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Abstract—In this paper, we propose to extend the Transaction
Level Modeling (TLM) approach —initially intended as a higher
level abstraction of Register Transfer Level (RTL) hardware
(HW) design- to cope with embedded software (SW) design and
validation. We aim at introducing new SW TLM concepts which
will enable refinement of communication at the SW side. The
proposed methodology allows system designers to decide about
HW and SW communication architecture jointly, so as to ensure
maximum performance efficiency for their designs. As such,
multi-processor system-on-chip (MPSoC) heterogeneity would be
addressed more efficiently from communication viewpoint.

I.  INTRODUCTION

Nowadays, the trend towards improving productivity and
reducing time-to-market makes the traditional Register
Transfer Level (RTL) to layout design and verification flow
inadequate. In deed, design at the implementation level gives
unacceptable realization costs and delays. To address these
challenges, Transaction Level Modeling (TLM) has been
recently promoted as the next modeling abstraction for
hardware (HW) design [8]. TLM uses a component-based
approach, in which hardware blocks are modules
communicating with so-called transactions, where unnecessary
details of communication and computation are hidden. Doing
so, TLM enables speeding up simulation and exploring
implementation alternatives early in the design flow (such as
bus topology design, bus priorities, and direct memory access
(DMA) size optimization). Although allowing early embedded
software development and tightening hardware and software
development in system-on-chip (SoC) design were one
announced goal of TLM, no TLM design infrastructure has
been defined for software (SW). In classic TLM practices, SW
is either kept functional or fully developed and simulated at
very low abstraction level on top of an instruction set simulator
(ISS).

Fig. 1 depicts a generic multi-processor system-on-chip
(MPSoC) architecture including its HW and SW components.
Given the increasing importance of embedded software in
current MPSoC designs, the joint co-design of the HW/SW
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Figure 1. MPSoC generic HW/SW architecture model.

interface is identified as key enabler to tune system
performance and master design cost [13].

Fig. 2 shows the different abstraction levels for both HW
and SW. The dashed lines joining a HW abstraction level with
a SW one define possible integration levels allowing to design
and simulate mixed HW/SW systems. The HW/SW interface
is defined with respect to each integration level.

In this paper, we advocate a new intermediate integration
level called the virtual architecture (VA) level. It associates
HW TLM with an equivalent level for SW that we call SW
TLM. The SW TLM level corresponds to an abstraction of the
classic low level instruction set architecture (ISA) level for
SW. At the SW TLM level, SW is described as a set of
concurrent and interacting objects managed by an execution
environment corresponding to an abstraction of the operating
system (OS).
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Figure 2. The virtual architecture concept.
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The definition of the SW TLM level is largely inspired
from recent researches on embedded software modeling. One
major contribution of this work is to formalize these efforts,
using the transaction level modeling paradigm and to define a
global TLM modeling platform for both HW and SW. This
allows developing a unified HW/SW interface model to
remove discontinuities between HW and SW designs and
enabling fast and effective design space exploration.

The rest of the paper is organized as follows. Section 2
reviews some related works in high level HW/SW modeling.
Section 3 describes the VA intermediate abstraction level.
Section 4 focuses on SW TLM concepts and the definition of
the underlying execution model. As an example we apply our
methodology to an MJPEG application in Section 5. Finally,
Section 6 concludes this paper with a brief outlook on future
works.

IL.

Many recent research efforts have focused on abstracting
the classic RTL level used as HW/SW integration platform
model. Most of these works addressed either the HW side or
the SW side of the problem, but none of them provided flexible
and unified HW/SW platform model at higher abstraction level.
At the HW side, the transaction level modeling (TLM) has
been identified as suitable candidate for HW RTL abstraction
[3] [4] [6]. TLM is built as a high level application
programming interface (API) that defines how HW
components communicate. The literature distinguishes three
TLM levels: un-timed (called PV: Programmer View level),
timed (called PVT: PV with Timing level) and Cycle Accurate.
Recently, many works demonstrate TLM application in real-
life designs [9] [10] with the focus on architecture exploration
and simulation speedup [14]. In all these works, SW is either
considered at a low abstraction level (i.e. the instruction set
architecture level) or simply at the functional level (mainly as
test-bench functions).

