
IP integration methodology for SoC design
F. Abbes1,2 , E.Casseau2 , M. Abid1 , P. Coussy2, J.B.Legoff2

1 GMS, ECOLE NATIONALE D’INGENIEURS DE SFAX, 3038 SFAX, TUNISIE
2 LESTER, UNIVERSITE DE BRETAGNE SUD, RUE SAINT MAUDE - 56100 LORIENT, FRANCE

Abstract

Integrating Intellectual Property (IP) components into
System-on-Chip (SoC) designs requires the use of a generic
parameterizable hardware/software interface to increase
reuse efficiently, quality and productivity of SoC design. In
this paper we propose a design approach for wrapping the
cycle accurate bit accurate (CABA) interface of hardware
IPs. This interface integrates many communication and
synchronization mechanisms with respect to the virtual
component interface VCI protocol from VSIA to fulfill IP
designer and IP integrator requirements.

1. Introduction

In order to manage the system-on-a-chip (SoC) increasing

complexity, a promising way consists of the reuse concept of
preconceived hardware or software blocks, which are
checked functions of the systems [5]. An important aspect of
a core’s marketability is its ability to be easily integrated into
a SoC since IP must be usable in many different application
contexts. Thus, the design team can concentrates the effort on
the innovating parts of the system and exploits the already
existing components.

The integration of the existing blocks, known as "IP" cores
(VC: Virtual component in VSIA taxonomy), constitutes,
actually, an essential phase of the SoC design. IPs facilitate
and accelerate the design cycle. However, these components
must be able to communicate with the system and between
them. Generating automatically an IP wrapper
–communication interface –is needed for a given black-box
entity. To allow an easy interconnection of components from
various sources, it is necessary that available virtual
components respect a standardized communications protocol
[11]. The high level abstraction of these components is the
key of their flexibility and genericity, i.e. of their reuse
opportunities and optimization. Currently, simulating a
system at functional level does not guarantee an automatic
generation of the associated RTL (Register Transfer Level)
description. There are many manipulations made manually
especially communication ones. In this work, we define the
design technical details of a novel approach to ensure the
encapsulation (the generic interfacing) of a RTL VC in a SoC.
Few works have addressed the problem of IP integration and
interface synthesis in a global way. This work focuses on the
simulation of the interface before affecting architectural
description for a generic SoCLiB IP interface.

The idea is to associate the behavioral model of the IP
(under input/output (I/O) and timing constraints) to an I/O
cycle accurate bit accurate (CABA) interface description
model. It allows firstly simulating the IP in a plug and playing
communication environment and secondly to easily

synthesize it according to a generic interface architecture.
This paper is organized as follows. Section 2 analyzes the

state of the art of the IP interfacing. Section 3 discusses
structure of the generic interface for an IP design. Section 4
describes the SoCLiB platform, as a SoC simulation platform
for the novel IP encapsulating approach and the technical
details of the experimentation. Finally, we conclude this
work.

2. IP Interfacing

In order to be reused in many different SoC contexts, IPs

must be parametrizable, easily testable and especially
interconnectable. Easy and quick assembling of various cores
to obtain a fully functional SoC has not yet become reality. In
fact, the integration of cores into a SoC is widely a manual
and error-prone process because it forces the designers to
fully understand the functionality and interfaces features of
complex cores. Furthermore, a successful IP core integration
requires the designer to take into account synchronization;
protocol conversion and I/O buffer synthesis tasks [6]. Much
work has been done on interfacing with cores basing on the
key idea that explicitillyexplicitly separate the functional
behavior of IP from interactions aspects between IPs. This
separation allows (1) choosing the appropriate
communications models for the IP design space exploration,
(2) reusing the system behavior independently of the
communication, and (3) reusing the existing communication
models [7].

2.1. State of the art

Various techniques (bus synthesis, automatic synthesis of

bus interface logic, rapid prototyping…etc) and standards
aim at reducing system design time when designs become too
large for the available software tools. They dealt recently with
two approaches in basic design methodologies [8]. The first
ones defines a standard bus protocol: for example using
CoreConnect from IBM to connect various components to the
bus architecture and a wrapper is indicated to adapt the
protocol of each component to this CoreConnect. The second
ones define standard components protocols that interface
between a bus wrapper and the core internals [VCI [10],
OCPIP [9]] and A core can be retargeted to any bus simply by
providing an appropriate bus wrapper.

As communication interface is an intelligent block that can
change the scheduling control and update parameters of
modules in systems, it must work independently of the IP
computation part. These components can be reused and
arranged freely in a maximum of SoC context therefore the
importance of standard component protocols. In this context,
both VCI (virtual component interface) and OCP (On Chip

0-7803-8656-6/04/$20.00 ©2004 IEEE

Bus) initiatives allow that with simple connection
management (one master and one slave unicast) as well as
more complex connection (implying a master and several
slave in broadcast or multicast) [11]. The goal of these
proposal standards is to facilitate quick retargeting of a core
from one system to another.

