
TOWARDS SYNTHETIC BENCHMARKS
GENERATOR FOR CAD TOOL EVALUATION

Mariem Turki
Habib Mehrez
LIP6, Paris 6

Email: mariem.turki@lip6.fr

Zied Marrakchi
FlexRAS Technologies

Paris, france
Email: zied.marrakchi@flexras.com

Mohamed Abid
CESlab

Sfax, Tunisia
Email: mohamed.abid@ceslab.org

Abstract—In the process of designing prototyping CAD tools
for system on chip, industrial need usually huge benchmark
designs to test and evaluate their tools.
However, observing the limits of existing and available bench-
marks, it is necessary to develop and provide large suites of
synthetic benchmarks with more specific characteristics.
In this paper, we present a benchmark generator providing
various sets of architectures. The generation includes also the
creation of the executable code of the application which will be
executed in the hardware architecture.
In the experimental results, we show that our generator is able
to generate various sets of synthetic benchmarks with several
millions of gates. Those sets includes hierarchical, heterogeneous
and asynchronous circuits.

I. INTRODUCTION

With the global trend towards digital systems, designers
studies are focused to manage the design complexity in the
available design time that is ever decreasing due to tightening
time-to-market constraints.
One interesting feature to decrease the time to market is to
validate the increasingly large designs erlier before reaching
the manufacturing phase. This feacture is called multi-FPGA
hardware prototyping.
However, the big challenge of prototyping CAD vendors is
to find specific benchmarks to validate and test their tools
and algorithms. Indeed, the requested benchmarks have to be
various and big enough in order to be tested in a multi-FPGA
board. The variety is assured by generating designs with a
mix of homogeneity and heterogeneity. One other constraint
of the requested benchmarks is the testability. In other words,
user should always have controlability and observability on
the circuit under test.
The first initiative to generate such circuits was made by CBL1

[1], [2] and MCNC2[3]. However, those benchmarks are not
big enough to target the current challenges of prototyping
CAD tools which require netlists with up to several millions
of gates. Indeed, the biggest circuits given by CBL is s38584
netlist and it contains only 2904 configurable logic blocks
(CLBs) [4].
More recently, researchers developed a benchmark generation

1Collaborative Benchmarking Laboratory, North Carolina State Univer-
sity,Raleigh, NC.

2Microelectronics Center of North Carolina

program GNL3 [5] which generates netlists with more realistic
behavior. This program is based on Rent’s rule [6] to control
the interconnection complexity. Indeed, the user defines the
number of gates, flip flop, the number of primary inputs,
outputs and also the rent exponent. GNL uses a bottom-up
approach, so it starts by establishing connections between a
set of gates which allows to create a number of clusters. The
clusters themselves are recursively paired further with other
clusters until all clusters are combined to one circuit. When
doing the connections, the program ensures the respect of the
Rent exponent at every level. The problem of this method, is
that since the assignment of the functionality to the gates is still
done at random, the generated circuits are highly redundant.
In 2005, the IWLS benchmarks suite was published by In-
ternational Workshop on Logic and Synthesis (IWLS)[7]. It
contains diverse circuit designs derived from past conference
benchmarks, open source community of hardware designers,
and industry to represent a variety of applications. Although
these circuits are relatively big, but they do not offer any
solutions for testability during the implementation in the multi-
FPGA board.
In this paper, we seek to generate more realistic circuits.
Whereas previous efforts for benchmark generation mainly
focused on graph-based properties of circuits, we wish to
generate bigger architectures based on open library IP. Our
work targets circuits with synchronous and asynchronous
clocking.
To reach this goal, we modified some existing tools to make
the generation more fast and especially automated.
In section 2 we give a brief description about the hardware
prototyping steps. Section 3 describes the proposed bench-
mark generation framework. It includes the hardware and the
software toolchains. Section 4 states the proposed architec-
tures details. Asynchronous features included in the generated
benchmarks are covered in section 5. Finally, experiments and
results are presented in section 6.

II. HARDWARE PROTOTYPING

Many design and verification teams are increasingly
using multi-FPGA prototyping to meet ever decreasing
time-to-market constraints. Prototyping includes two steps:

3gnl is the acronym for Generate NetList



Fig. 1. DSX toolchain

partitionnig and routing. The partitioning algorithms search
for the best partition with the lowest inter- FPGA connections
abd highest system performance. The output of this task is a
new design hierarchy which highlights the different partitions
for each FPGA.
The routing algorithm routes inter-FPGA and I/O signals
through board traces or FPGA’s with the objective of
minimizing signal delays. The Outputs of this task includes
individual projects for each FPGA containing each the
multiplexing IP for signals in the FPGA interface.