RELATED WORK

At the SW side, , recent research activities have focused on
high level real-time operating system (RTOS) modeling within
system level design environments like SystemC or SpecC
[2][5]. However, in these works, the interaction between the
OS simulation model and architecture HW components (i.e.
I/O, interrupt handling) is not clearly explained. In [1], we
presented a system level simulation model at the OS level. The
structure of the HW/SW interface simulation model acts as an
adapter between the application SW and the HW part. This
interface is composed of two layers: one SW layer, called OS
model layer, which constitutes the OS simulation model and
one HW layer, called device functional layer, which emulates a
set of device controllers. To enable the correct modeling of I/O
operations, we use a model of the I/O interface called device
functional model. This entity has to ensure the correct
interaction with the OS side while providing the necessary
adaptation of the communication interface (protocol,
abstraction level, etc). While this work proposes a HW/SW
refinement, it assumes a fixed HW interface model.

For HW/SW co-design, we note also the Cadence VCC
(Virtual Component Co-design) environment which was
initially intended to integrate virtual HW and SW components,
explore complex HW/SW tradeoffs and analyze resulting
performance early in the development cycle [12]. We think
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that the non success of VCC is mainly due to the fact that it
does not use a well defined abstraction level for both HW and
SW making the model difficult to deal with.

III.  VIRTUAL ARCHITECTURE LEVEL

A. Overview

Fig. 3 gives an overview of an MPSoC design modeled at
the VA level. Parts of the figure in grey correspond to
conventional HW TLM objects. Here, the design example is
build around hierarchical bus architecture composed of a
system bus and a local CPU bus connected to the system bus
via a bridge. Unlike conventional TLM designs however, SW
is neither executed on top of an instruction set simulator nor
fully abstracted at the functional level. In the VA model, SW is
modeled at the OS level as a set of SW TLM objects that co-
design and interact with the rest of HW TLM components.

Within a SW TLM description, we mainly identify three
conceptual layers:

e  The program layer that corresponds to the SW being
designed by SW programmers.  This may be
application tasks or device drivers allowing external
communication with hardware.

e  The resource management layer corresponding to what
we call SW BUS. This entity abstracts the real
operating system and allows coordinating and
arbitrating the rest of components.

e The virtual resource layer that specifies, from a
programmer point of view, what kind of resources
available in the SW subsystem (SW node of Fig. 1). In
our case, we distinguish two kinds of resources: logical
memory and processing unit (PU).

An important object that could be qualified as hybrid
HW/SW TLM object is the bus functional model (BFM). A
BFM is a special bridge that is supposed to link the SW bus
with a particular HW bus (namely the CPU bus). Its main role
is to forward external accesses (to hardware registers for
instance) from the SW side to the HW side. It is also
responsible of connecting interrupts coming from the HW side
with the appropriate corresponding handlers in the SW side.
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Figure 3. Virtual architecture model.
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Note that for all design objects -regardless of the
conceptual layer they belong to- the same modeling concepts
and notations are being used based on the TLM approach. In
the following subsections, the conventional HW TLM
methodology is firstly presented. Then the SW TLM basic
concepts are described and their application to SW refinement
is explained.

B.  Typical Virtual Architecture based design flow

Fig. 4 depicts a typical SoC design flow featuring the VA
abstraction level. Like classic SoC design flows, the proposed
flow starts from a (non-executable) specification that
undergoes a first partitioning step allowing further HW and SW
refinements. In the figure the result of this step is called
System Architecture. This corresponds to an executable form
of the specification (using SystemC for instance) where
annotations are simply introduced to distinguish parts of the
application that will be mapped to HW or SW respectively. The
ultimate result of the flow is an RTL architecture that can be
the entry of conventional synthesis back-end tools.

