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Abstract

Media-processing applications, such as signal processing, 2D and 3D graphics rendering, and image compression, are the dominant

workloads in many embedded systems today. The real-time constraints of those media applications have taxing demands on today’s

processor performances with low cost, low power and reduced design delay.

To satisfy those challenges, a fast and efficient strategy consists in upgrading a low cost general purpose processor core. This approach is

based on the personalization of a general RISC processor core according the target multimedia application requirements. Thus, if the extra

cost is justified, the general purpose processor GPP core can be enforced with instruction level coprocessors, coarse grain dedicated

hardware, ad hoc memories or new GPP cores. In this way the final design solution is tailored to the application requirements. The proposed

approach is based on three main steps: the first one is the analysis of the targeted application using efficient metrics. The second step is the

selection of the appropriate architecture template according to the first step results and recommendations. The third step is the architecture

generation. This approach is experimented using various image and video algorithms showing its feasibility.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

We are currently experiencing an important increase in

the use of embedded devices with powerful multimedia

capabilities such as speech analysis and synthesis, character

recognition, video compression, and graphics animation.

Due to the various needs of such applications, embedded

devices have to handle various data types and various

complex tasks under hard real-time constraints. The need

for real-time processing of complex algorithms is further

accentuated by the increasing interest in other new domains

like 3D image.

Especially in the domain of embedded systems, the main

design constraint is the time to market priority since, the

availability of a new product at short time even not perfectly

optimised is the key point for its commercial success.

Another important point in this domain is the opportunity to
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take advantage of the application characteristics in order to

optimize the energy/time/QoS tradeoff.

Thus, our strategy is to define a framework that provides

a simple and fast analysis tool. The first point is to start with

a typical software specification which is automatically

transformed into a graph-based internal representation. The

idea is to take as an input a standard code without

performing any additional effort and to analyze it. Even if

the false data dependencies have been eliminated, the

resulting hierarchical graph still reflects the designer or

standard authors point of view. If such a specification fits

with a low cost, low power embedded processor, this is

probably the more interesting solution. Secondly, our

objective is to extract from the various granularity levels

of this specification opportunities of parallelisms, which

could be efficiently exploited on alternative architectures.

The availability of parallelisms involves several tradeoffs

factors. The first one is the speed up of critical functions

through resource allocation versus the area increase. This

one can also means a significant static power growth [17].

Secondly time savings can be practically turned into power

savings through the management of voltage/frequency
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couple and dynamic real-time scheduling, but it also implies

a subsequent delay/power/area overhead.

Thus, design methodologies are required to rapidly test

and settle parameters such as the selection of instructions,

the capabilities of local or I/O memories, the bandwidth of

communication channels, the parallelism of processing

units, the choice of dedicated hardware.

In our design space exploration strategy, a first step

consisting in a metric-based analysis is performed rapidly

without any architectural directive. In a second step the

results are used to sketch the target architecture in order to

perform a first set of estimations. The analysis of the metric

results open different opportunities to compare alternative

specifications or to propound the proper architecture style

for a given (sub)function or task. These features include the

wider/deeper trade-off, the ratio between explicit paralle-

lism and the pipeline depth, the necessity of complex

control instructions, the requirements in terms of local

memories and specific bandwidth and the need of proces-

sing resources for address generation. This paper deals with

these metrics, which are a key step to face the CAD

challenge and rapidly converge towards the right design

solution. The rest of the paper is organized as follows.

Sections 1.1.1 and 1.1.2 give an overview about, respect-

ively, the use of metrics in the design space exploration and

the different methods to design a multimedia processor.

Section 2 details our approach. This paper focuses on the

first step only. Section 3 details the internal graph-based

representation used in our approach. Section 4 details the

different metrics used in this paper for application

specification. Section 5 shows experimental results for

various multimedia applications. Finally, in Section 6 we

conclude about our work and present some perspectives.

1.1. State of the art

This subsection presents an overview of the different

metrics used in various co-design approaches. It includes

also an overview of various design methods of multimedia

processors.

