
A Fast Hardware/Software Co-Verification Method

using a real hardware acceleration

Mossaad Ben Ayed1, Faouzi Bouchhima2, Mohamed Abid3
National Engineering School of Sfax

University of Sfax, Tunisia
1 mossaad_benayed@yahoo.fr, 2 f_bouchhima@yahoo.fr, 3 mohamed.abid@enis.rnu.tn

Abstract— Due to the number and the nature of components
integrated in them, Systems-On–a-Chip (SoC) have be come
increasingly complex. To solve the problem of cost, flexibility and
the time-to-market, systems designed with mixed hardware
software systems has increased and the verification method has
become a key position of the design process. This paper describes
a new hardware/software co-verification methodology for SoC,
based on the integration of a SystemC simulator and an FPGA
accelerator. Between the SystemC simulator [1] [2] and the
FPGA board, a shared communication was established to
accelerate the simulation via flexible interfaces. The key issue is
the synchronization between the two parts.

Keywords-component; Co-Verification; SystemC ; Transaction
Level Modeling; Synchronization.

I. INTRODUCTION

Embedded systems are mostly heterogeneous devices.
Their design is based on hardware and software components.
These parts cannot be developed independently, since their
interaction is a key point of the system behavior. Each part
needs to be aware of the characteristics of other parts, in order
to provide optimized components. The best strategy adopted is
co-design, since it allows us to develop HW/SW component
concurrently [3].

Co-simulation is a key methodology in co-design that
allows verification of the hardware, the software, and their
interaction. The essential aim of the co-simulation is to validate
and to cover the performance as well as the functionality. The
main problem appears when the system complexity grows and
the validation becomes more and more time consuming. To
overcome this challenge, and speed up HW/SW co-simulation,
Transaction Level Modelling (TLM) is adopted. This paper is
organized as follows. Section 2 summarizes existing work on
HW/SW co-simulation. Section 3 explains the proposed
solution to accelerate the co-simulation. Section 4 and 5
present a detailed description of the communication model and
the synchronization model between SystemC and the FPGA
platform. Experimental results are discussed in section 6.
Finally, concluding remarks are given in section 7.

II. RELATED WORK

Several simulation frameworks have been proposed in the
literature. They can be classified into two main categories:
homogenous and heterogeneous.

Homogenous frameworks use a single simulator for the
simulation of both hardware (HW) and software (SW)
components. The main advantage of this category is the
simplification of the design modeling and the good simulation
performance. However, homogenous frameworks, usually
based on extended existing languages suffer from lack of
libraries and synthesis tools and they are suitable only in a very
initial phase of the design, prior to HW/SW partionning.

Inversely, heterogeneous frameworks, which are based on
integrating existing simulators (using co-simulation), warrant a
more accurate tuning between HW/SW components and
benefit from the existing libraries and tools. The major problem
in this category is the communication and synchronization
models between the different simulators.

Several frameworks [4] [5] [6] are mainly focused on
Multilanguage system description, that is, a HDL for hardware
and a programming language for software. All these
heterogeneous co-simulations are based on solving the
problems of controlling and synchronizing several simulation
engines. These frameworks are adopted because of the best
simulation performance and the easiest integration but it was
the only possible choice when VHDL or Verilog simulation
was the highest possible level of abstraction for simulating
hardware.

The advantage of design with SystemC [7] [8] [9] is the use
of the bus at different abstraction layer to obtain more efficient
co-simulation. HW and SW are described by using C. This
approach simplifies the implementation of the initial model as
well as the HW / SW partitioning. In fact, HW components are
simulated by using the SystemC simulation kernel, while SW
programs run on an Instruction Set Simulator (ISS). Thus, more
accurate performance estimation could be obtained.

The frameworks based on the last approach use two
essential steps. The first is the Inter Process Communication
(IPC). It is used to make the communication between the ISS
and the SystemC simulator. The second is the Bus Wrapper. It
ensures synchronization between SystemC simulation and the
ISS.