III. BENCHMARK GENERATOR FRAMEWORK

The Design Space eXploration (DSX) tool[8] allows
the co-design of hardware platforms based multiprocessor
architectures on chip (MP-SOC). Initially, DSX uses
component modules provided by the library SoCLib[9].
The modules are written in systemC and yet the generated
description file of the platform is written in systemC.
In a second step, we modified DSX to generate, in addition to
the SystemC simulator caba, a synthesizable VHDL platform
and implementable on FPGA board. The initial toolchain
(systemC) and the working environment have been modified
in order to facilitate the generation of the systhesizable VHDL
netlists. In the Fig 1, we present the proposed toolchain.
To generate specific architectures, the user have to set the

platform characteristics in the input files.

A. Input files

Three files are needed to generate the architecture. The
first one is the platform description file which is written in
python language. This file contains the instantiation of each
component in the architecture with the specific parameters.
For example, when instantiating the simple ring bus which
connects all components, user need to specify the number of
initiators, the number of targets, the size of data etc.. This
file contains also the connections between all components.
This step is made using simple commands thanks to metadata
file (.sd) which contains a detailed description of the interface
of each component. All the ports of each module are

enumerated with related details such as the port type, size,
name etc..
For example, let’s cite the VCI protocol. The user is not
obliged to connect all the signals of this protocol. In the
metadata file, the VCI port isdeclared as a composed port
which contains many related signals like shown in Fig 2. So,
when the user connects the bus to any other component, he
have to mention only the connection between the composed
ports of those components, and the related signals will be
connected automatically. In other words, the connection
between the component and the ring is done by the following
simple line:
VCI ring.port.vci // component.port.vci
The last input file is the software application. The applications

Fig. 2. Example of composed port

should be written as multiple communicating tasks (threads).
This script can easily distribute the application on the
platform. The goal is to get applications with a variable
number of tasks running on a platform having itself a variable
number of processor / coprocessor. The application must
allow accurate testalibility. Indeed the user is able to observe
results using leds on the board or using messages on the
screen sent by the uart component. In the other side, the
processors can send patterns for the different coprocessors
and test the results with references saved in the memory.

B. Output files

After preparing all the input files needed to create the
architecture, DSX generates the related output files.
The first output is the VHDL Ram file. We use a software
toolchain called by DSX. This toolchain is represented in Fig
3.
The software application is compiled with a cross compiler

Fig. 3. Software toolchain



related to the processor in the architecture. The binary file
will next pass through an elfloader to extract the content of
every segment. The final step is to generate a vhdl file which
instantiates the considered ram-block with the executed code.
The VHDL Ram file, the topcell file and the VHDL
components are the inputs of the corresponding vendor
environment (ISE/quartus) to generate the bitstream which
will be loaded into the FPGA.

IV. BENCHMARK ARCHITECTURES

A. monocluster architecture

The proposed benchmarks are multiprocessors based
architecture and contains also many coprocessors. The goal
of generating such architectures is to obtain asymmetric and
decentralized benchmarks. Those architectures represent a mix
of homogeneity(multiprocessors) and heterogeneity(multi-
coprocessors). An example of this architecture is represented
in Fig 4.

This architecture contains a set of components which

Fig. 4. Example of generated architecture

communicate via a VCI protocol. All those components are
connected to a ring bus which is parameterizable, so the user
can easily set the number of targets, initiators etc..
The example in the Fig 4 contains N processors and 3 targets:
Ram, uart and a parameterizable multi-fifos component. The
multififos acts as a bridge between the coprocessors, each
with a fifo interface, and the ring network. The user can use a
large set of coprocessors in order to have the biggest design.
To add more suppleness to our design, and to make it more
realistic, we choose to integrate an embedded FPGA in
the multicoprocessor architecture. Indeed, more recent SOC
contains some field programmable cells in order to reuse
a portion of the chip and to introduce new features in the
design even after its fabrication.
In addition, FPGA vendors and new IP developers are now
offering hard embedded FPGA core that can be added into a
SOC design[10], [11].
The embedded FPGA which we included in our architecture
has been developed into our laboratory[12].
The Fig 5 shows the connexion interface between the e-FPGA
and the multi-fifos component.
To communicate with the e-FPGA, we need only one read

Fig. 5. e-FPGA interface

fifo and one write fifo. The first one is used to configure our
e-FPGA and also to select the inputs. The write fifo is used
to recover the resulting outputs.

B. multicluster architecture

Experimentally, when we increase infinitely the number
of processors, we are faced to the bandwidth limitation.
For this reason, we choose to pack processors into clusters
and create a two-level interconnect. The global (inter-cluster)
interconnect will use the DSPIN [17] Network on Chip that
supports the VCI standard. the local interconnect uses a simple
ring network with gateways to communicate with the global
network.
The DSPIN network on chip has a 2D mesh topology and
provides a truly scalable bandwidth. Each node in this mesh
represents a router and its corresponding cluster (called sub-
system). The router has five modules. Four of them are placed
on the north, south, east, and west side of the subsystem
in order to route the packets between the clusters in the
horizontal and vertical sides. Finally, a local module which
communicates to the local subsystem through the Network
Interface Controller (NIC).

