
New Synthesis Approach of hierarchical

Benchmarks for Hardware Prototyping

Mariem Turki

Habib Mehrez

LIP6, Paris 6

Email: mariem.turki@lip6.fr

Zied Marrakchi

FlexRAS Technologies

Paris, france

Email: zied.marrakchi@flexras.com

Mohamed Abid

CESlab

Sfax, Tunisia

Email: mohamed.abid@ceslab.org

Abstract—Hardware prototyping is becoming increas-

ingly important in the system on chip design cycle. It allows

a fast hardware verification within the time to market

constraints before reaching the manufacturing phase.

However, In the prototyping cycle, designs must be synthe-

sized and mapped into logic gates. The synthesis runtime

is very big and does not satisfies the hardware prototyping

goals.

In this paper we propose a new synthesis methodology

which reduces the traditional synthesis runtime. This

approach can automatically synthesize large and hier-

achical designs with a compromise between runtime and

optimization. Experimentally, this new approach offers

an improvement by an average of 60% compared to the

synthesis runtime of an existing commercial tool.

I. INTRODUCTION

The main challenge of todays system on chip design-

ers is to keep the cycle time as short as possible, while

system complexities are increasing exponentially.

One interesting feature to decrease the time to market

is to validate the increasingly large designs erlier before

reaching the manufacturing phase. Currently, it is esti-

mated that 60 to 80 percent of an ASIC design is spent

performing verification [1].

FPGA-based prototyping is an important step in the cre-

ation of the final product and it is the key to the success

of marketing in time. The key advantage of FPGA-

based prototyping is the ability to run at high speed

(sometimes at almost real-time speed) a cycle-accurate,

bit-accurate model of the SoC [5]. The availability of

automatic FPGA mapping tools have streamlined the

design conversion process, making the path from ASIC

design to FPGA implementation more straightforward.

Because the silicon area overhead of FPGA versus ASIC

technology has been measured to be about 40x [6],

FPGA programming technology requires that an ASIC

logic design be partitioned across multiple FPGA de-

vices to achive the necessary device logic capacity. The

number of FPGAs depends on the size of the prototyped

system, ranging from few [7] up to 60 FPGAs [8].

In the prototyping flow, designs have to be synthesized

before being partitionned into pieces where each one can

fit into a single FPGA. To synthesize a circuit, designers

use the traditional flow which is a top-down based

strategy since it produces better results [2]. Indeed, when

starting by the highest level, the synthesizer considers the

relations between the different modules in the design.

Therefore, several design optimizations can be made.

On the other side, a top-down approach is not possible

when synthesizing big designs because of memory and

runtime limits. Synopsys [9] has added the Compile

point feature which allows to reduce runtime. This

synthesis feature is available with the Synplify Pro

and Synplify Premier [3] products, for use with certain

technology families. The compile point synthesis flow

divides design into parts or points that can be processed

separately. A design can have any number of compile

points, and compile points can be nested inside other

compile points. During synthesis, the design is first

compiled, then mapped starting with the compile points

at the lowest level of hierarchy in the design. After the

compile points are mapped, the top-level is mapped.

The fact of synthesizing the design into two iterations

(bottom-up then top-down) causes additional runtime

which affects the prototyping cycle.

Other methodologies are used by Design Compiler of

synopsys and presented in [10]. For example, this tool

uses the Time-budgeting compile methodology. Even

thought it gives better runtime results, but it is hard

to implement since it is very difficult to keep track

of multiple scripts of each leaf. One other strategy

used by Design Compiler is the Compile-Characterize-

Write-Script-Recompile. This is an advanced synthesis

approach, useful for medium to very large designs that



do not have good inter-block specifications defined. It

requires constraints to be applied at the top level of

the design, with each sub-block compiled beforehand.

The subblocks are then characterized using the top-level

constraints. This in effect propagates the required timing

information from the top-level to the sub-blocks. The

disadvantage of this approach is that the generated scripts

are not easily readable. Also, lower block changes might

need complete re-synthesis of entire design.

