
Using MDE and Priority Time Petri Nets for the schedulability analysis of
Embedded Systems modeled by UML activity diagrams

Yessine Hadj Kacem∗, Adel Mahfoudhi∗, Amina Magdich∗, Chokri Mraidha† and Walid Karamti∗
∗CES Laboratory, ENIS Soukra km 3,5

B.P.: 1173-3000 Sfax TUNISIA
Email: yessine.hadjkacem, adel.mahfoudhi, amina.magdich, walid.karamti@ceslab.org

†CEA, LIST, Gif-sur-Yvette
F-91191, France

Email: chokri.mraidha@cea.fr

Abstract—This paper proposes a model driven approach for
the schedulability analysis at an early stage of the embedded
system development life-cycle. The activity diagram of Unified
Modeling Language (UML) annotated with the profile for the
Modeling and Analysis of Real-Time and Embedded systems
(MARTE) is mapped into Priority Time Petri Net (PTPN) to
enhance formal schedulability test of given real time tasks. The
generated PTPN model is interpreted and executed to check
whether a schedule of a task execution meets the imposed
timing constraints.
Therefore, the present paper focuses on the definition of
temporal properties and tasks dependency by means of ac-
tivity diagram and MARTE profile. Besides, it describes the
transformation rules from analysis model to formal model.

Keywords-activity diagram; MARTE; mapping rules; PTPN;
scheduling analysis

I. I NTRODUCTION

The Model Driven Engineering (MDE) [13] is seen as
very effective in dealing with the real time embedded system
complexity. It aims at decreasing the growing complexity of
real time systems and verifying their correctness. Hence,
the verification of system properties particularly real time
and precedence constraints is an essential issue. One of
the most important challenges is the schedulability test of
given real time tasks. In fact, the scheduling analysis phase
makes it possible to predict and validate the system temporal
behaviour before its realization. Thus, it allows the designer
to face the development risks. It must be certainly included
during the judgement and validation of each possible imple-
mentation. An analysis carried out earlier makes it possible
to guide the search for a better Software/Hardware imple-
mentation during the development cycle. As a consequence,
the analysis of non-functional properties has been integrated
at a high level abstraction layer in real systems development
life cycle.
UML profiles promote an adequate solution to represent
different system views with their embedded and real time
features. The recent MARTE profile [3] adopted by the
Object Management Group OMG, fosters the building of
models that support the specification of scheduling analysis

problem. Though it is a powerful and advanced standard
for annotating models with the required information for
performing scheduling analysis, it does not provide a tech-
nique for verifying models. The UML extension lacks a
tool to check system properties and constraints. So, a need
emerges for mapping used models to an external platform
for schedulability test. Talking about scheduling analysis
methods [14], in literature, allows us to distinguish between
three techniques that are simulation, feasibility test and
model checking. With regard to simulation, it is based on
the execution of the task progress during one system period,
which assures that all the authorities of tasks respect their
deadline. It can treat scheduling policies or task models that
are difficult to analyze mathematically. As for feasibility
test that applies a formula, it decides the realizability of
task scheduling according to which characteristics appear
to be the simplest method to implement with a low cal-
culation complexity. Contrary to the simulation and test of
feasibility, the model-checking provides examples showing
why an imposed constraint is not satisfied. In this context,
some research studies [12] [10] [6] [9] aim at transforming
UML/MARTE model into a scheduling analysis tool such
as [4], [2], [16] and [15]. Unfortunately, UML diagrams
are generally mapped into simulation platforms for schedu-
lability test as mention. It should be recalled that the
application of formal analysis techniques of UML views
has become a very active field of research in the last years.
Although, a few methods tackle the transformation of UML
activity diagrams annotated with MARTE profile into formal
models, only event’s flow has been treated, some elements
of activity diagrams will not be processed, which leads to
the impossibility of transforming complicated UML activity
diagram into Petri Nets.
In the same vein, Mallet et al. have introduced in [8]
mapping rules of an activity diagram based on UML to Petri
Nets. In fact, although, this extension supports real-Time
systems, it neglects other points of interest. In other words,
the use of UML without benefitting from its profiles (such
as MARTE) cannot provide high-level diagrams. So, the



