
Résumé

Récemment, l’architecture Orientée Services (SOA) devient un aspect important pour

l’agilité du systéme et le développement rapide des nouvelles entreprises. SOA per-

met l’intégration des différentes plateformes et technologies proposées par les différentes

entreprises, et apporte un nouveau niveau de modularité qui permet de garantir la

qualité des services de bout-en-bout. Les services Web, définies comme composants

indépendants de la plate-forme et qui peuvent décrire des applications pour répondre à

une seule tâche, sont l’une des approches les plus prometteuses pour la mise en oeuvre

du SOA et qui ont récemment reçu beaucoup d’intérêt. L’un des principaux atouts de

l’orientation service est la composition, qui consiste à développer des services de niveau

supérieur en ré-utilisant des fonctionnalités bien connues fournies par des autres services

avec un faible coût et développement rapide du processus. Automatisation de ce pro-

cessus devient aujourd’hui un des défis les plus intéressants face à SOA. Par conséquent,

la composition des services Web est considéré un sujet de recherche majeur dans les

derniéres années. Un grand nombre d’approches de composition des services Web ont

été proposés dans la littérature. Malgré le grand nombre des efforts de recherche et

développement rapide des modéles de composition et des approches qui ont été proposés

au cours des derniéres années, deux problémes majeurs concernant le processus actuel

de modélisation de la composition nécessitent d’être résolus. Le premier probléme est

lié au niveau expert requis pour parvenir à une telle composition. En général, le style

procédural typique de la modélisation, inspiré par des paradigmes/processus de workflow

ne fournissent pas les abstractions nécessaires, et donc ne parviennent pas à supporter

les compositions dynamiques et auto-gérées qui sont capables de s’adapter aux change-

ments continus qui peuvent survenir de façon imprévisible, et inévitablement conduire à

des échecs. Un langage comme le Business Process Execution Language pour les services

Web (WSBPEL) est clairement un langage d’experts, et l’utiliser pour programmer et

spécifiez une composition est un processus long, coûteux et à haut risque. Le deuxiéme

probléme de la composition des services actuels concerne leur cycle de vie et leur ges-

tion, également appelé ”leur gouvernance”. Le défi est de savoir comment parvenir

à une gouvernance compléte de la composition permettant son amélioration continue

i

Résumé ii

et dynamique. Les approches traditionnelles se concentrent uniquement sur certaines

étapes du processus de cycle de vie et un peu de travail été réalisé pour intégrer ces

dimensions en utilisant un formalisme unifié. Selon Gartner, de nombreuses initiatives

dédiées à la gestion des processus ne parviennent pas à se libérer du désignés proposés

par les architectes des systémes reconnaissants l’ampleur du travail d’intégration afin de

rassembler les différents éléments de la fonctionnalité mise en jeu.

Pour réaliser les défis décrits ci-dessus, l’objectif de cette thése peut être résumé en

deux points. Tout d’abord, nous visons à fournir un langage de spécification de ser-

vice, conçu avec une approche déclarative, basée sur la logique et alimentée par des

mécanismes de raisonnement pour répondre aux exigences fonctionnelles et non fonction-

nelles des utilisateurs et de fournir des modéles trés expressives et qui ne nécessitent pas

les spécifier. Ensuite, en utilisant ce langage de spécification déclarative, nous prévoyons

de développer un cadre global et bien intégré pour permettre la mâıtrise de la complexité

et la fiabilité des compositions de services en réalisant une gouvernance compléte de la

composition.

Pour réaliser ces objectifs, nous avons proposé un framework de composition basé sur

les capacités fonctionnelles et qui prend en charge le cycle de vie complet du pro-

cessus de composition d’une maniére unifiée et déclarative, réduisant ainsi le temps

de développement et les efforts d’intégration et permettant d’auto-recouvrement de la

composition des services Web. Basé sur trois étapes qui consistent de l’abstraction, la

composition (instanciation), et la surveillance, notre solution offre un moyen facile de

préciser les exigences fonctionnelles et non fonctionnelles des services composés d’une

maniére précise et déclarative, et guide l’utilisateur à travers le processus de composition

tout en permettant la détection et la récupération des violations à la fois, qui peuvent se

reproduisent durant la phase de la conception ainsi que la phase de l’exécution à l’aide

du concept de ”preuve” et de la planification. Les études expérimentales effectuées

démontrent l’efficacité et la performance de notre systéme de composition proposé à la

fois au moment du désign ainsi qu’au moment d’exécution.

Abstract

[Context] Service-Oriented Architecture (SOA) is becoming a key aspect for system

agility and quickly developing new businesses. SOA fosters the integration of different

technologies and platforms coming from various enterprises, and brings a new level of

flexible modularity that is able to guarantee end-to-end quality of service. Web services,

defined as platform-independent and self-describing applications to satisfy a single task,

are one of the most promising approaches for implementing SOA and have recently re-

ceived significant interest. One of the main assets of service-orientation is composition,

which consists in developing higher-level services by re-using well-known functionality

provided by other services in a low-cost and rapid development process. Automation

of this process is emerging as one of the most interesting challenges facing SOA today.

Consequently, composition has been a major research topic in the past years. A vast

number of service composition approaches have been proposed in literature. [Motiva-

tions] Despite the huge number of research efforts and fast development of composition

models and approaches over the last years, two major bottlenecks in the current process

of modeling compositions still remain. The first bottleneck is related to the expert level

needed in order to achieve such a composition. Typical procedural style of modeling,

inspired by workflow/business process paradigms do not provide the required abstrac-

tions, and therefore fail to support dynamic, self-managed compositions able to adapt

to changes that may happen continuously, unpredictably, and inevitably lead to failures.

