
Le développement des IHM dirigé par les modèles

Wided Bouchelligua1, Adel Mahfoudhi1, Mourad Abed2

1 : Faculté des sciences, département d’informatique
Route Soukra Km 3.5 Sfax (Tunisie)
wided_bouchelligua@yahoo.fr, adel.mahfoudhi@fss.rnu.tn

2 : LAMIH (UMR CNRS 8530) Université de Valenciennes
BP : 311 – 59304 Valenciennes cedex 9 (France)
mourad.abed@univ-valenciennes.fr

RÉSUMÉ. Cet article présente une approche à base de modèles pour la génération d’Interface
Homme-Machine (IHM). Il décloisonne les recherches unissant l’ingénierie des modèles IDM
(Ingénierie Dirigée par les Modèles) autour du problème de génération à partir de spécifications.
L’objectif est d’une part de montrer que les concepts de l'Ingénierie Dirigée par les Modèles,
s'appliquent au domaine des IHM et d’autre part, de faire bénéficier l’ingénierie des IHM de deux
formes générative et intégrative de l’IDM. Nous proposons une démarche de développement des
applications interactives visant l’unification de la conception et de l’exécution d’IHM. La conception
d'une IHM y est vue comme une série de correspondances entre quatre métamodèles : les tâches
utilisateur, les objets du domaine, l’espace interactif et finalement la maquette de l’implémentation.

ABSTRACT. This article presents an approach containing models for the Man-machine generation of
Interface (IHM). It decompartmentalizes research linking the Model Driven Engineering MDE around
the problem of generation starting from specifications. The objective is on the one hand to show that
the concepts of the Engineering Directed by the Models, apply to the field of the IHM and on the other
hand, to make profit engineering from the IHM of two forms generative and integrative of the IDM.
We propose a step of development of the interactive applications aiming at the unification of the
design and the execution of IHM. The design of a IHM is seen there like a series of correspondences
between four metamodels: the tasks user, objects of the field, interactif workspace and finally the
model of the implementation.

MOTS-CLÉS : Interface Homme-Machine, Ingénierie Dirigée par les Modèles, génération des
Interfaces Homme-Machine.

KEYWORDS: Man-machine interface, Model Driven Engineering, Man-machine generation of the
Interfaces.

 1

mailto:wided_bouchelligua@yahoo.fr
mailto:adel.mahfoudhi@fss.rnu.tn
mailto:mourad.abed@univ-valenciennes.fr

1. Introduction

Un système interactif est une application
proposant une interface dirigée par
l’utilisateur; application qui ne prédéfinit
aucune séquence d’opérations et se contente de
répondre aux requêtes qu’elle reçoit de ses
utilisateurs. Une interface peut être vue comme
un dispositif qui sert de limite commune à
plusieurs entités communicantes. Elle doit
assurer à la fois la connexion physique entre
les entités et effectuer des opérations de
traduction entre les formalismes des parties
communicantes. Dans le cas de l'interface
Homme Machine la connexion a lieu entre
l'image externe du système et les organes
sensoriaux de l'utilisateur. La réalisation d'une
telle interface suppose donc la connaissance
précise du comportement de chacune des
entités à relier, ce qui rend cette tâche
complexe et souvent empirique. Malgré les
récents progrès dans les domaine de génie
logiciel et de l’ingénierie de la conception, la
conception des applications interactives (grand
public, embarquée, télécommunication,
informatique, industriels,…) révèle de
problèmes conceptuels, méthodologiques et
technologiques. Pour cela, la conception des
IHM constitue, aujourd’hui, un domaine de
recherche qui exige des progrès visant la
résolution de ces problèmes. Les travaux
élaborés dans cet axe de recherche ont menés à
de nombreux outils, formalismes et méthodes
assurant une couverture plus ou moins
complète du cycle de développement des
applications interactives. Ces travaux qui sont
menées depuis le milieu des années 90,
s’appuient sur le paradigme de la conception
d’interface utilisateur à base de modèles
(Model-Based user interface Design ; MBD)
[Szekely., 1996]. C’est une description de la
sémantique de l’application et toutes les
connaissances nécessaires à la spécification
tant de l’apparence de l’application que du
comportement du système interactif. Celle-ci
décrite dans un langage de haut niveau
spécialisé engendre une génération totale ou
partielle du code de l’application. Les
environnements qui soutiennent ces approches
sont appelés MB-IDE (Model Based –
Interface Development Environment),
[Szekely, 1996] traduit en environnement de
développement d’interface à base de modèles.

Selon [Szekely, 1996], les principaux
composants d’un MB-IDE sont le modèle, les
outils de modélisation, les outils de conception
automatisée et les outils d’implémentation. Le
modèle représente les caractéristiques de
l’application du point de vue de l’interface, au
sens large incluant les concepts de dialogue et
de représentation. Il est le composant central
des approches basées sur le modèle.

La Littérature a apporté des réponses afin
d’assurer un développement continu de
l’analyse à l’implémentation des systèmes
interactifs. Plusieurs approches MBD ont été
élaboré tel que : MASTERMIND [Szekely et
al., 1995], ALACIE [Gamboa-Rodriguez,
1998], DIANE+ [Tarby, 1993], etc.
Cependant, aucun travail concret n’a porte ces
travaux qui se basent sur les modèles
d’interaction au service de l’ingénierie dirigée
par les modèles. L’ingénierie des modèles est
une forme d’ingénierie générative, par laquelle
tout ou partie d’une application informatique
est générée à partir de modèles. Une des
solutions reconnue actuellement pour atteindre
ce but est de passer d’une approche orientée
code vers une approche orientée modèles. De
ce fait, notre ambition dans cet article est de
rapprocher le domaine d’IHM avec celui de
l’IDM, par la proposition d’un cadre
méthodologique pour le développement des
applications interactives. L’intérêt porte
particulièrement sur l’unification de la
conception et de l’exécution d’IHM par
transformation de modèles (Modèle de la
tâche, Modèle des objets du Domaine, Modèle
de l’Utilisateur…) qui peuvent être productifs
au sens de l’IDM [Bézivin et al., 2005].

Après une première section qui pose les
concepts de base de l’approche IDM, la section
3 présente une synthèse justifiant notre vision
d’intégration de deux communautés IHM et
IDM. La section 4 présente la démarche
proposée détaillant les métamodèles à la base
de la conception de l’IHM. Un cas d’étude
simple sera donné et sera employé à titre
d’illustration tout au long de l’articule. La
section 5 se focalise sur les aspects de
transformations possibles entre les différents
modèles de la démarche. Enfin, la section 6
fournit une conclusion et développe les
perspectives de ce travail.

 2

2. Concepts essentiels de l’IDM

Depuis l’adoption récente du Model Driven
Architecture (MDA) [MDA] par l’OMG [OMG],
l’approche orientée modèle a suscité un grand
intérêt. En fait le MDA a mis un accent fort sur
des notions fondamentales telles que les modèles,
les métamodèles et les transformations. Cette
approche focalisée sur les architectures à base de
composants, traite séparément la logique métier et
les contraintes technologiques. La logique métier,
habituellement cachée dans le code, est ainsi
modélisée de manière abstraite et indépendante de
toute implémentation (PIM – Platform
Independent Model). Puis ce modèle, par des
règles de transformation, est automatiquement
traduit vers la ou les plateformes souhaitées (PSM
– Platform Specific Model). Les intérêts
principaux d’une telle approche sont une
meilleure qualité logicielle due à la prise en
compte rapide des évolutions technologiques (par
création ou modification des règles de
transformation). Le MDA peut se résumer à
l’élaboration de modèles indépendants de plates-
formes et à la transformation de ceux-ci en
modèles dépendants de plates-formes [Bézivin et
Blanc, 2002]. Ensuite, l’approche MDA est
devenu une variante particulière de l’ingénierie
dirigée par les modèles (IDM en français ou MDE
pour "Model Driven Engineering") pour recouvrir
aussi les aspects méthodologiques.