proposed approach in [1] has introduced the transformation
rules of an activity diagram based on the adaptation of
SysML and MARTE to an extension of Petri «ETPN» (Time
Petri Net with Energy Constraints). The adaptation of these
two profiles supports the annotation of quantitative prop-
erties. ETPN extension can handle temporal and energetic
constraints of Real Time Systems. The paper presented in
[17] has introduced the transformation rules from an activ-
ity diagram UML/MARTE to the Petri extension TCPNIA
(Timed Colored Petri Nets with Inhibitor arcs). In brief,
the various proposed extensions of Petri Nets cited in the
previously mentioned work did neither support the problem
of scheduling analysis nor address the conflict when crossing
transitions.
Our proposal differs from the aforementioned ones in the
sense that it includes the application of UML diagram
and the MARTE profile and formal verification for the
schedulability test of given tasks and their implementation.
Indeed, among the existing formalisms, we bet our choice
on Priority Time Petri Nets (PTPN) [5] tool due to its special
sufficiency to support the scheduling problem. Moreover, the
priority included in this extension deals with the conflict
during the crossing transitions. Furthermore, its hierarchical
composition allows the considerable reduction of the size
and complexity of the nets[7].
Hence, the approach presented here adopts the model driven
engineering. Indeed, it takes a UML2 model instance cap-
tured through the Activity diagrams annotated with MARTE
profile stereotypes. A particular model of periodic and
dependent real time tasks is adopted. After that, the mapping
from UML into PTPN is performed. Next, the obtained
network is executed to verify whether a schedule of a
task execution meets the imposed timing constraints. The
results supply a description of the temporal fault to help the
designers in refining the partitioning space Sw / Hw. Yet, the
process goes to the methodology starting point by changing
the allocation of the task on an execution resource. After an
adjustment of tasks implementation, the adopted process is
executed again.
The remainder of this article is organized as follows. Section
2 provides an overview of the main concepts of PTPN. As
an introduction to the technical sections, basic concepts on
UML activity diagram and MARTE profile are introduced
in section 3. Then, Section 4 presents the used process to
translate a UML activity diagram into a PTPN model. In
section 5, we tell our experience from a football player
robot application in which our method has been applied.
Finally, the proposed approach is briefly outlined and future
perspectives are given in the last section.

II. OVERVIEW OF PTPN

PTPN is a 3-tuple defined byPTPN =< R, Tf , Pr >

where:

1) R is a regular Petri Net

2) Tf : T 7→ Q+ is the firing time of a transition
3) Pr : (T × P ) 7→ N is the priority of a transition

according to a place
In what follows, the PTPN model construction is explained
and the notion of PTPN component is then stressed.

A. PTPN Model Construction

This subsection illustrates how PTPN is used to model
real time tasks and especially their periodicity, priority,
dependency and distribution on a distributed architecture. In
fact, each task is characterized by a period, a deadline and an
activation date. These features are represented by «Period»,
«Deadline» and «TiCreated» places as well as «T-Period»,
«Activation» and «T-deadline» transitions, respectively. To
be executed, a prior task must lock a free processor so
that it can block a mutual exclusion resource through the
«BlockingRes» transition. Subsequently, the processor will
be blocked after the crossing of «BlockingProc» transition.
The crossing of «TakingProc» transition causes the recovery
of the computing resource. A task can send or receive
data to/from other concurrent tasks, which is a dependency
that is represented through «sendData» and «Ti-receive»
transitions, respectively. A PTPN model for Task T1 is
illustrated by Figure 1. More details about the specification
of the scheduling analysis problem can be found in [5]

Figure 1. Task modeling with PTPN

B. Local PTPN components for scheduling Analysis speci-
fication

A Real Time Embedded System (RTES) consists of a
set of real-time tasks and a set of processors. The formal
definition of an RTES is presented by definition 1.
Definition 1
The RTES Ω is defined by the 5-upletΩ =
{TK, Rs, P roc, alloc, Prio}, with:

• TK: is a finite set of real-time tasks with each task
determined by the following parameters:

– Ri: the date of the first activation
– Pi: the period associated with the task
– Ci: the execution period of the task for thePi

period



– Du: the life cycle of the task (the duration of total
execution). For each task, two invariants must be
respected:Ci ≤ Du andRi ≤ Pi

• Proc : a finite set of processors.
• Rs : TK 7→ {TK}∪{�}, a function which initializes

precedence relations between tasks
• Alloc : TK 7→ Proc, a function which allocates a

task to a processor
• Prio : TK × Proc 7→ N, a function which allocates

priorities to the tasks according to the processor.

