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Abstract 

 
Integrating Intellectual Property (IP) components into 
System-on-Chip (SoC) designs requires the use of a generic 
parameterizable hardware/software interface to increase 
reuse efficiently, quality and productivity of SoC design. In 
this paper we propose a design approach for wrapping the 
cycle accurate bit accurate (CABA) interface of hardware 
IPs. This interface integrates many communication and 
synchronization mechanisms with respect to the virtual 
component interface VCI protocol from VSIA to fulfill IP 
designer and IP integrator requirements.   
  
1. Introduction 

 
In order to manage the system-on-a-chip (SoC) increasing 

complexity, a promising way consists of the reuse concept of 
preconceived hardware or software blocks, which are 
checked functions of the systems [5]. An important aspect of 
a core’s marketability is its ability to be easily integrated into 
a SoC since IP must be usable in many different application 
contexts. Thus, the design team can concentrates the effort on 
the innovating parts of the system and exploits the already 
existing components. 

The integration of the existing blocks, known as "IP" cores 
(VC: Virtual component in VSIA taxonomy), constitutes, 
actually, an essential phase of the SoC design. IPs facilitate 
and accelerate the design cycle. However, these components 
must be able to communicate with the system and between 
them. Generating automatically an IP wrapper 
–communication interface –is needed for a given black-box 
entity. To allow an easy interconnection of components from 
various sources, it is necessary that available virtual 
components respect a standardized communications protocol 
[11]. The high level abstraction of these components is the 
key of their flexibility and genericity, i.e. of their reuse 
opportunities and optimization. Currently, simulating a 
system at functional level does not guarantee an automatic 
generation of the associated RTL (Register Transfer Level) 
description. There are many manipulations made manually 
especially communication ones. In this work, we define the 
design technical details of a novel approach to ensure the 
encapsulation (the generic interfacing) of a RTL VC in a SoC. 
Few works have addressed the problem of IP integration and 
interface synthesis in a global way. This work focuses on the 
simulation of the interface before affecting architectural 
description for a generic SoCLiB IP interface. 

The idea is to associate the behavioral model of the IP 
(under input/output (I/O) and timing constraints) to an I/O 
cycle accurate bit accurate (CABA) interface description 
model. It allows firstly simulating the IP in a plug and playing 
communication environment and secondly to easily 

synthesize it according to a generic interface architecture.  
This paper is organized as follows. Section 2 analyzes the 

state of the art of the IP interfacing. Section 3 discusses 
structure of the generic interface for an IP design. Section 4 
describes the SoCLiB platform, as a SoC simulation platform 
for the novel IP encapsulating approach and the technical 
details of the experimentation. Finally, we conclude this 
work. 

 
2. IP Interfacing 

 
In order to be reused in many different SoC contexts, IPs 

must be parametrizable, easily testable and especially 
interconnectable. Easy and quick assembling of various cores 
to obtain a fully functional SoC has not yet become reality.  In 
fact, the integration of cores into a SoC is widely a manual 
and error-prone process because it forces the designers to 
fully understand the functionality and interfaces features of 
complex cores. Furthermore, a successful IP core integration 
requires the designer to take into account synchronization; 
protocol conversion and I/O buffer synthesis tasks [6]. Much 
work has been done on interfacing with cores basing on the 
key idea that explicitillyexplicitly separate the functional 
behavior of IP from interactions aspects between IPs. This 
separation allows (1) choosing the appropriate 
communications models for the IP design space exploration, 
(2) reusing the system behavior independently of the 
communication, and (3) reusing the existing communication 
models [7]. 

2.1. State of the art 
 
Various techniques (bus synthesis, automatic synthesis of 

bus interface logic, rapid prototyping…etc) and standards 
aim at reducing system design time when designs become too 
large for the available software tools. They dealt recently with 
two approaches in basic design methodologies [8]. The first 
ones defines a standard bus protocol: for example using 
CoreConnect from IBM to connect various components to the 
bus architecture and a wrapper is indicated to adapt the 
protocol of each component to this CoreConnect. The second 
ones define standard components protocols that interface 
between a bus wrapper and the core internals [VCI [10], 
OCPIP [9]] and A core can be retargeted to any bus simply by 
providing an appropriate bus wrapper. 