V. ASYNCHRONOUS CLOCK

Most of recent system on chip are asynchronous designs.
So, as the CAD tools are more and more supporting the
asynchronous methodologies, we propose here to integrate the
asynchronous factor in our benchmarks.
The idea is to insert a bi-synchronous fifo between the VCI
local bus and the VCI uart component.
Actually, we decided to keep the VCI interface of the uart

component, and we tried to transfer all the control signals of
the VCI protocol trough the bi-synchronous fifo.
The Fig 6 shows the connection between the the network and



TABLE I
PROTOTYPING RESULTS OF SOME GENERATED BENCHMARKS

Benchmark LUTs RAMLUTs DSP RAM REG NB FPGA MUX ratio Freq(MHz)
CPU 20 143217 6192 2 21 66937 1 1 80
CPU 30 213524 9272 2 21 99588 3 9 27,78
CPU 50 353697 15432 2 21 164587 4 12 20,83
CPU 125 879897 38532 2 21 408712 5 17 14,70

Fig. 6. Integration of an asynchronous fifo

the fifo from one side, and between the fifo and the uart from
the other side.

VI. EXPERIMENTS AND RESULTS

We evaluated several synthesis tools such as Synopsys’s
Synplify Pro[13] and Xilinx’s XST[14] for the targeted boards.
Since our benchmarks are relatively big, the primary impor-
tance was to select a tool which could synthesize the design
in an acceptable runtime.
However, XST was not able to synthesize our generated
designs which exceed some hundred of thousands of LUTs.
The synthesis process always ends with an out of memory
error.
So we select synplify pro as a synthesis tool since it has the
compile point feature which allows a fast synthesis runtime.
The idea is to divide the design into different parts or points
that can be processed independently. We select the components
which forms the biggest part in the design. These are the first
to be synthesized starting with the block at the lowest level
of hierarchy in the design. After all the compile points are
synthesized, the software synthesizes the design from the top
down, using the model information for each compile point.
Our benchmarks are used by Flexras technology’s prototyping
tools[15]. The results of implementation of some bench-
marks in a multi-FPGA board are presented in table I. The
board used to prototype our designs contains six virtex-6
FPGA(xc6vsx475tff1759)[16]. TableI shows the details related
to each benchmark such as lut size, register numbers etc..After
partitioning and routing the designs into the multi-FPGA

board, information about the frequency and the number of
used FPGAs are given by the prototyping tool.

VII. CONCLUSION

In this paper, we presented the framework of a synthetic
benchmark generator. Our generator is able to design various
set of circuits in a very small time using an existing IP
library. the generation includes the hardware and the software
parts of the circuit.
The resulting benchmarks are suitable for multi-FPGA
prototyping CAD tool evaluation since they include
requested properties like hierarchy, asymmetry, big size
and asynchronous clocking.

REFERENCES

[1] Computer aided design benchmarking laboratory,
http://www.cbl.ncsu.edu/benchmarks/.

[2] C. J. Alpert, “The ispd circuit benchmark suite”, in Proc. ACM/SIGDA
Intl. Symp. on Physical Design, 1998, pp. 85- 90.

[3] “layout synthesis benchmark set”, microelectronics center of north car-
olina, research triangle park, NC, May 2006.

[4] R. Kuznar, F. Brglez, and K. Kozminski, “Cost minimization of partitions
into multiple devices”, in In Proc. 30th ACM/IEEE Design Automation
Conf, June 1993, pp. 315- 320.

[5] D. Stroobandt, P. Verplaetse, and J. van Campenhout, “Generating syn-
thetic benchmark circuits for evaluating cad tools”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 19, pp.
10111022, Sept. 2000.

[6] B. S. Landman and R. L. Russo, “On a pin versus block relationship
for partitions of logic graphs”, IEEE Trans. on Comput, vol. C.20, pp.
14691479, 1971.

[7] C. Albrecht, “Iwls benchmarks”, www.iwls.org/iwls2005, 2005.
[8] N. Pouillon and A. Greiner, URL=https://wwwasim. lip6.fr/trac/dsx/,

2006-2008.
[9] “Soclib project: Platform for modeling and simulation of integrated

systems on chip”, http://www.soclib.fr/.
[10] M. Inc, “Menta efpga core-ii data sheet brief”,

http://www.menta.fr/down/DatasheetBrief-eFPGA-core- II.pdf, Feb.
2009.

[11] “M2000 intros largest 90nm efpga, design and reuse”,
http://www.design-reuse.com/news/9614/m2000- introslargest-90nm-
efpga.html, Feb. 2005.

[12] http://www-soc.lip6.fr/recherche/cian/.
[13] Synopsys FPGA Synthesis User Guide, 2011.
[14] Xilinx. xst. www.xilinx.com/products/design tools/logic design/ synthe-

sis/xst.htm
[15] www.flexras.com.
[16] www.dinigroup.com/new/dnv6f6pcie.php.
[17] I. Miro-Panades and A. Greiner and A. Sheibanyrad, ”A Low Cost

Network-on-Chip with Guaranteed Service Well Suited to the GALS
Approach”, 1st Int. Conf. on Nano-Networks and Workshops, Sep 2006.


