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Abstract

Real time embedded system design needs
collaboration  between  architectures — model,
platforms and application specification in order to
prototype a real time system from high level
specification. In many case, one solution sof
prototype is not so good to answer the environment
changes around embedded system. For this reason,
when we want to run an application on embedded
system, we need to have several prototypes with
different performance levels in order to address the
environment evolution. This paper gives an approach
for rapid embedded system prototyping using a
general architectural mode named PACM and
existing prototyping platforms. Several prototypes
are proposed to get a first space solution, thus the
exploration process is accelerated and an efficient
solution can be selected.

1.Introduction

A common method for providing performance
improvement for a real time embedded system is to
create customized hardware solutions for particular
tasks. For example, real time embedded system often
have one or more application specific integrated
circuits (ASICs) to perform computationally
demanding tasks. ASICs are very effective at
improving performance, typically yielding several
orders of magnitude speedup along with reduced
energy consumption. Unfortunately, there are also
negative aspects to using ASICs. The primary
problem is that ASICs only provide a dedicated
hardwired architecture solution, meaning that only a
limited number of applications will be able to fully
explore the ASIC architecture. If an application
changes, because of a fixed bug or a change in
standards, the system will usually no longer be able
to take advantage of the ASIC device architecture.
So, the notion of reconfigurable system is introduced
in real time embedded system concept as a need to
solve bugs and to support the evolution of standards.
Another drawback is that even when a system can
utilize an ASIC, it must be specifically rewritten to
do so. Rewriting system applications or few tasks of
applications can be a large engineering burden. For
this reason, the use of reusable components libraries
is encouraged to accelerate the design process and to
conserve the compatibility for the evolution in real
time embedded system. In this case the modularity is
proposed to evaluate the ability of reusable
components libraries to develop a custom real time
embedded system. Many other notions like

scalability and platform adequacy are also introduced
to replay the needs in new real time system design
and to solve limitations of ASIC solution.

Adding custom hardware in processor core is another
method for providing enhanced performance in real
time embedded system. In general, the critical
portions of an application’s dataflow graph (DFG)
can be accelerated by mapping them to specialized
hardware. Usually, there are two granularity levels to
add dedicated hardware to processor core system:
instruction granularity level and function granularity
level. The instruction granularity consists to link
custom hardware with the main registers of processor
core and a custom instruction opcode is added to the
processor instruction set. The number of custom
instruction depends on the processor core capacity
for example ARM core provides 16 custom
instruction extensions. The function granularity
consists to add the custom hardware as a slave or a
master peripheral using bus communication. In this
case one instruction extension can not drive the
functionality between the processor and the
customized peripheral. So in many cases, specific
subroutines should be coded to control the custom
hardware activity and the communication with the
processor core. The number of added hardware
functions depends on the bus band pass and the
device size in the case of FPGA circuits. In the case
of instruction granularity the processor is in hold
mode and it is blocked in custom instruction
execution, but in function granularity the mutual
execution of processor core and custom peripheral is
possible.

In this paper we present a generic architecture model
for real time embedded system design named
PACM: Processor — Accelerator — Coprocessor —
Memory. The PACM model is proposed as a
solution to reply the real time embedded system
design requirements. Firstly, we evoke the real time
embedded system environment design for the PACM
model in order to introduce several specifications
requirements like reconfigurability, modularity and
scalability within design process. Secondly, we
proposed to combine the instruction and function
granularity in the PACM model to enhance the
system performance.

The paper is organised as follow. In section 1 we
discuss the related work in real time embedded
system design. Section 2 talks about PACM model
for SoC prototyping. Section 3 presents a
comparison between platforms based on PACM
constraint model. In section 4, we propose the
mapping process of an application under PACM



model. Then, we detailed the mapping process via
case study example and experimentation. Finally, we
closed with conclusion.

2.Related works

Reconfigurable architectures have been an active
research issue. In [23], an adaptive reconfigurable
DSP computing engine is proposed for numerically
intensive  audio/video = communications.  The
approach may enjoy the flexibility of programmable
processors [1] [2], while achieve similar performance
to ASIC design. More recently, a good survey [6] of
media approaches observed varying processing
requirements in multimedia computing and also
pointed out the need for exploiting reconfigurable
system for media processing.

Reconfigurable computing systems [10] that
combine programmable processors and FPGAs with
a reconfigurable architecture have been extensively
exploited for diverse embedded system applications.
Some architecture connects a reconfigurable
coprocessor to a general purpose microprocessor [3],
[13], [14], [17], [18], [22]. The advantage of these
approaches is that the coprocessor can be
reconfigured to improve the performance of
particular application. Most of previously proposed
reconfigurable architectures use FPGAs for the
reconfigurable hardware. However, the rich
programmable interconnection comes at the price of
reduced operating frequency and logic density. The
Garp [15] processor architecture combines an
industry-standard MIPS processor with a new
reconfigurable computing device that can be used to
accelerate certain computations. REMARC [16]
(reconfigurable multimedia array coprocessor) is a
reconfigurable coprocessor that is tightly coupled to
a main RISC processor.

One stream oriented architecture is the RaPiD [5],
[7], [8], project that studies domain specific
architecture, called reconfigurable pipelined
datapaths. This architecture is optimized for highly
repetitive, computationally-intensive tasks. Very
deep application-specific computation pipelines can
be configured in RaPiD that deliver very high
performance for wide range of applications. Another
stream-oriented architecture is the PipeRench [4],
[11], [12], [19] project, which is focused on the
concept of “virtualizing hardware” to use an
interconnected network of configurable logic and
storage elements to complete large amount of
computations through high speed of reconfiguration
hardware.

The RAW research prototype [20] uses a scalable
ISA to attack the emerging wire-delay problem by
providing a parallel, software interface to the
gate,wire, and pin resources of the chip. Tensilica
[21] enables rapid design of highly efficient
processor cores by extending the processor hardware
and software to fit each system’s application
requirements based on a lean core implementation.

The Eclipse [19] provides an architecture template at
subsystem level. It supports the reuse of design effort
for providing a set of parameterized rules for
subsystem composition.

The last presented works are based on the following
idea: starting from initial processor core architecture,
the goal is to extended architectural capacities in
order to support the application specification and the
environment constraints. But in many cases, the
initial system architecture adds an over cost in term
of development time, modularity, flexibility and
performance. For example, the architecture system
doesn’t provide a possibility to add custom
instruction for a specific coprocessor and only a
function granularity custom hardware is premised. In
other cases, the refinement tools can not accept any
addition in system architecture, so for this reason the
FPGA is used as a custom hardware out of the
system chip.

In our approach, we proposed to start from a generic
high level architecture model named PACM, and
then a prototyping platform will be adapted to
support the system constraints and finally
implementation strategies will be analyzed for
application and system adequacy.

3.PACM architecture model
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Figure 1: PACM architecture

In this section, for the architecture presented in
Figure 1, we show that several CAD tools and
platforms, similar in first view, do not present the
same adequacy degree with the targeted model of
execution. The Figure 1 presents the PACM model.
Basically our architecture is built around a
processor core (for example Nios, ARM, LEON...)
which offers configuration opportunities for adding
coprocessors reached through the main processor
registers (for example floating point unit, HW
divider, HW mathematic functions ...).The
processor communicates with dedicated HW
accelerators through a standard on chip HW/SW
bus (e.g. Amba, Avalon, IBM CoreConnect...)
using control logic and specific memory blocks.



Coprocessors and HW accelerators usage depends
on the application complexity and on the computing
constraint requirements. In order to give more
flexibility and adaptability to the SoC, we have
chosen the reconfigurable technology to implement
our SoC.

4.Prototyping platforms replay for PACM
model

If we analyze the key parameters of the PACM
architecture model, the adequate platform must
integrate the following features:

e The platform must integrate a FPGA device
characterized by a heterogeneous architecture
(logic elements, DSP blocks, RAM blocks, I/O
pin...) and by a size able to integrate the HW
and SW parts of the SoC.

e The platform must provide a processor core
that gives opportunities to integrate some
coprocessors within its ALU and reached
through the processor main registers to get an
ASIP model.

e The HW accelerators integration must be
supported using an on chip HW/SW bus or
other on chip HW/SW communication module.

e RTOS option with the corresponding port to
the targeted processor core must be present.

e The HW and SW refinement tools must be
robust and efficient to limit the time-to-market
constraint.

All these key parameters correspond to the
criteria to select a suitable SoC platform. We made
a qualitative study for different representative
platforms, and evaluate their adequacy with the
PACM architecture model.

LG forms Excalibur PowerPC
LEON Nios kits ; Microblaze
Key kit ki
its
parameters
FPGAs faﬁ'i'l';’; g:n‘; APEX Xilinx
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Accelergtor + +++ +++ +++
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SW and HW
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tools

Table 1 : platforms comparaison

We performed an experimental study based on
the main features of SoC platforms. The results are
presented in table 1. We notice that all presented
SoC platforms provide a robust and efficient HW
and SW refinement tools like ISE Xilinx tool and
Quartus, on chip HW/SW bus as AMBA (LEON
and Excalibur kits) and IBM CoreConnect
(PowerPC and Microblaze kit) and also a port for

many RTOS like RTEMS ported on LEON and
ARM, WindRiver port on PowerPC and
Microblaze, etc. However, only Nios, ARM and
LEON cores can support coprocessor feature. In
addition, coprocessor integration in Nios and ARM
cores is more rapid and flexible using the
virtualization and custom instruction generation
given by SOPC Builder tool. Also, Nios SoC can be
implemented in large STRATIX family which
contains DSP blocks and different sizes of RAM
blocks, unlike ARM development kit which is
restricted to APEX device and its core is a hard IP
and not a soft one like the Nios core. Thus, we
notice that the SoC platform based on Nios
processor core kit provided with Quartus and SOPC
Builder environments by Altera is the most suitable
to design a reconfigurable SoC using the PACM
architecture model. Indeed, SOPC Builder tool
gives the designer a virtual image of the Nios
processor soft core and the accelerators can be
linked to the Nios processor core through the
Avalon on chip bus. Custom instructions are also
provided with this platform in order to facilitate the
coprocessors integration within the Nios ALU.
Namely, our choice is based on this last feature in
order to implement a reconfigurable ASIP core.

As a conclusion of this analysis we can see that
the available CAD tools and SoC platforms can not
address all the architecture models and that a study
must be done in order to select the suitable platform
for the appropriate architecture model. In our case
the Nios processor core kit is suitable to the PACM
architecture model.

5.Steps of mapping application on PACM
model

In real time system design reality, we start from two
main entry models: one for application and the
second for architecture. The needed result is a
mapping structure of application under architecture
model. In our work we proposed to use the following
steps:

a.  Modelling application using DFG graph;

b. Identify pattern branches locations in

application DFG.

c.  Verify the possibility to implement the

pattern as a function or/and instruction

granularity using PACM model.

d. Proposed a combination between the

pattern group in application DFG and the

granularity level in PACM model

e. Determinates the features of each proposed

solution in term of execution time, power

supply and memory code size

The proposed strategy offers the opportunity for an
example of application to define concrete
architectural solutions of space exploration for a
real time embedded system using the PACM model
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that combine general processor and custom
hardware in two granularity levels.

In the next section we present an application case
study in order to explain the mapping process of
application on PACM model using the last five
steps.

6.Experimentation on 3D
application

6.1. DFG description

We choose as case study the 3D graphic
pipeline. The main function of the pipeline is to
render, a two-dimensional image given a virtual
camera, 3D objects, light sources, lighting models,
and textures [24]. The typical 3D graphics system
can be divided in three stages in pipelined format as
in Fig.2. In our case, we are interested to study the
Geometric engine.

Application |::> Géﬂgﬁg'c |::> Raséig‘zr?gon |::> Display

Figure 2 : 3D graphic pipeline

graphic

Matricel

Matricel
VERTEX 4x4
table Sin and
Cos table

Rotation

Matricel
4x4

Matricel
4x4

Transform RGB

colors
VERTEX table l

Normalized
vectors

Colors

matrice of
the object

Figure 3 : 3D Data Flow graph
We proposed to implement the 3D application

using a C language description. The C tasks are
described by the fig3. So 11 tasks are identified in

the global application code but there are 4
important tasks: translation, transformation, normal
calculate and object draw. These four principal task
are identified as patterns and we choose to
implement them as a custom hardware. The
decision of instruction or function granularity
implementation of the pattern depends essentially
on the size of the input and data.

6.2. Pattern identification

In our case study application, we analyze the C code
of the following functions on 3D application in order
to identify the arithmetic patterns. In our analyze
process we look for the C function that contain loop
structure. We focus on the loop core to determine the
arithmetic sequences in line code. Figure 4 gives an
example of pattern identification. Indeed, 6 patterns
are identified. Table 2 presents the name and the
execution frequency of each pattern for different
objects. Values presented by the execution frequency
show that a custom hardware implementation for the
identified patterns is benefit for application speed up.
This deduction is true in condition that software
implementation is slower than hardware one. On the
other hand the impact of power consumption and
surface occupation should be verified.

