New Synthesis Approach of hierarchical
Benchmarks for Hardware Prototyping

Mariem Turki
Habib Mehrez
LIP6, Paris 6
Email: mariem.turki @lip6.fr

Abstract—Hardware prototyping is becoming increas-

ingly important in the system on chip design cycle. It allows
a fast hardware verification within the time to market
constraints before reaching the manufacturing phase.
However, In the prototyping cycle, designs must be synthe-
sized and mapped into logic gates. The synthesis runtime
is very big and does not satisfies the hardware prototyping
goals.
In this paper we propose a new synthesis methodology
which reduces the traditional synthesis runtime. This
approach can automatically synthesize large and hier-
achical designs with a compromise between runtime and
optimization. Experimentally, this new approach offers
an improvement by an average of 60% compared to the
synthesis runtime of an existing commercial tool.

I. INTRODUCTION

The main challenge of todays system on chip design-
ers is to keep the cycle time as short as possible, while
system complexities are increasing exponentially.

One interesting feature to decrease the time to market
is to validate the increasingly large designs erlier before
reaching the manufacturing phase. Currently, it is esti-
mated that 60 to 80 percent of an ASIC design is spent
performing verification [1].

FPGA-based prototyping is an important step in the cre-
ation of the final product and it is the key to the success
of marketing in time. The key advantage of FPGA-
based prototyping is the ability to run at high speed
(sometimes at almost real-time speed) a cycle-accurate,
bit-accurate model of the SoC [5]. The availability of
automatic FPGA mapping tools have streamlined the
design conversion process, making the path from ASIC
design to FPGA implementation more straightforward.
Because the silicon area overhead of FPGA versus ASIC
technology has been measured to be about 40x [6],
FPGA programming technology requires that an ASIC
logic design be partitioned across multiple FPGA de-

Zied Marrakchi
FlexRAS Technologies
Paris, france
Email: zied.marrakchi @flexras.com

Mohamed Abid
CESlab
Sfax, Tunisia
Email: mohamed.abid@ceslab.org

vices to achive the necessary device logic capacity. The
number of FPGAs depends on the size of the prototyped
system, ranging from few [7] up to 60 FPGAs [8].

In the prototyping flow, designs have to be synthesized
before being partitionned into pieces where each one can
fit into a single FPGA. To synthesize a circuit, designers
use the traditional flow which is a top-down based
strategy since it produces better results [2]. Indeed, when
starting by the highest level, the synthesizer considers the
relations between the different modules in the design.
Therefore, several design optimizations can be made.
On the other side, a top-down approach is not possible
when synthesizing big designs because of memory and
runtime limits. Synopsys [9] has added the Compile
point feature which allows to reduce runtime. This
synthesis feature is available with the Synplify Pro
and Synplify Premier [3] products, for use with certain
technology families. The compile point synthesis flow
divides design into parts or points that can be processed
separately. A design can have any number of compile
points, and compile points can be nested inside other
compile points. During synthesis, the design is first
compiled, then mapped starting with the compile points
at the lowest level of hierarchy in the design. After the
compile points are mapped, the top-level is mapped.
The fact of synthesizing the design into two iterations
(bottom-up then top-down) causes additional runtime
which affects the prototyping cycle.

Other methodologies are used by Design Compiler of
synopsys and presented in [10]. For example, this tool
uses the Time-budgeting compile methodology. Even
thought it gives better runtime results, but it is hard
to implement since it is very difficult to keep track
of multiple scripts of each leaf. One other strategy
used by Design Compiler is the Compile-Characterize-
Write-Script-Recompile. This is an advanced synthesis
approach, useful for medium to very large designs that

do not have good inter-block specifications defined. It
requires constraints to be applied at the top level of
the design, with each sub-block compiled beforehand.
The subblocks are then characterized using the top-level
constraints. This in effect propagates the required timing
information from the top-level to the sub-blocks. The
disadvantage of this approach is that the generated scripts
are not easily readable. Also, lower block changes might
need complete re-synthesis of entire design.