As communication interface is an intelligent block that can 
change the scheduling control and update parameters of 
modules in systems, it must work independently of the IP 
computation part. These components can be reused and 
arranged freely in a maximum of SoC context therefore the 
importance of standard component protocols. In this context, 
both VCI (virtual component interface) and OCP (On Chip 
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Bus) initiatives allow that with simple connection 
management (one master and one slave unicast) as well as 
more complex connection (implying a master and several 
slave in broadcast or multicast) [11]. The goal of these 
proposal standards is to facilitate quick retargeting of a core 
from one system to another.  

2.2. Proposed Interface model  
 
IP design interface can be actually much longer than the 

internal IP design. Furthermore, communication problems 
and timing issues can cause failure of SoC design. That is 
why we consider that going from simulation down to 
synthesis is the best way to solve the communication problem 
of IP core reuse. The novelty of proposed approach of IP 
integration exploits both IP designer and SoC integrator 
constraints while considering the application requirements. 
The basic points are both specification of the I/O schedule of 
the IP and satisfaction of the user requirements. We aim 
having an IP’s encapsulation model which communication 
interface may be predefined with user constraints. 

Our approach deals with interfacing hardware IP to VCI. It 
starts with defining bandwidth, I/O timing constraints of the 
desired interface. Our approach manages communication 
under low level interfacing constraints details relative to the 
IP synthesized from a high level specification (computing 
latency, data synchronization transfer etc.). The main idea is 
to associate the behavioral of the IP model under I/O and 
timing constraints to an I/O CABA model. The RTL interface 
constraints are implemented at a cycle-true and a bit-accurate 
signal level. To automate the process of generating IPs 
communication interfaces, we formulate the problem under 
consideration as follows: 
1- The configuration choice of the interface components 

leads to different communication and synchronization 
mechanisms: for a given IP, we focus on satisfying a 
variety of the pre-specified requirements of an 
application. 

2- The parameters of the communication interface include 
clocking, address definition and VCI parameters.  

 
The approach favorites the design at a higher level than 

RTL of HW interfaces and exploits both IP provider and SoC 
integrator constraints.  

 
3. CABA Communication Interface  

 
An IP can be viewed as a cycle accurate “black-box”: only 

the communication interface is known. It has a number of I/O 
ports each of which having a certain bit width. SoC can 
supports multiple models of computation. In this work, we 
associate the IP behavioral model (under I/O and timing 
constraints) to an I/O CABA interface description model.  The 
CABA abstraction level is defined so that having a CABA 
hardware interface without necessary describing the 
component hardware architecture [3]. This CABA definition 
specification tends to simulate faster than the RTL model due 
to less implementation details. 

To connect the IP to others SoC components, we have to 
respect refinement and specification of the I/O protocols, data 
sequence orders and timing information of data transfers. The 
information needed is for identifying without ambiguity 
which data is input (res. output) at each clock cycle for each 
input port (res. output). The information is exploited for 
correctly interfacing the I/O of the IP with VCI protocol. VCI 
is a handshake data oriented protocol that allows memory 
accesses operations [2]. It defines a generic cycle-based 
address mapped point-to-point communication protocol with 
fixed initiator and target.  

3.1. Interface communication mechanisms 
 

Communication interface is composed of a software part 
and a hardware part [11]. For the reuse, only the software part 
changes: the hardware control is the same. The system data 
production (that can be the other SoC components 
production) does not usually correspond to the IP data 
consumption and inversely: the IP scheduling and I/O 
constraints is often different from the system scheduling and 
I/O constraints. We have to consider four sides according to 
the communication scheme (figure 1): the system sending 
data order and the IP consumption data order (for input 
controller) and the IP production data order and the system 
receiving data order (for output controller). In the other hand, 
the production of data can exceed momentarily its 
consumption by the IP. That is why the interface is based on 
the FIFO mechanism. This structure is considering in order 
managing the temporal difference and the memorization of 
the succession of the I/O variables. In fact, FIFOs store data, 
which are read in the same order in which they were written 
in. The FIFO size defines burst length tolerance. 
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Figure 1. Communication scheme 