2.2. Proposed Interface model

IP design interface can be actually much longer than the

internal IP design. Furthermore, communication problems
and timing issues can cause failure of SoC design. That is
why we consider that going from simulation down to
synthesis is the best way to solve the communication problem
of IP core reuse. The novelty of proposed approach of IP
integration exploits both IP designer and SoC integrator
constraints while considering the application requirements.
The basic points are both specification of the I/O schedule of
the IP and satisfaction of the user requirements. We aim
having an IP’s encapsulation model which communication
interface may be predefined with user constraints.

Our approach deals with interfacing hardware IP to VCI. It
starts with defining bandwidth, I/O timing constraints of the
desired interface. Our approach manages communication
under low level interfacing constraints details relative to the
IP synthesized from a high level specification (computing
latency, data synchronization transfer etc.). The main idea is
to associate the behavioral of the IP model under I/O and
timing constraints to an I/O CABA model. The RTL interface
constraints are implemented at a cycle-true and a bit-accurate
signal level. To automate the process of generating IPs
communication interfaces, we formulate the problem under
consideration as follows:
1- The configuration choice of the interface components

leads to different communication and synchronization
mechanisms: for a given IP, we focus on satisfying a
variety of the pre-specified requirements of an
application.

2- The parameters of the communication interface include
clocking, address definition and VCI parameters.

The approach favorites the design at a higher level than

RTL of HW interfaces and exploits both IP provider and SoC
integrator constraints.

3. CABA Communication Interface

An IP can be viewed as a cycle accurate “black-box”: only

the communication interface is known. It has a number of I/O
ports each of which having a certain bit width. SoC can
supports multiple models of computation. In this work, we
associate the IP behavioral model (under I/O and timing
constraints) to an I/O CABA interface description model. The
CABA abstraction level is defined so that having a CABA
hardware interface without necessary describing the
component hardware architecture [3]. This CABA definition
specification tends to simulate faster than the RTL model due
to less implementation details.

To connect the IP to others SoC components, we have to
respect refinement and specification of the I/O protocols, data
sequence orders and timing information of data transfers. The
information needed is for identifying without ambiguity
which data is input (res. output) at each clock cycle for each
input port (res. output). The information is exploited for
correctly interfacing the I/O of the IP with VCI protocol. VCI
is a handshake data oriented protocol that allows memory
accesses operations [2]. It defines a generic cycle-based
address mapped point-to-point communication protocol with
fixed initiator and target.

3.1. Interface communication mechanisms

Communication interface is composed of a software part
and a hardware part [11]. For the reuse, only the software part
changes: the hardware control is the same. The system data
production (that can be the other SoC components
production) does not usually correspond to the IP data
consumption and inversely: the IP scheduling and I/O
constraints is often different from the system scheduling and
I/O constraints. We have to consider four sides according to
the communication scheme (figure 1): the system sending
data order and the IP consumption data order (for input
controller) and the IP production data order and the system
receiving data order (for output controller). In the other hand,
the production of data can exceed momentarily its
consumption by the IP. That is why the interface is based on
the FIFO mechanism. This structure is considering in order
managing the temporal difference and the memorization of
the succession of the I/O variables. In fact, FIFOs store data,
which are read in the same order in which they were written
in. The FIFO size defines burst length tolerance.

Co mmunication
interface

IP co re

VCI

VCI

Sending o rder

Consumptio n o rder

Receiving o rder

Pro ductio n o rder

S
Y
S
T
E
M

Figure 1. Communication scheme

Figure 2 shows the input interface structure with a 2 input
ports case and 2 bytes data width. The output interface
structure is a symmetrical. Input communication channel
mechanism transforms the request from an external slave
VCI port into a signal dedicated to the IP communication
interface. Output interface mechanism translates the data
back from the interface into a VCI response. The interface
sub-modules follow the rules of the design reuse: they are
instantiated according to the software script describing the
spatial and temporal I/O constraints. When data are read or
written, the address being accessed is checked to see if the
desired data block is present in sequential FIFOs inserted
between the VCI interface and the IP. The communication is
made by passage of address and there is as many FIFO as
address. The address of the data is used by the first input

controller (res. second output controller) to correctly
de-multiplex (res. multiplex) data for the associated input
(res. output) ports. The software script of the communication
interface drives also memory mapping and data layout. It is
writing to manage user requirements. However, the order in
which data are sending from the system is the same as the
one data are consuming by the data (res. the order in which
data are producing is the same as the one data are recovering
by the system). This restriction allows a generic form of the
controller to be defined.