L’IDM est basée sur trois concepts essentiels :
les modèles, les métamodèles [Terrase et al.,
2005] et les transformations. Ces termes
fréquemment utilisés dans l’IDM et les relations
entre ces termes ont été largement discutés dans la
littérature [Seidewitz, 2003], [Bézivin, 2004],
[Kleppe et Warmer, 2003], [Bézivin et Gerbé,
2001] et [Atkinson et Kühne, 2003]. Dans
[Bézivin, 2004], Bézivin identifie deux relations
fondamentales : la première relation, appelée
ReprésentationDe est liée à la notion de modèle,
la deuxième appelée EstConformeA définit la
notion de modèle par rapport à celle de
métamodèle (voir Figure 1).

La littérature a donné plusieurs définitions
pour le concept modèle, cependant il existe une
convergence entre ces définitions. Elles visent
toutes à faire référence à la notion de modèle et
système modélisé. En effet, un aspect d’un
système est capturé par un modèle. La relation qui
lie un modèle et un système modélisé est appelée
ReprésentationDe. Cette relation est notée µ. Un
métamodèle est un modèle d’un langage de
modélisation. La notion de métamodèle mène à
l’identification d’une seconde relation nommée
EstConformeA [Bézivin, 2004] [Favre, 2004].

Cette relation est notée χ. Cette relation permet
d’assurer la productivité d’un modèle puisqu’il est
conforme à son métamodèle. Ceci facilite la
transformation de modèles. La notion de
transformation est un autre concept central pour
l’IDM, le mécanisme de transformation permet
d’utiliser les deux notions Modèle et Métamodèle.
La puissance de l’IDM consiste à créer les
modèles de transformation. Ces modèles se basent
sur les métamodèles correspondant au modèle
source et au modèle cible. Ainsi la relation
EsttransforméEn notée τ permet d’automatiser la
transformation d’un modèle vers un autre.

Figure 1: Basic Notions in Model Engineering

Dans cette section, nous avons choisi de
présenter les différents concepts et relations de
l’IDM, afin de montrer leurs correspondances
avec ce qui sera utilisé dans la suite côté de
l’IHM. Ainsi, nous optons à une nécessité
d’intégration entre les deux communautés IHM et
IDM. Tout au long de la démarche de conception
de l’IHM proposée les différents modèles seront
conformes à leurs métamodèles. Nous serons
conforme aussi avec l’architecture pyramidale de
l’OMG qui permet de classer et d’organiser les
méta-méta-modèles, les méta-modèles, les
modèles et les données utilisateurs.

Les niveaux manipulés par notre démarche
sont le niveau Méta-Modèle noté MM et le
niveau Modèle noté M.

3. La démarche de conception de l’IHM

Afin d’illustrer les différents modèles et
métamodèles de la démarche proposée, nous
avons choisi un cas d’étude simple. Il souvent
difficile d’appréhender l’approche IDM dans le
cadre d’un article, notamment ici avec un nouveau
domaine. Ainsi, l’exemple donné a une seule
visée de montrer la vision globale de la
démarche. Il concerne le développement d’une
application permettant aux clients d’un complexe
cinématographique de consulter les films à
l’affiche et de réserver des billets. Les contraintes
suivantes ont été fixées :

 les clients peuvent réserver directement des
billets sans passer par une phase de
consultation ;

 3

 les clients peuvent réserver des billets pour la
séance du jour même, ou pour un autre jour,
mais toujours avant le mercredi suivant, jour de
sortie des nouveaux films ;

 un client peut rechercher un film à partir de son
titre, de sa catégorie, des acteurs présents dans
le film, de l’heure de passage du film, ou de la
date du film. Un seul critère sera utilisé à la
fois ;

 après avoir recherché un film, les clients
peuvent réserver des billets pour le film ou
obtenir des informations concernant le film.

La méthode proposée s’articule sur une
transformation d’une série de modèles couvrant le
processus de développement allant de la
spécification du domaine (objets et tâches) à la
l’IHM finale. Quatre modèles sont à la base de la
méthode :

 Modèle des Objets du Domaine (MOD),

 Modèle de la Tâche (MT),

 Modèle Espace Interactif (MEI),

 Modèle d’Implémentation (MI).

La figure 2 montre une vision globale sur la
démarche proposée et représente l’ensemble de
transformations (par des flèches) envisagé entre
les modèles couvrant la démarche dans une
approche inspirée de l’IDM.

Figure 2: Processus de développement de l’IHM

3.1 (Méta)-Modèle des Objets du Domaine (MM-
OD et M-OD)

Le modèle des objets du domaine décrit les
entités du domaine, recensées à partir de l’analyse
de l’existant et des besoins, manipulées dans les
tâches. Il explicite par exemple que le "serveur de
cinéma" est composé de "salles" et qu’à un "Film"
participe un ou plusieurs "acteurs". La salle est

définie par un numéro et un nombre de places
maximal. Le métamodèle des objets s’appuie sur
les relations d’héritage et d’association telles que
définies dans le diagramme des classes UML.
Chaque OD est lié à une ou plusieurs tâches dans
lesquelles il accomplit à leurs réalisations. La
figure 3 propose un Métamodèle et un Modèle des
Objets du Domaine, illustré sur le cas d’étude.

Figure 3: Métamodèle et modèle des objets de
domaine

3.2 (Méta)-Modèle de la Tâche (MM-ST et M-
ST)

Le Modèle de la Tâche est obtenu à partir
d’une décomposition du travail utilisateur en
éléments significatifs appelés tâches. Chaque
tâche est caractérisée par un but que l’utilisateur
vise atteindre. Une telle tâche peut atteindre son
but à travers l’exécution d’une procédure qui
définit un ensemble des sous-tâches nécessaires
pour son accomplissement. Une procédure définie
la décomposition récursive des tâches jusqu’à
l’obtention des tâches terminales ; c’est-à-dire des
tâches qui ne seraient décomposables qu’en
actions élémentaires. Les relations entre les tâches
sont définies par des opérateurs (séquence, choix
et parallélisme). Comme le montre la figure 4,
l’application serveur de cinéma se décompose en
deux tâches principales : la tâche « chercher un
film » et la tâche « chercher un film ». Cette
dernière est elle même décomposée en trois sous-
tâches : de recherche, de réservation et de collecte
d’informations supplémentaires sur les films.

MétaModèle
des objets du domaine

Modèle
des objets du domaine

MétaModèle
de la tâche

Modèle
de la tâche

MétaModèle
Espace Interactif

Modèle
Espace Interactif

MétaModèle
d’implémentation

Modèle
d’implémentation

Démarche de conception de l’IHM

L’IHMAnalyse
de besoins

 4

Figure 4: Métamodèle et modèle de
décomposition hiérarchique de la tâche racine
« serveur de cinéma »

La tâche nécessite un ensemble d’objets qui
supporte son exécution nommé ressource. Cette
ressource est représentée par une classe composite
de la Classe_Tâche (voir figure 5).

Figure 5: Métamodèle et modèle des objets de
domaine

Comme le montre la figure 5, chaque tâche
possède aussi :

 un ensemble de descripteurs généraux : nom,
description, indice et type,

 une Interface_Entrée (IE) spécifiant les objets
de domaine nécessaires pour sa réalisation :
enclencheurs, données de contrôle et données
d’entrée,

 une Interface_Sortie, composée des objets de
domaine résultant de la réalisation de la tâche
qui sont de deux types : évènements de réaction
et données de sortie.
Une fois la décomposition est réalisée la

méthode prévoit d’affecter les objets de domaine
nécessaires pour l’accomplissement de chaque
tâche.

3.3 (Méta)-Modèle des espaces interactifs

L’articulation entre modèle de système et
modèles de tâches est très importante dans la
construction des systèmes interactifs. La
réalisation d’une tâche interactive fait intervenir
des espaces (ou objets) interactifs et un utilisateur
qui sont ses ressources (voir figure 5). Ainsi, notre
démarche préconise de décrire le contenu de
chaque tâche terminale, identifiée dans le modèle
de la tâche, par deux modèles : de l’interface
d’utilisation appelé modèle local de l’interface
(MLI) et le modèle du comportement (cognitif et
physique) de l’utilisateur appelé (MU). Ces
modèles qui décrivent le comportement de
l’utilisateur en situation d’utilisation du système
permettent de spécifier précisément les différentes
stratégies d’appréhension des espaces interactifs,
leur enchaînement et leur contenu conceptuel.