Unlike classic SoC design flows however, the proposed
flow introduces an intermediate design step based on the VA
concept. The Virtual Architecture results from the integration
of both HW and SW parts that are supposed to be refined up to
the TLM level. In SystemC, this integration merely
corresponds to the top-level instantiation of the different (HW
and SW) TLM modules and channels. This intermediate design
step allows to:

e (1) bridge the classic gap between HW and SW design
by providing an intermediate level for HW/SW
integration allowing gradual HW/SW co-design.

e (2) break the long exploration loop that classically
separates the system architecture level from the final
RTL level. This enables fast and effective design

Simulation /
" Exploration

Design steps/models

Figure 4. A typical design flow involving the VA level.

space exploration, taking benefit from the large
simulation speedup of TLM compared to RTL.

C. HW TLM basic concepts

In this paper, we consider the SystemC/TLM standard.
This standard provides the foundation layer to develop
interoperable SystemC TLM IPs (Intellectual Properties).
TLM defines small set of generic and reusable TLM interfaces
(blocking/non blocking, unidirectional/ bidirectional) through a
layered approach: user layer, protocol layer and transport layer.
TLM splits in two main abstraction levels, namely PV
(Programmer View) and PVT (PV with Timing) as shown in
Fig. 5. PV level is designed for embedded SW validation and
platform integration. It consists in the vision the programmer
has on his system. This view is un-timed. The protocol used at
this level is generic (e.g. TAC: Transaction Accurate
Communication) and  synchronization reflects causal
dependency between several computation units and is not
based on delay constraints. PVT level corresponds to a timed
view of the system. This view is useful for performance
estimation. A PVT platform is a PV platform augmented by a
specific timed bus model (e.g. STbus, AMBA ...).

D. SW TLM basic concepts

Fig. 6 outlines the basic SW TLM components. In a SW
TLM environment there are modules requiring services
“initiators” and modules providing services “targets”. Initiators
and targets communicate by sending requests and responses
back and forth. These modules may correspond to different
types of SW components:

e Application components, also called user elements
(e.g. task, active object...); these components may be
master or slave modules.

e  Abstract resources consisting in logical memories and
processing units. Logical memories hide the actual
physical address mapping of the different storage
locations of the hardware architecture (registers,
memory banks ...). The refinement process is then in
charge of mapping these logical locations once the
architecture is fixed. Processing units are virtual
execution components running SW within a CPU
subsystem and corresponding to independent execution
threads on the actual hardware architecture (ranging
from simple core to symmetrical multi-processing
SMP and simultaneous multi-tasking SMT ...).

Specific router model

e.g. ST BUS, AMBA PVT

Generic router model PV

e.g. TAC, SYNCHRO T
H l is based on

TLM OSCI
Transport Layer

blocking/non blocking
unidirectional/bidirectional

Figure 5. TLM layers.
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Figure 6. SW TLM components.

e Driver modules implementing external communication
with other subsystems or nodes. TLM drivers address
one or more logical memory components that hold
information about the memory mapping. They need
also RTOS model services to access the corresponding
HW devices.

e SW bus which is at the heart of the whole SW node
model. It could be defined as a logical path that serves
multiple SW tasks or multiple SW computation and
communicating units upon an OS model. Its main role
is to:

ensure task scheduling and time sharing;

intercept logical transactions and process them;

issue these logical transactions to the BFM.

The SW bus is responsible of two important mechanisms:
routing and arbitration. The first corresponds to routing
services within SW components; while the second dynamically
resolves concurrent service requests.

IV. IMPLEMENTATION

A. SW TLM hierarchy

Like HW TLM, SW TLM splits in three layers as shown by
Fig. 7. The Service layer is built as a set of interfaces that
define how models communicate. In fact, the interface
protocol defines the semantic of transferring a service between
two different modules. SW TLM interfaces (synchronous/
asynchronous) specify communication services and are based
on the TLM OSCI transport layer. During a synchronous
transaction, the function does not return until the transaction
either completes successfully or fails.