A language such as the Business Process Execution Language for Web Services (WS-

BPEL) is clearly an expert language, and specifying and programming a composition

using WSBPEL is a lengthy, costly, and high-risk process. A second bottleneck in cur-

rent services compositions concerns their life-cycle and their management, also called

their governance. The challenge is how to achieve a full governance of the composition

allowing its continuous and dynamic improvement. Traditional approaches focus only

on some stages of process life-cycle and little work however has been done in integrating

these related dimensions using a unified formalism. According to Gartner, many process

management initiatives fail to get off the drawing board once systems architects recog-

nize the scale of integration work to bring the different elements of functionality into

iii

Abstract iv

play. [Objectives] To address the above challenges, the objective of this dissertation

is twofold. First, we aim to provide a service specification language, designed with a

declarative and logic-based approach and powered by reasoning techniques to handle

both functional and non-functional requirements and highly expressive interaction mod-

els without over-specifying them. Second, using this declarative specification language,

we plan to develop a comprehensive and well-integrated framework to enable the mastery

of complexity and dependability of service compositions by achieving a full governance

of the composition. [Contributions] To realize these objectives, we have proposed a

capability driven composition framework that supports the full roundtrip composition

life-cycle in a unified and declarative way, thereby reducing development time and in-

tegration efforts and allowing for self-healing Web services compositions. Based on the

three stages of abstraction, composition, and monitoring, our solution provides an easy

way to specify functional and non-functional requirements of composite services in a

precise and declarative manner, and guides the user through the composition process

while allowing detection and recovery of violations at both design and run time using

proofs and planning.

Dedication

This the- sis is ded-

icated especially to the soul of my

brother Houssem, to my Parents, to my brother

Helmi, to my fiancy Atef and to all persons who

made all of this possible, for their endless encourage-

ment and patience. To my Professors who have been

my friends, guides and philosophers. To my best

friends who have always assisted me and be-

lieved that I could do it. To my family who

have always stood by me and dealt

with all of my absence from

many family occasions

with a smile.

♥

v

Acknowledgments

First of all, I thank Allah for giving me strength and ability to complete my PhD

Thesis.

I would like to express my gratitude to my co-supervisor Mohsen ROUACHED for his

outstanding supervision, advice, support, inspiration, patience, exceptional seriousness

and for always being available during the course of this work. Without his kindness and

invaluable support, the work presented in this thesis would not have been possible.

My sincere gratitude goes to my supervisor and Professor Mohamed ABID, for his

interest in my work and guidance through the development process of this Thesis. I

specially like to thank Prof. Ahmed HADJ KACEM for giving me the honor of being

the president of my PhD jury.

Furthermore, I deeply Mr. Lotfi BOUZGUENDA, Prof. Erik MANNENS and Mr.

Mounir BEN AYED, for accepting the reviewing and the judgment of my PhD thesis.

During this thesis, I had the pleasure of working with several distinguished re-

searchers all over the world. In particular, I would like to thank those whom I have

collaborated with as a part of the work described in this thesis. I am very grateful to

Ruben VERBORGH for inviting me as a visiting researcher to Semantic Web Unit at

Multimedia Lab research group in iMinds Research group of Ghent University, Belgium.

I am very grateful for the interest he showed toward this work, his valuable suggestions,

discussions and fruitful cooperations. I would like to thank all the friends I have met

during my internship in Multimedia Lab.

Thanks to Wassim DERGUECH, who also provided valuable suggestions on my thesis

during my internship in Green and Sustainable IT research unit at Insight Center for

Data Analytics (DERI), Galway, Ireland. A special thanks to all the people I had the

pleasure to meet in Galway.

Finally, I deeply thank all my friends and the people in the CES Research Unit at

the National School of Engineers of Sfax for their support and enthusiasm that makes

working in CES very stimulating and challenging.

vi

Contents

Contents vi

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Motivations and Problem statement . 3

