent processes formalism used in discrete systems modelling and we present their simulation model.

2.1.1 Modelling   

By Discrete systems we mean all embedded digital systems or in a more general way any system whose behavior is governed by events. They are usually modelled by concurrent processes describing their behavioural using Boolean, logic and/or algebraic expressions. For modularity reasons, these processes are classified, according to the function which they achieve in the system, in hierarchical modules connected by signals through their input/output ports. The communication between the processes is ensured thanks to these signals which represent a physical support ensuring the exchange of the events. An event is due to the change of a signal value at a precise instance. In this case, it is represented by the couple (value of the signal, time of occurrence), it can be also represented only by its time of occurrence (e.g. clock event), thus it is called pure event. A process is executed if an event in its list of sensitivity is occurred. If several processes are sensitive to an event or to several events which have the same time of occurrence then, in both cases, these processes must be executed in parallel. However, the execution is often accomplished using a sequential machine, able to execute one instruction at the same time, therefore one process. Thus, this execution will not be able to really parallelize processes. The solution is to emulate the parallelism on a sequential machine. This is based on a simple but effective idea: in order to execute each process "as if" the parallelism was real, it is necessary that its environment (its inputs) does not change during the execution of the other processes. Thus, the execution order of the processes does not have importance anymore and everything takes place as if they have been executed in parallel. To reach this result, shared variables (signals.) between processes have to keep their values until the execution of all parallel processes finishes. 
The sequential aspect is preserved inside the processes. They obey to the very traditional rules of the sequential programming. We find the same instructions and the same structures of control as in language C, Pascal or Ada. The only exception concerns the signals assignment. Indeed, the expressions which affect signals are regarded as parallel expressions. So each expression of assignment can be seen like a process. We gives below an example of two processes where A, B and C are signals. We have:    

Processus 1

    A <= B and C;

    B <= Init when Select = '1' else C;

    C <= A and B;

 

Is equivalent to

 Processus 2

    C <= A and B;

    A <= B and C;

    B <= Init when Select = '1' else C;

2.1.2. Simulation 

The simulation of discrete models is based on events. It is generally accomplished by using a discrete events simulator. We are interested here by this kind of simulators, usually used to simulate digital systems. In fact, simulators like SystemC, VHDL and Verilog use all a discrete events simulation model.     
In this model, the time has a physical model and counted in physical units (ns, μs, ms, etc). During simulation, the simulator must maintain a time counter and attribute to each event its time of notification. Its principal role is to maintain the events order in a global queue according to their times of notification. At each discrete time a simulation cycle is performed. Within a simulation cycle, an event with the smallest time stamp in the events queue is processed and the processes sensitive to this event are executed. This may generate other events causing execution of other processes. Once all events with time stamp equal to the current time have been treated, the simulator advances the time for the nearest discrete scheduled event and starts another simulation cycle. 
In reality, processes execution does not advance the local time of the simulator; consequently, within the same simulation cycle the “cause” events and the “effect” events will have the same time of occurrence, which violates the causality principal. To surmount this problem, the simulator uses a virtual interval of time, called delta, with duration equal to zero. The role of a delta-cycle is to order the “simultaneous” events within a simulation cycle, i.e. to determine which event caused the other. Thus, an event “cause” and an event “effect” are always differed by a delta.  Within a simulation cycle, several deltas can be happen. The simulator uses a delta counter which will be initialized to zero at each beginning of a simulation cycle. If the processes executed at the beginning of the simulation cycle generate events then the simulator annotates these events by a time stamp equal to the “real” current time plus one delta. If there is no processes to execute at the current time (“real” current time plus zero delta), the simulator increments the delta counter (current time equal to the “real” current time plus one delta) and executes the processes which are sensitive to the indicated events. 
Although a discrete event simulator can virtually simulate any discrete system, its notion of complete order of events may not be necessary. In fact, variants of simulators are proposed to increase performances in certain cases of discrete systems: 

· Simulation of synchronous systems does not require the global sorting of events because signals can have events only at clock ticks. Within a clock cycle, events may be totally ordered, partially ordered, or unordered, depending on the model [14].

· Simulation for data flow models uses only partial ordering of events. Events in different signals may not have an ordering relationship. The advantage is that it avoids over-specifying a design if complete ordering is not required [14]. In [15] this solution enables the improvement of a discrete event scheduler by increasing performances for synchronous data flows simulation. 
2.2 Continuous systems modelling and simulation 

We introduce the Ordinary Differential Equations (ODEs) and the blocks diagrams formalisms used in continuous systems modelling at the behavioural and the functional levels. We present also their simulation model.

2.2.1. Modelling

Continuous systems are dynamic systems where variables vary continuously with time. We consider here two abstraction levels which are the behavioural and the functional levels. At the behavioural level, the continuous system is modelled in its whole and context of functioning, example: the computation of a shuttle trajectory in phase of re-entry in the atmosphere. Such a model is described using the ODEs. At the functional level, the continuous model is modelled using a set of input-output functions, example: a PID regulator. Such a model is described using a diagram of predefined blocks where each block have input and output ports. A block is characterised by a set of independent input-output relations, for example: addition, transfer function, integration, etc. The blocks are interconnected by oriented paths representing the signals. At this abstraction level, starting from predefined blocks, it is possible to built dynamic systems models which can be also connected to build a more complex model. Currently, thanks to special blocks, the EDOs which model a continuous system at the behavioral level can be programmed in a single block and connected to the other blocks of the diagram. Thus, we can use only the blocks diagrams formalism. Even sometimes to simulate a simple system of ODEs it is easier to transform it into a blocks diagram than program it (see section 2.2.1.2, blocks diagram formalism). The following section introduces the ODEs and classifies the continuous systems according to the nature of these ODEs.            