Le diagramme d’états/transitions UML est
utilisé pour modéliser la dynamique de ces deux
modèles.

3.3.1 Modèle de l’Utilisateur (MM-U et M-U)

Le Modèle de l’utilisateur décrit l’ensemble
des stratégies qu’un utilisateur est sensé effecteur
lors de la tâche. Comme le montre la figure 6, les
états du diagramme d’états/transition peuvent être
étiquetés par trois états de l’opérateur : Perception
(Lecture), Cognition (Evaluation) ou Action
(Physique). Ces états correspondent aux trois
principaux sous-systèmes de l’opérateur humain
(visuel, cognitif et moteur). Alors que les
transitions modélisent les actions que l’utilisateur
est amené à entreprendre pour exécuter la tâche
terminale en question, et qui permettent d’évoluer
d’un état opérateur à un autre.

3.3.2 Modèle Local de l’Interface (MM-LI et M-
LI)

Le Modèle Local d’Interface décrit le
comportement des objets interactifs
conformément au comportement de l’utilisateur
dans la réalisation de sa tâche. Les états du
diagramme représentent les différents états de
l’objet. Le comportement de l’objet interactif est
défini par l’enchaînement d’états et de transitions.
Ainsi, une transition est un changement d’état
induit par une occurrence d’événement. Une
transition est conditionnée par une garde, ayant
pour forme Evénement [Condition]/Action, qui
peut exécuter une action et générer des
événements.

 5

3.3.4 (Méta)- Modèle Abstrait de l’Interface
(MM-AI et M-AI)

Le Modèle Local de l’Interface est construit
par la spécification des objets interactifs en
rapport avec des tâches terminales
indépendamment les unes des autres. En réalité,
l’interface utilisateur, et par conséquent chaque
objet interactif, ne se limite pas à une tâche
spécifique ou à une transition particulière. Pour ce
faire, nous définissons le Modèle Abstrait de
l’Interface qui décrit des espaces interactifs (ou
IHM). La construction d’un espace d’objets IHM
suggère l’agrégation de tous les objets interactifs
de même nom, du Modèle Local de l’Interface. La
procédure d’agrégation est incrémentale, c’est-à-
dire elle prend les deux premiers modèles locaux
de l’interface en entrée pour en produire un
modèle agrégé qui sera par la suite intégré avec un
troisième modèle local de l’interface et ainsi de
suite. Avant d’effectuer l’agrégation, il faut
vérifier si les deux diagrammes d’états/transitions
qui constituent les deux modèles locaux de
l’interface ont des hiérarchies d’états cohérentes.
Notons que si le même état apparaît plus d’une
fois à des niveaux différents dans le diagramme
d’états/transitions, une erreur de conception est
signalée.

Figure 6: Métamodèle Modèle de la tâche
terminale T111 : "Chercher par acteur"

L’agrégation de deux diagrammes
d’états/transitions se fait par fusion d’états et de
transitions. La construction du Modèle Abstrait de
l’Interface s’effectue ainsi par l’agrégation
d’objets interactifs ayant des caractéristiques
semblables (attributs, opérations, etc.).

3.4 (Méta)-Modèle d’Implémentation (MM-I et
M-I)

La construction du Modèle d’Implémentation
est déduite du modèle de la tâche et du modèle

opérationnel. Pour ce faire un ensemble de règles
est établi tel que :

Règle 1 : associer à chaque tâche racine et
terminale une fenêtre ;

Règle 2 : masquer les fenêtre inutiles qui
correspondent à des tâches de contrôle (tâche
gestionnaire se trouvant à un niveau
hiérarchique) ;

Règle 3 : les boutons associés à chaque fenêtre
sont issus du modèle de l’utilisateur (à chaque
action possible par l’utilisateur, on associe un
bouton qui porte le nom de l’action) ;