1.1.1 Composition modeling . 4

1.1.2 Composition verification . 5

1.1.3 Composition monitoring . 6

1.1.4 Lack of integration . 6

1.2 Objectives and Contributions . 8

1.2.1 Objectives . 8

1.2.2 Contributions . 8

1.3 Thesis outline . 11

2 State of the art 12

2.1 SOA and Web services . 13

2.1.1 Service Oriented Architecture . 14

2.1.2 Web services and Architectural Styles 16

2.2 Web Service Composition . 21

2.2.1 Composition Models . 22

2.2.2 Non-functional requirements . 28

2.3 Web services composition approaches . 30

2.3.1 Procedural composition approaches 30

2.3.2 Declarative composition approaches 36

2.3.3 Synthesis . 41

2.4 Conclusion . 44

3 Capabilities driven Web Services Description and Composition 46

3.1 Capabilities driven Web Services Description 47

3.1.1 Service description . 49

3.1.2 Non-Functional Properties meta-model 50

3.1.3 Workflow meta-model . 51

3.1.4 Illustrative example . 52

3.2 Integrated Framework for Web Services Composition 56

3.2.1 Pre-Composition phase . 57

vii

Abstract viii

3.2.2 Abstract Composition . 59

3.2.3 Concrete Composition . 62

3.2.4 Composition Monitoring . 68

3.3 Conclusion . 70

4 Proof based Web Services Composition 72

4.1 Proof Ingredients . 73

4.1.1 Notation 3 . 74

4.1.2 Euler Yap Engine (EYE) Reasoner 77

4.1.3 Proof Study . 78

4.2 Proof based Composition of Services Capabilities 81

4.2.1 N3 capabilities descriptions . 82

4.2.2 Proof based Composition . 83

4.2.3 Composition Scenario: Programmable Dinner Scenario 85

4.3 Correctness of Web services composition proofs 93

4.4 Conclusion . 96

5 Implementation and Performance Study 97

5.1 Implementation . 98

5.2 Performance Study . 101

5.2.1 Parsing and Reasoning performance 102

5.2.2 QoS-Aware Service Selection performance 104

5.2.3 Comparative study . 105

5.3 Conclusion . 108

6 Conclusions and Future Work 109

6.1 Summary . 109

6.1.1 Problem definition . 109

6.1.2 Proposed approach . 112

6.2 Outlook and Future Work . 114

6.2.1 Services mashups and cloud service compositions 114

6.2.2 Quality of Experience driven Service Composition 115

6.2.3 Pervasive services composition . 116

List of Figures

1.1 Framework Architectural Diagram . 9

2.1 Service Interaction basic Model . 15

2.2 SOAP, WSDL and UDDI Interaction . 17

2.3 Web services technologies . 20

2.4 Service Orchestration . 22

2.5 Service Choreography . 24

2.6 Upper Service Ontology for OWL-S . 26

3.1 Capability Meta-Model . 49

3.2 Relationship between Capability Type and Instance 50

3.3 Service Meta-Model . 50

3.4 Non-Functional Properties Meta-Model 51

3.5 Workflow Meta-Model . 52

3.6 Modeling Framework for Web Services Composition 56

3.7 Instance Ontology Builder . 59

3.8 Proof based Reasoner . 61

3.9 Monitoring Framework . 68

4.1 Semantic Web Stack . 73

4.2 EYE Design [1] . 77

5.1 Implementation Architecture . 98

5.2 Snapshot of the Query Editor Console . 99

5.3 Snapshot of the monitoring console . 100

5.4 Parsing and reasoning time using EYE and Cwm 102

5.5 Time Required to generate abstract plans with different sizes 103

5.6 Required Time to generate abstract plans of different sizes varying the
number of preconditions and postconditions 103

5.7 Time Required to identify optimal executable compositions with 7 ab-
stract capabilities . 104

5.8 Time for optimal plan bindings . 105

5.9 Time Required to generate plans with different sizes 106

5.10 Time Required to generate optimal concrete compositions with different
composition scenarios . 107

5.11 Comparison of our approach with RFC and 2P systems with #Nparameters=2-

6 . 108

ix

List of Tables

2.1 Comparative Study of Automated Web Service Composition Approaches . 42

3.1 Aggregation functions for computing composition QoS 65

5.1 Test Scenarios w.r.t number of service types and service instances 106

x

Chapter 1

Introduction

Contents

1.1 Motivations and Problem statement 3

1.1.1 Composition modeling . 4

1.1.2 Composition verification . 5

1.1.3 Composition monitoring . 6

1.1.4 Lack of integration . 6

1.2 Objectives and Contributions 8

1.2.1 Objectives . 8

1.2.2 Contributions . 8

1.3 Thesis outline . 11

The demand for software to live in an open world and to evolve continuously as the

world evolves is now reaching unprecedented levels of dynamism. Over the past years, a

major step of evolution toward this direction has been made possible by the birth of the

concepts of services and Service Oriented Computing (SOC) and by the development of

technologies and proposed standards to support this emergent paradigm.

SOC is a programming paradigm that relies on services to facilitate the development

of dynamic, interoperable, inexpensive and widely distributed applications. An impor-

tant and distinguishing feature of services [2] is the fact that they are loosely-coupled,

allowing to create dynamic business processes that can flexibly adapt to a continuously

changing and unpredictable environment [3, 4]. Modules are reusable entities with spe-

cific objectives and can be used for orchestrating composite applications based on a

service infrastructure [5]. SOC spans a variety of concepts, protocols, and technologies

from different disciplines like distributed computing systems, grid computing, computer

architectures, software engineering, database systems, programming languages, knowl-

edge representation and security [6].

1

Chapter1. Introduction 2

The key to realize the SOC vision is Software Oriented Architecture (SOA) [6, 7]. SOA

is gaining acceptance among academia and industry as a computing paradigm for busi-

ness and systems integration. The powerful concept of SOA consists on its decoupling

between service provision and consumption, which leads to a much more flexibility and

cost-effective integration, within and/or across organizational boundaries, than existing

workflows or middle-ware systems do. Thus, SOA popularity has been dramatically

increased, and its adoption has expanded across various industries, geographies and or-

ganization sizes. It is used in more than 90 percent of new mission-critical operational

systems and business processes. It has received significant attention of major computer

and software companies such as IBM, HP, Microsoft, Intel and SAP, as well as govern-

ment agencies such as DoD (US Department of Defense) and NASA.

The best known enabler supporting SOA is Web services technologies. Web Services

are emerging as the lead implementation of SOA upon the Web. They have added a

new level of functionality for service description, publication, discovery, composition and

coordination extending the role of the Web from a support of information interaction

to a middleware for application integration. They represent a systematic and extensible

method of communication for application-to-application interactions, built on top of

existing Web protocols and open XML standards.