These frameworks still suffer from some performance
bottlenecks, caused by the use of the ISS. However, ISS gives
the best simulation accuracy. To accelerate simulation, in spite
of the accuracy, the native SW simulation is adopted using
SystemC and time annotations. Some works try to improve the
performance estimation accuracy in native simulation by

© 2012 IEEE

ICM 2012, December 17-20, 2012, Algiers, Algeria.
Proceedings of The 24th International Conference of Microelectronics

modeling and simulating the OS behavior essentially the
interruptions and preemption mechanism [10].

Other works [15] is based on using multi-ISS to accelerate
the simulation. But this framework suffers from a complex
synchronization scheme that increases the overhead.

Our solution replaces the ISS by real processor. The main
advantages are:

• Our framework gives a high speed SW validation
without any lost of accuracy since SW will be
executed by the target microprocessor.

• The hardware part will be described and simulated
using SystemC.

So, this framework represents a very useful platform for
software engineers to validate their code before the hardware
components become available.

III. CONVENTIONAL APPROACHES

As known, if all modeled blocks are implemented in
hardware emulation, the system cost, as well as the running and
debugging cost, will become expensive. Therefore, a combined
method using an emulator and a simulator is the most adopted
to model SOCs.

To increase the verification speed while maintaining clock
accuracy, an FPGA type ALTERA DE2-70 is used. Thus the
verification framework uses SystemC simulator to simulate the
hardware components and the NIOS II processor to execute the
software applications. The main idea is based on the
replacement of the ISS by a real processor, which complicates
the synchronization task between the HW and SW. Two issues
are essential: the communication and the synchronization
models. The next section describes the communication model.

IV. COMMUNICATION MODEL

This section gives a brief introduction to the
communication model. A USB link is used in the
communication between PC and FPGA because this kind of
communication has better speed than PCI which it adopted in
emulation [11]. This communication is based on packets which
are constructed by the communication interface between
simulator and emulator.

Two forms of exchanged packets are used to perform the
synchronization scheme between the simulator and the
emulator, figure 1.

Interruption packet is the first form. It consists of two parts:
a header and a body. The last one contains the routine number
and the interruption time stamp. The header of this form
presents the type of synchronization and the routine number
indicates the routine task to be executed. The time stamp
represents a synchronization point and it is used to execute the
interrupt routine at the appropriate instant.

Data packet is the second form. It comprises a header and
the data. The header in this case contains the synchronization
type, the size of data to send and the time stamp to synchronize
when it is necessary.

Figure 1: Synchronization forms

Note that any packet received by the NIOS II side generates
an USB interruption that can be exploit in the implementation
phase to interrupt the NIOS processor each time a packet is
received.

V. SYNCHRONIZATION MODEL

A key issue of the proposed verification framework is the
time synchronization between the SystemC simulator and the
NIOS II processor emulated on the FPGA board. The
verification method is based on the following synchronization
schemes which respect the interaction style that can be
involved between HW and SW components. Note that, in the
same design, HW and SW components may use different
synchronization schemes

� Scheme 1: The SW task receives data periodically from
the hardware task.

This scheme is based on FIFO memory between SW task
and HW task. The main idea consists on fixed synchronization
time between simulator and emulator (see figure 2). Because of
the difference of speed, the HW imposes a synchronization
Time (Tsync). This Tsync must be more than HW or SW tasks
time.

Figure 2: Synchronization model: scheme 1

� Scheme 2: The SW task waits the end of the hardware
task.

When a hardware component is simulated by SystemC, the
SW task uses a waiting loop for data (see figure 3). Once the

Packet type

(ST)

Interruption

Number

(RN)

Interruption time

stamp

(TS)

 Header Body

a) Interruption packet

Packet type

(ST)

Size

(S)

Data

(D)

Time stamp

(TS)

 Header Body

b) Data packet

Task 2

HW SW

Task 1

Tsync Data packet

Data packet 2 Tsync

SC Time Physical Time

Request

hardware task (task1) is finished, the simulator sends data to
the SW task and a switch context from SystemC to board is
taken. At this time, the SW task receives data and resumes the
execution. Here, the execution time of task1 is modeled by the
SystemC wait() function. The amount of time used by the wait
function is sent to the SW part to inform it about the duration
of the waiting loop (see figure 3). Note that the SystemC and
the emulator need to usually exchange information about the
time.