In this paper we propose a new methodology to automat-
ically synthesis large hierarchical designs with an accept-
able synthesis runtime since it is based on the bottom-up
flow. The goal of this methodology is to generate a gate-
level netlist with a compromise between optimisation
quality and synthesis runtime. This approach is suitable
to synthesize designs which are continuously modified.
Indeed, when re-synthesizing a design, the designer can
control the parts to be re-synthesized. And so, only the
components that were modified will be re-synthesized.
The rest of the papper is organised as follows. In
section 2 we give a brief description about the hardware
prototyping steps and the benchmarks requirements. The
proposed synthesis approach is covered in section 3. Sec-
tion 4 states the caracteristiques of the used benchmarks.
Finally, experiments and results are presented in section
5.

II. HARDWARE PROTOTYPING AND BENCHMARK
REQUIREMENTS

Many design and verification teams are increasingly
using multi-FPGA prototyping to meet ever decreasing
time-to-market constraints. Fig 1 shows the hardware
prototyping flow. The input, a netlist of the logic de-
sign, is transformed into a multi-FPGA configuration
bitstream to be downloaded onto the prototyping board.

A. Hardware prototyping

1) Partitionning: The input design netlist is mapped
to a target library of FPGA primitive. The output of the
partitionning task is a synthesized netlist given as verilog
files. To get those files, multiple synthesis operations are
done before validating the design. As the circuits are
becoming larger, the synthesis may take several minutes
or even hours. Therefore it is necessary to look for other
methods that accelerate the synthesis runtime.

2) Fartitionning: The partitioning algorithms search
for the best partition with the lowest inter- FPGA
connections and highest system performance. The
output of this task is a new design hierarchy which

Logic synthesis

Board
description

| Partitionning
Routing & multiplexing

Fig. 1. Hardware prototyping flow

highlights the different partitions for each FPGA.

3) Routing and multiplexing: The routing algorithm
routes inter-FPGA and I/O signals through board traces
or FPGA’s with the objective of minimizing signal
delays. The Outputs of this task includes individual
projects for each FPGA containing each the multiplexing
IP for signals in the FPGA interface.

B. Benchmark requirements

To evaluate the performances of those algorithms, the
used benchmarks includes specific features to allow the
CAD tool developpers to test their tools.

These designs are hierarchical since the partitionner
operates on high levels of hierarchy in order to reduce the
partitionnig runtime and the number of treated elements.
When routing the inter- FPGA signals, the routing algo-
rithm should manage the different clocks in the design.
The signals in the critical path should be given the most
attention to reach the best frequency of the design under
test. Therefore, most of the benchmarks contains several
clocks in order to evaluate the manner that the routing
algorithm deals with.

One other feature of the used designs is the hetero-
geneity. Indeed, if the design is symetric and contains
only processors, the partitionning tool developper is not
able to evaluate the performance and the intelligence
degree of his tool since the partitionning is relatively
obvious. For this reason, the benchmarks contains a mix
of different components such as processors, coprocessors
etc.

Compile allfiles

¥

Set list S of modules Li
(without generic
parameters) to synthesis

¥

> Set Li as top level

v

Set Li childreen (without
generic parameters) as
black boxes

]

Synthesize

¥

Generate verilog file

NO

YES

Fig. 2. Graph of the proposed synthesis approach

III. THE PROPOSED SYNTHESIS APPROACH

Most of the commercial synthesis tools use the tra-
ditional approch which is top-down based, so the tool
runs the design flat. Although this approach produces the
best results, designers are looking for other alternatives
to synthesis their big designs because of the time and
the memory limits.

Our proposed method is based on the bottom up method-
logy and is especially adapted for team design approach
and parallel development techniques where design is
split into smaller sub-projects or blocks developped
independently. So, the design team can freeze portions
of the design as they are completed, while continuing
to work independently on the rest of the design. Each
time the design is synthesized, only the components that
have been modified are re-synthesized which reduce the
synthesis runtime.

The proposed approach is presented in the Fig 2.