One of the most interesting and relevant properties of services is the possibility to com-

bine a number of existing services to create a more general composite service. Composing

services allows for the definition of increasingly complex applications by progressively

combining services at increasing levels of abstraction [8]. It has received much interest

to support business-to-business or enterprise application integration. This process can

be performed either manually or automatically (or semi automatically in some cases).

However, it can occur either in design-time by producing a static composition model, or

at run-time, when a particular service will be executed, providing a dynamic composition

schema. Furthermore, composition models can be categorized in four complementary

categories: An orchestration model describes both the communication actions and the

internal actions in which a service engages. A choreography model describes a collabo-

ration between a collection of services in order to achieve a common goal. A Behavioral

interface model captures the behavioral aspects of the interactions in which a particular

service can engage to achieve a goal. Finally, coordination models involve temporarily

grouping a set of service instances following a coordination protocol.

This pattern is not new, however, it poses some new challenges, which have yet to be

addressed by current technologies and platforms. Indeed, while the technology for de-

veloping basic services and interconnecting them on a point-to-point basis has reached

Chapter1. Introduction 3

a certain level of maturity, it still suffer from some shortcomings when it comes to engi-

neering services that engage in complex interactions, which go beyond simple sequences

of requests and responses or involve large numbers of candidates. The process of service

composition requires an effective development environment to facilitate quick and sim-

ple composition of Web services, and is considered as a key challenge to realize the true

potential of web services. Such development environment is of utmost importance for

Web service composition languages to keep their promises. [8] discussed the importance

of a middleware to support composition in terms of abstractions and runtime infrastruc-

ture. The core elements of such a middleware, they identify, are a composition model

and language to specify the services involved in the composition, a development environ-

ment with a graphic user interface to browse components, and a run-time environment

to execute the business logic.

Composition of Web services has been active area of research recently [9], [10]. Several

efforts have led to the development of platforms and languages to support composition

and deployment of services. However, despite this considerable progress, the composition

process still poses limitations and challenges which have yet to be addressed by current

technologies and tools for Web service composition. What is clearly required is an

Integrated Development Environment to ease the process of composition, thus, reducing

development time as well as integration efforts [11]. In this context, we propose, in

this thesis, to handle the governance of the composition process in an integrated and

declarative way to offer a good support for SOA technologies and achieve their promise

to provide flexible business models, guarantee end-to-end quality of service and ensure a

seamless service management. Declarative languages have a true potential to represent

highly expressive interaction models without over-specifying them, allowing vendors to

define architectures to support modular, pluggable service-oriented components, each

infinitely configurable to match a small organization’s business processes and strategy.

The reminder of this chapter discusses motivations and problem statement of our work,

exposes the main objectives to consider, and introduces our contributions to realize these

objectives.

1.1 Motivations and Problem statement

Having a technology that supports the full round-trip process life-cycle allows enterprises

to not only model and automate activities and processes, but also to monitor critical

aspects of the process, analyze changes, and apply continuous process improvements

across the organization. Therefore, a major requirement is to provide an integrated

Chapter1. Introduction 4

solution for dealing jointly with adaptation at modeling, deployment and runtime levels

at a time. Below, we discuss motivations and difficulties to achieve such solution.

1.1.1 Composition modeling

To realize the promises and values of SOA, it is important to enable rapid and easy

service discovery and compositions inexpensively. Unfortunately, mainstream SOC lan-

guages, such as BPMN and BPEL, make it quite hard to fulfill such requirement. Speci-

fying a composition needs good knowledge of many specifications such as WSDL, SOAP,

UDDI, and WSBPEL, and requires to use languages and concepts built with classical

procedural constructors. The drawbacks of procedural approaches are that these ap-

proaches do not provide the required abstractions, and in case of complex relationships

or protocols, all the possible interactions have to be explicitly enumerated. Thus, they

failed to support dynamic and self-managed compositions and could not adapt to changes

that can happen continuously, unpredictably, and inevitably lead to failures.

Indeed, a deep analysis of the composition state-of-the-art approaches clearly categorize

them in two classes [12]. A first class requires all services to be semantically described

with enough details to allow the engine to choose and combine them in the right way

to satisfy the users’ goals. A second class is more restrictive, as it relies on the service

architect to provide an abstract yet detailed enough model of the orchestration, often

using languages like BPEL and BPMN, whose structure is considered the main source

of problems.

For both classes, the expert level needed in order to achieve a given composition is

considered as one of the major shortfalls in the current approaches of modeling com-

positions. Typical procedural style of modeling, inspired by workflow/business process

paradigms imposes service architects to detail every aspect in the control flow among

services candidates: from the most general to the most specific ones. Compositions

must explicitly define the different routes starting from the initial state and arriving to

the final state, and they have to explicitly manage in advance all possible faults and

exceptions that can happen at run-time. Specifications are not guaranteed to reflect the

actual nature of what is being specified.

A traditional language like BPEL, is completely an expert language, and composition

using such language is a lengthy, costly, and high-risk process. This means that only

experts can specify and develop BPEL composite services for instance. Even for small

scenarios, writing BPEL code is definitely not a trivial task because it has to take into

account both external and internal non-determinism, and also all the success/failure

Chapter1. Introduction 5

terminal states. Moreover, the messages (of the protocol) have to manage application-

related data, security-related data and reliability-related data. As soon as you try to

augment the flexibility or the agility, the over specification increases dramatically.

The challenge at this level concerns the languages and tools for specifying services and

their interactions with other services: how to express in simple and understandable

way the interaction modalities with services of other organizations? How do I express

the what versus the how? How to consider, enforce, validate, and realize governance

concerns?

1.1.2 Composition verification

The focus at this level is on the actions to take once composition specifications are given:

how can I verify that specifications satisfy some properties which I deem to be important?

For example: if a service represents the delivery of a product, do the specifications that

I have produced guarantee compensation in the event of failure to deliver? Moreover,

what tools are available to facilitate interoperation with other organizations through

services? Assuming that it is possible to discover a set of services that I could use to

achieve a goal of mine, how can I verify which specific services meet my requirements?

Are there tools available to support composition and cooperation with other services?

To which extent can I judge how secure and reliable is an entreprise of which I do not

know the background? This means that the challenge here relies on the availability

of tools that are able to specify requirements, to verify these requirements, to monitor

if the execution is compliant to the specification, and to analyze what really happens

during the execution of the composition.

Flexible composition of services and processes with non-functional concerns entails the

danger that important rules or constraints of the service or process models get violated

or overlooked. Today’s state-of-the-art in verifying and validating instances of service or

process models, however, can hardly cope with the complexity and dynamics of an end-

to-end business compliance framework – both at design time and runtime. Furthermore,

they are hard to use, especially for non-programmers. In addition, existing formal

verification methods are not integrated with the existing service or process models,

and hence a semi-automated verification is hard to achieve in an end-to-end business

compliance framework.

Chapter1. Introduction 6

1.1.3 Composition monitoring

Monitoring deals with the actual execution of the composite service and is responsible

for monitoring the execution and recording violation of any requirement of the goal

service at runtime. This requires to define novel principles and techniques for cross-layer

monitoring of composition processes, which is a challenging task due to the versatility

and the dynamicity of a service composition. It is important to monitor and to analyze

properties of a dynamic composition, allowing dynamic refactoring of the composition or

of the selected services if needed. These properties can be functional constraints (service

A must not be executed before end of service B) or non-functional (the time dedicated to

the execution of service A and service B is 10 seconds). Monitoring frameworks should

also deal with the scalability of the monitoring/analysis process, because it is crucial that

the solution will be able to handle a large number of services, interactions, and events.

Another challenge is dedicated to the feedback control and analysis of the composition,

i.e. the conformance monitoring and analysis. It is therefore mandatory to be able to

express constraints and properties to be monitored and analyzed. Example of these

constraints are data to be delivered, timing factors, security enforcement,etc. Then, the

last challenge is to incorporate the monitoring /analysis process within the execution

framework in order to have a more efficient approach when compared to solution based

on external components.

When studying traditional approaches for the composition monitoring [13], [14], [15],

[16],[17], [18], [19], [20] , [21], [22], we can observe that the run-time monitoring of the

composition process which is tightly coupled with the composition process was not well

integrated to these approaches, and very few proposals such as [23] and [24] handle it by

adding a new layer for the composition monitoring and thus do not provide the important

execution time violations feedback to the composition process. One other commun

pattern of traditional approaches is that they are highly procedural, which make the

possibility to learn from run-time violations and to change the process instance/model

at execution time very difficult. Once again, we believe that these proposals are more

oriented to low-level analysis (services/components), while we are more interested by

business activity monitoring.

1.1.4 Lack of integration

Another problem with current services compositions concerns their life-cycle and their

management, also called their governance. The different stages are respectively the

initial modeling of the composition (the specification); its deployment into the overall

Chapter1. Introduction 7

architecture, and finally analytics feeding back to the designer. According to Gart-

ner, many SOA management initiatives fail to get off the drawing board once systems

architects recognize the scale of integration work to bring the different elements of func-

tionality into play. The inflexibility of current proposals is antinomic to the round-trip

model, which implies a philosophy of agility and ongoing improvement as a result of the

analysis performed in different stages.

Traditional approaches used to focus only on some stages of the composition process

life-cycle, which results in a complex model that can be able to handle the above stages.

Also, it is not always possible to have a complete transformation between modeling

approaches mainly if we consider non-functional requirements into account. Lack of

integration presents a major barrier to learn from run-time failures and offer recovery

mechanisms.

Integration concerns also the different entities that may interact with the composition

process. In this context, an efficient Web service composition approach needs to support

different views, each of which may be applicable to a given kind of role. The Service

Requester may be interested in specifying his/her requirements that he/she wants to

get fulfilled from the new service. The Service Developer, is interested in ways of ful-

filling those requirements through service discovery and selection or if needed, service

composition. The Deployment Engineer is more concerned about receiving the service

in a shape that is deployable on a runtime engine. Administrator, on the other hand,

needs to have an overall view to perform functions such as managing registries, managing

user roles, setting appropriate access controls and performing rollbacks in case of errors.

Each of the above mentioned user roles have different technological and user interface

requirements.

To conclude, providing an integrated declarative solution that covers the en-

tire spectrum is considered the core motivation of our work. This framework

will offer tools that enable to specify requirements, to verify how far the so-

lution answers these requirements, to monitor if the execution is compliant

to the specification, and to analyze what really happens during the execution

of the composition.

Chapter1. Introduction 8

1.2 Objectives and Contributions

1.2.1 Objectives

To address the above challenges, we aim, in this dissertation, to design and develop an

integrated declarative solution to bridge the gap between the process modeling, verifica-

tion and monitoring and thus allowing for self-healing Web services compositions. More

specifically, the objective of our work is twofold.