1.1.1. Metrics

Previous works dealing with metrics have been com-

pleted in the areas of high-level synthesis [9,6] and

hardware software codesign [9,18,19].

In [1] the metrics provide algorithm properties regard-

ing a hardware implementation. The quantified metrics

address the concurrency of arithmetic operations based on

uniformed scheduling probabilities and the regularity that

measures the repetition rate of a given pattern. In [6],

some probability based metrics are proposed to quantify

the communication link between arithmetic operators

(through memory or registers). These metrics focus on a

fine grain analysis and are mainly used to guide the design

of datapaths, especially to optimize local connection and

resource reuse. An interesting method for processor
selection is presented in [5]. Three metrics representing

the orientation of functions in terms of control, data

transformation and data accesses orientation of functions

are computed by counting specific instructions from a

processor independent code. Then a distance is calculated,

using specific characteristics of processors regarding their

control, bandwidth and processing capabilities. Moreover

the technique does not take into account instruction

dependencies and there is no detail about the different

kinds of access memory regarding the abstract processor

model used. Finally, in [18] finer metrics are defined to

characterize the affinity between functions and three kinds

of targets: GPP, DSP and ASIC. The metrics result from

the analysis and counting of C code instructions in order

to highlight instruction sequences which can be DSP-

oriented (buffer circularity, MAC operations inside loops,

etc.), ASIC-oriented (bit level instructions) or GPP-

oriented (conditional or I/O instructions ratio). Then a

HW/SW partitioning tool is driven by the affinity metrics.

Like [5] these metrics are dedicated to HW/SW

partitioning, they did not exploit instruction dependencies

and address a fixed (C procedures) granularity. Moreover,

the locality of data bandwidth is not clearly taken into

account.

1.1.2. Design of multimedia processor

To design a multimedia processor, many approaches can

be considered. In [10] the authors propose a complete

custom design of a processor (and its compiler), this method

is very time consuming, since, it does not use an IP core, and

moreover does not achieve a low cost solution. Some other

approaches based on IP cores are cost effective and require a

reduced global design time. Some approaches add hardware

modules (or coprocessors) to the original processor. Others

add special multimedia instructions to the processor

instruction set. In [11], a dedicated unit (called videocore)

is added to the ARM processor to handle most of H.263

computationally intensive functions like motion estimation

and DCT/IDCT transforms. In [12], a set of dedicated

instructions is added to the ARM processor for multimedia

operations. Those operations are typically special arithmetic

operations, data manipulation like rearrangement and

formatting. In [13], a processor dedicated to video

compression is presented. Its control unit is divided on

two hierarchical level: a high level unit (a RISC controller)

which control execution of relatively simple operation like

memory transfer, arithmetic and logic operation. Complex

operation like those relative to motion estimation and DCT

transform are controlled by a low level control unit. Data

dependant operations (like VLC and VLD) are handled by a

special hardware module. In [4] is presented the TAN-

GRAM that is a coprocessor dedicated to scenes composit-

ing at the display in the MPEG-4 decoding. Added

coprocessors can be DSP. In [7] is presented the MVP

(multimedia video processor) witch is based on a RISC

processor coupled to four DSPs.
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The approach defined in this paper differs from those

previously described and try to offer a more general

approach that includes an analysis step (using metrics) of

the multimedia tasks used to efficiently select and specify

software or hardware IP.
2. An approach for the design of a multimedia embedded

processor

Fig. 1 shows the proposed approach which is integrated in

the Design Trotter environment [16]. This approach is based

on two main steps which are described in what follows.

2.1. Metric computations of the target application

This step investigates the algorithmic complexity of the

tasks to be implemented. It is used to analyze the algorithms

without any consideration of the processor architecture.
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- Application specification
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For this purpose, various metrics have been defined. This

step includes several substeps. The starting point for this

first step is the application description written in the C

language. This description may have different C functions.

This description is automatically translated into a HCDFG

graph. The computation of the metric is based on this graph

representation, which is detailed in Section 3. We have

implemented four of those metrics in Design Trotter: MOM,

COM, HDRM and g metrics, these metric provide the

memory/processing orientation, control orientation, the

memory reuse and the average parallelism, respectively.