2.2.1.1 The ODEs

The ordinary differential equations can be written in the form (1) as a system of first-order ordinary differential equations.  Higher order ODE can be reduced to a system of first-order equations. This is a trivial task (we will give an example of how we can reduce high order ODE). Although higher order equations can sometimes be solved more efficiently directly, very little software is available for doing this [17]. 
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The form (1) is called explicit ODE. Another form of ODE, which is the fully implicit ODE, has the form:
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Most of fully implicit ODEs can be written as [17]:
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  where M is a matrix.
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The form (3) is called linearly implicit ODE. It is easily to remark that the inversion of the matrix M convert this form to the conventional form (1)
In the case of continuous systems, the form (1) becomes: 
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Where, t is the time, u is the inputs vector, x is the state variables vector and y is the outputs vector. 

Thus, we can obtain a state space completely specified by the equations (4.1) and (4.2). The equation (4.1) gives the set of state equations with initial conditions specified, and (4.2) gives the set of output equations. Assuming there are n state variables, m input variables, and r output variables, these equations can be written is scalar form as follows. There are n state equations  
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and r output equations
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The linearity

The concept of linearity is fundamental and very interesting in science and engineering. The nature of the functions f and g in the equations (4.1) and (4.2) serves to classify systems into linear and nonlinear ones.  The system is said to be linear if these functions are both linear. In this case, the model given by (4.1) and (4.2) reduces to 

	
[image: image8.wmf])

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

t

u

t

D

t

x

t

C

t

y

t

u

t

B

t

x

t

A

t

x

+

=

+

=

&


	(5.1)
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A(t) (n,n), B(t) (n,m), C(t) (r,n) and D(t)(r,m) are matrices where n,m and r are the same specified above. 

Time-invariant systems
[image: image9.wmf]
For time-invariant systems, the functions f and g do not explicitly depend on time, that is, we can write (4.1) and (4.2) as
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By assuming this time-invariance property, we can further narrow down the class of linear systems. In this case, the matrices A(t), B(t), C(t) and D(t) are all constant, and we obtain  
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Differential-Algebraic Equations

If the set of equations that describe the continuous system consists of both algebraic and differential equations, the equations are called differential-algebraic equations (DAE). The equations may be written as
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Where F1 is asset of N equations and F2 of M equations (N ≥ M) 

2.2.1.2 Example 

Through this example we present the blocks diagram formalism. For a better explanation we use also EDOs formalism where we explain the order reduction technique. The example is an RLC circuit shown by Figure 1.  
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Figure 1. RLC circuit

ODEs formalism 
  The second-order differential equation describing this circuit is given by (9)
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To resolve this equation numerically, we must rewrite it as an equivalent system of first-order equations:

We suppose 
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Combining the equations (9) and (10) we obtain the following system of first order equations:
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By the same steps given by (10) and (11), any differential equation of order higher than one, can be rewritten as equivalent system of first-order differential equations. 

The same circuit can be easily described by the first-order ODE given by the form (7.1) and (7.2):
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We can remark that the system (11) and the system (12) are equivalent. These systems can be by programmed using text editor or special block (the majority of continuous simulators provide special blocks to easily program state spaces).
Blocks diagram formalism
Figure 2 shows the same circuit modelled using a single block which describes its transfer function given by (13):

[image: image18.png](@
Vin

1

LC.sZ4RC.6+1

Transfer Fen

Vout




Figure 2. Modelling using blocks diagram (transfer function)
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Using (12 or (13) the circuit can be described using predefined blocks called primitive blocks which are: the adder, the gain and the integrator blocks where the integrator represents the principal block, see Figure 3. 
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Figure 3 Modelling using primitive blocks diagram

2.2.2. Simulation

    The simulation of a continuous model requires solving numerically the differential and algebraic equations. A widely used class of algorithms discretizes the continuous time line into an increasing set of discrete time instants, and computes numerically values of model's variables at these ordered time instants. The interval between two consecutive time instants is called integration step and according to the used algorithm this step can be fixed or variable. The continuous system can be modelled using several blocks. During the simulation, these blocks are resolved at each integration step, where the order of resolution is fixed by the rule of data dependence.   
The criteria used for the choice of the integration step are the accuracy, the stability and the continuity of the signals. In the case of accuracy criteria, both fixed and variable integration steps may be used. However, the variable step algorithm improves simulation performances. It reduces the step size to increase accuracy when the states of the model change rapidly and it increases the step size to avoid taking unnecessary steps when the model's states change slowly. When the continuous model presents discontinuities in form of finite jumps and/or stability problems, we need to use:

· Variable step algorithms to surmount the problems of discontinuities observed at the solutions level, especially in case of interaction with a discrete environment where signals change their values discontinuously. In case of discontinuity the algorithm reduces the step size again and this process may be repeated several times before the solver passes successfully the trouble spot [16].

· Specific algorithms with a variable step to resolve stiff
 nonlinear systems of equations appeared in the case of mechanical models, thermal models, etc. This systems exhibit time constants whose values differ by several orders of magnitude. Algorithms that are not designed for stiff problems are inefficient, since they control the step size by accuracy rather than by stability requirements [17].
2.3 Heterogeneity in continuous/discrete systems  

This deep understanding of discrete and continuous simulation models will help us to define an efficient heterogeneous simulation model. As a conclusion, we introduce in Table 1 the main concepts characterizing these models: the notion of time, the communication means and the process activation rules. Considering these concepts, is a key issue for composing these two types of simulation models. This composition must preserve the correct data communication between them. This requires time synchronization and signals adaptation.