1. Declarative composition specification. We aim to provide a service specification

language, designed with a declarative and logic-based approach and powered by

reasoning mechanisms to handle functional and non-functional user requirements

of the composition process. This language will enable highly expressive interac-

tion models without over-specifying them. Consequently, designers and engineers

will be able to define architectures to support modular, pluggable service-oriented

components, each infinitely configurable to match a small organization’s business

processes and strategy.

2. Full governance of the composition process. Using this declarative specification

language, we plan to develop a comprehensive and well-integrated framework to

enable the mastery of complexity and dependability of service compositions by

offering tools for specifying, composing, verifying, and monitoring service usage.

This framework will achieve a full governance of the composition allowing the

continuous and dynamic improvement of the composition to support and encourage

the adoption of SOA technologies.

A more general objective is to help in speeding up and increasing technological trans-

fer and innovation and therefore enhancing the competitiveness of small and medium

entreprises in the field of service engineering, SOA, and related technologies.

1.2.2 Contributions

To fulfill the above objectives, we propose, in this work, an integrated declarative frame-

work for Web Services Composition Modeling and Engineering as depicted in figure 1.1.

Based on the three stages of abstraction, composition, and monitoring, our solution pro-

vides an easy way to specify functional and non-functional requirements of composite

services in a precise and declarative manner, and guides the user through the compo-

sition process while allowing detection of violations at both design and run time. The

staged approach is designed keeping in mind the best knowledge engineering practices of

Chapter1. Introduction 9

modularity, conciseness, and scalability, while providing a fair amount of control to the

composition process. It focuses on the specification of “what” level without having to

state the “how”, which enables to preserve the autonomous nature of interacting services

and represent expressive interaction models without over-specifying them.

Figure 1.1: Framework Architectural Diagram

As shown in the architectural diagram, the proposed framework strives to automate the

core phases of the composition process, while leaving scope for valuable user feedback

between the phases. The key features of this framework are:

• Users/Requestors provide the high-level description of the service desired (goal)

using a user-friendly interface that enables end users to specify and express their

requirements and preferences that mark the boundary of the solution (requested

service) by following some instructions to build the query. A query parser is

integrated to parse and validate the query by checking syntactic correctness and

decoupling the functional requirements from the non-functional parameters (such

as QoS properties). Because users provide high-level specification of the composite

service which may not be realizable using the published component services, our

framework guides the users for iterative refinement of the goal service specification.

• A declarative capabilities driven specification that uses Notations3 rule language

[25] to specify the components of the composition process and define patterns for

specifying the functional and non-functional aspects for process specification. We

use capabilities [26, 27] to express compositions, modeling both their functional

Chapter1. Introduction 10

and non-functional requirements. A Web service is described as a structured entity

featured via a set of capabilities, non-functional features and workflow properties

(in case of a composite service). Such description considers a service as an access

mechanism to a capability, which is, in its turn, a structured entity that describes

what a service can do via an action verb, a set of domain-specific attributes, a set

of preconditions and a set of effects. Different services can be interconnected at

different levels of abstraction/concreteness by establishing links between them.

• A proof based approach using EYE reasoner [28] for the process design-time veri-

fication. The capabilities driven description is used to provide a two staged Web

service composition approach, which is purely declarative and support flexible

self-managed compositions. First, an abstraction stage consists in constructing a

composition of available services that provide the desired functionality by seman-

tically generating a composition plan of abstract capabilities. Second, a concrete

stage concretizes the abstract composition into an executable composition by se-

lecting the appropriate concrete capabilities instances based on non functional

aspects. Verification will be applied both to the single services and to the whole,

dynamically evolving, composition. Proofs obtained through formal verification

could be provided and advertised. In this way, other services can reason upon the

declarative specifications, and possibly check the advertised proofs of properties,

leaving no doubts on the dependability of the services.

• An event-based monitoring framework that allows to reason about the events and

does not require defining and extracting events from process specification, as the

events are first class objects of both design and monitoring framework. As the

proposed monitoring approach builds upon capabilities and N3 based composition

design, it allows for the specification of monitoring properties that are based on

both functional and non-functional (such as temporal, security or their combina-

tions) requirements. These properties are expressed as N3 formulas and can be

added to the process specification both during process design and during the pro-

cess execution. A continuous monitoring of the on-line behavior of services will

provide reliable trust levels and a dependable quality of service.

• Implementation of the above key features in a composition management system

that realizes all algorithms and models proposed in the dissertation. This man-

agement system presents all the functionalities from design phase to monitoring

and provides the corresponding tools for each phase. It was tested and evaluated

using realistic scenarios.

To summarize, our work targets dynamic environments where a composition is built

through service composition of basic building services. Formal verification, both a-priori

Chapter1. Introduction 11

and at run-time, will be an invaluable tool to guarantee dependability of the client on the

available services. The stability of this complex system is ensured through a continuous

and pro-active monitoring of the interaction, and on-the-fly verification. This full round

trip - modeling, verifying, monitoring, and analyzing - will be a very important added

value for enterprises using SOAs.

1.3 Thesis outline

The reminder of the thesis is structured as follows.

In Chapter 2, we draw a deep and comprehensive review of the state of the art of the

current approaches that deal with composition process design, verification and monitor-

ing. Before starting this review, we introduce the notions of SOA and Web services and

their related technologies. We discuss the different existing compositions models, and

make a systematic study of existing composition approaches depicting their limitations

in terms of our objectives.

In Chapter 3, we discuss the proposed capabilities based composition design by first

presenting the capabilities meta models for different components that form the composi-

tion design. Then, based on this specification, we detail the components of the proposed

framework.