For each function of the application and each level of

graph hierarchy these metrics are computed. Then by

analyzing those numeric results, we can classify the

different functions that constitute the target application

according to their behaviour. For instance, on the one hand

control oriented functions with few parallelism opportu-

nities would constitute promising candidate for a GPP

software implementation. On the other hand, high
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parallelism functions (i.e. with high g values) with few tests

are candidate for hardware implementation.

An analysis of memory requirements of the target

application is also performed. Indeed, memory modules

dominate the cost, the performance and power consumption

of embedded systems especially in image and video

processing. Studying the impact of parallelism on memory

size is important for trading off system performance against

area cost. A memory bandwidth analysis is rapidly

performed for each level of the graph hierarchy and the

Balasa method [3] is currently adapted to our model in order

to derive memory size optimization within loop nests.
2.2. Parameterization of the dedicated processor

This parameterization is performed according to the first

step classification. It concerns the hardware IP (available or

estimated) and the processor core dedicated specification.

Our approach consists in customizing existing processor

architecture rather than creating an entirely new ASIP tuned

to an application. For this, first generic dedicated models for

multimedia application are defined. In this case study the

generic architecture (Fig. 2) is based on a free IP SPARC

LEON [8] that can be upgraded with co-processors: simple

operators like multipliers, ALU,., but also more complex

functions such as DWT provided in the form of hardware

IPs. The communication model is based on specific shared

memories with generic hardware interface [14]. ‘Data in’

and ‘data out’ memories are defined for each hardware

generic IP, if HW/HW communications are implemented a

merging between ‘in’ and ‘out’ memories is performed [1].

Based on the characterisation data, three classes of

functions are built. The first one includes candidates for

hardware implementation, it can be for instance data-flow

functions with sparse test operations (with low COM and

high g values). These will be added later as hardware IP to

the LEON processor core [8] to obtain a low cost media

processor. Those models include widely used modules that

cover various multimedia applications like image trans-

formation (DCT, wavelet transformer DWT, etc.) and

classical image processing algorithm like filter operations,
Fig. 2. Generic architecture model.
and also video processing functions like motion estimation

and run-length coding. The second class contains typical

software functions; it can be for instance control-dominated

functions with few spatial parallelism (high COM and low g

values). The third class of functions incorporates functions

without a clear orientation, an advanced RTOS partitioning

tool [1] will be used to perform a design space exploration.

Different implementation solutions feed the partitioning

tools, the coarse grain options are based on HW accelerators

estimations [21] or HW IP availability, the fine grain

alternatives are based on the generic processor core with

possibly instruction level coprocessors. Thus, the metrics

are used to guide the IP choice and specification but also to

reduce the huge multi granularity design space.

Hardware IP are written using the VHDL language.

Generic parameters of a video IP can be block size, macro-

block size, motion threshold detection, filter window, and

local memory size. The multimedia models are generic to

allow maximum flexibility: their characteristic parameters

can be tuned according to the application requirements.

Once this library is created, the next sub-step is to

parameterise those dedicated modules according to the

application specification (i.e. according to metrics results).

Those parameters can be local memory size, image size,

types of arithmetic operators, etc.

The parameterisation sub-step is followed by the

automatic personalization of the multimedia modules

VHDL specification. Software functions are scheduled to

efficiently exploit the main processor resources.
3. Efficient graph-based specification

In this section, we detail the HCDGF graph-based

representation of a C application. This representation is

obtained automatically using a parser.

3.1. Definitions

Each C function of the specification is a node at the top

level of the hierarchical control and data flow graph

(HCDFG). A function is a HCDFG. A HCDFG is a graph

that contains only HCDFGs and CDFGs. A CDFG contains

only elementary conditional nodes and DFGs. A DFG

contains only elementary memory and processing nodes.