{

for(short i=0;i<4;i++)

Pattern : 4 MUL, 3 ADD

# dest[i][j] = m1[i][0]*m2[0][j]+
ml[i][1]*m2[1][j]+

Figure 4 : pattern identification in loop structure

Execution frequency

Pattern name

Objectl Object2 | Object3
Scalaire 1120 2260 3120
Vectoriel 2380 5280 7280
Mult matrice 50 50 50
Projection 1210 2260 3660
Transformation | 1210 2260 3660
Znormal 2380 5280 7280

Table 2 : Patterns execution frequency

6.3. Pattern hardware implementation

The hardware implementation needs a refinement
environment to accelerate the realization process
from high level description. In our work we adopt
Quartus environment as platform for hardware
implementation on Altera technology. The adopted
platform design gives the opportunity to specify a
custom hardware using a generic IP library. We are
interest in arithmetic components present in the IP
library in order to implement patterns. The SOPC




Builder provides a Niosll processor core and
Avalon on chip for system on chip implementation.
The use of SOPC Builder offers the possibility to
implement patterns on:

In Figure 6 we proposed an example of
PROJECTION pattern with DFG description. Then,
we implement the pattern DFG using the generic
arithmetic components in Quartus environment. In

e  instruction granularity level using custom
instruction generation and two main register in
NioslI processor core

e  function granularity level using Avalon on
bus interface

e the Nios processor core is used to
implement the software code of the application

this step we can compare the hardware and software
execution time. Power comsuption and resssource
usuage can be deducted from the synthesis step in
Quartus environment. The next step consist to
decide the possibility to add the pattern to the
NioslI based system as a custom instruction using
the processor main register (instruction granularity)
or as a custom hardware function using Avalon bus
communication (function granularity). Finaly, we
obtained a several architecture prototypes for one
Y application  specification. =~ The  architectures
DFG Pattern solutions represent a sub-group solution for a space
decerintion exploration based on a initial architecture model

Pattern identification in C code

— ¢ P (PACM model). Each solution proposes real values
1thmetic . . .

. o ¢ IPlibrary of execution time, power consumpnon, and

registers e resource usage. Thus, a real time adaptation method

interface P can be injected to guide the solution choice via

extern environment constrains.

¢ / \ AValin bus

6.4. Results with architecture solutions
prototype
The pattern identification on 3D application gives 6

Custom function
granularity
implemtation

Custom instruction
granularity
implemtation

patterns. The PACM model offers the possibility to
implement each pattern in one of 3 cases: software,
hardware custom instruction or hardware custom
function. So the number of architecture solution can
be deduced: 3°=729 solution. Thus, in this case the
design has a large space solution to implement the
application. Indeed, in table 3 we are limited to give
a sub-group of space solution.

N/

Sub-space architecture solutions
(Architecture, Performance)

Figure 5 :sub-space architecture solutions
prototyping step

.63
MX X Z Distance Y MY _ _ _ _

Solution 1 Solution2 Solution3 Solution4

Patternl Software Custom Custom Custom

3 8 3 instruction instruction function

Pattern2 Software Custom Software Custom

instruction function

Pattern3 Software Custom Custom Custom

instruction function function

Pattern4 Software Custom Software Custom

instruction function

Pattern5 Software Custom Custom Custom

instruction function function

Pattern6 Software Custom Custom Custom

instruction function function
Resource 2885 LUT 4165 LUT 3420 LUT 4254 LUT

usage
Power 628,58mw 750,34mW 701,34mW 924,36mW
consumpti
on
Execution 78059245 143316176 323316176 153316176
y y time cycle cycle Cycle cycle
Screen. X Screen.Y Table 3 : performance resu!ts for sub-group of
space solution
0.. .31

Figure 6 : Data Flow Graph of Projection pattern. From the four examples presented in table 3, we

can note that each combination of patterns

Thus, as presented in Figure 5 starting from the
equation description of each pattern, we proposed
to specify the pattern using DFG description based
on arithmetic operation and data size.

implementation gives a triple of resource usage,
power consumption and execution time. So, the
system can have several functional modes for one
application and each mode represents an answer for
environment constraints.



7.Conclusion

In this work, we start from the idea: to consider an
initial generic architecture model as an entry for a
SoC design; we select an adequate platform for
rapid prototyping. Then we analyse the application
specification in order to locate the most cost
patterns in functions execution. Then, we propose
to map the application using customs hardware
pattern implementation as an instruction granularity
level and function granularity level. A combination
of patterns implementation can defines a SoC
solution prototype for the application based on
PACM model. Finally, we proposed a sub-group of
solution prototypes that offers the possibility to
explore the SoC architecture space solution based
on a proposed architecture model.
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