Figure 2 shows the input interface structure with a 2 input 
ports case and 2 bytes data width. The output interface 
structure is a symmetrical. Input communication channel 
mechanism transforms the request from an external slave 
VCI port into a signal dedicated to the IP communication 
interface. Output interface mechanism translates the data 
back from the interface into a VCI response. The interface 
sub-modules follow the rules of the design reuse: they are 
instantiated according to the software script describing the 
spatial and temporal I/O constraints. When data are read or 
written, the address being accessed is checked to see if the 
desired data block is present in sequential FIFOs inserted 
between the VCI interface and the IP. The communication is 
made by passage of address and there is as many FIFO as 
address. The address of the data is used by the first input 



controller (res. second output controller) to correctly 
de-multiplex (res. multiplex) data for the associated input 
(res. output) ports.  The software script of the communication 
interface drives also memory mapping and data layout. It is 
writing to manage user requirements. However, the order in 
which data are sending from the system is the same as the 
one data are consuming by the data (res. the order in which 
data are producing is the same as the one data are recovering 
by the system). This restriction allows a generic form of the 
controller to be defined. 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. Structure of the generic interface (input part) 

In the case of an IP that makes bi-directional buses, second 
part of the figure is considered. A second controller in the 
input interface is instantiated to dispatch data to the 
appropriate FIFO-bus. FIFO-bus is a process that 
synchronizes all FIFOs of the component interface with the 
Enable mechanism. Dispatching data in the appropriate 
FIFOs is carried out through the interface controllers detailed 
in the follow subsection.  

3.2. Interface Controllers 
 

The Sw corresponds to C code running on the processor 
and the Hw corresponds to the hardware accelerator. Interface 
controller is the Hw part of the interface. It handles the data 
flow/control according to the values specified via the IP 
interface. There are an input and an output controller. A single 
VCI is port as input (res. as output) for the interfacing 
mechanism. Target wrapper provides word of 8 bytes (size of 
the FIFO_VCI cell) as bit width size of the interconnect: 4 
bytes for the address and 4 bytes for the corresponding 
information.  As many IP architectures can consumes 
different bit-width data, optimising the bandwidth is useful 
for an efficient communication. For example, if the IP 
manipulate 16 bits as input and output, Ctrlin1 dispatches 
data in the appropriate FIFO_IN by address decoding and 
filters the data bits from the information part. In that case, it is 
assumed that two 16-bit data are transferred from the system 
each time. The information is stored into the interface input 
and output controllers in a set of configuration variables using 
information from mem.file. FSM Controllers are configured 
before data are transmitted. A sub-module Enable is 
responsible of the synchronization of the data traffics 
according to the I/O FSM required. Enable sub-module 
(figure 2) works with a counter. This counter is maintaining a 

virtual clock that cadences the IP behavior. When it is not set, 
IP behaves as if the clock is freezing. The referred virtual 
clock allows the controller to know the clocks cycles number 
executed in the IP. Enable is reset for new computation 
iteration. The iteration is a repetitive execution of a basic 
motif or data sequence. For example, with an FFT (Fast 
Fourier transform) IP, the treatment of a new matrix 
corresponds to a new iteration. 