HWTLM SWTLM
PVT PVT
Specific bus model Specific arbitration
PV PV
Generic bus model Generic arbitration
Service Layer
Synchronous/asynchronous
RPC

TLM OSCI Transport Layer
Blocking/non blocking
Unidirectional/bidirectional
Single/burst transfer

Figure 7. SW TLM layers.
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During an asynchronous transaction, the function returns
after the transaction has begun, passing a transaction identifier
for reference. All interfaces inherit from sc_interface. When
we move a service from initiator to target we call this a
“required service” and when we move a service from target to
initiator we call this a “provided service”.

SW TLM PV is built on top of SW TLM and is based on
the Service layer. At PV level, we have no real notion of
timing and transaction’s arbitration is generic. PVT is a
modeling style where a PV and an arbitration specification
coexist. PVT adds timing information on each data treatment
or transfer. For the SW bus, the timing must account for the
number of transfers as well as arbitration between multiple
software components.

B.  The global execution model

To enable time accurate simulation, SW execution time has
to be modeled. This is achieved by performing static
annotations within the original SW code. This kind of code
instrumentation is well covered in the literature [7]. Given a
processor type, the time needed by a SW basic block to execute
is estimated. The SW application code is then instrumented
accordingly by annotating each basic block using its
corresponding delay (Fig. 8).

These time annotations would correspond to SystemC
“wait” statements. However, the statically estimated delays do
not take into account the possible occurrence of hardware
interrupts, nor do they take into consideration the effect of
stalls associated with concurrent accesses to the same address
space entity. To solve this problem, we use a special
annotating function “crunch” which implements an
appropriate algorithm based on the dynamic sensitivity of the
SystemC “wait(delay,event)” function:

//crunch (d)
wait (d, interrupt) ;
if (HW_interrupt)
{ update d;
execute ISR ;
goto start;

else return;

From the viewpoint of OS model, HW interrupts
(interrupts from the HW part to the SW part) are modelled as
an sc_event called “interrupt” (associated with an identifier).

void Task_B

A OS_port.CALL(...)
o if(cond){
//some computations
Task A Task B crunch(delay1);
Jelse
. {

//some other
J computations

‘ SW BUS

crunch(delay2)
}

3

Figure 8. Modeling SW time.
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To handle asynchronous interrupts, we rely on the
“wait(delay, interrupt)” function inside “crunch()”. This
function allows waiting for the “interrupt” event with a
timeout equal to “delay”. In other words, the function returns
either when the specific event has occurred within the waiting
delay or at the end of the timeout. During the execution of
crunch() function, when an interrupt occurs at the target
processor, the corresponding interrupt service routine (ISR)
should be invoked (implemented within the OS model). The
ISR can even call the OS scheduler and another (higher
priority) task may be activated causing the currently running
task be preempted.

Fig. 9 illustrates the run-time behavior of the crunch()
function, where two SW tasks concurrently access the SW
bus. The “crunch” function may be called everywhere in the
SW code, either in the context of SW tasks or in that of the
SW bus. In the latter case, the use of the “crunch()” function
allows to evaluate the overhead related to the OS (time slots
occupied by the SW bus in Fig. 9).

V. EXPERIMENT: MJPEG CASE STUDY

Based on our SW TLM methodology, we performed a
HW/SW co-simulation of an MJPEG application. Fig. 10
shows the task graph of the MJPEG application. It consists of
concurrent threads that communicate with each other via
FIFOs: TG (Traffic Generator)) DEMUX (Demuxer), VLD
(Variable Length Decoding), 1Q (Inverse Quantization), ZZ
(ZigZag scan), IDCT (Inverse Discrete Cosine Transform),
LIBU (Line Builder) and RAMDAC (Random Access Memory
Digital to Analog Converter). The bold lines represent the
decompression flow, and the dashed lines represent the
parameters of configuration which were global variables of the
initial configuration.