The PN paradigm in objects necessitates the encapsulation of
the various behaviors of the object in a centenary called PN
component. A PTPN component called «Tc» is used to hide
the behavior of a real-time task. It shows only the binding
of tasks on computing resource as well as communication
between tasks. In fact, a PTPN component is composed of
an input interface containing input places and an output
interface containing output places; so that, mapping UML
activity diagram into PTPN component builds on the foun-
dation of the task object as well as its encapsulated attributes.
In this way, it consists in the creation of the Processor
object, the allocation of tasks on the computing resources
and finally the dependency management between tasks. A
PTPN component for a Task T1 is presented in Figure 2.

C. PTPN and Model Driven Engineering

The PTPN tool takes the form of a Petri Net editor
and an executer model of the modelled net. Indeed, the
developed editor of our PTPN relies on the Graphical
Modeling Framework (GMF) founded on Eclipse Modeling
Framework (EMF). It is obvious that the created model is
built around a drawing composed of places, transitions and
arcs. The created model can also be serialized to generate
an XML (Extensible Markup Language) or XMI (XML
Metadata Interchange) file. The generated file conforms to
the PTPN Meta Model and presents the entry port point of
the executer. Due to the structure of the editor output, the
properties of the modelled net are easily interpreted. The
verification framework is sufficiently flexible and expressive
to support module inclusion and extension.

Figure 2. PTPN Task component

III. UML ACTIVITY DIAGRAM AND MARTE NOTATIONS

FOR RTESSCHEDULING ANALYSIS

MARTE includes the Schedulability Analysis Modeling
(SAM) Modeling package that provides a rich terminology
to support early schedulability analysis. Several diagrams
can be adopted during the temporal analysis of the system
with UML views annotated by SAM package. The activity
diagram, in particular, is able to expose the dynamics of
a system because it models the sequences of its activities
(workflow). Indeed, they are capable of clarifying rather
complicated uses cases. They also present a great degree
of resemblance to the Petri Nets.
At this level, we focus on the SAM annotations applied to
the activity diagram. In fact, an external event depicting an
activation event that triggers the behavior of a system will
be annotated via the stereotype «GaWorkloadEvent». The
latter describes events that can occur repetitively. A periodic
event is annotated with the attribute «Arrival Pattern» in
order to fix its period. However its launching time will be
stereotyped by the attribute «TimedEvent». Moreover, any
activity/event which represents the execution of an operation
and asks for an execution resource (such as a processor) will
be annotated by «saStep». Through its attributes, it allows
the specification of the execution time via «exec-Time». The
priority, the deadline and the execution resources are mapped
to «priority», «deadline» «Host» respectively.
Moreover, «saStep» has the same attributes: «readyT» repre-
senting the execution beginning time of a software resource,
«preemptT» specifying the duration of pre-emption of a
task and «concurRes». «concurRes» allows the specification
of the concurrent resource in the course of execution on
the considered resource calculation. As it is possible to
send or receive data between various software resources,
it will be necessary to be based on a SAM stereotype
ensuring the annotation of such an action. In fact, the related
stereotype is «saCommStep». It is characterized by a set
of attributes allowing a varied annotation characterizing
the sending or the reception of a message. In particular
«respT» specifies the required time interval in order to
send or receive data. To be executed, a software resource
must obviously be allocated to a resource of hardware or
software execution. Consequently, it can, if necessary, block
a mutual exclusion resource shared to prohibit the access
to the required processor. This blocking is done via the
stereotype «gaAcqStep» which allows the specification of
the name of the mutual blocked resource via the attribute
«acqRes» and the time necessary to block it through the
attribute «respT». The task end execution on a previously-
blocked computing resource automatically causes its release
following the release of the mutual resource which protects
it. It is annotated by the stereotype «gaRelStep». Through
its attributes, «gaRelStep» allows to state the name of the
mutual exclusion resource to release through «relRes» and



