Proceedings of The 24th International Conference of Microelectronics
ICM 2012, December 17-20, 2012, Algiers, Algeria.

A Fast Hardwar e/ Softwar e Co-Verification Method

using a real hardware acceleration

Mossaad Ben AyédFaouzi BouchhinfaMohamed Abid
National Engineering School of Sfax
University of Sfax, Tunisia
! mossaad_benayed@yahooz.ﬂgbouchhima@yahoo.f?,mohamed.abid@enis.rnu.tn

Abstract— Due to the number and the nature of components Homogenous frameworks use a single simulator for the
integrated in them, Systems-On-a-Chip (SoC) have be comesimulation of both hardware (HW) and software (SW)

increasingly complex. To solve the problem of cost, flexibility and components. The main advantage of this category is the
the time-to-market, systems designed with mixed hardware simplification of the design modeling and the good simulation

software systems has increased and the verification method has performance. However, homogenous frameworks, usually
become a key position of the design process. This paper describeshased on extended existing languages suffer from lack of
a new hardware/software co-verification methodology for SoC, ipraries and synthesis tools and they are suitable only in a very

based on the integration of a SystemC simulator and an FPGA ;.. ; ; ; ;
_ initial phase of the design, prior to HW/SW partionning.
accelerator. Between the SystemC simulator [1] [2] and the P gn. p P 9

FPGA board, a shared communication was established to Inversely, heterogeneous frameworks, which are based on
accelerate the simulation via flexible interfaces. The key issue is integrating existing simulators (using co-simulation), warrant a
the synchronization between the two parts. more accurate tuning between HW/SW components and

- _ benefit from the existing libraries and tools. The major problem
Keywords-component; Co-Verification; SystemC ; Transaction i this category is the communication and synchronization
Level Modeling; Synchronization. models between the different simulators.

Several frameworks [4] [5] [6] are mainly focused on
. INTRODUCTION Multilanguage system description, that is, a HDL for hardware

~and a programming language for software. All these
Embedded systems are mostly heterogeneous devic@gierogeneous co-simulations are based on solving the

Their design is based on hardware and software componemigoplems of controlling and synchronizing several simulation
These parts cannot be; developed |ndependeqtly, since th@HgineS, These frameworks are adopted because of the best
interaction is a key point of the system behavior. Each pagimulation performance and the easiest integration but it was
needs to be aware of the characteristics of other parts, in orggg only possible choice when VHDL or Verilog simulation

to provide optimized components. The best strategy adoptedyigs the highest possible level of abstraction for simulating
co-design, since it allows us to develop HW/SW componemardware.

concurrently [3].)] i
. . . , , The advantage of design with SystemC [7] [8] [9] is the use
Co-simulation is a key methodology in co-design thabt the pus at different abstraction layer to obtain more efficient
allows verification of the hardware, the software, and theigg-simulation. HW and SW are described by using C. This
interaction. The essential aim of the co-simulation is to vaIidatgpproaCh simplifies the implementation of the initial model as
and to cover the performance as well as the functionality. TRga|| as the HW / SW partitioning. In fact, HW components are
main problem appears when the system complexity grows agghylated by using the SystemC simulation kernel, while SW

the validation becomes more and more time consuming. T@ograms run on an Instruction Set Simulator (ISS). Thus, more
overcome this challenge, and speed up HW/SW co-simulatiogecyrate performance estimation could be obtained.
Transaction Level Modelling (TLM) is adopted. This paper is

organized as follows. Section 2 summarizes existing work on The frameworks based on the last approach use two
HW/SW co-simulation. Section 3 explains the propose@ssential steps. The first is the Inter Process Communication
solution to accelerate the co-simulation. Section 4 and @PC). It is used to make the communication between the ISS
present a detailed description of the communication model ag@d the SystemC simulator. The second is the Bus Wrapper. It
the synchronization model between SystemC and the FPGsures synchronization between SystemC simulation and the
platform. Experimental results are discussed in section 63S.

Finally, concluding remarks are given in section 7. These frameworks still suffer from some performance

bottlenecks, caused by the use of the ISS. However, ISS gives
. . _ the best simulation accuracy. To accelerate simulation, in spite
~ Several simulation frameworks have been proposed in thg the accuracy, the native SW simulation is adopted using
literature. They can be classified into two main categoriegsystemC and time annotations. Some works try to improve the
homogenous and heterogeneous. performance estimation accuracy in native simulation by

II. RELATED WORK

© 2012 IEEE

modeling and simulating the OS behavior essentitttig
interruptions and preemption mechanism [10].

Other works [15] is based on using multi-ISS tocdeate
the simulation. But this framework suffers from amplex
synchronization scheme that increases the overhead.

Our solution replaces the ISS by real processoe. mhin
advantages are:

e Our framework gives a high speed SW validation
without any lost of accuracy since SW will be

executed by the target microprocessor.

e The hardware part will be described and simulated

using SystemC.

So, this framework represents a very useful platféor
software engineers to validate their code befoeehhrdware
components become available.

Ill. CONVENTIONAL APPROACHES

As known, if all modeled blocks are implemented
hardware emulation, the system cost, as well asutiding and
debugging cost, will become expensive. Thereformrabined
method using an emulator and a simulator is thet mdepted
to model SOCs.

To increase the verification speed while maintajnifock
accuracy, an FPGA type ALTERA DE2-70 is used. Tthes
verification framework uses SystemC simulator taugate the
hardware components and the NIOS |l processoreowg the
software applications. The main idea is based oa
replacement of the ISS by a real processor, whichpticates
the synchronization task between the HW and SW. ibawes
are essential: the communication and the synchatoiz
models. The next section describes the communicatiadel.

IV. COMMUNICATION MODEL

Interruption Interruption time
Packet type
Number stamp
(ST
(RN) (TS)
T 7 —
' ~
Header Body
a) Interruption packet
Packet type Size Data Time stamp
(ST (S) D) (TS)
(- . —
~ ~
Header Body

b) Data packet

Figure 1: Synchronization forms

Note that any packet received by the NIOS Il sideegates
an USB interruption that can be exploit in the iempéntation
phase to interrupt the NIOS processor each timackat is

inreceived.

V.

A key issue of the proposed verification framewixrkhe
time synchronization between the SystemC simulatat the
NIOS Il processor emulated on the FPGA board. The
verification method is based on the following symetization
schemes which respect the interaction style that ba
involved between HW and SW components. Note timathé
thsame design, HW and SW components may use different
synchronization schemes

SYNCHRONIZATION MODEL

» Scheme 1: The SW task receives data periodicallydm
the hardware task.

This scheme is based on FIFO memory between SW task
and HW task. The main idea consists on fixed syomkation
time between simulator and emulator (see figur>ause of
the difference of speed, the HW imposes a synchation

This section gives a brief introduction to the Time (Tgnd. This Tgync must be more than HW or SW tasks
communication model. A USB link is wused in thetime.
communication between PC and FPGA because this dind
communication has better speed than PCI whichaptadl in
emulation [11]. This communication is based on p&skvhich
are constructed by the communication interface betw
simulator and emulator.

HW SW

Task

Teyne Data packet

Two forms of exchanged packets are used to perfbem
synchronization scheme between the simulator arel th

emulator, figure 1. Request

Data packet
o

<«

> Task 2

Physical Time

2 Tsync

Interruption packet is the first form. It consisfstwo parts:
a header and a body. The last one contains thineontimber
and the interruption time stamp. The header of fhisn
presents the type of synchronization and the reutiomber
indicates the routine task to be executed. The titaenp
represents a synchronization point and it is usegkécute the
interrupt routine at the appropriate instant.

SC Time

Figure 2: Synchronization model: scheme 1

» Scheme 2: The SW task waits the end of the hardware

Data packet is the second form. It comprises aédreand task

the data. The header in this case contains thehsymization
type, the size of data to send and the time stanggrichronize
when it is necessary.

When a hardware component is simulated by Systéh&C,
SW task uses a waiting loop for data (see figureOBice the

hardware task (taskl) is finished, the simulatordsedata to
the SW task and a switch context from SystemC tardads

taken. At this time, the SW task receives datarasdmes the
execution. Here, the execution time of taskl is etedl by the
SystemC wait() function. The amount of time usedHhsywait

function is sent to the SW part to inform it abthe duration
of the waiting loop (see figure 3). Note that thestsmC and
the emulator need to usually exchange informatioout the

time.

HW

Sw

ask2: Waiting loop

Idle time to

synchroniz Task 2: processing

\ 4
PhysicalTime

SCTime

Figure 3 : Synchronization model: scheme 2

Scheme 3: The SW task receives an interruption to
indicate the end of the hardware task

HW Sw

@ Data packe

Task 1 @ W
Request @
Task 3 W:j\ ? Task 2
Data pac
I o 1

\ 4

SCTime

Intermediate
Task

v
PhysicalTime

Figure 4 : Synchronization model: scheme 3

This scheme is illustrated by the figure 4. In tbése, the
software does not use a waiting loop but the enttheftask is
indicated by interruption, so the software can electhe task
instead of waiting. The Simulation scheduler, ragnmdn NIOS
Il, sends data to the simulation interfaces (ar@w which
activates the hardware taskl. At the end of tasktgss, and
before sending data to SW task, the
wait_for_interrupt(sc_time) function is called (see figure 5), so
the simulator advances its time (arrow 1) and sead
interrupt packet to inform emulator for the nexnhdi stamp
(arrow 2). At this time, the simulation scheduletizates a
NIOS 1l timer with a period that coincides with theceived
interruption time stamp and begins the execution aof

intermediate task (an eventual user background.te#ken the
timer is reached, it interrupts the background .tagkus the
simulation scheduler activates the task 2 (the mund the
interruption is received with the interrupt packéthe last one
may request data, thus the task 1 resumes exearibisends
data packet (arrow 4), which activates task 2. feigu shows
the template of the code.

void wait_for_interrupt(sc_time t)
{

wait(t);
send_interruption_packet(.....) ;
}

Figure 5 : Wait_for_interrupt code

Where t is an estimation of the taskl duration

/* Task1 code */

Instructions

Wait_for_interrupt (t);

Switch_context(); /* switch context to SC*/

Figure 6 : Template of synchronization code

» Scheme 4: The SW task may receives a random
interruption resulting from externally data reception

This scheme is illustrated by the figure 7. Thet&y<
begins the execution of the task 1 and, when fadslsends a
data packet to the SW task. The task 2 starts lan&ystemC
executes thélardware Input_Interface : a process that models
the input interfaces of the hardware subsystenefiézution do
not advances the SystemC local time). The proceag m
generate a random interrupt packet which informstha
reception of a new data. The sent packet via USiigges an
USB interruption which will interrupt the task 2his, the
USB interruption plays the same role as the hardwar
interruption. Once the interruption is occurred,veed only to
know, thanks to the received interrupt packet,ititerruption
routine to execute (here is task).

HW S

t Data packet >

Task aiting loop
Input ==,

Idle time t Inte! jon > Task 2
synchroniz

[Data packet P Task 3

A 4
SC Time
Figure 7 : Synchronization model: scheme 4

To ensure communication and to save synchronization

context, an array of shared registers is used.

VI.

In this section, we propose a fingerprint recognitsystem
[14] to validate our co-verification framework. Airst, a
communication model is implemented. The model isdéid
into receiving/ transmitting drivers. Figure 10 wslso the

EXPERIMENTAL RESULTS

different components of the model.

- SW driver is made by Windows Driver Kit (WDK). iBh

driver contains two main functions Read and Write.

- Channel: the USB communication offers a traneacti
speed of 480 Mbits/s; unlike PCI which offers oh88 Mbits/s

[12] [13].

- HW driver is based on Philips ISP1362 controller.

Then, Based on the native execution of the fingetpr
recognition on a 2 GB RAM, 1.66 GHz Intel Core 2dDu
processor with Windows XP operating system, weceothat
the time execution of the minutia extraction is thaimum.
We divided our system on hardware components aftdae

applications based on time execution (see figure 8)

Time

o P N W A U O N ®
P

Module Time / Minutia extraction

Filter

Binarisation Skeletonization

Minutia Extraction Time

Matching

Figure 8: Time execution of each modules as a fonaf minutia extraction

The co-verification time of each module is givertable 1.

time

TABLE | : SIMULATION TIME

Module Time (s)
HW Components Read of fingerprint
Filter
0.03
Binarization
Matching
Interface Interface 0.5
SW Applications Skeletonization 0.01
Minutia extraction
All Modules 0.54

Result shows that our simulation/emulation envirenm

reduces the time simulation.

VII.

A methodology to perform early design stage vaiiabf
hardware/software systems is proposed in the paper.co-
verification framework is based on synchronizatloetween
SystemC simulator and FPGA board emulator. The ndEa
is to accelerate the simulation by replacing th& ¥8th NIOS
Il as a real processor. Experiments with a reaimgta proved
the effectiveness of the proposed framework. Wel rathers
type of examples to validate all synchronizatiopeass. As a
future work, the adding of OS support by the sofengart will
be considered.

CONCLUSION

VIIl. REFERENCES

[1] OSCI; “Functional Specification for SystemC 2.CGavailable at
Wwww.systemc.org

[2] T. Grotker, S Liao, G. Martin, S Swan; “SysteBesign with
SystemC”; Kluer Academic Publishers, ISBN 1-40202-Q

[3] D. Micheli, D.Ernst, R. Wolf, W. Eds. Readingsn
Hardware/Software Co-design, Morgan Kaufmann, 2001

[4] Liem C., Nacabal F., Valderrama C., Paulin Rnd Jerraya A..
System-on-chip cosimulation and compilation. IEE€s@n and Test
of Comput. 14, 2, 16-25.1997.

[5] Valderrama C., Nacabal F., Paulin P., And Jerrd. Automatic
VHDL-C interface generation for distributed cosiwmitn:
Application to large design examples. Design Aut@mbed. Syst.
3, 2/3, 199-217.1998.

[6] Coste, P., Hessel, F., Marrec, P. L., Sugat, Romdhani, M.,
Suescun, R., Zergainoh, N., AND Jerraya, A. Mulijaage design
of heterogeneous systems. In Proceedings of IEEErniational
Workshop on Hardware-Software Codesign. 54-58.1999.

[7] Liu, J., Lajolo, M., AND, A. Software timing afysis using HW/SW
cosimulation and instruction set simulator. In Remings of the
IEEE International Workshop on Hardware/Softwaredesign. 65—
69.1998.

[8] Fummi, F., Martini, S., Perbellini, G., AND Padino, M. Native ISS-
SystemC integration for the cosimulation of multbgessors SoC. In
Proceedings of the IEEE Conference on Design Autiomand Test
in Europe. 564-569. 2004.

[9] Moussa, |., Grellier, T., AND Nguyen, G. Expilog SW performance

using SoC transactionlevel modelling. In Proceesliog the IEEE

Conference on Design Automation and Test in Eurd@-125.

2003.

Bouchhima, A. Yoo, S. Jarraya A.., “Fast andcuaate timed

execution of high level embedded software using SW/interface

simulation model”, Design Automation Conference:PABAC, pp.

469 — 474, 2004.

Soha Hassoun, Senior Member, IEEE, Murali Kigdl Duaine Pryor,

and Charles Selvidge “A Transaction-Based Unifiaathitecture for

Simulation and Emulation” IEEE transactions on véayge scale

integration (VLSI) systems, vol. 13, no 2, 2005.

Jan Exalson, “USB COMPLETE Everything You NetedDevelop

Custom USB Peripherals” book, third edition, 2005

ISP1362 Embedded Programming Guide Versionr@ 2002

Mossaad Ben Ayed, Faouzi Bouchhima and Mohanidad,

“Automated Fingerprint Recognition Using the DECOIl@sSifier”,

International Journal of Computer Information Sgsteand Industrial
Management Applications. ISSN 2150-7988 Volume 45%6-553.
2012.

S. Cordibella, F. Fummi, G. Perbellini, D. @lia, “A HW/SW Co-

Simulation Framework for the Verification of MuliPU systems”,
IEEE transactions, 2008

(10]

(11]

(12]

(23]
(14]

(15]