Figure 2. Structure of the generic interface (input part)

In the case of an IP that makes bi-directional buses, second
part of the figure is considered. A second controller in the
input interface is instantiated to dispatch data to the
appropriate FIFO-bus. FIFO-bus is a process that
synchronizes all FIFOs of the component interface with the
Enable mechanism. Dispatching data in the appropriate
FIFOs is carried out through the interface controllers detailed
in the follow subsection.

3.2. Interface Controllers

The Sw corresponds to C code running on the processor
and the Hw corresponds to the hardware accelerator. Interface
controller is the Hw part of the interface. It handles the data
flow/control according to the values specified via the IP
interface. There are an input and an output controller. A single
VCI is port as input (res. as output) for the interfacing
mechanism. Target wrapper provides word of 8 bytes (size of
the FIFO_VCI cell) as bit width size of the interconnect: 4
bytes for the address and 4 bytes for the corresponding
information. As many IP architectures can consumes
different bit-width data, optimising the bandwidth is useful
for an efficient communication. For example, if the IP
manipulate 16 bits as input and output, Ctrlin1 dispatches
data in the appropriate FIFO_IN by address decoding and
filters the data bits from the information part. In that case, it is
assumed that two 16-bit data are transferred from the system
each time. The information is stored into the interface input
and output controllers in a set of configuration variables using
information from mem.file. FSM Controllers are configured
before data are transmitted. A sub-module Enable is
responsible of the synchronization of the data traffics
according to the I/O FSM required. Enable sub-module
(figure 2) works with a counter. This counter is maintaining a

virtual clock that cadences the IP behavior. When it is not set,
IP behaves as if the clock is freezing. The referred virtual
clock allows the controller to know the clocks cycles number
executed in the IP. Enable is reset for new computation
iteration. The iteration is a repetitive execution of a basic
motif or data sequence. For example, with an FFT (Fast
Fourier transform) IP, the treatment of a new matrix
corresponds to a new iteration.

The Enable FSM shown in figure 3 synchronizes the data
transfers between FIFO_IN (figure 2) and the IP according to
the I/O constraints. It checks at least that a data is in each
concerned FIFO_IN in the iteration step to stimulate IP
behavior. The INIT state stimulate enable signal to launch the
first iteration. WAIT state consists in switching off enable
signal and to wait the arrival of data. Once this condition is
filled, RUN state is active. RUN state transits the data to IP
behavior and gets back output data from it. This FSM is
piloted by I/O data scheduling. It drives synchronously the
component with the implementation of the synchronous
communication interface.

mem.file

FIFO_IN

FIFO_IN

Ctrlin1

16

16 16

16

FIFO
_VCI

64

VCI/
SoCLiB

Target Wrapper

Ctrlin2 High Level
Synthtetised

IP

BUS 1

BUS 2

BUS n-1

BUS n

FIFO_IN

FIFO_IN

FIFO_OUT

FIFO_IN

Rst

16

16

16

Enable

Fifoenable
Clk

SynchronousAsynchronous

Figure 3. A

When the
interface mec
check that th
–resp. produ
configuration

4. Design e

The comm
phases of SoC
developed. It
flow: System
based on C+
timing chara
methodology
high-level la
combination
co-synthesis.
allows real r
implemented
aspects to be

The comm
SystemC Me
Moore FSM
1- A transi

the curre
INIT

Run

WAIT

FiFo_IN
empty Favorable conditions

 for computation

Advance in time

Read/Write

utomate Enable FSM

controllers receive the system-reset signal, the
hanism initializes the virtual clock counter and
e FIFOs are empty (i.e. the IP consumption
ction – process is finished) to change the
 of the interface behavior.

nvironment and experimentation

unication interface design starts in the early
 design when the design specification is being

 uses a high-level language to speed to design
C. SystemC [4] -a hardware modeling platform
+ language- can define both functional and
cteristics to describe the interface. SystemC
 relies on the speed and efficiency of the
nguages to decrease verification through a
of co-design techniques, co-simulation, and

 Indeed, the use of a high level specification
euse possibility for a particular function to be
 and allows timing, memory and communication
taken into account.
unication interface is specified as a slave basis
aly/Moore Finite State Machine (FSM). Mealy
contains:
tion function, that computes the next state from
nt state and the input values on the clock edge,

2- A generation function that computes the outputs as a
function of the current state, for Moore machines, or as a
function of the current state and the inputs, for Mealy
machines.

Using this strategy is easy to apply with the concurrency
nature of SystemC simulation. In this paper, we consider the
particular aspects of hardware design with SystemC:
high-level design using designs patterns, and generalization
using templates. We present the design of a generic using the
"state" design pattern and templates. The sc_method and
sc_thread processes supported in SystemC help in modeling
concurrency. The monitoring and tracing of the various ports
and values is facilitated by sc_trace option. We use the C++
templates to implement variables that we keep parameterized
for providing genericity. The bit width and the number of the
I/O ports as interface parameters are template parameters. In
the other hand, sizes of FIFOs, for example, are passed as
SystemC parameters to the sc_module implementing the
concerned sub-module.