The Virtual Architecture model of the application is shown
in Fig. 11. In our model, we have two HW IP blocks: TG and
RAMDAC, two SW modules mapped on two ARM7
processors (each SW module executing three tasks), memory,
FIFO controller and Interrupt SW. These components are
connected via the SYSTEM bus. Fig. 11 shows also the CPU
subsystem1’s architecture using SW TLM. Here we need only
FIFO drivers for communication. The FIFO driver is a
slave/master component. In this case, the FIFO driver
provides a basic API to the application consisting in read and
write services.

preemption

Task A
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Y |
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TIMER time
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Figure 9. Example of “crunch” run-time behavior.
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Figure 10. MJPEG application task graph.

A part of driver implementation showing how the write
service is implemented using SW TLM concepts is presented
in the code below:

void w_fifo drv<Log ADDRESS,DATA>::write
(const DATA& data) ;

{

sat_status status;

status= initiator port.CALL(INIT,
mutex write);

status=initiator port.CALL
(READ, FULL_REG, full) ;

status=initiator port.CALL (MUTEX: :LOCK,
mutex write) ;

INIT is a service provided by the SW bus to instantiate pre-
defined types as MUTEX, SIGNAL, PIPE, SHM, etc. The
read access is implemented in a similar manner.
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Figure 11. MJPEG VA design.
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At the top level, we instantiate the various SW components
and we define their binding as follows:

{ -

//Instantiation
sw_router<service t,int,int> * SW _ROUTER;
fifo_drv<int,int> * FIFO_DRIVER ;
sw_hw_bridge<int> * BFM;

//Binding
SW_ROUTER->initiator_port (FIFO_DRIVER-
>target_port) ;
SW_ROUTER->initiator_ port (BFM-
>target port) ;
FIFO_DRIVER->initiator port (SW_ROUTER
->target_port) ;

Table I summarizes some simulation results carried out at
three abstraction levels (functional level, VA and RTL). These
values correspond to the simulation of one sequence of 25
frames. We used ARM7TDMI processors running at 40 Mhz.
We note that the Virtual Architectural level is timed (SW is
time annotated and HW described at the TLM PVT level). The
functional level is un-timed and the RTL level is cycle
accurate.

The second column corresponds to the execution time
which is the “SystemC” time consumed by the different
CPU’s in order to process the 1 second video sequence. The
simulation time corresponds to the amount of time spent by
the host machine to run the simulation. The last two columns
are related to simulation accuracy and speed. We notice that
the VA level simulation achieves a considerable speedup
comparing to RTL, while maintaining a reasonable accuracy
(error within 20%). In fact, since we use a high abstraction
level, we should tolerate an acceptable error. This level helps
validating application and facilitates bugs avoidance before
RTL coding is complete.

VI. CONCLUSION

In this paper, we presented a methodology that takes
advantage of the SW layered architecture on one hand and the

TABLE 1. SIMULATION TIME RESULTS
Abstraction Execution Simulation Accuracy Speedup
Level time time
Functional - <1ms 0% ~10°
X;rcttﬁie sture 0.90 s 20s 77% ~ 1260
RTL 0.73s ~7h 100% --

OSCI TLM paradigm on the other hand, to define an extended
TLM for SW communication refinement at the Virtual
Architecture level.

Along this work, we have been able to:

— propose a methodology for SW refinement at TLM
level,

— splitup SW TLM into 3 layers, these layers consist in
low level layer, PV and PVT;

— enable TLM support for RTOS simulation model.

Thanks to this methodology, SW design flow merges with
the HW one at TLM level enabling simulation speed-up and
architecture exploration early in the design flow. Future work
will concentrate on developing an automatic code generation
tool for communication drivers based on the proposed SW
TLM concepts.
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