The Enable FSM shown in figure 3 synchronizes the data 
transfers between FIFO_IN (figure 2) and the IP according to 
the I/O constraints. It checks at least that a data is in each 
concerned FIFO_IN in the iteration step to stimulate IP 
behavior. The INIT state stimulate enable signal to launch the 
first iteration. WAIT state consists in switching off enable 
signal and to wait the arrival of data. Once this condition is 
filled, RUN state is active. RUN state transits the data to IP 
behavior and gets back output data from it. This FSM is 
piloted by I/O data scheduling. It drives synchronously the 
component with the implementation of the synchronous 
communication interface. 
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nvironment and experimentation   

unication interface design starts in the early 
 design when the design specification is being 

 uses a high-level language to speed to design 
C. SystemC [4] -a hardware modeling platform 
+ language- can define both functional and 
cteristics to describe the interface. SystemC 
 relies on the speed and efficiency of the 
nguages to decrease verification through a 
of co-design techniques, co-simulation, and 

 Indeed, the use of a high level specification 
euse possibility for a particular function to be 
 and allows timing, memory and communication 
taken into account. 
unication interface is specified as a slave basis 
aly/Moore Finite State Machine (FSM). Mealy 
contains: 
tion function, that computes the next state from 
nt state and the input values on the clock edge, 



2- A generation function that computes the outputs as a 
function of the current state, for Moore machines, or as a 
function of the current state and the inputs, for Mealy 
machines.  

Using this strategy is easy to apply with the concurrency 
nature of SystemC simulation. In this paper, we consider the 
particular aspects of hardware design with SystemC: 
high-level design using designs patterns, and generalization 
using templates. We present the design of a generic using the 
"state" design pattern and templates. The sc_method and 
sc_thread processes supported in SystemC help in modeling 
concurrency. The monitoring and tracing of the various ports 
and values is facilitated by sc_trace option. We use the C++ 
templates to implement variables that we keep parameterized 
for providing genericity. The bit width and the number of the 
I/O ports as interface parameters are template parameters. In 
the other hand, sizes of FIFOs, for example, are passed as 
SystemC parameters to the sc_module implementing the 
concerned sub-module.   

In order to validate our approach, we have used the 
SoCLiB platform [3]. SoCLiB proposes the use of an open 
modeling and simulation platform for SoC design. It aims at 
developing a library of simulation models for virtual 
components (IP cores) to allow to model complex systems 
multiprocessors in the context of the VCI protocol use [1]. To 
test our proposed encapsulation methodology, a 
monoprocessor platform has been conceived from the 
existing SoCLiB IP cores. The interface specification is then 
used throughout the design flow to verify the design 
functionality at each step. 

A slave generic communication interface has been 
evaluated with the hardware specification of a mean filter 
block. The platform contains a standard memory (RAM), a 
MIPS R3000 processor with its cache, and the Hw 
co-processor (mean filter). All these components are 
connected via VCI ports to a simple network (SoCLiB 
crossbar in figure 4). The processor initiates the 
communications. It sends/receives the data according to the 
software script scheduling. The co-processor reads the data 
according to the consumption order from the appropriate 
FIFO then writes back the result in the output interface.  
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can then work concurrently in the platform thanks to the 
interface communication mechanisms. From the description 
files, a script is run with user parameters to obtain the desired 
specific interface. The overall Hw/Sw design is then 
co-simulated using the SoCLiB platform. Every transfer is 
done on a rising edge of the system clock. The transfers at the 
IP interface are cadenced by the virtual clock controlled by 
the Enable sub-module. 
Simulations have been successfully realized with various 
numbers of busses (hardware IP input/output number) to 
verify different interface sub-module functionality. 
Simulations have been realized and validated under a Linux 
environment, SystemC-2.0.1 simulator and gcc 3.3.1 for 
compilation. The controller synthesis has also been realized 
with ISE/Foundation from Xilinx in order to evaluate the 
interface performance. For the mean filter constraints we 
used, ctrl1 and ctrl2 can operate up to 40 Mbits/s with a Virtex 
1000E technology. 
 
5. Conclusions 
 

SoC design complexity can be managed by raising the 
abstraction level through the definition of new design 
methodologies for the reuse and the integration of the 
pre-designed cores. In this paper, the architecture of a 
communication interface that facilitates the integration of a 
hardware component in a system has been presented. This 
generic interface can be easily applied to different IPs 
constraints in different hardware system contexts and using 
different data protocols. The design has been successfully 
validated by simulation and its hardware synthesis is in 
progress.  
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