In order to validate our approach, we have used the
SoCLiB platform [3]. SoCLiB proposes the use of an open
modeling and simulation platform for SoC design. It aims at
developing a library of simulation models for virtual
components (IP cores) to allow to model complex systems
multiprocessors in the context of the VCI protocol use [1]. To
test our proposed encapsulation methodology, a
monoprocessor platform has been conceived from the
existing SoCLiB IP cores. The interface specification is then
used throughout the design flow to verify the design
functionality at each step.

A slave generic communication interface has been
evaluated with the hardware specification of a mean filter
block. The platform contains a standard memory (RAM), a
MIPS R3000 processor with its cache, and the Hw
co-processor (mean filter). All these components are
connected via VCI ports to a simple network (SoCLiB
crossbar in figure 4). The processor initiates the
communications. It sends/receives the data according to the
software script scheduling. The co-processor reads the data
according to the consumption order from the appropriate
FIFO then writes back the result in the output interface.

Fig

T
com

can then work concurrently in the platform thanks to the
interface communication mechanisms. From the description
files, a script is run with user parameters to obtain the desired
specific interface. The overall Hw/Sw design is then
co-simulated using the SoCLiB platform. Every transfer is
done on a rising edge of the system clock. The transfers at the
IP interface are cadenced by the virtual clock controlled by
the Enable sub-module.
Simulations have been successfully realized with various
numbers of busses (hardware IP input/output number) to
verify different interface sub-module functionality.
Simulations have been realized and validated under a Linux
environment, SystemC-2.0.1 simulator and gcc 3.3.1 for
compilation. The controller synthesis has also been realized
with ISE/Foundation from Xilinx in order to evaluate the
interface performance. For the mean filter constraints we
used, ctrl1 and ctrl2 can operate up to 40 Mbits/s with a Virtex
1000E technology.

5. Conclusions

SoC design complexity can be managed by raising the
abstraction level through the definition of new design
methodologies for the reuse and the integration of the
pre-designed cores. In this paper, the architecture of a
communication interface that facilitates the integration of a
hardware component in a system has been presented. This
generic interface can be easily applied to different IPs
constraints in different hardware system contexts and using
different data protocols. The design has been successfully
validated by simulation and its hardware synthesis is in
progress.

6. References

[1] F. Petrot, P. Gomez « Lightweight implementation of the posix threads
API for an on-chip MIPS multiprocessor with vci interconnect. » In: Design,
Automation and Test in Europe Conference and Exhibition (DATE'03
Designers' Forum), Munich, Germany (2003)
[2] G. Cyr, G. Bois, M. Aboulhamid « Generation of processor interface for
SoC using VSIA recommendations », submitted to IEE Proc. - Computers
and Digital Techniques, 11/2002.
[3] http://soclib.lip6.fr/
[4] http://www.systemc.org

ure 4. Platform design

he FIFOs are directly connected to the ports of the virtual
ponent. The MIPS processor and the filter co-processor

[5] M. Keating, P. Bricaud, "Reuse Methodology Manual for
System-on-a-Chip Design", 3rd edition, {Kluwer Academic Publishers},
2003.
[6] P. Coussy, A. Baganne, E. Martin, « A Design Methodology for IP
Integration », IEEE International Conference ISCAS 2002, Scottsdale, USA,
May 2002.
[7] R.Damaševičius, V.Štuikys. «Wrapping of Soft IPs for Interface-based
Design Using Heterogeneous Metaprogramming», informatica, 2003, Vol.
14, No. 1, pp. 3-18. ISSN 0868-4952
[8] R. Lysecky & F. Vahid « Prefetching for improved Bus Wrapper
Performance in Cores » ACM-Transaction Design Autom. Electr. Syst. 7(1):
58-90, Janv. 2002
[9] Sonics Inc, "Open Core Protocol Specification 1.0", 2000
[10] Virtual Component Interface Standard VSI Alliance™, OCB 2 2.0,
On-Chip Bus Development Working Group April 2001
[11] Y. Cho, G. Lee, Sungjoo Yoo, K. Choi, and N.Zergainoh, « Scheduling
and Timing Analysis of HW/SW On-Chip Communication in MP SoC
Design » (DATE'03 Designers' Forum), Munich, Germany (2003)

Interface Interface

VCI
MIPS

FILTER

RAM
VCI

VCI VCI
SoCLiB Crossbar

virtuel clock

system clock

http://soclib.lip6.fr/
http://www.systemc.org/

	Introduction
	IP Interfacing
	State of the art
	Proposed Interface model

	CABA Communication Interface
	Interface communication mechanisms
	Interface Controllers

	Design environment and experimentation
	Conclusions
	References

	a:

