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Abstract—In this paper, we propose to extend the Transaction 
Level Modeling (TLM) approach –initially intended as a higher 
level abstraction of Register Transfer Level (RTL) hardware 
(HW) design- to cope with embedded software (SW) design and 
validation.  We aim at introducing new SW TLM concepts which 
will enable refinement of communication at the SW side.  The 
proposed methodology allows system designers to decide about 
HW and SW communication architecture jointly, so as to ensure 
maximum performance efficiency for their designs.  As such, 
multi-processor system-on-chip (MPSoC) heterogeneity would be 
addressed more efficiently from communication viewpoint. 

I. INTRODUCTION 
Nowadays, the trend towards improving productivity and 

reducing time-to-market makes the traditional Register 
Transfer Level (RTL) to layout design and verification flow 
inadequate.  In deed, design at the implementation level gives 
unacceptable realization costs and delays.  To address these 
challenges, Transaction Level Modeling (TLM) has been 
recently promoted as the next modeling abstraction for 
hardware (HW) design [8].  TLM uses a component-based 
approach, in which hardware blocks are modules 
communicating with so-called transactions, where unnecessary 
details of communication and computation are hidden.  Doing 
so, TLM enables speeding up simulation and exploring 
implementation alternatives early in the design flow (such as 
bus topology design, bus priorities, and direct memory access 
(DMA) size optimization).  Although allowing early embedded 
software development and tightening hardware and software 
development in system-on-chip (SoC) design were one 
announced goal of TLM, no TLM design infrastructure has 
been defined for software (SW).  In classic TLM practices, SW 
is either kept functional or fully developed and simulated at 
very low abstraction level on top of an instruction set simulator 
(ISS). 

Fig. 1 depicts a generic multi-processor system-on-chip 
(MPSoC) architecture including its HW and SW components. 
Given the increasing importance of embedded software in 
current MPSoC designs, the joint co-design of the HW/SW           
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Figure 1.  MPSoC generic HW/SW architecture model.  

interface is identified as key enabler to tune system 
performance and master design cost [13]. 

Fig. 2 shows the different abstraction levels for both HW 
and SW.  The dashed lines joining a HW abstraction level with 
a SW one define possible integration levels allowing to design 
and simulate mixed HW/SW systems.  The HW/SW interface 
is defined with respect to each integration level. 

In this paper, we advocate a new intermediate integration 
level called the virtual architecture (VA) level.  It associates 
HW TLM with an equivalent level for SW that we call SW 
TLM.  The SW TLM level corresponds to an abstraction of the 
classic low level instruction set architecture (ISA) level for 
SW.  At the SW TLM level, SW is described as a set of 
concurrent and interacting objects managed by an execution 
environment corresponding to an abstraction of the operating 
system (OS).   
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Figure 2.  The virtual architecture concept.  
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The definition of the SW TLM level is largely inspired 
from recent researches on embedded software modeling.  One 
major contribution of this work is to formalize these efforts, 
using the transaction level modeling paradigm and to define a 
global TLM modeling platform for both HW and SW.  This 
allows developing a unified HW/SW interface model to 
remove discontinuities between HW and SW designs and 
enabling fast and effective design space exploration. 

The rest of the paper is organized as follows.  Section 2 
reviews some related works in high level HW/SW modeling. 
Section 3 describes the VA intermediate abstraction level. 
Section 4 focuses on SW TLM concepts and the definition of 
the underlying execution model.  As an example we apply our 
methodology to an MJPEG application in Section 5.  Finally, 
Section 6 concludes this paper with a brief outlook on future 
works. 

II. RELATED WORK 
Many recent research efforts have focused on abstracting 

the classic RTL level used as HW/SW integration platform 
model.  Most of these works addressed either the HW side or 
the SW side of the problem, but none of them provided flexible 
and unified HW/SW platform model at higher abstraction level.  
At the HW side, the transaction level modeling (TLM) has 
been identified as suitable candidate for HW RTL abstraction 
[3] [4] [6].  TLM is built as a high level application 
programming interface (API) that defines how HW 
components communicate.  The literature distinguishes three 
TLM levels: un-timed (called PV: Programmer View level), 
timed (called PVT: PV with Timing level) and Cycle Accurate. 
Recently, many works demonstrate TLM application in real-
life designs [9] [10] with the focus on architecture exploration 
and simulation speedup [14].  In all these works, SW is either 
considered at a low abstraction level (i.e. the instruction set 
architecture level) or simply at the functional level (mainly as 
test-bench functions). 

At the SW side, , recent research activities have focused on 
high level real-time operating system (RTOS) modeling within 
system level design environments like SystemC or SpecC 
[2][5].  However, in these works, the interaction between the 
OS simulation model and architecture HW components (i.e. 
I/O, interrupt handling) is not clearly explained.  In [1], we 
presented a system level simulation model at the OS level.  The 
structure of the HW/SW interface simulation model acts as an 
adapter between the application SW and the HW part. This 
interface is composed of two layers: one SW layer, called OS 
model layer, which constitutes the OS simulation model and 
one HW layer, called device functional layer, which emulates a 
set of device controllers.  To enable the correct modeling of I/O 
operations, we use a model of the I/O interface called device 
functional model.  This entity has to ensure the correct 
interaction with the OS side while providing the necessary 
adaptation of the communication interface (protocol, 
abstraction level, etc).  While this work proposes a HW/SW 
refinement, it assumes a fixed HW interface model. 

For HW/SW co-design, we note also the Cadence VCC 
(Virtual Component Co-design) environment which was 
initially intended to integrate virtual HW and SW components, 
explore complex HW/SW tradeoffs and analyze resulting 
performance early in the development cycle [12].  We think 

that the non success of VCC is mainly due to the fact that it 
does not use a well defined abstraction level for both HW and 
SW making the model difficult to deal with. 

III. VIRTUAL ARCHITECTURE LEVEL 

A. Overview 
Fig. 3 gives an overview of an MPSoC design modeled at 

the VA level.  Parts of the figure in grey correspond to 
conventional HW TLM objects.  Here, the design example is 
build around hierarchical bus architecture composed of a 
system bus and a local CPU bus connected to the system bus 
via a bridge.  Unlike conventional TLM designs however, SW 
is neither executed on top of an instruction set simulator nor 
fully abstracted at the functional level.  In the VA model, SW is 
modeled at the OS level as a set of SW TLM objects that co-
design and interact with the rest of HW TLM components. 

Within a SW TLM description, we mainly identify three 
conceptual layers: 

• The program layer that corresponds to the SW being 
designed by SW programmers.  This may be 
application tasks or device drivers allowing external 
communication with hardware. 

• The resource management layer corresponding to what 
we call SW BUS.  This entity abstracts the real 
operating system and allows coordinating and 
arbitrating the rest of components.  

• The virtual resource layer that specifies, from a 
programmer point of view, what kind of resources 
available in the SW subsystem (SW node of Fig. 1). In 
our case, we distinguish two kinds of resources: logical 
memory and processing unit (PU). 

An important object that could be qualified as hybrid 
HW/SW TLM object is the bus functional model (BFM).  A 
BFM is a special bridge that is supposed to link the SW bus 
with a particular HW bus (namely the CPU bus).  Its main role 
is to forward external accesses (to hardware registers for 
instance) from the SW side to the HW side.  It is also 
responsible of connecting interrupts coming from the HW side 
with the appropriate corresponding handlers in the SW side. 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Virtual architecture model.  
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Note that for all design objects –regardless of the 
conceptual layer they belong to- the same modeling concepts 
and notations are being used based on the TLM approach.  In 
the following subsections, the conventional HW TLM 
methodology is firstly presented.  Then the SW TLM basic 
concepts are described and their application to SW refinement 
is explained. 

B. Typical Virtual Architecture based design flow 
Fig. 4 depicts a typical SoC design flow featuring the VA 

abstraction level.  Like classic SoC design flows, the proposed 
flow starts from a (non-executable) specification that 
undergoes a first partitioning step allowing further HW and SW 
refinements.  In the figure the result of this step is called 
System Architecture.  This corresponds to an executable form 
of the specification (using SystemC for instance) where 
annotations are simply introduced to distinguish parts of the 
application that will be mapped to HW or SW respectively. The 
ultimate result of the flow is an RTL architecture that can be 
the entry of conventional synthesis back-end tools. 

Unlike classic SoC design flows however, the proposed 
flow introduces an intermediate design step based on the VA 
concept.  The Virtual Architecture results from the integration 
of both HW and SW parts that are supposed to be refined up to 
the TLM level.  In SystemC, this integration merely 
corresponds to the top-level instantiation of the different (HW 
and SW) TLM modules and channels. This intermediate design 
step allows to: 

• (1) bridge the classic gap between HW and SW design 
by providing an intermediate level for HW/SW 
integration allowing gradual HW/SW co-design. 

• (2) break the long exploration loop that classically 
separates the system architecture level from the final 
RTL level.  This enables fast and effective design  
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Figure 4.  A typical design flow involving the VA level.  

 

space exploration, taking benefit from the large 
simulation speedup of TLM compared to RTL.   

C. HW TLM basic concepts 
In this paper, we consider the SystemC/TLM standard.  

This standard provides the foundation layer to develop 
interoperable SystemC TLM IPs (Intellectual Properties).  
TLM defines small set of generic and reusable TLM interfaces 
(blocking/non blocking, unidirectional/ bidirectional) through a 
layered approach: user layer, protocol layer and transport layer. 
TLM splits in two main abstraction levels, namely PV 
(Programmer View) and PVT (PV with Timing) as shown in 
Fig. 5. PV level is designed for embedded SW validation and 
platform integration.  It consists in the vision the programmer 
has on his system.  This view is un-timed.  The protocol used at 
this level is generic (e.g. TAC: Transaction Accurate 
Communication) and synchronization reflects causal 
dependency between several computation units and is not 
based on delay constraints.  PVT level corresponds to a timed 
view of the system.  This view is useful for performance 
estimation.  A PVT platform is a PV platform augmented by a 
specific timed bus model (e.g. STbus, AMBA …). 

D. SW TLM basic concepts 
Fig. 6 outlines the basic SW TLM components.  In a SW 

TLM environment there are modules requiring services 
“initiators” and modules providing services “targets”.  Initiators 
and targets communicate by sending requests and responses 
back and forth.  These modules may correspond to different 
types of SW components: 

• Application components, also called user elements 
(e.g. task, active object…); these components may be 
master or slave modules. 

• Abstract resources consisting in logical memories and 
processing units.  Logical memories hide the actual 
physical address mapping of the different storage 
locations of the hardware architecture (registers, 
memory banks …).  The refinement process is then in 
charge of mapping these logical locations once the 
architecture is fixed.  Processing units are virtual 
execution components running SW within a CPU 
subsystem and corresponding to independent execution 
threads on the actual hardware architecture (ranging 
from simple core to symmetrical multi-processing 
SMP and simultaneous multi-tasking SMT …).  
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Figure 5.  TLM layers.  
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Figure 6.  SW TLM components. 

• Driver modules implementing external communication 
with other subsystems or nodes.  TLM drivers address 
one or more logical memory components that hold 
information about the memory mapping.  They need 
also RTOS model services to access the corresponding 
HW devices. 

• SW bus which is at the heart of the whole SW node 
model.  It could be defined as a logical path that serves 
multiple SW tasks or multiple SW computation and 
communicating units upon an OS model.  Its main role 
is to: 

– ensure task scheduling and time sharing; 
– intercept logical transactions and process them; 
– issue these logical transactions to the BFM. 

The SW bus is responsible of two important mechanisms: 
routing and arbitration.  The first corresponds to routing 
services within SW components; while the second dynamically 
resolves concurrent service requests.   

IV. IMPLEMENTATION 

A. SW TLM hierarchy 
Like HW TLM, SW TLM splits in three layers as shown by 

Fig. 7.  The Service layer is built as a set of interfaces that 
define how models communicate.  In fact, the interface 
protocol defines the semantic of transferring a service between 
two different modules.  SW TLM interfaces (synchronous/ 
asynchronous) specify communication services and are based 
on the TLM OSCI transport layer.  During a synchronous 
transaction, the function does not return until the transaction 
either completes successfully or fails. 
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Figure 7.  SW TLM layers.  