A. Logic synthesis flow

The steps detailed below are set into a script file
given at the input of the synthesis tool in order to
generate the netlist files of the synthesized design. Each
component is synthesized independently and a netlist is

Level O

Fig. 3. Different levels of hierarchical design
L2
L12 L11 L10

generic(port(port(

width : natural :=4 clk:instd_logic; dk:instd_logic;
) reset : in std_logic reset :instd_logic
port())

clk:instd_logic;
)i

L02 LO3

port(
clk :instd_logic;
reset : in std_logic

clk :instd_logic;
reset : instd_logic

))i

Fig. 4. Example of children list

generated for each component. To make this file, the
designer should consider the dependancy tree of the
circuit. This tree describes the hierarchy and the different
levels of the design. A component is called child when
it is instanciated in another component. In the example
represented in Figure 3, L10, L11 and L12 are children
of L2.

The first step is to compile all the files in the project.
Then, the user should select the list ”S” of components
”Li” to synthesis. Two types of components should be
eliminated from this list.

o The first type includes components which contain
generic parameters. Indeed, each component is syn-
thesized independently of the one in the highest
level in which it is instanciated. So, at the time
of synthesis, the generic parameters are not defined
yet.

« The second type includes the components which are
not modified since the last synthesis.

For each component ”Li” of the list S, the user defines
another list ”Si” which includes all the children of
”Li” except those which contain generic parameters.
Each child of ”Li” which contains generic parameters is
replaced by all its children except the ones which have

generic parameters and so on. In the example in the Fig
4, the child list of the component "L2” is defined as
follows:

set L2 {L10 L11 LO2 LO03}.

Once all the lists are defined, the synthesis tool selects
a component "Li” from the list ”’S” and “Li” is set as
a top level of the main project previously created. Then
all the children of the component ”Li” which are listed
in ”Si” are set as black boxes. A constraint file related
to this component is added to the project. The content
of this file is described in the following section.

Once all the child components are set as black boxes,
”Li” is synthesized and the output verilog netlist is
generated. Finaly, ”Li” is removed from the list S. As
the list S is not empty, the synthesis tool repeates the
previous steps for all the remaining components until
the end of all of them. At the end, the designer obtains
the output netlist files of all the synthesized components.
Those files will be the input of the partitionning tool.

B. Component constraint

When synthesizing a module, an sdc file which con-
tains the timing constraints of this component should
be added to the project. Design constraints specify the
goals for the synthesized module. Depending on how
the design is constrained the synthesis tool tries to meet
the set objectives. Realistic specification is important,
because unrealistic constraints might degrade the timing.
Each synthesis tool has its own commands to constrain
the design. Using these commands, the designers should
set timing contraints which meet the component speci-
fications. Like shown in [12], 3 types of paths must be
properly set:

« Flop to flop path which specifies the clock period.

« Input to flop : Specifies the data arrival times at the

specified input port.

« Flop to output : Specifies the data required times at

the specified output port.

IV. BENCHMARK ARCHITECTURES

To validate the proposed methodology we used a
set of hierarchical designs generated by the benchmark
generator described in [11]. This generator is based on
the DSX tool [16] and all the used components are part
of the Soclib library [17]. In this paper, we validate the
proposed approach using benchmarks which are multi-
processors based architecture and contains also many
coprocessors. Those architectures represent a mix of
homogeneity(multiprocessors) and heterogeneity(multi-
coprocessors). An example of this architecture is rep-

resented in Fig 5. This architecture contains a set of

]]
¢ ¢ -

‘ Xcache O H Xcache 1 ‘

—— >
'VCI Sring Network
3 $ 3

‘ multififos ‘

UART Ram)))