Namely, it represents a sequence of non-conditional

operations. There are three kinds of elementary (i.e. non-

hierarchical) nodes of which the granularity depends on the

architectural model: a processing node represents an

arithmetic or logic operation. A memory node represents a

data transfer (memory operation). Its parameters are the

transfer mode (read/write), the data format and the hierarchy

level that can be fixed by the designer. A conditional node

represents a test operation (if, case, loops, etc.) There are

also three types of dependencies represented by edges: a

control dependency indicates an order dependency between
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operations without memory transfers (e.g. index compu-

tation before array access). Control dependency edges can

also be used to impose an order between independent

operations or graphs in order to favour resource usage

optimization. A scalar data dependency between two nodes

A and B indicates that node B uses a scalar issued from B

vertex. A multi-dimensional data dependency is a data

dependency where data produced is not a scalar but an array.

Such an edge is created between a loop CDFG that reads an

array produced by another loop CDFG.

3.2. Graph creation rules

The graph is travelled with a depth-first search algorithm.

A HCDFG/CDFG is created when a conditional node is

found at the next hierarchy level. When no more conditional

nodes are found, a DFG is built. In order to facilitate the

estimation process, CDFG patterns have been defined to

rapidly identify loop, if etc. constructs. Another important

point is that the model covers the complete application

complexity. Thus, index computation (address compu-

tation), conditional tests and loop index evolution are

represented with DFGs.
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application requirements. The first step of the metric

calculation is located at the highest level of abstraction,

without any architectural assumption. So, the data accesses

considered are the global ones, corresponding to N1 data

nodes.

A HCDFG example is depicted in Fig. 3.
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The HCDFG representation enables multi-level granu-
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granularity. At the lowest level, a function can represent for

example a FIR filter. At an intermediate level, a function can

represent a DWT. At the highest level, a function can

represent a JPEG2K encoder. The scheme used for

characterizing the application specification is based on a

hierarchical bottom-up approach. The characterization

results obtained for a certain level in the specification are

combined together in order to characterize its upper level.

The lower level characterization is performed with a fine

grain granularity. At that level, the type of operations can be

either processing (shifting, multiplications etc.) or data

transfer. Once the lower levels have been estimated, the

higher levels are estimated through combinations. This step

can be performed rapidly as the information relevant to each

low level function has been saved within its graph. Fig. 3

shows a HCDFG specification example.
4. Metrics computation

In this section, we define four metrics: g (Parallelism

Upper Bound Metric), MOM (Memory Orientation Metric)

and COM (Control Orientation Metric). We explain how

they are computed for the leaf graphs and how they are

combined to characterise CDFGs and HCDFGs.

4.1. g Metric

For a DFG graph g is defined by formula (1) in Table 1.

The critical path, noted CP, in a DFG graph, is the longest

sequential chain of operations (processing, control, mem-

ory) expressed in terms of cycle number. CP is computed for

each hierarchical level with a data and control dependency

analysis. Our analysis method is not exclusively statistical
Table 1

Metric definition

Metric name Type of graph Formula

g General definition g Z
Nb of gl

g IF graph g Z Ptrue

No

CP

g Combination of sequential graph
gequivalent Z

P

g Combination of parallel graph
gequivalent Z

P

MOM General definition Mom Z
Nb o

COM General definition Com Z
Nb o
contrary to [5] metrics. As defined, g indicates the upper

bound of spatial parallelism available at a given hierarchy

level. For instance, if a HCDFG contains five parallel DFG

where each DFG is fully sequential, then g equals one for

each DFG and five at the HCDFG level. The g metric

enables the classification of application functions according

to their criticality, namely their capability to exploit the

available parallelism. In the following design steps func-

tions with highest g can be first considered, since, they have

the most important optimization potential regarding the

acceleration and consequently energy savings. Note also,

that it is also used to distribute cycle budgets to functions

during the estimation and synthesis design steps.

Functions with high g values can then be considered as

appropriate to architectures with large explicit parallelisms.

Functions that have a low g value (circa 1) are rather

sequential, so the acceleration can only be reached by

exploiting temporal parallelism (i.e. deep pipeline).

4.2. Combination rules

The metrics are computed in a bottom-up way, there are

firstly calculated for leaf DFGs, then are computed for

higher level CDFGs and HCDFGs with combination rules

according to sequential, parallel, exclusive and loop

structures. Hereafter are introduced combination rules for

sequential, parallel, IF and FOR patterns for the compu-

tation of g. The same approach is used for the other metrics.

A ‘IF’ CDFG is composed of three subgraphs. The first

one specifies the IF condition, the two others correspond to

the true and false branches. For this graph, g is calculated

with the formula (2) in Table 1 where ‘Ptrue’ and ‘Pfalse’

are the probabilities to execute the true and false branches,

respectively. The branches are considered equiprobable by
obal memory accesses and processing operations

Critical Path
(1)

ptrue

true

CPfalse

Nopfalse

CPfalse

C
Nopc

CPc

(2)

total subgraphs
i NopiPtotal subgraphs
i CPi

(3)

total subgraphs
i Nopi

Maxi CPi

� �� � (4)

Nb of global memory accesses

f processing operations CNb of global memory accesses
(5)

Nb of test operations

f processing operations CNb of global memory accesses
(6)



Fig. 4. Smart camera executing. Left, video from the camera; center, background detection; right, moving objects detection.
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default but this can be modified after profiling the

application. ‘Nopc’ is the number of operations (global

memory accesses and processing nodes) in the condition

graph, ‘Noptrue/false’ are the numbers of operations in

conditional branches.

The computations of g for ‘DO-WHILE’ and ‘SWITCH’

graphs are generalizations of ‘FOR’ and ‘IF’ formulas,

respectively. To determine the g value of a HCDFG graph,

we have to analyze its hierarchical structure. Fig. 4 shows an

example of a HCDFG composed of two nested ‘IF’ CDFGs.

The algorithm calculates Nop and CP of the following

graphs: IF_DHeq0_CONDITION and IF_DHeq0_TRUE

since, they are simple DFGs and do not contain any

subgraph. The IF_Dheq0_FALSE graph contains a subgraph

(IF_TMPsup), therefore, our algorithm goes down into the

hierarchy, determines NopIF_TMPsup and CPIF_TMPsup values.

Then NopIF_Dheq0_FALSE and CPIF_Dheq0_FALSE are com-

puted. Finally, NopIF_DHeq0 and CPIF_DHeq0 (and so

gIF_DHeq0) can be determined. This approach is recursively

applied to the whole graph in order to compute its metric

values. A HCDFG can be made of sequential and parallel

graphs. For sequential graphs we use formula (3) in Table 1

to calculate g. If there are parallel graphs (or combination of

parallel and sequential graphs) we use formula (4) in Table 1.
4.3. MOM (memory orientation metric)

MOM metric is defined by the general formula (5) in

Table 1. MOM indicates the frequency of memory accesses

in a graph. MOM values are normalized in the interval. The

closer to 1 MOM is, the more the function is considered as

data-access dominated. Therefore, in the case of hard time

constraints, some high performance memories are required

(large bandwidth, dual-port memory, etc.) as well as an

efficient use of memory hierarchy and data locality [20]. To

calculate MOM metrics, we follow the same approach as for

g computation. For a DFG graph, the global memory and

treatment nodes are enumerated and saved as graph

attributes. Then the MOM value is computed for the DFG.

Those attributes are used to deduct MOM metrics for graphs

located at higher hierarchical levels. More details about

MOM computation is available in [15].
4.4. COM (control orientation metric)

To calculate this metric, test operations, namely the

following operators: %, !, O, R, !Z, must be identified.

COM is defined by the general formula (6) in Table 1. It

indicates the appearance frequency of control operations

(i.e. tests that can be eliminated at compilation time) in a

graph. We follow the same approach as for g calculations

for different cases of CDFGs. Additional information about

metrics calculation can be found in [15].
5. Experimental results

5.1. Metrics significance

In Section 4 we have defined a set of metrics that reflects

the nature of the application functions. The interpretation of

these metrics can be done as follows:

g: this metric indicates the average parallelism of a

function. The designer can refer to g to classify the

functions and to focus on those that have the largest values.

Indeed those having the largest values offer more optimiz-

ation opportunities since, they are likely to present a number

of implementation alternatives offered by their inherent

parallelism. Scheduling a function within a short time

constraint will lead to the exploitation of its parallelism

while scheduling the same function within a large time

constraint will lead to a decrease in the exploitation of its

parallelism. By using a multi-time constrained scheduler

[16] it is possible to generate time vs. resources trade-off

curves on which the points represents implementation

alternatives. These curves are very valuable for the designer

since, he can use them to make some architectural choices

(no parallelism/software implementation, high paralle-

lism/hardware implementation).

MOM: this metric indicates the frequency of global

memory accesses, i.e. accesses to input/output data and to

memory levels ‘above’ the register level. By referring to this

metric the designer can see which functions require special

care for implementation: those with large MOM values are

most likely to require a good data bandwidth. The MOM

metric also indicates the potential need for a memory



Function name γ MOM [0 .1] COM [0 .1] 

Test Gravity 43.88 0.78 0.22 

Label 1 0.31 0.74 0.07 

Change Background 5.62 0.76 0.03 

Rconst Dilat 4.75 0.65 0.32

Dilat Bin 4.69 0.70 0.02

HistoThreshold 4.00 0.64 0.29

Envelop 3.91 0.66 0.13 

Absolute 2.60 0.71 0.08 

Threshold Adapt 2.20 0.75 0.08 

Convolve Tab Histo 1.27 0.70 0.03 

Div 1.25 0.73 0.00 

Get Histogram 1.22 0.75 0.00 

SetValue 1.14 0.78 0.00 

Add 1.11 0.75 0.00 

Sub 1.11 0.75 0.00 

ErodBin 1.10 0.73 0.01 

Fig. 5. Smart camera characterization.
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hierarchy since, this metric is computed for all the hierarchy

levels of a function graph.

COM: this metric indicates the frequency of ‘true’

control operations, i.e. tests that cannot be eliminated at

compile time for example. The designer can refer to this

metric to evaluate the need for complex control structures to

implement a function. For example functions with high

COM values are most likely to better implemented on a GPP

processor rather than on a DSP processor since, the latter is

not well suited for control-dominated algorithms. It also

indicates that implementing such functions in hardware

would require rather large state machines.

By using the information provided by the metrics, the

designer is guided in his architectural choices since, he gets

an insight of the application’s functions. In what follows we

illustrate these concepts on some real-life examples.

5.2. Analysis result

In this section we give analysis results of some multi-

media applications.

5.2.1. Smart camera

Our real-life case study is a smart camera application

(courtesy CEA/LIST, Saclay). The system to be

implemented consists of a video camera associated to a

processing unit. The processing unit is responsible for

performing an object motion detection on the video

streaming from the CMOS sensor of the camera. This

smart camera is typically used for monitoring applications

such as counting people in subways, tracking car traffic

and industrial production lines. The object motion

detection consists of several functions such as the

detection of the background image, image labelling and

other typical video processing algorithms: threshold,

dilatation, erosion,... An example of an executing

application is shown in Fig. 4.

In this study we have characterized the functions of the

application as done in the previous example, but we also

have performed the system estimation using the tool Design

Trotter [2]. The processing part of the smart camera

application is composed of 31 functions which represent a

total of 1470 lines of C code. The estimation has been

performed rapidly, with computation times comprised

between 5 min for the most complex functions (some

functions include up to 200 sub-graphs) and less than 1 min

for the simplest functions on a PIII-700 MHz PC. The

overall estimation has been performed in less than 2 h, this

demonstrates the value of the method in the case of large

design spaces. Firstly, Fig. 5 shows the characterization step

results. The designer can use these results to classify the

functions and to imagine a potential implementation target.

The first observation which can be made is that all the

functions have high MOM values, (0.72 on average, more

than two operations out of three), this is due to the fact that

there are numerous reads of data from the video stream and
that the application is highly hierarchical (nested loop

structures for example) and that the DFGs are rather short.

This implies that this application requires either a big local

memory (data reuse) or high-end I/O mechanisms (parallel

data reading/writing).