	             Concepts                          
Model type
	Time
	Communication means
	Processes activation rules

	Discrete
	· Global notion for all processes of the system.

·  It advances discretely when passing by time stamps of  events
	Set of events  located discretely on the time line
	· Processes are sensitive to events. They can be executed in parallel. 
·  At a given discrete time (simulation cycle), the order of their execution is resolved by using the delta concept 

	Continuous
	· Global variable involved in data computation. 

·  It advances by integration steps
	Piecewise-continuous signals
	· Processes (blocks) are executed sequentially at each integration step. 
· The order of execution is determined using the technique known from static data flow (data dependency)


Table 1. Basic concepts for discrete and continuous simulation models

The next section introduces the time distribution approaches used to distribute time among processes. It also fixes the time distribution model for the global simulation model involving discrete/continuous simulation. This time model will be used when proposing the synchronization models.
3. Time distribution approaches 
When designing hardware or software embedded systems, time is considered as an important factor.¶ In most cases, it must be considered with a high degree of accuracy and measured with physical units. Timed simulation models assure these requirements by providing a physical model of time.

 ¶Three approaches are proposed to calculate and distribute time among system processes [18]. An overview of these models is given in the following. 

3.1 Local time counter approach  

This approach considers a local time counter for the entire model where each process can access to it in order to obtain the global time. In a typical usage, a time-out period is set by the process and the time counter emits an event when the time period has expired. This approach is typically used by programming languages supporting real times processes modelling like SDL-RT [19], and others derived from C. For the most part of these last ones, the time is not defined by the language, but supplied by a material counter (quartz oscillator) presenting a real source of time. To ensure the correct functioning, it is necessary that the global time perceived by all processes is identical or is strongly synchronized. This is obvious if all processes use the same clock, which is the case for single processor systems. However, in the case of distributed processes (e.g. multi-processors) which use various sources of time, synchronization is required. Most hardware languages consider the time as an integral part supplied by a virtual counter. A model having diverse processes described by these languages (more than one language), requires a synchronization mechanism for their local times. We can see later that this synchronization is compulsory to assure correct events exchange between distributed processes. In Figure 4, if 
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Figure 4 Case of distributed processes

3.2 Time stamps approach 

This approach consists in associating to each event, besides of its value, its global time of occurrence. It considers no shared source of time. A process receives the time information only through the events received by its input ports. We can easily remark that two processes will be synchronized if they receive two events with the same time of occurrence (Figure 5). This approach increases the independence degrees of processes and eliminates unnecessary synchronization. However, it is not effective if a process does not receive input events at the same time. Indeed, because it cannot know if the delayed event will have the same time as those already received, two scenarios of problem appear: (1) the process wait for the delayed event which will arrives with an important delay (2) The event never arrives.
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3.3 The absent event approach 

This approach resolves the two problems mentioned in the case of the last approach. It consists in abstracting the time model, which will be divided into discrete instances. At each instance an event is sent on each output signal S.  The approach consists in sending an absent event on a signal S if after the computation made by a process, S does not change value (no event on S). In reality an absent event is a real event which has a value different from all other events. 
3.4 Conclusion 

In conclusion, if we compare these three approaches, we find that the first approach is the most flexible where the processes are always synchronized. The second approach is interesting because it preserves the property of independence, but it remains applicable for restricted number of models (especially used in data flow models). However, we can add it a source of time, but it will be equivalent to the first approach. Finally, contrary to the third approach the first and the second approach can be naturally used for continuous time models. 

4. The time distribution model involved in continuous/discrete simulation model

Continuous time and discrete simulation models are timed models, where the time is an explicit component integrated by the used language. The continuous simulation model uses the local time counter approach whereas the discrete simulation model (discrete events) uses the local time counter approach combined with the time stamps approach. The interesting point of both models is that the processes of both models can access, at any simulation instant, the local time of simulators. Thus, each process can annotate its emitted events with their time stamps. The global simulation model cannot posses a local time because in the opposite case it means that both simulators will be strongly synchronized, which is difficult to realize. In the second approach given by the section 3.2, the time information is passed through time stamps of the exchanged events.. Thus by using this approach, a complete synchronization (synchronize at each time step of both simulators) is not required. Otherwise, each simulator needs to synchronize its time only with the time stamps of the received events. 
5. Global Simulation of heterogeneous continuous/discrete systems 

Continuous and discrete models interact via events. The instances of consuming and emitting these events are to be considered with respect to causality and correct events exchange. In this section we discuss events management in C/D systems co-simulation. We propose also a global simulation model based on accurate synchronization models. 
5.1 Events management in continuous/discrete systems
In continuous/discrete systems, an event occurs if a signal value changes or if it exceeds a given threshold. In the first case, the event is defined by the couple (value, time stamp) while in the second case it is a pure event, defined only by its time stamp. The events exchanged between the discrete and the continuous models composing a continuous/discrete system are:  

· The discrete model (DM) sends two types of events: (1) the signals update events caused by the modification of its output discrete signals and (2) the sampling events which are pure events sent to the continuous model to indicate the sampling instants of its output continuous signals. 

· The continuous model (CM) may send a state event. It is an unpredictable and pure event, whose time stamp depends on the state variables of the CM (e.g. a zero-crossing event, a threshold overtaking event, etc.). 
We highlight that for signal update events the data path is from the DM to the CM and for the sampling events it is from CM to DM.
In systems simulation, events exchange must respect the principle of causality. A model is said causal if causes precede effects. One of the definitions of the causality is the following: “The output of a process at time t should not depend on inputs that are later than t” [20].     

We give in this section a study of events exchange in the case of continuous/discrete co-simulation, where we examine the compliance with causality and discuss incorrect situations that appear in events exchange. These situations are illustrated in Figure 6 and discussed below.
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Figure 6 CM/DM Events Exchange

In Figure 6.a, when the DM generated an event at the time tj, the CM was at the time ti, where ti < tj. Since its time is continuous, the CM will proceed from this time and it can generate a state event at time tk, caused by the consumed event at time tj (tk < tj), which violates the causality principle. A solution is to control the CM to take into account an event sent by the discrete model, only if its local time reaches the time stamp of this event (every event is sent with its time stamp). So, even if a state event is generated at time tk it does not violate the principle of causality because we are sure that it is not caused by the discrete event not yet taken into account. However, this state event sent to the DM will have a time stamp that is smaller than the local time of the last one. This situation is illustrated by the Figure 6.c. In this case, in order to take into account the state event, the DM must be able to perform a rollback to a required time stamp. For most simulators this rollback is not a trivial task, because it requires important memory resources [21]. To avoid the rollback, the local time of the CM must be always greater than or equal to the local time of the discrete model. This solution is very effective, but we will see later that in certain cases, for performances reasons, it may be preferable to run the DM before the CM. 

     In Figure 6.b, when the CM generated a state event at time tj, the DM was at the time ti, where ti < tj. This case presents also a causality violation because the DM can generate an event, caused by the state event, whose time stamp tk is smaller than tj. It is important to note that the DM may generate an event which is not caused by the state event but which can impact the state variables of the CM involving the state event cancellation. The solution is that, the DM must always provide the time of its next output event. The CM will then proceed until this time and can send its possible state events without any risk. This resolves also the problem of causality. 

     In Figure 6.d, the CM was at time ti when the DM generated an event at time tj< ti. The first solution is to have a continuous simulator capable of performing a rollback. However, this situation can be avoided if we adopt the already mentioned solution. In that case the CM cannot exceed the time of the next input event from the discrete model. Indeed, it has to proceed until this time then stop. Consequently, the DM must always provide the time stamp of its next event. This requires that the DM can predict the time stamp of its next output event. 

     This discussion shows that preserving causality and correct events exchange is an important requirement to be considered when defining simulation interfaces for the global simulation model of a continuous/discrete model.

5.2 The synchronization models

Based on the previous discussion, we discuss a generic synchronization model in the case of the co-simulation. We propose also an alternative synchronization model in order to minimize the interaction between the continuous and the discrete simulator.   
5.2.1 Generic continuous/discrete synchronization Model
Figure 7 gives an overview of the first synchronization model, where continuous simulators (CS) runs before the discrete simulator (DS).
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Figure 7 Generic continuous/discrete synchronization model

Assuming that the DS and the CS are synchronized at time point A,,the discrete simulator executes all processes sensitive to the current notified events (with zero time) and updates signals (with zero time). Then it sends to the CS the time stamp of its next output event (point B, next event) and before advancing its time, it switches the simulation context toward the continuous simulator (CS) (arrow 1, Figure 7). The latter computes signals by resolving system's equations until it reaches with accuracy (without going beyond) the time sent by the DS (point C, reached time event). Two cases are possible:

1. This time is a sample event time stamp. In this case the CS updates the signals with the values calculated at this time and switches the simulation context to the DS (arrow 3). The DS will advance to the sample event time stamp (arrow 4) and restarts the cycle. 

2. This time is a signal update event time stamp. In this case the CS switches the simulation context to the DS which will advance to the indicated event time stamp, computes signals and sends their values and the next event time stamp. Finally, it switches the context to the CS. The last one proceeds to this time with the new signals values, and the cycle restarts (arrows 5, 6).
     The CM may generate a state event. In this case, the CS indicates its presence, sends its time stamp to the DS and switches the simulation context (arrow 7, Figure 7). The DS has to be able to consider this event by advancing the local time to its time stamp and to execute the processes that are sensitive to it (since it is an external event). 

     A key point of this model is that it avoids any need of rollback if a state event is generated. As already mentioned, this requires that the DS can predict the time stamp of its next event, which presents also the next synchronization instant. Sampling events occur each sampling period, so their time stamps are usually known. The only difficulty is with signals update events.
 Depending on the DM behavior, we define two modes respecting the presented synchronization model. The first mode (Predictable Events mode: PE) can be used if signals update events are predictable (e.g., periodic events). Within this mode, the time stamps of these events and sampling events are placed and sorted in a special queue. In order to know the time stamp of the next output event, the queue is consulted to take out the smallest time stamp, verify if it is a sampling event or a signal update time and send it to the CS. 
The second mode (Full Synchronization mode: FS) may be used if signals update events are unpredictable. In this mode, the DS sends its next discrete time (always known) which can or can not be the time stamp of a signal update event. Depending on the DM computation granularity, the synchronization overhead created by this mode may or may not be acceptable. 

5.2.2 Synchronization model for unpredictable signals update events in discrete model
It is important to note that for software models, signals computation takes several discrete steps. Generally, the prediction of the number of these steps is very difficult. In this case, the synchronization overhead of FS mode may be an inconvenience because the number of unnecessary synchronization steps will be much larger than the number of useful synchronization steps. Also, we can not use the PE mode because signals update events are not periodic. The solution is to run the DS in advance until the DM generates an event then sends it (with its time stamp) to the CS. The synchronization model is given by Figure 8. With this model we define a new mode which is the Unpredictable Events mode (UE).     

     In section 5.1 it was explained that, in this case, the problem of causality can be resolved by considering events time stamps. The only difficulty is that the CM can generate a state event, and then the DS must backtrack (Figure 6.c). If the CM never generates state events then, this model is recommended since it avoids all unnecessary synchronization. However, if the CM generates state events then the rollback is necessary. 
        We suggest the utilization of this model with state events consideration for control systems, where the DM represents a software component specified at ISA abstraction level. The states events model external interruptions. In this case, the checkpoints-based technique [22], gives an effective solution allowing light-rollbacks asking for reduced memory resources. Indeed, only a backup of data segment in the memory, processor registers, and input and output signals values will be made at each output discrete event time stamps used as checkpoints. In the case where the CM generates a state event, the DS performs a light-rollback toward the time stamp of the preceding output event, restores the saved data, initializes the time counter with this time stamp and begins again from this time, taking into account the state event. The new counter replaces the local time of the DS and becomes the source of time whose unity is equal to the period of the processor clock.
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Figure 8  Handling of unpredictable updates

5.2.3 Conclusion 
Table 2 shows the possible synchronization modes that can be used according to the continuous and the discrete model. The FS mode can usually be used but the overhead created by this mode may not be acceptable (e.g. at the ISA level). If the CM does not generates state events then the UE mode is recommended since it avoids all unnecessary synchronization.

	               Discrete model

Continuous model
	Predictable events


	Unpredictable events



	State events
	FS, PE
	FS, UE with state events consideration (ISA level)

	No state events
	FS, UE


Table 2 synchronization modes according to the continuous and the discrete model

5.3 Global simulation model

To run continuous and discrete simulators with respect to the presented synchronization models, we have to add new simulation interfaces which provide mechanisms allowing: 

1. The detection of state events generated by the continuous model and the consideration of these events by the discrete simulator. 
2. The detection (by the continuous simulator)  of the discrete simulator events 
3. The detection of the end of the discrete simulation cycle and discrete events sending 

A generic architecture for the global continuous/discrete simulation model is illustrated in Figure 9. Continuous and discrete simulation models communicate through a cosimulation bus via simulation interfaces. For the two models, these interfaces implement two main layers: the synchronization layer and the communication layer. 


[image: image27]
Figure 9  Generic architecture for accurate continuous-discrete simulation model

The communication is assured by two layers: “Data exchange” and “Signals conversion and data exchange”. Data exchange consists of writing or reading signals values that connect the two models. Signals conversion consists of converting continuous signals to discrete signals and vice versa. The synchronisation layer will be detailed in the next section.

5.3.1 The synchronization layer 

This layer consists of six sub-layers (Figure 9).. Their task is to supply mechanisms able to surmount the 3 difficulties enumerated in section 4.3. In the next sections we detail their role for each difficulty.      
5.3.1.1 The state event detection and consideration

Most of continuous simulators provide adequate mechanisms to detect such event generated by the continuous model. Once detected, this event is sent by the “Detection and sending of sate events” layer. The discrete model “State events consideration” layer must be able to take it into account. Then, the next discrete time has to be the time stamp of this event instead of the time stamp of the internal event scheduled by the discrete simulator (Figure 7). In the case of the UE mode (Figure 8) this synchronization layer must initialize the new time counter (see 5.2.2) with the last sampling event time stamp (light-rollback) and to restore the saved data

5.3.1.2 Detecting events from discrete model

The continuous simulator must step ahead until the detection of the discrete model event (without going beyond). This may not correspond with its discretization time. The “Discrete events detection” layer (Figure 9) must force the continuous simulator, when coming near the time stamp of the event coming from the discrete model, to adjust its integration steps to satisfy the criteria of resolution (accuracy, continuity and stability) and to detect this event. This is illustrated in Figure 10. It is also possible to use a fixed integration step that can be changed to a variable step when the simulator comes near a discrete event time stamp.
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Figure 10 Detecting events from the discrete model
5.3.1.3 Detection of discrete simulation cycle end 
As explained, most discrete events simulators use the delta  concept, e.g. VHDL [23] or SystemC [24]. The detection of discrete simulation cycle end problem appears for this type of simulators.
For these simulators, during a delta time a delta-cycle is performed. It containing essentially two phases: an evaluation phase executing processes and an update phase updating signals modified during the evaluation phase. At a given discrete time, an unpredictable number of delta cycles may occur (Figure 11) (see section 2.1) until the simulated model becomes stable: no signals to change, or in a general way, no more zero-delayed events to consider at the current time. Then, the discrete simulator advances its local time to the next discrete time (next event time stamp). At a given discrete time, to guarantee that the context switch layer transfer the simulation control to the continuous model only after the stabilization of discrete signals interconnecting the two models, the “End of discrete simulation cycle detection and events sending” layer (Figure 9) becomes necessary.
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Figure 11 A simulation cycle is composed of an unpredictable number of delta cycles

6 Implementation of the simulation model

This section presents solutions for the implementation of the synchronization and the communication layers for SystemC used as an example of discrete event simulator and Simulink as an example of continuous simulator. These layers are implemented by the simulation interfaces For a better explanation, we start by presenting briefly SystemC and Simulink simulators. 
6.1 SystemC

SystemC [24] is a standardized modelling language intended to enable system level design and intellectual property exchange at multiple abstraction level, for systems containing both software and hardware components. SystemC simulator includes an effective and relatively simple scheduler. As it is indicated, SystemC scheduler uses the delta-cycle concept (see section 5.3.1.3). Its task is to determine processes execution order by considering their sensitivity lists and events in its global queue. The last one is ordered according to the time stamps of these events. Thus the first element in the queue represents the next event to occur. Events are classified into two types: zero-delayed and timed events. The time stamp of a timed event represents a next “real” time. The time stamp of a zero-delayed event consists of two components: the current “real” time plus the number of deltas; the queue is ordered according to both components.        ..
6.2 Matlab/Simulink 