In Chapter 4, we tackle issues related to formalizing our services models using Nota-

tion3 and generating compositions using proofs and EYE semantic reasoner.

In Chapter 5, we describe the implementation of our approach of composing Web

services in an integrated and declarative way and show its applicability in a real use

case. We conduct an extensive performance study for our developed approach.

Finally, Chapter 6 is dedicated to concluding remarks and directions for future re-

search.

Chapter 2

State of the art

Contents

2.1 SOA and Web services . 13

2.1.1 Service Oriented Architecture 14

2.1.2 Web services and Architectural Styles 16

2.1.2.1 Reference architecture 16

2.1.2.2 Representational State Transfer (REST) 18

2.1.2.3 WS* specifications . 20

2.2 Web Service Composition . 21

2.2.1 Composition Models . 22

2.2.1.1 Service Orchestration 22

2.2.1.2 Service Choreography 23

2.2.1.3 Coordination . 25

2.2.1.4 Semantic Web services 25

2.2.2 Non-functional requirements 28

2.3 Web services composition approaches 30

2.3.1 Procedural composition approaches 30

2.3.1.1 Modeling approaches 30

2.3.1.2 Verification approaches 33

2.3.1.3 Monitoring approaches 34

2.3.2 Declarative composition approaches 36

2.3.2.1 Modeling approaches 36

2.3.2.2 Verification approaches 38

2.3.2.3 Monitoring approaches 39

2.3.3 Synthesis . 41

2.4 Conclusion . 44

12

Chapter2. State of the art 13

Service-oriented architecture and the supporting Web services technology are becoming

more and more involved in everyday sensitive, mission-critical operational applications

and business processes. Today, business processes are increasingly implemented by dy-

namically composing Web services seen as the main contribution the SOAs bring to

enterprise business process automation, thus enabling to create complex systems that

are interoperable, composable, extensible, and dynamically reconfigurable. Complex de-

pendencies can be created between Web services offered by different organizations using

compositional models such as choreography, orchestration, and coordination to facilitate

the integration of enterprise applications between businesses and organizations.

In this chapter, we start by briefly discussing notions of SOA, Web services and their

related technologies. Then, we concentrate on the Web services composition process

as an important feature to realize the objectives of our thesis. The main goal is to

understand the key considerations that underlay the specification, the verification, the

execution, and the monitoring of Web services compositions. We discuss the different

existing compositions models (Orchestration, Choreography, Coordination, and Seman-

tic Web Services) and their related languages. Finally, a systematic study of existing

composition approaches depicting their limitations in terms of being procedural, lack

of expressivity and lack of integration is made. We consider the following two main

approaches: (i) procedural composition approaches, and (ii) declarative composition ap-

proaches, and compare them according to whether or not they address the composition

global life-cycle.

2.1 SOA and Web services

Most of people often think of SOA and Web services in combination, however, these

two concepts are totally distinct in an important manner. SOA is considered as an ab-

stract architectural concept to build software systems based on loosely coupled modules

(services) that can be easily discovered and composed. Thereby, the concept of Web

service represents one important approach to realizing SOA, built on top of open stan-

dards such as HTTP and XML and can be described, published, located and invoked by

other programs over the Web. The main feature that distinguishes the Web service from

the Websites or applications is that it is designed to be used/consumed by an actual

application rather than directly targeting a browser.

Chapter2. State of the art 14

2.1.1 Service Oriented Architecture

The demand for software to live in an open world and to evolve continuously as the world

evolves, however, is now reaching unprecedented levels of dynamism. Over the past years

a major step of evolution toward this direction has been made possible by the birth of

the concepts of services and service-oriented architectures and by the development of

technologies and proposed standards to support them. SOA is a design style that leads

to the all aspects of creating and using services throughout their life-cycle. SOA aims to

bring about component reuse, irrespective of implementation language or host platform,

and as such it can be thought of as simply an extrapolation of good software engineering

practices, taking us from the class reuse concept to service reuse concept. Thus, SOA

typically encompasses the following features:

• Component architecture: SOA is based on reusable software components enabling

to build scalable heterogeneous (i.e. platform- and language-independent) service

architecture.

• Loose coupling : The principle of Service Loose Coupling promotes the independent

design and evolution of a service’s logic and implementation while still guaranteeing

baseline interoperability with consumers that have come to rely on the service’s

capabilities.

• Platform independence: This feature has been achieved by the adoption of stan-

dards, which have been the key mechanism enabling previously incompatible tech-

nologies to work cooperatively across a wide range of different platforms. Single

services can interoperate with each other without depending on specific platforms

or programming languages.

• Transparency : It is ensured by decoupling service functionalities from their actual

implementation.

• Flexibility : SOA must ensure flexibility so as a system would be able to deal with

dynamic changes of its configuration and behavior according to varying require-

ments.

It results that SOA enables an IT infrastructure to allow different applications to par-

ticipate in several business processes and exchange data, regardless of the details of the

applications, such as the operating systems or the implementation or the programming

languages used to implement them.

Service is considered the main concept in SOA. It is the mechanism through which com-

ponents that provide capabilities (service providers) and components with specific needs

Chapter2. State of the art 15

(service requester/consumer) can interact. The interaction with services is regulated by

a set of basic methods that allow to provide, discover, use and interact with services

in a seamless way. In general, a service is accessed by its interface, which comprises

the specifications of how to access the underlying capabilities. Figure 2.1 illustrates the

most basic interactions required to interact with a service.