Next we observe that g values are very different, from

1.27 for Convolvetabhisto up to 43.8 for TestGravity. By

using these values, it is possible to sort the functions and to

find out in what order they should be estimated. Focusing on

the most critical ones first enables to sketch an appropriate

architecture and also to take reusing into account: the

resources allocated to the most critical functions may be

reused for the less critical. Finally COM values are

comprised between 0 and 0.3 which denotes that control is

not dominant, like in the previous example this is justified by

the fact that most of the tests in the application are

deterministic.

The functions TestGravity and Label have a big g value,

so they have big potential of acceleration obtained by a

dedicated Hardware circuits. In the contrary, Add and Sub

have small g value. For such functions there is no need for

dedicated hardware accelerator. Those two functions can be

realized by the processor since, they involve standard

mathematical functions (addition and subtraction).

From this preliminary analysis, many architecture

conclusions can be made. The first one is that this

application can be efficiently mapped on a RISC processor

equipped with a high performance bus like a ARM-7 or the

LEON processor which support the AMBA bus. Fig. 6

shows a first architecture design with two accelerators

connected to the AMBA bus.

The hierarchical description (based on the HCDFG graph)

of the media function allows analysis at various hierarchical

levels. g value shown in Fig. 5 is a global value that indicates

the potential speed-up for the function TestGravity seen as a

single bloc. It is obtained by a combination of all the



MOM MOC

F1  1.5 0.7 0

F2  1.5 0.7 0

F3  1.5 0.7 0

F4  1.57 0.7 0

F5  2.1 0.8 0

F6  1.8 0.9 0

γ = 2.7 

γ = 2.7 

γ = 2.7 

1D DWT (H)

MOM MOC

F1            1.5 0.7 0 

F2            1.5 0.7 0 

F3            1.5 0.7 0 

F4            1.6 0.7 0 

F5            2.1 0.8 0 

F6            1.8 0.9 0 

1D DWT(V) 

γ

γ

Fig. 8. DWT exemple: lifting scheme.
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Fig. 6. Proposed smart camera architecture.
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subgraphs that constitute this function. A more detailed

analysis can be done to estimate those different subgraphs

individually. This finer analysis can provide different

possible implementations for the function TestGravity.

Indeed, it is possible that TestGravity contains subgraphs

with a high g value ([1) and other with low g value (near 1)

and the combination gives a high g. In this case, it is not

necessary to implement the whole TestGravity as a hardware

accelerator. Such granularity analysis examples are given in

the following DWT and DCT examples.
5.2.2. DWT/DCT transform

If some image compression capabilities are needed, the

DWT or DCT functions are required.

5.2.2.1. The DCT transform. Fig. 7 shows the analysis result

for the DCT transform. We give results for the 1D DCT

function that is used twice for rows and lines computing and

we perform the 2D DCT transform analysis.

We notice that g has the same value in both 1D and 2D

DCT transform. We conclude that—in this example—the

parallelism is not affected by the granularity since, the data

dependency between the raw and the column processing

does not enable any spatial parallelism. However, one can

also observe that firstly the COM value is null since, the

DCT transform does not require any test operation.

Secondly, the computation of the inter-iteration (CDFG)

available parallelism indicates that a complete loop

unrolling can be performed (the unroll factor equals the

loop bounds). It means that there is no backward

dependence, so pipeline architecture is possible. Finally,

an optimized 2D DCT can be realized with two 1D DCT

hardware accelerators.

The speed up can be doubled with pipeline if the memory

cost is acceptable, in such a case a 8!8 pixels buffer is

required between 1D modules. Note that memory
Functional bloc MOM COM Max unroll factor
DCT8L 58 0 5.7 8 
DCT8C 58 0 5.7 8 
DCT8x8  0.

 0.
 0.

58 0 5.7 8 

γ

Fig. 7. DCT2D 8!8 metrics.
requirements can be extracted from the HCDFG with the

fast Balasa method [3].