Simulink [25] is very popular and widely known by the modelling and simulation community. It offers several libraries in automotive, power electronics, etc. and seven solvers designed for stiff (appeared in nonlinear systems) and nonstiff problems, which can provide an excellent accuracy.
Simulink solvers subdivide the simulation time span into major and minor integration steps, where a minor integration step represents a subdivision of the major integration step. The solver produces a result at each major integration step. It uses the resolution results at the minor integration steps to improve the accuracy of the result at the major integration step. 
The order in which the blocks are updated is critical for results validity. The rule of data dependence is used, during the initialization phase, in order to determine statically the order of blocks activation. In fact, if block's outputs are a function of its inputs, the block must be updated after the blocks that drive its inputs (e.g. adder or gain computing block); this is called direct-feedthrough. All other blocks are called nondirect-feedthrough (e.g. integrator block). To assure a valid update order, Simulink uses the following rule: nondirect-feedthrough blocks can be executed first in no particular order followed by direct-feedthrough blocks in an order which respects the already mentioned rule. 
6.3  Implementation of the synchronization layer 

In the following, we detail the implement of the different synchronization sub-layers in the global simulation model. 
6.3.1 Implementation of the discrete events detection sub-layer

Simulink does not give the possibility to control directly integration variable steps. Consequently, it is difficult to guarantee the accuracy for the detection of the discrete event (the discrete event time stamp). 

To cope with this difficulty, the “Discrete events detection” sub-layer was implemented in a special S-function. The last one has no input or output ports. Its role is to create breakpoints that must be reached accurately (without going beyond) by the solver. The time mode used in this S-function (VARIABLE_SAMPLE_TIME) allows to choose its next time execution equal to the next discrete event sent by SystemC synchronization layer. In this case, Simulink adjusts the integration steps to satisfy the criteria of resolution and to reach with accuracy the time execution of this S-function (which is the time stamp of the SystemC event). Once the sub-layer detects that the event is reached, it sends (sampling event) or receives (signal update event) data. The code given by Figure 12 illustrates the function (member of the “Discrete events detection” sub-layer) that creates breakpoints. 
/* Function: mdlGetTimeOfNextVarHit =========*/

#define MDL_GET_TIME_OF_NEXT_VAR_HIT

static void mdlGetTimeOfNextVarHit(SimStruct *S)

  {

/*time of the next breakpoint to consider by the solver */
double NextBreakpointTime; 
/* read the sample event time stamp in memory*/
 
double SamplingEventTime = *((double*)lpMapAddress + 200);
/* read the signal update event time stamp in memory*/

double UpdateEventTime =  *((double*)lpMapAddress + 100);

  


if(SamplingEventTime < UpdateEventTime) NextBreakpointTime = UpdateEventTime; 


  else NextBreakpointTime = SamplingEventTime;


/* set the next breakpoint*/

ssSetTNext(S, NextBreakPointTime);
  
Figure 12 Function creating breakpoints
6.3.2 End of discrete simulation cycle detection and events sending sub-layer 

To guarantee that SystemC sends data and transfers the simulation control to Simulink only after the stabilization of discrete signals which interconnect them, the detection of the end of discrete simulation cycle is necessary. Since SystemC does not provide such mechanism, a modification to its scheduler was made to detect the discrete simulation cycle end and to switch the simulation context to Simulink. This functionality was added to the simulate() function in the sc_simcontext class of SystemC scheduler. This function contains essentially the simulation loop. Figure 13  shows the pseudo-code that gives a part of this function and indicates the end of the discrete cycle location.
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Figure 13 SystemC enhanced scheduler

6.3.3 Synchronization sub-layers for state events case

The two sub-layers for synchronization in case of state events occurrence are: the “State event consideration” sub-layer in the discrete model synchronization layer and the "Detection and Sending of State Event" sub-layer in the continuous model synchronization layer. 

To detect state events, the “Detection and sending of sate events” layer (Simulink side) adds the "Hit Crossing" component from the Simulink library. This component compares the input signal to the hit crossing offset value. If the signal rises above, falls below, or remains at the offset value, the block output is set to “1”. Once a state event detected, the indicated layer indicate its presence by setting a special flag and send its time stamp.    

For the “State event consideration” layer (SystemC side), the solution is to insert a pure event (without value) into the SystemC simulator queue whose time stamp is equal to the time of the state event occurrence. The event insertion must be made before the discrete simulator advances its time (after arrow 3 and before arrow 4 in Figure 7). Otherwise, it has to backtrack in order to take it into account. Figure 13 locates this event insertion point. The scheduler modification consists only in the creation of a set of events which can be notified in the case of state events presence. Their notification causes execution of the SEC_Method in the code below. 

For the “State event consideration” layer (the part implemented by SystemC interface), the usual syntax to create processes sensitive to events was used (see the code below). From the designer point of view, a user process which is sensitive to a state event must be marked sensitive to the input signal (reserved for this state event) coming from the SystemC interface. The following code in Figure 14 illustrates an example of the “State event consideration” layer in the SystemC interface. 

#define et_mat0 

sc_get_curr_simcontext()->et_mat[0]
/* this definition is in the file defining environment variables added for heterogeneous simulation */

InterfaceIn.h  

...

sc_out <sc_bit> StateEventPort;

SC_CTOR(InterfaceIn) 

{  

  ...

//creation of et_mat0 event associated with //state event  

et_mat0 = new sc_event; // et_mat0 will be notified by SC scheduler

//make SEC_Method sensitive to et_mat0, 

//as consequence to the state event 

SC_METHOD(SEC_Method);

sensitive(et_mat0); 

... }

InterfaceIn.cpp

......

Void InterfaceIn::SEC_Method()
{

StateEvPort.write(~StateEvPort.read());

}

Figure 14 “State Event Consideration” layer in SystemC interface

In case of state event, Simulink indicates its presence to the SystemC scheduler, which notifies the event (here et_mat [0]) associated with it by the time stamp of this event. This notification causes the execution of the SEC_Method process (see Figure 14).
6.4 Implementation of the communication layer

To ensure “data exchange” between simulators we used shared memory created by the file Mapping API from Windows. It has a defined structure composed by data ports to interconnect signals, time ports to exchange events time stamps, and flag ports. 

For “signal conversion”, we use a sampler to adapt continuous signals to discrete components. We use also a signal generator (zero order hold) to extrapolate events points in order to adapt discrete signals to continuous components. By its nature, the shared memory can play the role of zero order hold, consequentially no component has been added. The sampler consists in sampling signals values at synchronization points. In our case, its role is limited to reading signals values once the Simulink synchronization layer detects a sampling event from SystemC.

Conclusion

The presented global simulation model is independent from languages and environments. However during the implementation phase the modification of the discrete simulator was necessary. Therefore, the discrete simulator must allow these modifications. If the discrete simulator provides mechanisms that allow to detect the end of the simulation cycle then we do not need modifications and we can use commercial simulators. For instance, in the case of ModelSim VHDL simulator [26] simulation interfaces are implemented as FLI (foreigner language interface) functions [27]. In order to resolve the end of discrete cycle detection (i.e., switch simulation context only after the stabilization of discrete signals), the “Context switch” layer can be implemented by a VHDL process having MTI_PROC_POSTPONED priority. Postponed processes (when triggered) run once at the end of the discrete cycle for which they are scheduled after all other processes. They can schedule anything in zero delay [27]

7. CODIS a cosimulation tool for C/D systems 
     CODIS (COntinuous DIscrete Simulation) is a consistent tool which can automatically produces global simulation model instances for discrete/continuous systems simulation using SystemC and Simulink simulators. This is done by generating and providing interfaces which implement the proposed simulation model layers. It respects the presented synchronization models and offering the choice to use the most adequate mode. Figure 15 gives the overview of the flow of global simulation model generation. The inputs in the flow are the CM in Simulink and the DM in SystemC which are respectively schematic and textual. The output of the flow is the global simulation model.

7.1 Simulation interfaces 

For Simulink the interfaces are classified into four types. They do not change if the synchronization mode changes and can be parameterized starting with their dialog box. The interface types are:

Inter_in implements the communication layer (input function), the “Context switch” layer and a part of the “Discrete events detection” layer which is responsible in detecting the passage of the solver by the discrete events time stamps (signal update events) and synchronizing with them. It has as parameters the number of input signals. 
Inter_out implements the communication layer (output function), the “Context switch” layer and a part of the “Discrete events detection” layer which is responsible in detecting the passage of the solver by the discrete events time stamps (sampling events) and synchronizing with them... It has the same parameters as Inter_in.

Inter_state implements the “Detection and sending of sate events” and the “Context switch” layer.  It has as parameters the state events numbers. 
 Sync implements the remainder part the “Discrete events detection” layer. It is responsible in creating break points which the solver (a variable step solver) must reach with accuracy. These break points are the time stamps of the received events (signals update events and sampling events). It does not have parameters.  
     The interfaces for Simulink are functional blocks programmed in C++ using S-Functions. These blocks are manipulated like all other components of the Simulink library. They contain input/output ports compatible with all model ports that can be connected directly using Simulink signals. The user starts by dragging the interfaces from the interface components library into his model’s window, then parameterizes them and finally connects them to the inputs and the outputs of his model. Before the simulation, the functionalities of these blocks are loaded by Simulink from the .dll libraries (Figure 15).
                                        
[image: image29]                   
Figure 15. Flow of automatic generation of the simulation interfaces 
For SystemC, as already indicated, a part of the synchronization functionalities have been implemented at the scheduler’s level which is a part of the state event management and the end of the discrete cycle detection. The interfaces are classified in: 

InterIn implements the communication layer (input function), a part of the “state events consideration” layer and the “Context switch” layer (UE mode). It ensures synchronization with input data thanks to the sampling clocks events (intern events). It can be viewed as a sampler circuit and it has as parameters: (1) the names, the numbers and the data type of inputs ports, (2) the sampling periods and (3) the used mode (e.g. FS, PE).  
InterOut implements the output communication function and additional synchronization functionalities in the case of the UE mode. It has as parameters: (1) the names, the number and the data type of outputs ports and (2) the used mode.     

We give an example of the InterOut interface with the UE Mode:

InterOutUE.h

#include "systemc.h"

#include "cosim.h"

SC_MODULE(interOut) 

{


sc_in<double> data;   //signals can be double or bit vector


sc_in<double> data1;


void send_data();


SC_CTOR(interOut) 


{



SC_METHOD(send_data);



sensitive << data ;



sensitive << data1;



dont_initialize();


}

};

InterOutUE.cpp

#include "InterOutUE.h"

void interOut :: send_data()

{


// use the WriteSignalToSimulink function to send the time stamp of signals update events  


WriteSignalToSimulink (sc_simulation_time()/1000000000,100);


// Possible signal conversion

.........

// send signals values
WriteSignalToSimulink (data.read(), 0);


WriteSignalToSimulink (data1.read(), 1);


// indicate the presence of new events  
SwitchContextFlag ();

}   

The interfaces are automatically generated by a script generator that has as input user defined parameters. Once the interfaces are generated, their connection is realized within the function sc_main. The model is compiled and the link editor calls the library from SystemC and a static library called “simulation library” (see Figure 15). 
7. Experimentations 

To analyze the capabilities of the continuous/discrete simulation model and its implementation, two illustrative examples were used: an engine controller used to activate a manipulator arm and a sigma/delta converter. For both examples, the discrete part was modelled using SystemC and the continuous part using Simulink. 