Figure 3 : Synchronization model: scheme 2

� Scheme 3: The SW task receives an interruption to
indicate the end of the hardware task

Figure 4 : Synchronization model: scheme 3

This scheme is illustrated by the figure 4. In this case, the
software does not use a waiting loop but the end of the task is
indicated by interruption, so the software can execute the task
instead of waiting. The Simulation scheduler, running on NIOS
II, sends data to the simulation interfaces (arrow 0), which
activates the hardware task1. At the end of task1 process, and
before sending data to SW task, the
wait_for_interrupt(sc_time) function is called (see figure 5), so
the simulator advances its time (arrow 1) and sends an
interrupt packet to inform emulator for the next time stamp
(arrow 2). At this time, the simulation scheduler activates a
NIOS II timer with a period that coincides with the received
interruption time stamp and begins the execution of an

intermediate task (an eventual user background task). When the
timer is reached, it interrupts the background task. Thus the
simulation scheduler activates the task 2 (the number of the
interruption is received with the interrupt packet). The last one
may request data, thus the task 1 resumes execution and sends
data packet (arrow 4), which activates task 2. Figure 6 shows
the template of the code.

Figure 5 : Wait_for_interrupt code

Where t is an estimation of the task1 duration

Figure 6 : Template of synchronization code

� Scheme 4: The SW task may receives a random
interruption resulting from externally data reception

This scheme is illustrated by the figure 7. The SystemC
begins the execution of the task 1 and, when finished, sends a
data packet to the SW task. The task 2 starts and the SystemC
executes the Hardware_Input_Interface : a process that models
the input interfaces of the hardware subsystem (its execution do
not advances the SystemC local time). The process may
generate a random interrupt packet which informs of the
reception of a new data. The sent packet via USB generates an
USB interruption which will interrupt the task 2. Thus, the
USB interruption plays the same role as the hardware
interruption. Once the interruption is occurred, we need only to
know, thanks to the received interrupt packet, the interruption
routine to execute (here is task 3).

Figure 7 : Synchronization model: scheme 4

Task2: Waiting loop

Task 2: processing

HW SW

Task 1

Data packet

Data packet

Idle time to
synchronize

Task 3

SC Time Physical Time

Data packet

1

2

3

5
6

7

8

0

Task 1

Task 3

HW SW

Data packet

Data packet

Interruption packet Intermediate

Task

 Task 2

SC Time Physical Time

Request 4

void wait_for_interrupt(sc_time t)

{

wait(t);

send_interruption_packet(…..) ;

}

/* Task1 code */

Instructions

….

….

Wait_for_interrupt (t);

Switch_context(); /* switch context to SC*/

Time SC

Waiting loop

Task 2

HW SW

Task 1
Data packet

Data packet

Input

Interruption

Task 3

Idle time to
synchronize

To ensure communication and to save synchronization
context, an array of shared registers is used.

VI. EXPERIMENTAL RESULTS

In this section, we propose a fingerprint recognition system
[14] to validate our co-verification framework. At first, a
communication model is implemented. The model is divided
into receiving/ transmitting drivers. Figure 10 shows the
different components of the model.

- SW driver is made by Windows Driver Kit (WDK). This
driver contains two main functions Read and Write.

- Channel: the USB communication offers a transaction
speed of 480 Mbits/s; unlike PCI which offers only 133 Mbits/s
[12] [13].

- HW driver is based on Philips ISP1362 controller.

Then, Based on the native execution of the fingerprint
recognition on a 2 GB RAM, 1.66 GHz Intel Core 2 Duo
processor with Windows XP operating system, we notice that
the time execution of the minutia extraction is the minimum.
We divided our system on hardware components and software
applications based on time execution (see figure 8).

0

1

2

3

4

5

6

7

8

Filter Binarisation Skeletonization Matching

Minutia Extraction Time

M
o

d
u

le
 T

im
e

/
M

in
u

ti
a

ex
tr

ac
ti

o
n

T

im
e

Modules

Figure 8: Time execution of each modules as a function of minutia extraction
time

The co-verification time of each module is given in table 1.