Règle 4 : les objets interactifs qui supportent
chaque tâche terminale seront placés dans des
conteneurs avant d’être placé dans la fenêtre ;

Règle 5 : les objets de l’utilisateur seront
également placés dans la fenêtre associée à
chaque tâche terminale. Ils seront regroupés dans
l’onglet de l’objet interactif qui les manipule ;

Règle 6 : pour la tâche racine et les tâches de
contrôle, nous nous basons sur les relations inter-
tâches (voir figure 4). Dans le cas où on a une
relation de choix, nous associons des boutons
radio qui permettent la sélection de la tâche à
effectuer. Dans le cas où on a une relation de
séquencement, la fenêtre associée à la tâche mère
sera inutile et elle sera donc masquée. Par contre
pour une relation de parallélisme, les fenêtres
associées aux tâches filles s’affichent en même
temps et la fenêtre associée à la tâche mère sera
masquée.

La figure 7 présente une illustration simplifiée
appliquée sur le cas d’étude. Elle présente la
fenêtre liée à la tâche terminale "Chercher par
acteur".

Figure 7 : Métamodèle et Modèle
d’Implémentation de la tâche terminale
T111 : "Chercher par acteur"

 6

4. Ingénierie de la démarche

La démarche de développement des IHM
proposée se définit par une série de
transformations de modèles. Chaque
transformation saisit des modèles en entrée et
produit des modèles en sortie, jusqu’à l’obtention
de l’interface exécutable. Ceci permet aux
modèles d’interaction (Modèles des Objets du
Domaine, Modèle de la Tâche et Modèle des
espaces interactifs) de passer du stade productif,
ce qui rend ces modèles dépendants les uns des
autres.

Dans la suite, nous décrivons quelques
transformations entre modèles constituant notre
démarche. Nous débutons par la transformation
Tâche – Espaces Interactifs. Du Modèle de la
Tâche MST, les fenêtres associées aux tâches de
contrôles et aux tâches terminales sont
déterminées. Dans cette correspondance, on
applique les règles 1 et 2 du modèle
d’implémentation. La figure 8 illustre notre cas
d’étude. Les objets interactifs de chaque fenêtre
seront placés en appliquant les règles 3, 4 et 5 du
modèle d’implémentation pour les tâches
terminales et en appliquant la règle 6 pour les
tâches de contrôles.

Les objets interactifs de chaque fenêtre seront
placés en appliquant les règles 3, 4 et 5 du modèle
d’implémentation pour les tâches terminales et en
appliquant la règle 6 pour les tâches de contrôles.

La figure 9 modélise le passage du Modèle
Statique de la Tâche vers le Modèle
d’Implémentation de la tâche de contrôle
"Rechercher un film". La relation de choix est
transformée sous forme des boutons radio
représentant les tâches filles. On a choisit
d’associer à chaque objet d’interaction un
conteneur.

Figure 8 : Correspondances tâches-espaces
d’interactifs (fenêtres)

Ces différentes correspondances entre les
différents modèles de la démarche doivent être
spécifier et implanter à l’aide des langages de
transformations. Les différentes transformations
sont traduites sous forme des règles qui sont à
base des métamodèles.

Figure 9 : Correspondances entre le Modèle de la
Tâche et le Modèle d’Implémentation de la tâche
de contrôle "Rechercher un film".

5. Conclusion

Dans cet article, nous avons présenté une
démarche de développement d’Interface Homme
Machine basée sur un ensemble de modèles et de
métamodèles dépendants les uns des autres. Notre
objectif primordial était l’unification des travaux
issus de l’ingénierie dirigée par les modèles avec
ceux d’ingénierie d’interface Homme Machine.

La mise en évidence des correspondances entre
modèles n’est pas suffisant et ne s’agit pas là
d’une vision opérationnelle. Il est intéressant
d’utiliser un langage de transformation pour
modéliser et implémenter cette transformation. Il
est aussi nécessaire d’ajouter le métamodèle des
programmes pour la liaison avec les artefacts
informatiques utilisés par les programmeurs.

Cet article a montré clairement l’intérêt de
l’ingénierie des Interfaces Homme-Machine de
bénéficier de l’Ingénierie Dirigée par les Modèles
notamment lorsqu’on considère la plasticité des
IHM pour lesquelles le changement des plates -
formes est dynamiques.

6. Bibliographie

[Atkinson, Kühne, 2003] C. Atkinson, T. Kühne:
Model-Driven Development: A Metamodeling
Foundation. IEEE Software. Septembre 2003.

 7

[Bézivin et al., 2005] J. Bézivin, M. Blay, M.
Bouzeghoub, J. Estublier, and J.-M. Favre.
Rapport de synthèse. Action spécifique CNRS sur
l’Ingénierie Dirigée par les Modèles, janvier 2005.
http ://wwwadele.imag.fr/mda/as/rapport/AS-
MDA-IDM-Synthese-1.1.pdf.

[Bézivin et Blanc, 2002] J. Bézivin, X. Blanc
(2002). MDA : Vers un important changement de
paradigme en génie logiciel. Développeur
Référence – juillet.

[Bézivin et Gerbé, 2001] J. Bézivin, O. Gerbé:
Towards a Precise Definition of the OMG/MDA
Framework. ASE'01 Automated Software
Engineering, San Diego, USA, 26-29 Novembre,
2001.

[Bézivin, 2004] J. Bézivin: In Search of a Basic
Principle for Model-Driven Engineering. Journal
Novatica,Issus Spécial. Mars- Avril 2004

[Favre et Nguyen, 2004] J.M. Favre, T. NGuyen,
Towards a Megamodel to Model Software
Evolution Through Software Transformation,
Workshop on Software Evolution through
Transformation, SETRA 2004, Rome, Italy,
October 2, 2004, Electronic Notes in Theoritical
Computer Science, Volume 127, Issue 3, ENTCS
ELSVIER.

[Favre, 2004] J.M. Favre, Towards a Basic
Theory to Model Model Driven Engineering.
Workshop on Software Model Engineering,
WISME @ UML2004, Lisboa, Portugal, October
11, 2004,

[Gamboa-Rodriguez, 1998] F. Gamboa-Rodriguez
(1998). Spécification et implémentation
d’ALACIE : Atelier Logiciel d’Aide à la
Conception d’Interfaces Ergonomiques. Thèse en

informatique, Université de Paris Sud – Paris XI,
Octobre.

[Kleppe et Warmer, 2003] [KWB03] A. Kleppe,
J. Warmer, J. Bast: MDA Explained-The Model
Driven Architecture: Practice and Promise.
Addison-Wesley, 2003.

[MDA] OMG. MDA Guide Version 1.0.1. 2003.

[OMG] OMG, http://www.omg.org

[Seidewitz, 2003] E. Seidewitz: What Models
Mean. IEEE Software. Septembre 2003

[Szekely et al., 1995] P. Szekely, N. Sukaviriya,
P. Castells, J. Muthukumarasamy, E. Salcher
(1995). Declarative interface models for user
interface construction tools: the MASTERMIND
approach. In L. Bass, C. Unger (Eds.),
Engineering of Human Computer Interaction, pp.
120-150, Chapman & Hall, London.

[Szekely., 1996] Szekely, P. (1996). Retrospective
and challenge for Model Based Interface
Development. [CADU’96], Namur, pp.xxi-xliv.

[Tarby, 1993] J.C. Tarby (1993). Gestion
Automatique du Dialogue Homme-Machine à
partir de spécifications Conceptuelles. Thèse en
informatique, Université de Toulouse I,
Septembre.

[Terrase et al., 2005] M. Terrase, M. Savonnet, E.
Leclercq, T. Grison, G. Beker. Points de vue
croisées sur les notions de modèle et métamodèle.
IDM’05 Premières Journées sur l’Ingénierie
Dirigée par les Modèles, Paris 30 juin, 1 juillet
2005.

[UML] OMG. Unified Modeling Language :
Superstructure Version 2.0. 2003. OMG

 8

http://www.omg.org/

