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Abstract

Media-processing applications, such as signal processing, 2D and 3D graphics rendering, and image compression, are the dominant
workloads in many embedded systems today. The real-time constraints of those media applications have taxing demands on today’s
processor performances with low cost, low power and reduced design delay.

To satisfy those challenges, a fast and efficient strategy consists in upgrading a low cost general purpose processor core. This approach is
based on the personalization of a general RISC processor core according the target multimedia application requirements. Thus, if the extra
cost is justified, the general purpose processor GPP core can be enforced with instruction level coprocessors, coarse grain dedicated
hardware, ad hoc memories or new GPP cores. In this way the final design solution is tailored to the application requirements. The proposed
approach is based on three main steps: the first one is the analysis of the targeted application using efficient metrics. The second step is the
selection of the appropriate architecture template according to the first step results and recommendations. The third step is the architecture

generation. This approach is experimented using various image and video algorithms showing its feasibility.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

We are currently experiencing an important increase in
the use of embedded devices with powerful multimedia
capabilities such as speech analysis and synthesis, character
recognition, video compression, and graphics animation.
Due to the various needs of such applications, embedded
devices have to handle various data types and various
complex tasks under hard real-time constraints. The need
for real-time processing of complex algorithms is further
accentuated by the increasing interest in other new domains
like 3D image.

Especially in the domain of embedded systems, the main
design constraint is the time to market priority since, the
availability of a new product at short time even not perfectly
optimised is the key point for its commercial success.
Another important point in this domain is the opportunity to
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take advantage of the application characteristics in order to
optimize the energy/time/QoS tradeoff.

Thus, our strategy is to define a framework that provides
a simple and fast analysis tool. The first point is to start with
a typical software specification which is automatically
transformed into a graph-based internal representation. The
idea is to take as an input a standard code without
performing any additional effort and to analyze it. Even if
the false data dependencies have been eliminated, the
resulting hierarchical graph still reflects the designer or
standard authors point of view. If such a specification fits
with a low cost, low power embedded processor, this is
probably the more interesting solution. Secondly, our
objective is to extract from the various granularity levels
of this specification opportunities of parallelisms, which
could be efficiently exploited on alternative architectures.
The availability of parallelisms involves several tradeoffs
factors. The first one is the speed up of critical functions
through resource allocation versus the area increase. This
one can also means a significant static power growth [17].
Secondly time savings can be practically turned into power
savings through the management of voltage/frequency
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couple and dynamic real-time scheduling, but it also implies
a subsequent delay/power/area overhead.

Thus, design methodologies are required to rapidly test
and settle parameters such as the selection of instructions,
the capabilities of local or I/O memories, the bandwidth of
communication channels, the parallelism of processing
units, the choice of dedicated hardware.

In our design space exploration strategy, a first step
consisting in a metric-based analysis is performed rapidly
without any architectural directive. In a second step the
results are used to sketch the target architecture in order to
perform a first set of estimations. The analysis of the metric
results open different opportunities to compare alternative
specifications or to propound the proper architecture style
for a given (sub)function or task. These features include the
wider/deeper trade-off, the ratio between explicit paralle-
lism and the pipeline depth, the necessity of complex
control instructions, the requirements in terms of local
memories and specific bandwidth and the need of proces-
sing resources for address generation. This paper deals with
these metrics, which are a key step to face the CAD
challenge and rapidly converge towards the right design
solution. The rest of the paper is organized as follows.
Sections 1.1.1 and 1.1.2 give an overview about, respect-
ively, the use of metrics in the design space exploration and
the different methods to design a multimedia processor.
Section 2 details our approach. This paper focuses on the
first step only. Section 3 details the internal graph-based
representation used in our approach. Section 4 details the
different metrics used in this paper for application
specification. Section 5 shows experimental results for
various multimedia applications. Finally, in Section 6 we
conclude about our work and present some perspectives.

1.1. State of the art

This subsection presents an overview of the different
metrics used in various co-design approaches. It includes
also an overview of various design methods of multimedia
processors.

1.1.1. Metrics

Previous works dealing with metrics have been com-
pleted in the areas of high-level synthesis [9,6] and
hardware software codesign [9,18,19].

In [1] the metrics provide algorithm properties regard-
ing a hardware implementation. The quantified metrics
address the concurrency of arithmetic operations based on
uniformed scheduling probabilities and the regularity that
measures the repetition rate of a given pattern. In [6],
some probability based metrics are proposed to quantify
the communication link between arithmetic operators
(through memory or registers). These metrics focus on a
fine grain analysis and are mainly used to guide the design
of datapaths, especially to optimize local connection and
resource reuse. An interesting method for processor

selection is presented in [5]. Three metrics representing
the orientation of functions in terms of control, data
transformation and data accesses orientation of functions
are computed by counting specific instructions from a
processor independent code. Then a distance is calculated,
using specific characteristics of processors regarding their
control, bandwidth and processing capabilities. Moreover
the technique does not take into account instruction
dependencies and there is no detail about the different
kinds of access memory regarding the abstract processor
model used. Finally, in [18] finer metrics are defined to
characterize the affinity between functions and three kinds
of targets: GPP, DSP and ASIC. The metrics result from
the analysis and counting of C code instructions in order
to highlight instruction sequences which can be DSP-
oriented (buffer circularity, MAC operations inside loops,
etc.), ASIC-oriented (bit level instructions) or GPP-
oriented (conditional or I/O instructions ratio). Then a
HW/SW partitioning tool is driven by the affinity metrics.
Like [5] these metrics are dedicated to HW/SW
partitioning, they did not exploit instruction dependencies
and address a fixed (C procedures) granularity. Moreover,
the locality of data bandwidth is not clearly taken into
account.

1.1.2. Design of multimedia processor

To design a multimedia processor, many approaches can
be considered. In [10] the authors propose a complete
custom design of a processor (and its compiler), this method
is very time consuming, since, it does not use an IP core, and
moreover does not achieve a low cost solution. Some other
approaches based on IP cores are cost effective and require a
reduced global design time. Some approaches add hardware
modules (or coprocessors) to the original processor. Others
add special multimedia instructions to the processor
instruction set. In [11], a dedicated unit (called videocore)
is added to the ARM processor to handle most of H.263
computationally intensive functions like motion estimation
and DCT/IDCT transforms. In [12], a set of dedicated
instructions is added to the ARM processor for multimedia
operations. Those operations are typically special arithmetic
operations, data manipulation like rearrangement and
formatting. In [13], a processor dedicated to video
compression is presented. Its control unit is divided on
two hierarchical level: a high level unit (a RISC controller)
which control execution of relatively simple operation like
memory transfer, arithmetic and logic operation. Complex
operation like those relative to motion estimation and DCT
transform are controlled by a low level control unit. Data
dependant operations (like VLC and VLD) are handled by a
special hardware module. In [4] is presented the TAN-
GRAM that is a coprocessor dedicated to scenes composit-
ing at the display in the MPEG-4 decoding. Added
coprocessors can be DSP. In [7] is presented the MVP
(multimedia video processor) witch is based on a RISC
processor coupled to four DSPs.
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The approach defined in this paper differs from those
previously described and try to offer a more general
approach that includes an analysis step (using metrics) of
the multimedia tasks used to efficiently select and specify
software or hardware IP.

2. An approach for the design of a multimedia embedded
processor

Fig. 1 shows the proposed approach which is integrated in
the Design Trotter environment [16]. This approach is based
on two main steps which are described in what follows.

2.1. Metric computations of the target application

This step investigates the algorithmic complexity of the
tasks to be implemented. It is used to analyze the algorithms
without any consideration of the processor architecture.
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For this purpose, various metrics have been defined. This
step includes several substeps. The starting point for this
first step is the application description written in the C
language. This description may have different C functions.
This description is automatically translated into a HCDFG
graph. The computation of the metric is based on this graph
representation, which is detailed in Section 3. We have
implemented four of those metrics in Design Trotter: MOM,
COM, HDRM and vy metrics, these metric provide the
memory/processing orientation, control orientation, the
memory reuse and the average parallelism, respectively.

For each function of the application and each level of
graph hierarchy these metrics are computed. Then by
analyzing those numeric results, we can classify the
different functions that constitute the target application
according to their behaviour. For instance, on the one hand
control oriented functions with few parallelism opportu-
nities would constitute promising candidate for a GPP
software implementation. On the other hand, high
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parallelism functions (i.e. with high vy values) with few tests
are candidate for hardware implementation.

An analysis of memory requirements of the target
application is also performed. Indeed, memory modules
dominate the cost, the performance and power consumption
of embedded systems especially in image and video
processing. Studying the impact of parallelism on memory
size is important for trading off system performance against
area cost. A memory bandwidth analysis is rapidly
performed for each level of the graph hierarchy and the
Balasa method [3] is currently adapted to our model in order
to derive memory size optimization within loop nests.

2.2. Parameterization of the dedicated processor

This parameterization is performed according to the first
step classification. It concerns the hardware IP (available or
estimated) and the processor core dedicated specification.
Our approach consists in customizing existing processor
architecture rather than creating an entirely new ASIP tuned
to an application. For this, first generic dedicated models for
multimedia application are defined. In this case study the
generic architecture (Fig. 2) is based on a free IP SPARC
LEON [8] that can be upgraded with co-processors: simple
operators like multipliers, ALU,..., but also more complex
functions such as DWT provided in the form of hardware
IPs. The communication model is based on specific shared
memories with generic hardware interface [14]. ‘Data in’
and ‘data out’” memories are defined for each hardware
generic [P, if HW/HW communications are implemented a
merging between ‘in’ and ‘out’ memories is performed [1].

Based on the characterisation data, three classes of
functions are built. The first one includes candidates for
hardware implementation, it can be for instance data-flow
functions with sparse test operations (with low COM and
high v values). These will be added later as hardware IP to
the LEON processor core [8] to obtain a low cost media
processor. Those models include widely used modules that
cover various multimedia applications like image trans-
formation (DCT, wavelet transformer DWT, etc.) and
classical image processing algorithm like filter operations,

—
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Fig. 2. Generic architecture model.

and also video processing functions like motion estimation
and run-length coding. The second class contains typical
software functions; it can be for instance control-dominated
functions with few spatial parallelism (high COM and low y
values). The third class of functions incorporates functions
without a clear orientation, an advanced RTOS partitioning
tool [1] will be used to perform a design space exploration.

Different implementation solutions feed the partitioning
tools, the coarse grain options are based on HW accelerators
estimations [21] or HW IP availability, the fine grain
alternatives are based on the generic processor core with
possibly instruction level coprocessors. Thus, the metrics
are used to guide the IP choice and specification but also to
reduce the huge multi granularity design space.

Hardware IP are written using the VHDL language.
Generic parameters of a video IP can be block size, macro-
block size, motion threshold detection, filter window, and
local memory size. The multimedia models are generic to
allow maximum flexibility: their characteristic parameters
can be tuned according to the application requirements.

Once this library is created, the next sub-step is to
parameterise those dedicated modules according to the
application specification (i.e. according to metrics results).
Those parameters can be local memory size, image size,
types of arithmetic operators, etc.

The parameterisation sub-step is followed by the
automatic personalization of the multimedia modules
VHDL specification. Software functions are scheduled to
efficiently exploit the main processor resources.

3. Efficient graph-based specification

In this section, we detail the HCDGF graph-based
representation of a C application. This representation is
obtained automatically using a parser.

3.1. Definitions

Each C function of the specification is a node at the top
level of the hierarchical control and data flow graph
(HCDFG). A function is a HCDFG. A HCDFG is a graph
that contains only HCDFGs and CDFGs. A CDFG contains
only elementary conditional nodes and DFGs. A DFG
contains only elementary memory and processing nodes.
Namely, it represents a sequence of non-conditional
operations. There are three kinds of elementary (i.e. non-
hierarchical) nodes of which the granularity depends on the
architectural model: a processing node represents an
arithmetic or logic operation. A memory node represents a
data transfer (memory operation). Its parameters are the
transfer mode (read/write), the data format and the hierarchy
level that can be fixed by the designer. A conditional node
represents a test operation (if, case, loops, etc.) There are
also three types of dependencies represented by edges: a
control dependency indicates an order dependency between
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operations without memory transfers (e.g. index compu-
tation before array access). Control dependency edges can
also be used to impose an order between independent
operations or graphs in order to favour resource usage
optimization. A scalar data dependency between two nodes
A and B indicates that node B uses a scalar issued from B
vertex. A multi-dimensional data dependency is a data
dependency where data produced is not a scalar but an array.
Such an edge is created between a loop CDFG that reads an
array produced by another loop CDFG.

3.2. Graph creation rules

The graph is travelled with a depth-first search algorithm.
A HCDFG/CDEFG is created when a conditional node is
found at the next hierarchy level. When no more conditional
nodes are found, a DFG is built. In order to facilitate the
estimation process, CDFG patterns have been defined to
rapidly identify loop, if etc. constructs. Another important
point is that the model covers the complete application
complexity. Thus, index computation (address compu-
tation), conditional tests and loop index evolution are
represented with DFGs.

We distinguish several types of memory nodes:

. input/ouput nodes (N1)

. temporary data (produced by computations) (N2)
. re-usable data (re-used input nodes) (N3)

. accumulator data (N4).

AW N =

N1 data are always global, N4 data are always local, N2
and N3 data can initially be local (stored in the register file)
but they can be moved to the global memory if ever the local
memory size becomes to small as compared to the
application requirements. The first step of the metric
calculation is located at the highest level of abstraction,
without any architectural assumption. So, the data accesses
considered are the global ones, corresponding to N1 data
nodes.

A HCDFG example is depicted in Fig. 3.

3.3. Hierarchical characterization

The HCDFG representation enables multi-level granu-
larity specification and characterization. Therefore, the
notion of function can correspond to several levels of
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Fig. 3. HCDFG structure.
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granularity. At the lowest level, a function can represent for
example a FIR filter. At an intermediate level, a function can
represent a DWT. At the highest level, a function can
represent a JPEG2K encoder. The scheme used for
characterizing the application specification is based on a
hierarchical bottom-up approach. The characterization
results obtained for a certain level in the specification are
combined together in order to characterize its upper level.
The lower level characterization is performed with a fine
grain granularity. At that level, the type of operations can be
either processing (shifting, multiplications etc.) or data
transfer. Once the lower levels have been estimated, the
higher levels are estimated through combinations. This step
can be performed rapidly as the information relevant to each
low level function has been saved within its graph. Fig. 3
shows a HCDFG specification example.

4. Metrics computation

In this section, we define four metrics: vy (Parallelism
Upper Bound Metric), MOM (Memory Orientation Metric)
and COM (Control Orientation Metric). We explain how
they are computed for the leaf graphs and how they are
combined to characterise CDFGs and HCDFGs.

4.1. v Metric

For a DFG graph v is defined by formula (1) in Table 1.
The critical path, noted CP, in a DFG graph, is the longest
sequential chain of operations (processing, control, mem-
ory) expressed in terms of cycle number. CP is computed for
each hierarchical level with a data and control dependency
analysis. Our analysis method is not exclusively statistical

Table 1
Metric definition

contrary to [5] metrics. As defined, vy indicates the upper
bound of spatial parallelism available at a given hierarchy
level. For instance, if a HCDFG contains five parallel DFG
where each DFG is fully sequential, then v equals one for
each DFG and five at the HCDFG level. The y metric
enables the classification of application functions according
to their criticality, namely their capability to exploit the
available parallelism. In the following design steps func-
tions with highest v can be first considered, since, they have
the most important optimization potential regarding the
acceleration and consequently energy savings. Note also,
that it is also used to distribute cycle budgets to functions
during the estimation and synthesis design steps.
Functions with high y values can then be considered as
appropriate to architectures with large explicit parallelisms.
Functions that have a low 7 value (circa 1) are rather
sequential, so the acceleration can only be reached by
exploiting temporal parallelism (i.e. deep pipeline).

4.2. Combination rules

The metrics are computed in a bottom-up way, there are
firstly calculated for leaf DFGs, then are computed for
higher level CDFGs and HCDFGs with combination rules
according to sequential, parallel, exclusive and loop
structures. Hereafter are introduced combination rules for
sequential, parallel, IF and FOR patterns for the compu-
tation of y. The same approach is used for the other metrics.

A ‘IF’ CDFG is composed of three subgraphs. The first
one specifies the IF condition, the two others correspond to
the true and false branches. For this graph, v is calculated
with the formula (2) in Table 1 where ‘Ptrue’ and ‘Pfalse’
are the probabilities to execute the true and false branches,
respectively. The branches are considered equiprobable by

Metric name Type of graph

Formula

¥ General definition _ Nb of global memory accesses and processing operations M
Critical Path

Y IF graph —p Nopye +p Nopgyige + Nop, 5
v e CPlrue false CPfalse CPC ( )

v Combination of sequential graph total subgraphs N
’chuivalcnl - Zl»mal subgraphs CP, (3)

Y Combination of parallel graph S total subgraphs Ny, @
Yequivalent = Max[{ (CP,)}

MOM General definition Mom — Nb of global memory accesses )

Nb of processing operations + Nb of global memory accesses
COM General definition Co Nb of test operations ©

~ Nbof processing operations + Nb of global memory accesses
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Fig. 4. Smart camera executing. Left, video from the camera; center, background detection; right, moving objects detection.

default but this can be modified after profiling the
application. ‘Nopc’ is the number of operations (global
memory accesses and processing nodes) in the condition
graph, ‘Noptrue/false’ are the numbers of operations in
conditional branches.

The computations of y for ‘DO-WHILE’ and ‘SWITCH’
graphs are generalizations of ‘FOR’ and ‘IF’ formulas,
respectively. To determine the v value of a HCDFG graph,
we have to analyze its hierarchical structure. Fig. 4 shows an
example of a HCDFG composed of two nested ‘IF° CDFGs.
The algorithm calculates Nop and CP of the following
graphs: IF_DHeqO_CONDITION and IF_DHeqO_TRUE
since, they are simple DFGs and do not contain any
subgraph. The IF_Dheq0_FALSE graph contains a subgraph
(IF_TMPsup), therefore, our algorithm goes down into the
hierarchy, determines Nopir_tmpsup and CPir_tmpsup Values.
Then NODIE_Dheqo_FALSE and CPIF_Dher_FALSE are com-
puted. Finally, Nopir_pheqo and CPig_ppheqo (and so
YIF_DHeqo) €an be determined. This approach is recursively
applied to the whole graph in order to compute its metric
values. A HCDFG can be made of sequential and parallel
graphs. For sequential graphs we use formula (3) in Table 1
to calculate vy. If there are parallel graphs (or combination of
parallel and sequential graphs) we use formula (4) in Table 1.

4.3. MOM (memory orientation metric)

MOM metric is defined by the general formula (5) in
Table 1. MOM indicates the frequency of memory accesses
in a graph. MOM values are normalized in the interval. The
closer to 1 MOM is, the more the function is considered as
data-access dominated. Therefore, in the case of hard time
constraints, some high performance memories are required
(large bandwidth, dual-port memory, etc.) as well as an
efficient use of memory hierarchy and data locality [20]. To
calculate MOM metrics, we follow the same approach as for
v computation. For a DFG graph, the global memory and
treatment nodes are enumerated and saved as graph
attributes. Then the MOM value is computed for the DFG.
Those attributes are used to deduct MOM metrics for graphs
located at higher hierarchical levels. More details about
MOM computation is available in [15].

4.4. COM (control orientation metric)

To calculate this metric, test operations, namely the
following operators: <, <, >, >, |=, must be identified.

COM is defined by the general formula (6) in Table 1. It
indicates the appearance frequency of control operations
(i.e. tests that can be eliminated at compilation time) in a
graph. We follow the same approach as for vy calculations
for different cases of CDFGs. Additional information about
metrics calculation can be found in [15].

5. Experimental results
5.1. Metrics significance

In Section 4 we have defined a set of metrics that reflects
the nature of the application functions. The interpretation of
these metrics can be done as follows:

v: this metric indicates the average parallelism of a
function. The designer can refer to vy to classify the
functions and to focus on those that have the largest values.
Indeed those having the largest values offer more optimiz-
ation opportunities since, they are likely to present a number
of implementation alternatives offered by their inherent
parallelism. Scheduling a function within a short time
constraint will lead to the exploitation of its parallelism
while scheduling the same function within a large time
constraint will lead to a decrease in the exploitation of its
parallelism. By using a multi-time constrained scheduler
[16] it is possible to generate time vs. resources trade-off
curves on which the points represents implementation
alternatives. These curves are very valuable for the designer
since, he can use them to make some architectural choices
(no parallelism — software implementation, high paralle-
lism — hardware implementation).

MOM: this metric indicates the frequency of global
memory accesses, i.e. accesses to input/output data and to
memory levels ‘above’ the register level. By referring to this
metric the designer can see which functions require special
care for implementation: those with large MOM values are
most likely to require a good data bandwidth. The MOM
metric also indicates the potential need for a memory



N.B. Amor et al. / Advances in Engineering Software 36 (2005) 448458 455

hierarchy since, this metric is computed for all the hierarchy
levels of a function graph.

COM: this metric indicates the frequency of ‘true’
control operations, i.e. tests that cannot be eliminated at
compile time for example. The designer can refer to this
metric to evaluate the need for complex control structures to
implement a function. For example functions with high
COM values are most likely to better implemented on a GPP
processor rather than on a DSP processor since, the latter is
not well suited for control-dominated algorithms. It also
indicates that implementing such functions in hardware
would require rather large state machines.

By using the information provided by the metrics, the
designer is guided in his architectural choices since, he gets
an insight of the application’s functions. In what follows we
illustrate these concepts on some real-life examples.

5.2. Analysis result

In this section we give analysis results of some multi-
media applications.

5.2.1. Smart camera

Our real-life case study is a smart camera application
(courtesy CEA/LIST, Saclay). The system to be
implemented consists of a video camera associated to a
processing unit. The processing unit is responsible for
performing an object motion detection on the video
streaming from the CMOS sensor of the camera. This
smart camera is typically used for monitoring applications
such as counting people in subways, tracking car traffic
and industrial production lines. The object motion
detection consists of several functions such as the
detection of the background image, image labelling and
other typical video processing algorithms: threshold,
dilatation, erosion,... An example of an executing
application is shown in Fig. 4.

In this study we have characterized the functions of the
application as done in the previous example, but we also
have performed the system estimation using the tool Design
Trotter [2]. The processing part of the smart camera
application is composed of 31 functions which represent a
total of 1470 lines of C code. The estimation has been
performed rapidly, with computation times comprised
between 5 min for the most complex functions (some
functions include up to 200 sub-graphs) and less than 1 min
for the simplest functions on a PIII-700 MHz PC. The
overall estimation has been performed in less than 2 h, this
demonstrates the value of the method in the case of large
design spaces. Firstly, Fig. 5 shows the characterization step
results. The designer can use these results to classify the
functions and to imagine a potential implementation target.

The first observation which can be made is that all the
functions have high MOM values, (0.72 on average, more
than two operations out of three), this is due to the fact that
there are numerous reads of data from the video stream and

Function name Yy MOM [0.1] COM [0.1]
Test Gravity 43.88 0.78 0.22
Label 1 0.31 0.74 0.07
Change Background 5.62 0.76 0.03
Rconst Dilat 4.75 0.65 0.32
Dilat Bin 4.69 0.70 0.02
HistoThreshold 4.00 0.64 0.29
Envelop 391 0.66 0.13
Absolute 2.60 0.71 0.08
Threshold Adapt 2.20 0.75 0.08
Convolve Tab Histo 1.27 0.70 0.03
Div 125 0.73 0.00
Get Histogram 1.22 0.75 0.00
SetValue 114 0.78 0.00
Add 111 0.75 0.00
Sub 1.11 0.75 0.00
ErodBin 110 0.73 0.01

Fig. 5. Smart camera characterization.

that the application is highly hierarchical (nested loop
structures for example) and that the DFGs are rather short.
This implies that this application requires either a big local
memory (data reuse) or high-end I/O mechanisms (parallel
data reading/writing).

Next we observe that y values are very different, from
1.27 for Convolvetabhisto up to 43.8 for TestGravity. By
using these values, it is possible to sort the functions and to
find out in what order they should be estimated. Focusing on
the most critical ones first enables to sketch an appropriate
architecture and also to take reusing into account: the
resources allocated to the most critical functions may be
reused for the less critical. Finally COM values are
comprised between 0 and 0.3 which denotes that control is
not dominant, like in the previous example this is justified by
the fact that most of the tests in the application are
deterministic.

The functions TestGravity and Label have a big y value,
so they have big potential of acceleration obtained by a
dedicated Hardware circuits. In the contrary, Add and Sub
have small vy value. For such functions there is no need for
dedicated hardware accelerator. Those two functions can be
realized by the processor since, they involve standard
mathematical functions (addition and subtraction).

From this preliminary analysis, many architecture
conclusions can be made. The first one is that this
application can be efficiently mapped on a RISC processor
equipped with a high performance bus like a ARM-7 or the
LEON processor which support the AMBA bus. Fig. 6
shows a first architecture design with two accelerators
connected to the AMBA bus.

The hierarchical description (based on the HCDFG graph)
of the media function allows analysis at various hierarchical
levels. vy value shown in Fig. 5 is a global value that indicates
the potential speed-up for the function TestGravity seen as a
single bloc. It is obtained by a combination of all the
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HW1 HW2
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Leon
processor 1 1
Loca Mem Local Mem
AMBA bus

Main
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Fig. 6. Proposed smart camera architecture.

subgraphs that constitute this function. A more detailed
analysis can be done to estimate those different subgraphs
individually. This finer analysis can provide different
possible implementations for the function TestGravity.
Indeed, it is possible that TestGravity contains subgraphs
with a high vy value (>> 1) and other with low vy value (near 1)
and the combination gives a high v. In this case, it is not
necessary to implement the whole TestGravity as a hardware
accelerator. Such granularity analysis examples are given in
the following DWT and DCT examples.

5.2.2. DWT/DCT transform
If some image compression capabilities are needed, the
DWT or DCT functions are required.

5.2.2.1. The DCT transform. Fig. 7 shows the analysis result
for the DCT transform. We give results for the 1D DCT
function that is used twice for rows and lines computing and
we perform the 2D DCT transform analysis.

We notice that v has the same value in both 1D and 2D
DCT transform. We conclude that—in this example—the
parallelism is not affected by the granularity since, the data
dependency between the raw and the column processing
does not enable any spatial parallelism. However, one can
also observe that firstly the COM value is null since, the
DCT transform does not require any test operation.
Secondly, the computation of the inter-iteration (CDFG)
available parallelism indicates that a complete loop
unrolling can be performed (the unroll factor equals the
loop bounds). It means that there is no backward
dependence, so pipeline architecture is possible. Finally,
an optimized 2D DCT can be realized with two 1D DCT
hardware accelerators.

The speed up can be doubled with pipeline if the memory
cost is acceptable, in such a case a 8 X8 pixels buffer is
required between 1D modules. Note that memory

Functional bloc MOM COM y Max unroll factor
DCT8L 0.58 0 5.7 8
DCT8C 0.58 0 5.7 8
DCT8x8 0.58 0 5.7 8

Fig. 7. DCT2D 8 X 8 metrics.

1D DWT (H)
v MOM]| MOC
FL 15 07 | 0
= 15 07 | 0
= 15 07 | 0 y=27  r
=1 157 | 07 | O
3 2.1 08 | 0
F6 18 09 | 0

1D DWT(V) < y=27
Y MOM| MOC

F1 15 07 | o

F2 15 07 | 0

F3 15 07 | 0 y=27

F4 16 07 | o \
F5 21 08 | 0

F6 18 09 | ©

Fig. 8. DWT exemple: lifting scheme.

requirements can be extracted from the HCDFG with the
fast Balasa method [3].

5.2.2.2. The DWT transform. The second example is the
DWT transform. Fig. 8 shows its analysis result. We
consider three hierarchical levels, the first one is the analysis
of each function in the 1D DWT. The second one is the
analysis of the whole 1D DWT (horizontal and vertical).
The third level is the analysis of the whole 2D DWT. We
notice that v is increasing between the first and the second
level and remains unchanged in the third level. Those results
leads to propose two hardware accelerators for the second
level (1D DWT(H) and 1D DWT (V)). As COM values are
null further improvement can be obtained using pipeline
technique.

5.2.3. Example of delay/cost IP estimation for the hardware
projection of the testgravity function

Once a critical function has been detected and
identified as promising for a hardware implementation
our framework enables to rapidly obtain a delay/cost
tradeoff curves through the architectural projection step.
This function is composed of 378 C code lines, translated
into 2408 lines of HCDFG. The corresponding graph is
made of 200 sub-graphs. The results obtained for system-
level estimation are presented in Fig. 9. As firstly
indicated by the vy metric this function has a good
speedup potential. We have chosen not to show all the
possible solutions since, the number of resources required
for very high speedup factor was extremely high. The
most expensive solution shown permits a speedup factor
of almost 12 using an architecture enable to perform
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Solution
number #Cycles Speedup #ALUs #Mults #Memory R/IW
1 2414976 11,85 11 7 43
2 4302848 6.65 7 5 23
3 8009992 357 5 4 13
4 8547816 3,35 5 4 13
5 9623464 2,97 5 4 13
6 10161288 2,82 5 4 11
7 10699112 2,67 5 4 9
8 11236936 2,55 5 4 9
9 11774760 2,43 5 4 8
10 12312584 2,32 5 4 7
1 13926056 2,05 5 4 7
12 16615176 172 5 4 7
13 26833832 1,07 5 4 7
14 27371656 1,05 5 4 6
15 27909480 1,02 4 3 5
16 28447500 1,01 4 3 4
17 28447503 1,01 3 2 3
18 28592958 1,00 2 2 3
19 28592960 1,00 2 2 2
20 28606419 1,00 1 1 2
21 28606421 1 1 1

Fig. 9. TestGravity trade-off curve.

simultaneously 11 ALU like operations +7 multipli-
cations and 43 data R/W. On the other hand the cheapest
solution only requires one operation of each type at a time
but requires a longer execution time.

Fig. 10 shows the results of the hardware projection of
three solutions onto the Xilinx V400EPQ2 FPGA. The
solutions selected are solution 21 (no speedup), solution 11
(speedup=2.05) and solution 1 (speedup=11.85). For each
solution the estimated execution time is given (in ns) as well
as the estimated number of Logic Cells (LC) and Dedicated
Cells (DC).

6. Conclusion

The conception of media processors has become a
difficult task since, on one hand media application are more
complex with rich functionalities, and on the other new

constraints are emerging due to the evolution of embedded
system like power consumption.

In this paper, we have presented a new approach for the
conception of multimedia processor based on the customi-
zation of an existing processor to the target media
application.

This approach is based on two steps. Firstly, multimedia
applications are characterized, which results in a set of
metrics. These metrics are computed using a hierarchical
graph-based representation of the application. This allows
the designer to point out the application hot spots in terms of

Solution number Time (ns) NbLC [NbDC
1 46178247 296 36
11 266932793 253 29
21 547212227 200 18

Fig. 10. Testgravity projection on Xilinx V400EPQ2.
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memory bandwidth, processing parallelism and relative
control/processing/data transfers influence at each level of
granularity which represent the originality of this analysis
technique.

The second step consists in building a parametrizable
multimedia library which is adapted to the application
requirement according to the metrics results.

Experiences with typical image processing algorithms
show firstly how functions with a high potential of
optimization can be detected and secondly how the
characterization can finely highlight architectural opportu-
nities and directions to improve application-architecture
matching.

The development of embedded devices gives an extra
challenge, since, these devices have in general a small
energy budget. Our approach is currently being extended to
support the second case. For this aim, we use the same
philosophy i.e. application characterization but in this case
in order to optimize the QoS/power consumption
compromise.
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