7.1 The arm controller 

To regulate the engine speed we use a PID (Proportion, Integral, Derivate) controller in closed loop. The engine control is provided by a discrete controller providing speed orders calculated according to the arm position. The arm advances firstly with a progressive speed, then constantly and finally speed slows down. It uses a constant speed when it returns to its initial position (Figure 17).  The continuous sub-model consists in the PID model, a sensor, the engine model, and an integrator. The position sensor ("Hit Crossing" component) has been used to indicate the arrival of the arm to the desired position (state event),,see Figure 16. 
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Figure 16 Continuous sub-model

In order to evaluate the different synchronization models implemented in the presented simulation tool, for the discrete part of the arm controller we considered the communication level and ISA level execution model in SystemC. At the first level, we use the timing annotation functions to model the computation time which is necessary since the system contains feedback. At this level the system was simulated using the FS mode. For the ISA level, a SystemC implemented instruction set simulator for the DLX processor was used. The processor frequency was fixed at 4 MHz and the sampling period was fixed at 0.4 s. At this level we used the UE mode with state events consideration (see section 5.2.2) and the FS mode. 

We give in Table 3 the simulation times for the arm controller that was simulated for 60 seconds. 

. 
7.1.1 Accuracy analysis  

We give the accuracy analysis in the FS mode. In the studied example the arrival of the arm to the desired position is a state event arising at the moment 15.4990 s. The Inter_state interface (Figure 16) indicates to SystemC the presence of this event. Then the discrete controller sends an order to set speed to zero. The state event was considered with accuracy by the discrete part, and the passage of the order to zero was completed at the state event time stamp. This is illustrated in Figure 17 and Figure 18
Figure 18 shows that SystemC scheduler planned an event e1 at time 15.6 s but the arrival of the state event will force the scheduler to advance its time 15.4990 s. As shows the figure, the e1 event, which is a clock event, will be treated just after the state event. Figure 17 shows also the synchronization and the data exchange accuracy. The continuous sub-model sets the order to 1.5 at the time stamp with the value 3.2001 s, the time when it was modified by the discrete controller. 
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Figure 17. Speed, speed order and position (from Scope in Figure 16)
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Figure 18. State event consideration (discrete controller output)
7.2 ∆/Σ converter simulation

Sigma-delta (Σ/Δ) converter is an over sampling analog-to-digital conversion technique. The analog input is over sampled N times faster than the requested digital output frequency, and quantified to one bit, ±1. The quantified value is fed back to the analog part, as well as filtered by an averager filter and accumulated by a digital accumulator. For every N samples, the converter produces the digital output and resets the accumulator (see Figure 19). For this example the sampling frequency was 5.12 Khz. Figure 20.a shows the modulated signal (scope). Figure 20.b shows the input signal and the digital output signal.
Table 4 presents the simulation time for the converter. This model was simulated using the UE mode since its continuous sub-model does not generate state events.
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(a) Continuous model





(b) Discrete model

Figure 19 Δ/Σ converter overview
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Figure 20 Σ/Δ converter signals

7.3. Results discussion

     Table 3 shows the speedup of the FS model at communication level vs. the FS model at ISA level for the discrete part of the arm controller. It is important to note that the accuracy of the discrete model at ISA level presents a better accuracy. However, the accuracy of the data exchange between the continuous and the discrete part is the same. 

     Table 3 clearly shows also the advantage of using the UE mode compared to the FS mode (where the continuous and discrete models are tightly synchronized resulting in an unnecessary overhead):  a speed-up of about two orders of magnitude was obtained. 
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Table 3 CPU time for the arm controller simulated for 60 s 
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Table 4 CPU time for Δ/Σ converter 

8. Conclusion

This chapter presented the anatomy of a discrete/continuous global simulation model. In the first part, the chapter presented the concepts manipulated by both models, the time distribution model and the events management. In the second part, based on these studies, several synchronization models resulted from a profound analysis of synchronization issues with respect to accuracy and performance constraints were introduced. In the third part, the architecture of a generic global simulation model providing semantics for the accurate global validation of discrete/continuous systems was proposed. It allows using powerful tools for the two domains. The global simulation model was implemented by simulation interfaces in order to produce global simulation model instances for discrete-continuous systems simulation using SystemC and Simulink. Finally, to evaluate the proposed simulation model, co-simulation results for two discrete/continuous applications were illustrated. 
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1.Initialization Phase – Execute all processes (except SC_CTHREADs) in an unspecified order. 


2. Evaluate Phase – Select a process that is ready to run and resume its execution. 


3. If there are still processes ready to run, go to step 2.


4. Update Phase – Execute any pending calls to update() resulting from request_update() calls made in step 2.


5. If there are pending delayed notifications, determine which processes are ready to run due to the delayed notifications and go to step 2.


6. If Mode = FS then Send the next discrete time to Simulink and Switch context to Simulink, else


If Mode = PE then send the next signals update events or sampling events     


time stamp and Switch context to Simulink.


Else (mode = UE) if signals update events  flag = "1"  then Switch context to Simulink


7. If state event then add a timed event with time stamp equal to the state event time stamp to the scheduler queue. 


8. If there are no more timed notifications, simulation is finished.











� If a numerical method is forced to use, in a certain interval of integration, a step length which is excessively small in relation to the smoothness of the exact solution in that interval, then the problem is said to be stiff in that interval
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