During an asynchronous transaction, the function returns 
after the transaction has begun, passing a transaction identifier 
for reference.  All interfaces inherit from sc_interface.  When 
we move a service from initiator to target we call this a 
“required service” and when we move a service from target to 
initiator we call this a “provided service”. 

SW TLM PV is built on top of SW TLM and is based on 
the Service layer.  At PV level, we have no real notion of 
timing and transaction’s arbitration is generic.  PVT is a 
modeling style where a PV and an arbitration specification 
coexist.  PVT adds timing information on each data treatment 
or transfer.  For the SW bus, the timing must account for the 
number of transfers as well as arbitration between multiple 
software components. 

B. The global execution model 
To enable time accurate simulation, SW execution time has 

to be modeled.  This is achieved by performing static 
annotations within the original SW code.  This kind of code 
instrumentation is well covered in the literature [7].  Given a 
processor type, the time needed by a SW basic block to execute 
is estimated.  The SW application code is then instrumented 
accordingly by annotating each basic block using its 
corresponding delay (Fig. 8). 

These time annotations would correspond to SystemC 
“wait” statements.  However, the statically estimated delays do 
not take into account the possible occurrence of hardware 
interrupts, nor do they take into consideration the effect of 
stalls associated with concurrent accesses to the same address 
space entity.  To solve this problem, we use a special 
annotating function “crunch” which implements an 
appropriate algorithm based on the dynamic sensitivity of the 
SystemC “wait(delay,event)” function: 

 

 
 
From the viewpoint of OS model, HW interrupts 

(interrupts from the HW part to the SW part) are modelled as 
an sc_event called “interrupt” (associated with an identifier). 
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void Task_B
{
OS_port.CALL(...)
if(cond){

//some computations
crunch(delay1);

}else
{

//some other 
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void Task_B
{
OS_port.CALL(...)
if(cond){

//some computations
crunch(delay1);

}else
{

//some other 
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Figure 8.  Modeling SW time.  

 

//crunch(d)                              
wait(d,interrupt) ; 
if (HW_interrupt) 
   { update d;  
     execute ISR ; 
     goto start; 
   } 
else return;  
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To handle asynchronous interrupts, we rely on the 
“wait(delay, interrupt)” function inside “crunch()”.  This 
function allows waiting for the “interrupt” event with a 
timeout equal to “delay”.  In other words, the function returns 
either when the specific event has occurred within the waiting 
delay or at the end of the timeout.  During the execution of 
crunch() function, when an interrupt occurs at the target 
processor, the corresponding interrupt service routine (ISR) 
should be invoked (implemented within the OS model).  The 
ISR can even call the OS scheduler and another (higher 
priority) task may be activated causing the currently running 
task be preempted. 

Fig. 9 illustrates the run-time behavior of the crunch() 
function, where two SW tasks concurrently access the SW 
bus.  The “crunch” function may be called everywhere in the 
SW code, either in the context of SW tasks or in that of the 
SW bus.  In the latter case, the use of the “crunch()” function 
allows to evaluate the overhead related to the OS (time slots 
occupied by the SW bus in Fig. 9). 

V. EXPERIMENT: MJPEG CASE STUDY 
Based on our SW TLM methodology, we performed a 

HW/SW co-simulation of an MJPEG application.  Fig. 10 
shows the task graph of the MJPEG application.  It consists of 
concurrent threads that communicate with each other via 
FIFOs: TG (Traffic Generator), DEMUX (Demuxer), VLD 
(Variable Length Decoding), IQ (Inverse Quantization), ZZ 
(ZigZag scan), IDCT (Inverse Discrete Cosine Transform), 
LIBU (Line Builder) and RAMDAC (Random Access Memory 
Digital to Analog Converter).  The bold lines represent the 
decompression flow, and the dashed lines represent the 
parameters of configuration which were global variables of the 
initial configuration. 

The Virtual Architecture model of the application is shown 
in Fig. 11.  In our model, we have two HW IP blocks: TG and 
RAMDAC, two SW modules mapped on two ARM7 
processors (each SW module executing three tasks), memory, 
FIFO controller and Interrupt SW.  These components are 
connected via the SYSTEM bus.  Fig. 11 shows also the CPU 
subsystem1’s architecture using SW TLM.  Here we need only 
FIFO drivers for communication.  The FIFO driver is a 
slave/master component.  In this case, the FIFO driver 
provides a basic API to the application consisting in read and 
write services. 
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Figure 9.  Example of “crunch” run-time behavior. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  MJPEG application task graph. 

A part of driver implementation showing how the write 
service is implemented using SW TLM concepts is presented 
in the code below: 

 
 

INIT is a service provided by the SW bus to instantiate pre-
defined types as MUTEX, SIGNAL, PIPE, SHM, etc.  The 
read access is implemented in a similar manner. 
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Figure 11.  MJPEG VA design. 

 

 

void w_fifo_drv<Log_ADDRESS,DATA>::write 
(const DATA& data);  
{  
sat_status status;  
… 
status= initiator_port.CALL(INIT, 
mutex_write);  
 
status=initiator_port.CALL 
(READ,FULL_REG,full);  
… 
status=initiator_port.CALL(MUTEX::LOCK, 
mutex_write);  
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At the top level, we instantiate the various SW components 
and we define their binding as follows: 

 
 
Table I summarizes some simulation results carried out at 

three abstraction levels (functional level, VA and RTL).  These 
values correspond to the simulation of one sequence of 25 
frames.  We used ARM7TDMI processors running at 40 Mhz.  
We note that the Virtual Architectural level is timed (SW is 
time annotated and HW described at the TLM PVT level).  The 
functional level is un-timed and the RTL level is cycle 
accurate. 

The second column corresponds to the execution time 
which is the “SystemC” time consumed by the different 
CPU’s in order to process the 1 second video sequence.  The 
simulation time corresponds to the amount of time spent by 
the host machine to run the simulation.  The last two columns 
are related to simulation accuracy and speed.  We notice that 
the VA level simulation achieves a considerable speedup 
comparing to RTL, while maintaining a reasonable accuracy 
(error within 20%).  In fact, since we use a high abstraction 
level, we should tolerate an acceptable error.  This level helps 
validating application and facilitates bugs avoidance before 
RTL coding is complete.  

VI. CONCLUSION 
In this paper, we presented a methodology that takes 

advantage of the SW layered architecture on one hand and the  

TABLE I.  SIMULATION TIME RESULTS 

Abstraction 
Level 

Execution 
time 

Simulation 
time 

Accuracy 
 

Speedup  
 

Functional -- < 1 ms 0% ~ 106 
Virtual 
Architecture 0.90 s 20 s 77% ~ 1260 

RTL 0.73s ~ 7 h 100% -- 

 

OSCI TLM paradigm on the other hand, to define an extended 
TLM for SW communication refinement at the Virtual 
Architecture level. 

Along this work, we have been able to: 

– propose a methodology for SW refinement at TLM 
level; 

– split up SW TLM into 3 layers, these layers consist in 
low level layer, PV and PVT; 

– enable TLM support for RTOS simulation model. 

Thanks to this methodology, SW design flow merges with 
the HW one at TLM level enabling simulation speed-up and 
architecture exploration early in the design flow.  Future work 
will concentrate on developing an automatic code generation 
tool for communication drivers based on the proposed SW 
TLM concepts. 
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{   … 
  //Instantiation 
sw_router<service_t,int,int> * SW_ROUTER; 
fifo_drv<int,int> * FIFO_DRIVER ; 
sw_hw_bridge<int> * BFM; 
 … 
//Binding 

SW_ROUTER->initiator_port(FIFO_DRIVER-
>target_port); 
SW_ROUTER->initiator_port(BFM-
>target_port); 
FIFO_DRIVER->initiator_port(SW_ROUTER       
->target_port); 
   … 

}
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