]

rrrrrrrrrrrrr

Fig. 5. Example of generated architecture

components which communicate via a VCI protocol.
The example in the Fig 5 contains N processors and
3 targets: Ram, vart and a multi-fifos component. The
multififos acts as a bridge between the coprocessors,
each with a fifo interface, and the ring network. Large
set of coprocessors can be used in order to have the
biggest design. An embedded FPGA is integrated in the
architecture since more recent SOC contains some field
programmable cells in order to reuse a portion of the
chip and to introduce new features in the design even
after its fabrication. In addition, FPGA vendors and new
IP developers are now offering hard embedded FPGA
core that can be added into a SOC design[13], [14].
One other caracteristic of the used benchmarks is the
multi-domain feature. When synthesizing the design, the
user have to set constraints to each clock domain to be
considered in the synthesis task. In the used benchmarks,
a bi-synchronous fifo is inserted between the VCI local
bus and the VCI uart component. The bisychronous fifo
contains two counters to control the amount of data
written and read from the fifo. Although binary counters
work fine for addressing the memory, using two different
clocks for the read and the write counters is problematic.
A better approach for passing pointers between clock
domains is to use a gray-code counter for the two fifo
pointers. Gray code counters only change one bit at a
time. If a synchronizing clock signal comes in the middle
of a gray code counter transition, the synchronized value
will either be the old or the new value because only one
bit is changing at a time.

Actually, the VCI interface of the uart component is
kept, and all the control signals of the VCI protocol are
transmitted trough the bi-synchronous fifo.

The Fig 6 shows the connection between the network
and the fifo from one side, and between the fifo and the
uart from the other side.

VCI_RING

cmdval cmdack clk rspval

Wok

cik_w

____________ Clk_R “ Clk

rspack rspval

VCI_UART

Fig. 6. Integration of an asynchronous fifo

V. EXPERIMENTS AND RESULTS

We performed experiments to evaluate our proposed
method comparing to the traditional flow of some com-
mercial synthesis tools like Xilinx’s XST[4] and Synop-
sys’s Synplify Premier[3]. However, XST was not able to
synthesize hudge designs which exceed some hundred of
thousands of LUTs. The synthesis process always ends
with an out of memory error.

The traditional synthesis flow of Synplify Premier in-
cludes two features which reduces runtime. The first one
is the automatic compile point feature which divides the
design into different parts or points that can be processed
independently starting by the blocks at the lowest level
of hierarchy. After all the compile points are synthesized,
the software synthesizes the design from the top-down,
using the model information for each compile point.
the second feature is the fast synthesis option which
reduces significantly synthesis runtimes by a factor of
2 or 3. It accomplishes this by reducing the number
of optimizations performed, so there is a trade-off in
performance.

We select these two features in the Synplify Premier
traditional flow, and we run the synthesis of large designs
without adding our proposed script which reduce the
synthesis runtime. In a second step, we run the synthesis
of the same benchmarks with the Synplify Premier tool,
but this time, in each design, we add our proposed script
to automatically synthesis the designs with the bottom
up approach.

Table I shows the details related to each benchmark
such as lut size, register numbers etc..Table II show
the experimental results of the tested benchmarks where

VO Biuoo

Marvel

- ﬂ Jer
:
s oy e
et i o

Fig. 7. Diagram of the dnv6f6pci

runtime is measured in seconds. These results show that
the synthesis runtime is improved by an average of 60%
when using our proposed script. Unlike a top down
synthesis, in the multiprocessor designs, the processor
component is synthesized only one time. Therefore,
only one output netlist is generated for the processor
component. This netlist is called each time this compo-
nent is instanciated in the top level file. Consequently,
the runtime improvement is more significant when we
increase the number of processors.

The tested benchmarks are used by Flexras technology’s
prototyping tools[18]. The results of implementation
of these benchmarks in a multi-FPGA board are pre-
sented in table II. The board used to prototype these
designs is presented in Fig 7 and contains six virtex-
6 FPGA(xc6vsx475tff1759)[15]. After partitioning and
routing the designs into the multi-FPGA board, informa-
tion about the frequency and the number of used FPGAs
are given by the prototyping tool.

VI. CONCLUSION

In this paper, we presented the proposed synthe-
sis approach which reduces considerably the synthesis
runtime. We used a script to automatically synthesis
hierarchical designs from the lowest level of hierarchy to
the highest one. This new method is especially adapted to
multiprocessor designs and also during the development
cycle of the circuit where modifications are possible
after each synthesis. It is also adapted for the hardware
prototyping where the critical time optimization is not
crucial.

For the future works, we will consider the timing de-
pendencies between the components when doing the
synthesis in order to obtain the best timing results.

TABLE I
BENCHMARKS CHARACTERISTICS

Benchmark | LUTs | RAMLUTs | DSP | RAM REG
CPU_20 143217 6192 2 21 66937
CPU_30 213524 9272 12 33 99588
CPU_50 353697 15432 25 54 164587
CPU_75 510304 20230 20 76 191200
CPU_125 | 879897 38532 28 130 | 408712
TABLE II
SYNTHESIS RUNTIME AND PROTOTYPING RESULTS OF THE TESTED BENCHMARKS
Benchmark | NB FPGA | MUX ratio | Freq(MHz) | Synplify Premier | Script synthesis Imp
runtime runtime
CPU_20 1 1 80 518s 399s 22,97%
CPU_30 3 9 27,78 864s 419s 51,5%
CPU_50 4 12 20,83 1712s 454s 73,48%
CPU_75 4 14 17,85 2233s 560s 74,92%
CPU_125 5 17 14,70 3023s 629s 79,19%
REFERENCES [16] N. Pouillon and A. Greiner,

[1] M. Santarini. ASIC prototyping: Make versus buy. EDN, Novem-

ber 21, 2005.

K. Nelsen “High-Level Design Methodology Overview”, Synop-

sys Online Documentation: Methodology Notes.

Synopsys FPGA Synthesis User Guide, 2011.

Xilinx. xst. www.xilinx.com/products/design tools/logic design/

synthesis/xst.htm

FPGA-Based Prototyping Methodology Manual, Synopsys, 2011

1. Kuon, J. Rose. Measuring the gap between FPGAs and ASICs.

International Symposium on Field-Programmable Gate Array,

February 2006

H. Krupnova, "Mapping multi-million gate socs on fpgas: indus-

trial methodology and experience,” in Proc. of Design, Automa-

tion and Test in Europe Conference and Exhibition, vol. 2, 2004,

pp. 1236-1241.

S. Asaad, R. Bellofatto, B. Brezzo, C. Haymes, M. Kapur, B.

Parker, T. Roewer, P. Saha, T. Takken, and J. Tierno, A cycle-

accurate, cycle reproducible multi-fpga system for accelerating

mutli-core processor simulation,” in Proc. of the ACM/SIGDA
international symposium on Field Programmable Gate Arrays,

2012, pp. 153-162.

[9] [Online]. Available: http://www.synopsys.com/

[10] Sreesa Akella "Guidelines For Design Synthesis Using Synop-
sys Design Compiler” December 2000.

[11] M. Turki, Z. Marrakchi, H. Mehrez, M. Abid, "Towards Syn-
thetic Benchmarks Generator for CAD Tool Evaluation,” 8"
confrence on Ph.D. Research in Microelectronics and Electronics
(PRIME), 2012

[12] A. Ekstrandh, W. Bell, "Evolvable Makefiles and scripts for
Synthesis,” SNUG(Synopsys Users Group) 1997 Proceedings,
section-C1, February 1997.

[13] M. Inc, “Menta efpga core-ii data sheet brief”,
http://www.menta.fr/down/DatasheetBrief-eFPGA-core-I1.pdf,
Feb. 2009.

[14] ”M2000 intros largest 90nm efpga, design and reuse”,
http://www.design-reuse.com/news/9614/m2000-introslargest-
90nm-efpga.html, Feb. 2005.

[15] [Online]. Available: http//www.dinigroup.com/new/dnv6{f6pcie.php.

(2]

(3]
(4]

(5]
(6]

(7]

(8]

URL=https://wwwasim.lip6.fr/trac/dsx/, 2006-2008.

[17] Soclib project: “Platform for modeling and simulation of inte-
grated systems on chip”, http://www.soclib.fr/.

[18] [Online]. Available: http//www.flexras.com