In this paper we propose a new methodology to automat-

ically synthesis large hierarchical designs with an accept-

able synthesis runtime since it is based on the bottom-up

flow. The goal of this methodology is to generate a gate-

level netlist with a compromise between optimisation

quality and synthesis runtime. This approach is suitable

to synthesize designs which are continuously modified.

Indeed, when re-synthesizing a design, the designer can

control the parts to be re-synthesized. And so, only the

components that were modified will be re-synthesized.

The rest of the papper is organised as follows. In

section 2 we give a brief description about the hardware

prototyping steps and the benchmarks requirements. The

proposed synthesis approach is covered in section 3. Sec-

tion 4 states the caracteristiques of the used benchmarks.

Finally, experiments and results are presented in section

5.

II. HARDWARE PROTOTYPING AND BENCHMARK

REQUIREMENTS

Many design and verification teams are increasingly

using multi-FPGA prototyping to meet ever decreasing

time-to-market constraints. Fig 1 shows the hardware

prototyping flow. The input, a netlist of the logic de-

sign, is transformed into a multi-FPGA configuration

bitstream to be downloaded onto the prototyping board.

A. Hardware prototyping

1) Partitionning: The input design netlist is mapped

to a target library of FPGA primitive. The output of the

partitionning task is a synthesized netlist given as verilog

files. To get those files, multiple synthesis operations are

done before validating the design. As the circuits are

becoming larger, the synthesis may take several minutes

or even hours. Therefore it is necessary to look for other

methods that accelerate the synthesis runtime.

2) Partitionning: The partitioning algorithms search

for the best partition with the lowest inter- FPGA

connections and highest system performance. The

output of this task is a new design hierarchy which

Routing & multiplexing

Design Netlist

FPGA1 FPGA2

Design Netlist

FPGAn

Design Netlist

FPGA
PnR

FPGA
PnR

FPGA
PnR

Partitionning

design
Netlist

Logic synthesis

Design

Board
description

Fig. 1. Hardware prototyping flow

highlights the different partitions for each FPGA.

3) Routing and multiplexing: The routing algorithm

routes inter-FPGA and I/O signals through board traces

or FPGA’s with the objective of minimizing signal

delays. The Outputs of this task includes individual

projects for each FPGA containing each the multiplexing

IP for signals in the FPGA interface.

B. Benchmark requirements

To evaluate the performances of those algorithms, the

used benchmarks includes specific features to allow the

CAD tool developpers to test their tools.

These designs are hierarchical since the partitionner

operates on high levels of hierarchy in order to reduce the

partitionnig runtime and the number of treated elements.

When routing the inter- FPGA signals, the routing algo-

rithm should manage the different clocks in the design.

The signals in the critical path should be given the most

attention to reach the best frequency of the design under

test. Therefore, most of the benchmarks contains several

clocks in order to evaluate the manner that the routing

algorithm deals with.

One other feature of the used designs is the hetero-

geneity. Indeed, if the design is symetric and contains

only processors, the partitionning tool developper is not

able to evaluate the performance and the intelligence

degree of his tool since the partitionning is relatively

obvious. For this reason, the benchmarks contains a mix

of different components such as processors, coprocessors

etc.



Fig. 2. Graph of the proposed synthesis approach

III. THE PROPOSED SYNTHESIS APPROACH

Most of the commercial synthesis tools use the tra-

ditional approch which is top-down based, so the tool

runs the design flat. Although this approach produces the

best results, designers are looking for other alternatives

to synthesis their big designs because of the time and

the memory limits.

Our proposed method is based on the bottom up method-

logy and is especially adapted for team design approach

and parallel development techniques where design is

split into smaller sub-projects or blocks developped

independently. So, the design team can freeze portions

of the design as they are completed, while continuing

to work independently on the rest of the design. Each

time the design is synthesized, only the components that

have been modified are re-synthesized which reduce the

synthesis runtime.