5.2.2.2. The DWT transform. The second example is the

DWT transform. Fig. 8 shows its analysis result. We

consider three hierarchical levels, the first one is the analysis

of each function in the 1D DWT. The second one is the

analysis of the whole 1D DWT (horizontal and vertical).

The third level is the analysis of the whole 2D DWT. We

notice that g is increasing between the first and the second

level and remains unchanged in the third level. Those results

leads to propose two hardware accelerators for the second

level (1D DWT(H) and 1D DWT (V)). As COM values are

null further improvement can be obtained using pipeline

technique.
5.2.3. Example of delay/cost IP estimation for the hardware

projection of the testgravity function

Once a critical function has been detected and

identified as promising for a hardware implementation

our framework enables to rapidly obtain a delay/cost

tradeoff curves through the architectural projection step.

This function is composed of 378 C code lines, translated

into 2408 lines of HCDFG. The corresponding graph is

made of 200 sub-graphs. The results obtained for system-

level estimation are presented in Fig. 9. As firstly

indicated by the g metric this function has a good

speedup potential. We have chosen not to show all the

possible solutions since, the number of resources required

for very high speedup factor was extremely high. The

most expensive solution shown permits a speedup factor

of almost 12 using an architecture enable to perform



Solution
number #Cycles Speedup #ALUs #Mults #Memory R/W

1 2414976 11,85 11 7 43
2 4302848 6,65 7 5 23
3 8009992 3,57 5 4 13
4 8547816 3,35 5 4 13
5 9623464 2,97 5 4 13
6 10161288 2,82 5 4 11
7 10699112 2,67 5 4 9
8 11236936 2,55 5 4 9
9 11774760 2,43 5 4 8

10 12312584 2,32 5 4 7
11 13926056 2,05 5 4 7
12 16615176 1,72 5 4 7
13 26833832 1,07 5 4 7
14 27371656 1,05 5 4 6
15 27909480 1,02 4 3 5
16 28447500 1,01 4 3 4
17 28447503 1,01 3 2 3
18 28592958 1,00 2 2 3
19 28592960 1,00 2 2 2
20 28606419 1,00 1 1 2
21 28606421 1 1 1
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Fig. 9. TestGravity trade-off curve.
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simultaneously 11 ALU like operations C7 multipli-

cations and 43 data R/W. On the other hand the cheapest

solution only requires one operation of each type at a time

but requires a longer execution time.

Fig. 10 shows the results of the hardware projection of

three solutions onto the Xilinx V400EPQ2 FPGA. The

solutions selected are solution 21 (no speedup), solution 11

(speedupZ2.05) and solution 1 (speedupZ11.85). For each

solution the estimated execution time is given (in ns) as well

as the estimated number of Logic Cells (LC) and Dedicated

Cells (DC).
Solution number Time (ns) Nb LC Nb DC

1 46178247 296 36

11 266932793 253 29

21 547212227 200 18

Fig. 10. Testgravity projection on Xilinx V400EPQ2.
6. Conclusion

The conception of media processors has become a

difficult task since, on one hand media application are more

complex with rich functionalities, and on the other new
constraints are emerging due to the evolution of embedded

system like power consumption.

In this paper, we have presented a new approach for the

conception of multimedia processor based on the customi-

zation of an existing processor to the target media

application.

This approach is based on two steps. Firstly, multimedia

applications are characterized, which results in a set of

metrics. These metrics are computed using a hierarchical

graph-based representation of the application. This allows

the designer to point out the application hot spots in terms of
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memory bandwidth, processing parallelism and relative

control/processing/data transfers influence at each level of

granularity which represent the originality of this analysis

technique.

The second step consists in building a parametrizable

multimedia library which is adapted to the application

requirement according to the metrics results.

Experiences with typical image processing algorithms

show firstly how functions with a high potential of

optimization can be detected and secondly how the

characterization can finely highlight architectural opportu-

nities and directions to improve application-architecture

matching.

The development of embedded devices gives an extra

challenge, since, these devices have in general a small

energy budget. Our approach is currently being extended to

support the second case. For this aim, we use the same

philosophy i.e. application characterization but in this case

in order to optimize the QoS/power consumption

compromise.
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