the time necessary to be performed via the attribute «respT».
The allocation, the execution of the set of tasks on the
various processors and the communication between these
various software resources are represented by the activity
diagram presented in Figure 3. It is worth while to mention
that the given example deal with a real case study. More
details about it will be given in the last section.

IV. M APPING STRATEGY

The direct specification of scheduling analysis problem
within PTPN formalism remains a tedious task which re-
quires an expert knowledge. Compared to UML, the estab-
lished PTPN model contains more nodes and edges than
UML activity diagram. It is also difficult to understand, read
and maintain. Activity diagrams annotated with MARTE
profile stereotypes is based on abstraction, separation of
concerns. It can cover a great part of the life cycle complex
ERTS design with their real time constraints and perfor-
mance issues. However, UML lacks a tool to check system
properties and constraints, the mapping of used model to a
test schedulability tool is necessar. The rest of this section
depicts how to extract the elements from MARTE activity
diagram including timings constraints. The method consists
of the deriving activity diagram elements (nodes, transitions,
signals, actions, and synchronisation bar) and MARTE an-
notations into PTPN elements. Nevertheless, we opt for the
translation of the source model into PTPN components.

A. Mapping UML activity diagram to PTPN elements

Mapping Nodes
An initial node corresponding to the launching of the sce-
nario of the system will be transformed into a place marked
by an initial token. As for the node of the flow termination,
it expresses the end of an action regardless of the end of a
system activity. However, the final node indicates the system
end scenario. In the same way it will be transformed towards
an empty place without output arc. Table I illustrates the
process of the transformations of the initial and final nodes.
Mapping Transitions
In UML, a transition is a bond between two actions which
can take place only if the preceding activity has already been
finished, it will be transformed towards a Petri transition.
Mapping Signals

Table I
MAPPING NODES

MARTE Concepts PTPN

Transformation of an initial node

Transformation of a final node

An accepted signal represents the arrival of a signal. Of

course, its transformation into PTPN depends on the SAM
stereotype that annotates it. The accepted signal «Ti Cre-
ated» annotated by «gaWorkloadEvent» indicating the ar-
rival of a periodic software resource will be transformed into
a place marked by only one token. However, the accepted
signal «receiveData» stereotyped by «saCommStep» ex-
pressing the reception of a data sent between two dependent
tasks or within the same task will be transformed into a
place and a transition connected by an input arc.

Table II
TRANSFORMATION OF SIGNALS

MARTE Concepts PTPN

Transformation of an accepted signal

Transformation of a sent signal

The sent signal «sendData» annotated by «saCommStep»
indicating the data sent between two dependent tasks or
within the same task will be transformed into a place
connected to a transition through an output arc. Table II
presents a summary of the transformation process of the
two signals types.
Mapping Actions

Table III
TRANSFORMATION OF ACTIONS

MARTE Concepts PTPN

The action «Lock_Resource» annotated by «gaAcqStep» is
prerequisite if the access to the computing resource requires
its blocking. Consequently, as its stereotype, this action
indicates the blocking of a mutual exclusion resource and
the recovery of the corresponding execution resource. The
corresponding transformed PTPN is a place connected to a
transition by means of an output arc. The task execution
on the computing resource is presented by the action «Ex-
ecution Ti» stereotyped by «saStep». This action with the
related stereotype will be transformed into a place without
any token at the beginning. The end of the execution auto-
matically causes the release of the blocked mutual exclusion
resource as well as the related computing resource. The



action «unlock_Resource» annotated by « gaRelStep» is
mapped into a place attached to two transitions via two arcs
as shown in Table III.
Transformation of the attributes of stereotypes
The attribute «arrivalPattern» indicates that the task is pe-
riodic and that its period is fixed. The periodicity will be
transformed into a place connected to a transition via an
input arc and another output one. The value of the period
will be represented by a crossing condition of a transition.
Moreover, the attribute «TimedEvent» representing the ac-
tion activation will be transformed into a temporal firing
condition of a transition.
«acqRes» is an attribute allowing the specification of the
name of the blocked shared resource. It will be transformed
towards a marked place. The blocking of this resource is
characterized by a fixed response time set via the attribute
«respT» which will be transformed into a temporal firing
condition of a transition.

Table IV
TRANSFORMATION OF THE ATTRIBUTES OF STEREOTYPES

MARTE Concepts PTPN

«arrivalPattern»
«TimedEvent»

Transformation of the attributes of «gaWorkloadEvent»

«acqRes»
«respT»

Transformation of the attributes of «gaAcqStep»

«Deadline»

«execTime»
«priority»

«Host»
Transformation of the attributes of «saStep»

«relRes»
«respT»

Transformation of the attributes of «gaRelStep»

«respT» for data sending
«respT» for data receiving

«readyT»
Transformation of the attributes of «saCommStep, saStep»

As for «saStep», it is founded on certain attributes making
possible the integration of non-functional properties. . Let us
start with the temporal attributes which arise in «execTime».
They allow the indication of execution time that puts a
task during its execution on a given processor, it will be
transformed into a temporal condition. Thus, the attribute
«Deadline» will be translated into a place attached to a
transition through an output arc. However, its value will be
transformed into a temporal condition of transition’s cross-
ing. Then, the attributes «priority» and « Host» respectively
expressing the priority of a task compared to the concurrent
tasks and the name of the allocated processor will be mapped

to « Prio» and « nameProc».
The stereotype «gaRelStep» allows the release of the pre-
viously blocked mutual exclusion resource. It has similar
attributes «relRes» indicating the name of the released
resource and «respT» specifying the required time to be
done. These concepts will be mapped to «NameRe» and
the temporal condition of the firing transition «Free-Res».
The «saCommStep», indicating the sending or reception of
data, has the same attribute «respT» specifying the necessary
time to send or receive a signal. The transformation of this
attribute corresponds to a temporal crossing condition of a
transition. In fact, if the task sends the message before the
end of its execution, this moment will be fixed via the at-
tribute «readyT» related to «saStep». Consequently, we need
to gather the two stereotypes «saCommStep» and « saStep»
in order to benefit from the attribute «readyT». This attribute
will be transformed into a condition. Table IV illustrates
the various transformation phases of the stereotypes that
annotate the activity diagram into PTPN elements.
Transformation of a synchronization bar

Table V
TRANSFORMATION OF SYNCHRONISATION BAR

MARTE Concepts PTPN

The fork

The synchronisation

A synchronization bar is a solution to model concurrent
processes. In fact, there exist two families of synchronization
bars. The first of which is the forks also known under the
name of disjunction which represents simultaneous release
of several outgoing transitions. The other family is called
junction, which describes the synchronization of several
transitions in entry. Indeed, in the junction case of an out-
going transition, it can be crossed only if all the transitions
in entry are carried out. The mapping of synchronisation bar
to PTPN elements is illustrated in Table V. The complexity
of transforming the activity diagram into PTPN elements is
explained through the big size of the network specifying the
problem of schedulability analysis. Therefore, it becomes
difficult to understand, manage and particulary to interpret.
In order to minimize the processing cost, we choose the
translation into PTPN components for a better clear and
readable representation.



B. An alternative of the activity diagram formal checking:
Transformation into PTPN components

A PTPN component is a kind of container encapsulating
the object behavior. In our context, it encapsulates the way
to act for real time task. We suggest a PTPN component
named «COMP-ptpn» composed of an input interface in-
cluding the input places and an output interface containing
those of output. The input interface represents the input
placesT iCreated, P reviousR and GetProc. However, the
output interface is composed of the ouput places «Deadline»,
«terminated», «successor», «Release». Thus, the mapping
strategy covers mainly the task object creation and its
attributes, the processor object creation object processor and
finally the dependence management.
Transformation into Task object
The initial state of the activity diagram that triggers the
system scenario as well as the accepted signal indicating the
task creation will be transformed into an input marked place.
The termination node of the flow or final node indicating
the end scenario of a task and the system end scenario
respectively will be translated, in the same way, into a place
of the output interface.
It is worthy to note that each element of the encapsulated
PTPN specifies a task temporal characteristic as its period,
its activation date, its deadline and its execution time. Itwill
be produced as it is indicated in Table VI.
Transformation into Processor

Table VI
TRANSFORMATION OFTASK CHARACTERISTICS INTO ENCAPSULATED

PTPN ELEMENT

MARTE Concepts PTPN encapsulated
«SaStep» PTPN.P.execution

«arrivalPattern» PTPN.P.Period, PTPN.T.T-Period, PTPN.Tf(T-Period),
PTPN.ARC.inputArc, PTPN.ARC.outputArc

«TimedEvent» PTPN.T_f.T_f(Ativation)
«execTime» PTPN.T_f.T_f(End-exec)
«readyT» TPN.T_f.T_f(Before-finish)

«Deadline» PTPN.P.Deadline, PTPN.T.T-deadline,
PTPN.ARC.outputArc, PTPN.T_f.T_f(T-deadline)

A processor modeled via the attribute «Host» of the stereo-
type «saStep» will be transformed into a place «NameProc».
Communication Task/ Processor management
The communication task/ processor is translated via the
requirement and release of the processor during a certain
period. In fact, any activated task requires a computing
resource on which it will be executed. The recovery of
such resource is conditioned by the resource availability and
the priority of a task compared to its competitors. When
these two conditions are satisfied, an activated task passes
to block an exclusion mutual resource, if necessary, in order
to recover the required computing resource. This blocking
is carried out via «gaAcqStep» which will be transformed
into a place and a transition connected via an outgoing arc.
«acqRes» is an attribute of «gaAcqStep» which specifies

the name of the blocked resource. It will be translated into
a place bearing the name of the question resource.
When it finishes its job, a task must release the previously
occupied execution resource. So, it is specified through the
stereotype «gaRelStep». This annotation will be transformed
into a place and two transitions connected between them via
two arcs. The attribute «relRes» allows the identification
of the released resource name. Consequently, it will be
transformed into a place bearing the name of the related
resource. The time necessary for the recovery or the release
of a shared resource is indicated via the field «respT». Thus,
it will be transformed into a transition.
Communication between tasks: dependency concept
Certainly, several tasks can be allocated to the same ex-
ecution resource. Therefore, they will be dependent one
on the other. The trigger of the task execution on the
corresponding resource is conditioned by receiving data
from the prior task under execution on the required resource.
In fact, the dependence between tasks is only conditioned
by the requirement of the same execution resource on
behalf of various tasks. However, two tasks able to be
executed on various processors risk to be dependent. A task
can begin its work only after receiving data from another
task. The sending and reception of data between the tasks
is indicated through the sent signal «sendData» and the
received signal «receiveData» stereotyped, in the same way,
through «saCommStep» respectively. Each signal will be
transformed into a place and a transition connected by an
arc. The necessary response time while sending or receiving
data will be specified via the field «respT». This attribute
will be translated into a temporal crossing condition of a
transition.

V. CASE STUDY

This section is devoted to the illustration of the appli-
cability of the proposed approach through a case study.
The experiment presents a football player robot application
[11] in which video tasks for object detection, wireless
communications for message exchanging with other devices,
motors controls, sensor acquisition, image processing and
decision computation are included. The studied system is
composed of four major parts:

• Acquiring and processing image. It is handled through
tasks T2, T5, T7, T8 and T9;

• Communication HF: The information exchanges be-
tween the robot, players and coaches are made by the
following tasks: T1, T4;

• T6 and T12. Knowing that while T12 is used to send
data, T1, T4 and T6 serve for reception;

• Data fusion by task T10 and path computation through
T11;

• Control of location: it is done through the new trajec-
tory coordinates calculated by the task T11 and through



Figure 3. Schedulability analysis via the UML activity diagram annotated with MARTE profile

the current robot position. The location is computed
through task T3. Thereafter, T13 controls the motors;

As for the system architecture, it is composed of a processor
and three ASICs. In addition, the robot architecture includes
a set of memories: cache memory, DMA and RAM. It also
covers a battery and a communication bus. Figure 3 shows
a portion of UML/activity diagram annotated with SAM
stereotypes. The main tasks characteristics and dependency
are stressed in this diagram. The dependences between the
13 studies tasks are defined as follows:

• T1 sends data to T4 to convey a message with T6 which
can begin its execution on the corresponding processor;

• T2 sends data to T5 to allow its execution;
• T5 sends a message to T7, T8 and T9 to wake them;
• T10 can begin its execution only after the reception of

data since T6, T7, T8 and T9;
• After its execution, T10 can send a message to T12;
• T3 becomes ready for execution after the reception of

data from T3 and T11;

Based on transformation rules, the considered activity dia-
gram leads to the PTPN components. The construction of
the related state graph shows that T11, T12, T5, and T4 can
not meet their deadline. In fact, the transition t(Deadline)of
T11, T12, T5 and T4 are fired at 44 ms, 62ms, 102ms and
122 ms respectively.
The formal verification of UML models is not sufficient to
indicate a temporal fault but also supplies the combination

cause of this fault to the designer. As in the present study,
the PTPNS indicates that the partition (T4, T5, T11, T12) on
the processor is a combination to be neglected in the future
iterations of the HW/SW partitioning.
Compared to the existing methods, we deduce that the pro-
posed timing analysis model is represented in abstract way
since early devolvement stages. The resulting model after the
mapping process is easy to analyze. If the verification result
is negative, the complex design flow is not supposed to be
redone which can considerably decrease the development cy-
cle and avoid the violation of real time requirements. In fact,
the test identification while verifying temporal properties can
lead to a guided implementation/realization of the software
system part on a specific execution platform. Indeed, the
formal scheduling analysis in participate in reducing the
presence of errors leading.

VI. CONCLUSION

The verification of system properties at an early phase
is a recent trend in the development of RTES. The model
driven engineering facilitates the model annotation with the
system characteristics and their execution by mapping them
to verification tools. In this paper, we have presented an
approach for RTES schedulability analysis within the MDE
framework. In this context and as a first step, we have
presented the necessary concepts to build an activity diagram
annotated with the recent UML MARTE profile stereotypes.
Since UML lacks a tool to check system properties and



constraints, the need for mapping used models to an external
platform for schedulability test emerges. Hence, we bet
our choice on PTPN which is a Petri Nets extension for
the verification of RTES timing constraints. Thus, we have
presented the various transformation rules leading to PTPN
models. Because of the big size of the obtained PTPN model,
it remains difficult to understand, manage and interpret. So,
for a better, clearer and readable representation, we have
chosen to map our activity diagram into PTPN component.
The benefits of our approach are threefold: first we can
introduce the annotation of UML models with quantita-
tive properties via the MARTE profile. Besides, the used
Petri Nets extension of Petri Nets supports the problem of
scheduling analysis. It addresses the conflict when crossing
transitions. Furthermore, the PTPN hierarchical composition
allows the considerable reduction of the size and the Petri
Net complexity.
As future work, we would like to propose a multi processor
scheduling analysis approach. Moreover, our ultimate objec-
tive will be to propose an approach that addresses HW/SW
partitioning using MDE and PTPN.

REFERENCES

[1] Ermeson Andrade, Paulo Maciel, Gustavo Callou, and Bruno
Nogueira. A methodology for mapping sysml activity diagram
to time petri net for requirement validation of embedded
real-time systems with energy constraints. InProceedings
of the 2009 Third International Conference on Digital So-
ciety, pages 266–271, Washington, DC, USA, 2009. IEEE
Computer Society.

[2] Elena Fersman and Wang Yi. A generic approach to
schedulability analysis of real-time tasks.Nordic Journal of
Computing, 11(2):129–147, 2004.