The proposed approach is presented in the Fig 2.

A. Logic synthesis flow

The steps detailed below are set into a script file

given at the input of the synthesis tool in order to

generate the netlist files of the synthesized design. Each

component is synthesized independently and a netlist is

Fig. 3. Different levels of hierarchical design

port(

);

clk : in std_logic;
reset : in std_logic

port(port(

);

clk : in std_logic;
reset : in std_logic

port(

L2

L12
generic(

);
port(

);

clk : in std_logic;

width : natural :=4

L02 L03

L11 L10
port(

);

clk : in std_logic;
reset : in std_logic

port(

);

clk : in std_logic;
reset : in std_logic

port(

Fig. 4. Example of children list

generated for each component. To make this file, the

designer should consider the dependancy tree of the

circuit. This tree describes the hierarchy and the different

levels of the design. A component is called child when

it is instanciated in another component. In the example

represented in Figure 3, L10, L11 and L12 are children

of L2.

The first step is to compile all the files in the project.

Then, the user should select the list ”S” of components

”Li” to synthesis. Two types of components should be

eliminated from this list.

• The first type includes components which contain

generic parameters. Indeed, each component is syn-

thesized independently of the one in the highest

level in which it is instanciated. So, at the time

of synthesis, the generic parameters are not defined

yet.

• The second type includes the components which are

not modified since the last synthesis.

For each component ”Li” of the list S, the user defines

another list ”Si” which includes all the children of

”Li” except those which contain generic parameters.

Each child of ”Li” which contains generic parameters is

replaced by all its children except the ones which have



generic parameters and so on. In the example in the Fig

4, the child list of the component ”L2” is defined as

follows:

set L2 {L10 L11 L02 L03}.

Once all the lists are defined, the synthesis tool selects

a component ”Li” from the list ”S” and ”Li” is set as

a top level of the main project previously created. Then

all the children of the component ”Li” which are listed

in ”Si” are set as black boxes. A constraint file related

to this component is added to the project. The content

of this file is described in the following section.

Once all the child components are set as black boxes,

”Li” is synthesized and the output verilog netlist is

generated. Finaly, ”Li” is removed from the list S. As

the list S is not empty, the synthesis tool repeates the

previous steps for all the remaining components until

the end of all of them. At the end, the designer obtains

the output netlist files of all the synthesized components.

Those files will be the input of the partitionning tool.

B. Component constraint

When synthesizing a module, an sdc file which con-

tains the timing constraints of this component should

be added to the project. Design constraints specify the

goals for the synthesized module. Depending on how

the design is constrained the synthesis tool tries to meet

the set objectives. Realistic specification is important,

because unrealistic constraints might degrade the timing.

Each synthesis tool has its own commands to constrain

the design. Using these commands, the designers should

set timing contraints which meet the component speci-

fications. Like shown in [12], 3 types of paths must be

properly set:

• Flop to flop path which specifies the clock period.

• Input to flop : Specifies the data arrival times at the

specified input port.

• Flop to output : Specifies the data required times at

the specified output port.

IV. BENCHMARK ARCHITECTURES

To validate the proposed methodology we used a

set of hierarchical designs generated by the benchmark

generator described in [11]. This generator is based on

the DSX tool [16] and all the used components are part

of the Soclib library [17]. In this paper, we validate the

proposed approach using benchmarks which are multi-

processors based architecture and contains also many

coprocessors. Those architectures represent a mix of

homogeneity(multiprocessors) and heterogeneity(multi-

coprocessors). An example of this architecture is rep-

resented in Fig 5. This architecture contains a set of

Fig. 5. Example of generated architecture

components which communicate via a VCI protocol.

The example in the Fig 5 contains N processors and

3 targets: Ram, uart and a multi-fifos component. The

multififos acts as a bridge between the coprocessors,

each with a fifo interface, and the ring network. Large

set of coprocessors can be used in order to have the

biggest design. An embedded FPGA is integrated in the

architecture since more recent SOC contains some field

programmable cells in order to reuse a portion of the

chip and to introduce new features in the design even

after its fabrication. In addition, FPGA vendors and new

IP developers are now offering hard embedded FPGA

core that can be added into a SOC design[13], [14].

One other caracteristic of the used benchmarks is the

multi-domain feature. When synthesizing the design, the

user have to set constraints to each clock domain to be

considered in the synthesis task. In the used benchmarks,

a bi-synchronous fifo is inserted between the VCI local

bus and the VCI uart component. The bisychronous fifo

contains two counters to control the amount of data

written and read from the fifo. Although binary counters

work fine for addressing the memory, using two different

clocks for the read and the write counters is problematic.

A better approach for passing pointers between clock

domains is to use a gray-code counter for the two fifo

pointers. Gray code counters only change one bit at a

time. If a synchronizing clock signal comes in the middle

of a gray code counter transition, the synchronized value

will either be the old or the new value because only one

bit is changing at a time.

Actually, the VCI interface of the uart component is

kept, and all the control signals of the VCI protocol are

transmitted trough the bi-synchronous fifo.

The Fig 6 shows the connection between the network

and the fifo from one side, and between the fifo and the

uart from the other side.



Fig. 6. Integration of an asynchronous fifo

V. EXPERIMENTS AND RESULTS

We performed experiments to evaluate our proposed

method comparing to the traditional flow of some com-

mercial synthesis tools like Xilinx’s XST[4] and Synop-

sys’s Synplify Premier[3]. However, XST was not able to

synthesize hudge designs which exceed some hundred of

thousands of LUTs. The synthesis process always ends

with an out of memory error.

The traditional synthesis flow of Synplify Premier in-

cludes two features which reduces runtime. The first one

is the automatic compile point feature which divides the

design into different parts or points that can be processed

independently starting by the blocks at the lowest level

of hierarchy. After all the compile points are synthesized,

the software synthesizes the design from the top-down,

using the model information for each compile point.

the second feature is the fast synthesis option which

reduces significantly synthesis runtimes by a factor of

2 or 3. It accomplishes this by reducing the number

of optimizations performed, so there is a trade-off in

performance.

We select these two features in the Synplify Premier

traditional flow, and we run the synthesis of large designs

without adding our proposed script which reduce the

synthesis runtime. In a second step, we run the synthesis

of the same benchmarks with the Synplify Premier tool,

but this time, in each design, we add our proposed script

to automatically synthesis the designs with the bottom

up approach.

Table I shows the details related to each benchmark

such as lut size, register numbers etc..Table II show

the experimental results of the tested benchmarks where

Fig. 7. Diagram of the dnv6f6pci

runtime is measured in seconds. These results show that

the synthesis runtime is improved by an average of 60%

when using our proposed script. Unlike a top down

synthesis, in the multiprocessor designs, the processor

component is synthesized only one time. Therefore,

only one output netlist is generated for the processor

component. This netlist is called each time this compo-

nent is instanciated in the top level file. Consequently,

the runtime improvement is more significant when we

increase the number of processors.

The tested benchmarks are used by Flexras technology’s

prototyping tools[18]. The results of implementation

of these benchmarks in a multi-FPGA board are pre-

sented in table II. The board used to prototype these

designs is presented in Fig 7 and contains six virtex-

6 FPGA(xc6vsx475tff1759)[15]. After partitioning and

routing the designs into the multi-FPGA board, informa-

tion about the frequency and the number of used FPGAs

are given by the prototyping tool.

VI. CONCLUSION

In this paper, we presented the proposed synthe-

sis approach which reduces considerably the synthesis

runtime. We used a script to automatically synthesis

hierarchical designs from the lowest level of hierarchy to

the highest one. This new method is especially adapted to

multiprocessor designs and also during the development

cycle of the circuit where modifications are possible

after each synthesis. It is also adapted for the hardware

prototyping where the critical time optimization is not

crucial.

For the future works, we will consider the timing de-

pendencies between the components when doing the

synthesis in order to obtain the best timing results.



TABLE I

BENCHMARKS CHARACTERISTICS

Benchmark LUTs RAMLUTs DSP RAM REG

CPU 20 143217 6192 2 21 66937

CPU 30 213524 9272 12 33 99588

CPU 50 353697 15432 25 54 164587

CPU 75 510304 20230 20 76 191200

CPU 125 879897 38532 28 130 408712

TABLE II

SYNTHESIS RUNTIME AND PROTOTYPING RESULTS OF THE TESTED BENCHMARKS

Benchmark NB FPGA MUX ratio Freq(MHz) Synplify Premier Script synthesis Imp

runtime runtime

CPU 20 1 1 80 518s 399s 22,97%

CPU 30 3 9 27,78 864s 419s 51,5%

CPU 50 4 12 20,83 1712s 454s 73,48%

CPU 75 4 14 17,85 2233s 560s 74,92%

CPU 125 5 17 14,70 3023s 629s 79,19%

REFERENCES

[1] M. Santarini. ASIC prototyping: Make versus buy. EDN, Novem-

ber 21, 2005.

[2] K. Nelsen ”High-Level Design Methodology Overview”, Synop-

sys Online Documentation: Methodology Notes.

[3] Synopsys FPGA Synthesis User Guide, 2011.

[4] Xilinx. xst. www.xilinx.com/products/design tools/logic design/

synthesis/xst.htm

[5] FPGA-Based Prototyping Methodology Manual, Synopsys, 2011

[6] I. Kuon, J. Rose. Measuring the gap between FPGAs and ASICs.

International Symposium on Field-Programmable Gate Array,

February 2006

[7] H. Krupnova, ”Mapping multi-million gate socs on fpgas: indus-

trial methodology and experience,” in Proc. of Design, Automa-

tion and Test in Europe Conference and Exhibition, vol. 2, 2004,

pp. 1236-1241.

[8] S. Asaad, R. Bellofatto, B. Brezzo, C. Haymes, M. Kapur, B.

Parker, T. Roewer, P. Saha, T. Takken, and J. Tierno, ”A cycle-

accurate, cycle reproducible multi-fpga system for accelerating

mutli-core processor simulation,” in Proc. of the ACM/SIGDA

international symposium on Field Programmable Gate Arrays,

2012, pp. 153-162.

[9] [Online]. Available: http://www.synopsys.com/

[10] Sreesa Akella ”Guidelines For Design Synthesis Using Synop-

sys Design Compiler” December 2000.

[11] M. Turki, Z. Marrakchi, H. Mehrez, M. Abid, ”Towards Syn-

thetic Benchmarks Generator for CAD Tool Evaluation,” 8
th

confrence on Ph.D. Research in Microelectronics and Electronics

(PRIME), 2012

[12] A. Ekstrandh, W. Bell, ”Evolvable Makefiles and scripts for

Synthesis,” SNUG(Synopsys Users Group) 1997 Proceedings,

section-C1, February 1997.

[13] M. Inc, ”Menta efpga core-ii data sheet brief”,

http://www.menta.fr/down/DatasheetBrief-eFPGA-core-II.pdf,

Feb. 2009.

[14] ”M2000 intros largest 90nm efpga, design and reuse”,

http://www.design-reuse.com/news/9614/m2000-introslargest-

90nm-efpga.html, Feb. 2005.

[15] [Online]. Available: http//www.dinigroup.com/new/dnv6f6pcie.php.

[16] N. Pouillon and A. Greiner,

URL=https://wwwasim.lip6.fr/trac/dsx/, 2006-2008.

[17] Soclib project: ”Platform for modeling and simulation of inte-

grated systems on chip”, http://www.soclib.fr/.

[18] [Online]. Available: http//www.flexras.com