TABLE I : SIMULATION TIME

 Module Time (s)

Read of fingerprint

Filter

Binarization

HW Components

Matching

0.03

Interface Interface 0.5

Skeletonization SW Applications

Minutia extraction

0.01

All Modules 0.54

Result shows that our simulation/emulation environment
reduces the time simulation.

VII. CONCLUSION

A methodology to perform early design stage validation of
hardware/software systems is proposed in the paper. The co-
verification framework is based on synchronization between
SystemC simulator and FPGA board emulator. The main idea
is to accelerate the simulation by replacing the ISS with NIOS
II as a real processor. Experiments with a real example proved
the effectiveness of the proposed framework. We need others
type of examples to validate all synchronization aspects. As a
future work, the adding of OS support by the software part will
be considered.

VIII. REFERENCES
[1] OSCI; “Functional Specification for SystemC 2.0”, available at

www.systemc.org
[2] T. Grotker, S Liao, G. Martin, S Swan; “System Design with

SystemC”; Kluer Academic Publishers, ISBN 1-4020-7072-1
[3] D. Micheli, D.Ernst, R. Wolf, W. Eds. Readings in

Hardware/Software Co-design, Morgan Kaufmann, 2001
[4] Liem C., Nacabal F., Valderrama C., Paulin P., And Jerraya A..

System-on-chip cosimulation and compilation. IEEE Design and Test
of Comput. 14, 2, 16–25.1997.

[5] Valderrama C., Nacabal F., Paulin P., And Jerraya A. Automatic
VHDL-C interface generation for distributed cosimulation:
Application to large design examples. Design Autom. Embed. Syst.
3, 2/3, 199–217.1998.

[6] Coste, P., Hessel, F., Marrec, P. L., Sugar, Z., Romdhani, M.,
Suescun, R., Zergainoh, N., AND Jerraya, A. Multilanguage design
of heterogeneous systems. In Proceedings of IEEE International
Workshop on Hardware-Software Codesign. 54–58.1999.

[7] Liu, J., Lajolo, M., AND, A. Software timing analysis using HW/SW
cosimulation and instruction set simulator. In Proceedings of the
IEEE International Workshop on Hardware/Software Co-design. 65–
69.1998.

[8] Fummi, F., Martini, S., Perbellini, G., AND Poncino, M. Native ISS-
SystemC integration for the cosimulation of multi-processors SoC. In
Proceedings of the IEEE Conference on Design Automation and Test
in Europe. 564–569. 2004.

[9] Moussa, I., Grellier, T., AND Nguyen, G. Exploring SW performance
using SoC transactionlevel modelling. In Proceedings of the IEEE
Conference on Design Automation and Test in Europe. 120–125.
2003.

[10] Bouchhima, A. Yoo, S. Jarraya A.., “Fast and accurate timed
execution of high level embedded software using HW/SW interface
simulation model”, Design Automation Conference: ASP-DAC, pp.
469 – 474, 2004.

[11] Soha Hassoun, Senior Member, IEEE, Murali Kudlugi, Duaine Pryor,
and Charles Selvidge “A Transaction-Based Unified Architecture for
Simulation and Emulation” IEEE transactions on very large scale
integration (VLSI) systems, vol. 13, no 2, 2005.

[12] Jan Exalson, “USB COMPLETE Everything You Need to Develop
Custom USB Peripherals” book, third edition, 2005

[13] ISP1362 Embedded Programming Guide Version 9 June 2002

[14] Mossaad Ben Ayed, Faouzi Bouchhima and Mohamed Abid,
“Automated Fingerprint Recognition Using the DECOC Classifier”,
International Journal of Computer Information Systems and Industrial
Management Applications. ISSN 2150-7988 Volume 4 pp. 546-553.
2012.

[15] S. Cordibella, F. Fummi, G. Perbellini, D. Quaglia, “A HW/SW Co-
Simulation Framework for the Verification of Multi-CPU systems”,
IEEE transactions, 2008