[3] OMG Object Management Group. A UML Profile for
MARTE: Modeling and Analysis of Real-Time Embedded
systems, Beta 2, ptc/2008-06-09. Object Management Group,
June 2008.

[4] M. Gonzalez Harbour, J. J. Gutierrez Garciia, J. C. Palencia
Gutierrez, and J. M. Drake Moyano. Mast: Modeling and
analysis suite for real time applications.Real-Time Systems,
Euromicro Conference on, 0:0125, 2001.

[5] Yessine Hadj Kacem, Walid Karamti, Adel Mahfoudhi, and
Mohamed Abid. A petri net extension for schedulability
analysis of real time embedded systems. InThe 16th Inter-
national Conference on Parallel and Distributed Processing
Techniques and Applications, PDPTA’10, pages 304–314,
2010.

[6] Yessine Hadj Kacem, Adel Mahfoudhi, Hedi Tmar, and
Mohamed Abid. From uml/marte to rtdt: A model driven
based method for scheduling analysis and hw/sw partitioning.
In Eight ACS/IEEE International Conference on Computer
Systems and Applications AICCSA, pages 1–7. IEEE Com-
puter Society, May 16-19, 2010.

[7] Adel Mahfoudhi, Yessine Hadj Kacem, Walid Karamti, and
Mohamed Abid. Compositional specification of real time
embedded systems by priority time petri nets.The Journal
of Supercomputing, 59(3):1478–1503, 2012.

[8] Frédéric Mallet, Charles André, and Marie-Agnès Peraldi-
Frati. From UML to petri nets for non functional property
verification. InIndustrial Embedded Systems, 2006. IES ’06.
International Symposium on, pages 1–9, Antibes Juan-Les-
Pins, October 2006.

[9] Julio L. Medina and Alvaro Garcia Cuesta. Model-based
analysis and design of real-time distributed systems with
ada and the uml profile for marte. InProceedings of
the 16th Ada-Europe international conference on Reliable
software technologies, Ada-Europe’11, pages 89–102, Berlin,
Heidelberg, 2011. Springer-Verlag.

[10] Chokri Mraidha, Sara Tucci Piergiovanni, and Sebastien Ger-
ard. Optimum: a marte-based methodology for schedulability
analysis at early design stages.ACM SIGSOFT Software
Engineering Notes, 36(1):1–8, 2011.

[11] H.Kitano M.Veloso, E.Pagello. Robocup-99: Robot soccer
world cup iii. In Velsoso (Eds.).

[12] Ansgar Radermacher, Chokri Mraidha, Sara Tucci Piergio-
vanni, and Sébastien Gérard. Generation of schedulable real-
time component implementations. InETFA, pages 1–4, 2010.

[13] Douglas C. Schmidt. Model-driven engineering.IEEE
Computer, 39(2), February 2006.

[14] Lui Sha, Tarek Abdelzaher, Karl-Erik Arzen, Anton Cervin,
Theodore Baker, Alan Burns, Giorgio Buttazzo, Marco Cac-
camo, John Lehoczky, and Aloysious K. Mok. Real time
scheduling theory: A historical perspective.Real-Time Sys-
tems Journal, 28(2/3):101–155, 2004.

[15] Frank Singhoff, Jérôme Legrand, Laurent tchamnda Nana,
and Lionel Marcé. Cheddar : a flexible real time scheduling
framework.ACM Ada Letters journal, 24(4):1-8, ACM Press,
ISSN :1094-3641, November 2004.

[16] Hedi Tmar, Jean-Philippe Diguet, Abdenour Azzedine, Mo-
hamed Abid, and Jean Luc Philippe. Rtdt: A static qos
manager, rt scheduling, hw/sw partitioning cad tool.Micro-
electronics Journal, 37(11):1208–1219, 2006.

[17] Nianhua Yang, Huiqun Yu, Hua Sun, and Zhilin Qian. Map-
ping uml activity diagrams to analyzable petri net models.
In Proceedings of the 2010 10th International Conference
on Quality Software, QSIC ’10, pages 369–372, Washington,
DC, USA, 2010. IEEE Computer Society.