Figure 2.1: Service Interaction basic Model

In an ideal scenario, a service provider hosts a network-accessible software module, which

defines an implementation of a given service, and offers a service description that leads

the service to be published and discoverable. A user discovers the required service and

retrieves its related description that will be then used to bind to the provider and invoke

the service.

Services are created from scratching or by breaking down or refashioning older appli-

cations and existing information. Roughly speaking, a service is a software entity that

implements some well defined functionality that can be consumed by clients (e.g. other

services), regardless of the application or the business model. Services communicate

with each other by means of message exchanges. Notice that the definition of a ser-

vice provides a high level conceptual understanding of what a service is, not going into

implementation and specification details, which are of no importance at this level. In

particular it does not make any assumption about the underlying communication frame-

work nor the specifications used for describing services. It only states that a service has

some capability and communicates using messages, thus aiming at giving a clear con-

ceptualization that can be achieved in several ways. The main advantages provided

by the use of services revolve around the interoperability, loose coupling, isolation and

composability.

SOA is a way of reorganizing software applications and infrastructure into a set of inter-

acting services. However, the basic SOA does not address overarching concerns such as

management, service orchestration, service transaction management and coordination,

security, and other concerns that apply to all components in services architecture. Many

Chapter2. State of the art 16

initiatives have emerged to meet this need, which includes SOC, Enterprise Service Bus

(ESB) and Component Architecture (SCA).

2.1.2 Web services and Architectural Styles

Web services have been the focus of several standardization contributions by global

consortia such as W3C and OASIS and have been the most successful implementation

of services, used by software corporations such as Microsoft and IBM, which let them

be popular with traditional enterprise. World wide Consortium has also been a driving

force behind Web service research.

The World Wide Web Consortium (W3C) [29] defines Web Services as a software sys-

tem designed to support interoperable machine-to machine interaction over a network.

It has an interface described in a machine-processable format (specifically Web Service

Description Language WSDL1). Other systems interact with Web services through their

descriptions and using SOAP2 messages and HTTP with XML serialization in conjunc-

tion with other Web-based standards. As it is mentioned in [30], this definition does

not restrict the Web service to particular technologies or standards such as SOAP and

WSDL, it just assumes that the higher levels of the Web services protocol stack are

built on the foundation of SOAP and WSDL. There are, and will be in the future, other

technologies and protocols to define the Web services.

2.1.2.1 Reference architecture

In general, the basic Web Service protocol stack comprises four protocols as depicted in

figure 2.2.

The main characteristic of a Web service is the use of the World Wide Web and the

Internet as a communication medium for services to communicate with each other and

with service consumers. By using WWW, Web services use the existing URI infrastruc-

ture so as to be located by anyone having access to the Web. The URI scheme gives a

name to each Web service which uniquely identifies it and allows one to use all existing

operations on URIs in order to access it.

Web services extensively use the XML language. From the definition of the messages

exchanged between services to the service description, everything is based on XML,

which is quite advantageous. Indeed, Web services represent an SOA that relies on the

following three XML-standards technologies:

1http://www.w3.org/TR/wsdl20/
2http://www.w3.org/TR/soap/

Chapter2. State of the art 17

Figure 2.2: SOAP, WSDL and UDDI Interaction

• Simple Object Access Protocol (SOAP) is used for passing messages and

invoking operations that Web services offer. SOAP represents a general pattern

for Web service messages and defines how to encode an XML information in such

messages and how these messages can be transmitted over the Internet using ex-

isting protocols such as HTTP and SMTP. Although one of the main purposes

of SOAP is to support Remote Procedure Call (RPC), this protocol can support

asynchronous or message based communications as well. In SOAP, the way a re-

mote operation is invoked is specified through an XML document, while HTTP

represents the transport protocol. By using HTTP, SOAP solves the problem en-

countered by typical invocation protocols such as COM+, Java RMI, and CORBA,

where firewalls often block interaction messages. In SOAP, the basic item of trans-

mission is a SOAP message, which consists of a mandatory SOAP envelope, an

optional SOAP header, and a mandatory SOAP body. The SOAP body contains

the main part of the SOAP message, that is, the part intended for the final re-

cipient of the SOAP message. The SOAP header can be used to indicate some

additional processing at an intermediate node, which is, processing independent of

the processing done at the final destination. Typically, the SOAP header is used to

convey security-related information to be processed by runtime components. The

envelope specifies the XML name-space and the encoding style that identifies the

data types recognized by the SOAP message.

• Web Service Description Language (WSDL) used for describing Web ser-

vices and their relevant properties. WSDL represents a contract between the

service requester and the service provider. It allows formalizing the service fea-

tures according to a schema very similar to a typical Applications Programming

Interface (API) definition. WSDL is a XML-based language able to specify the

service feature described in text form. The first element comprising a WSDL spec-

ification is service, which identifies a set of services, each specified by a port. It

Chapter2. State of the art 18

should be noted that a port only represents the physical address where the service

operates and the protocols the user should adopt to communicate with it, with no

description of the provided functionalities. This aspect is defined by the portType,

directly associated with the port, which is responsible for defining the available

operations. Hence, portType defines what the service does, whereas port defines

where the service is. The binding element is responsible for defining this special-

ization by mapping the operations specified by the portType to a port, according to

a particular protocol such as SOAP, HTTP, or SMTP. In more details, a portType

is composed of a set of operations which reflect the functionalities characterizing

the service available to the user.

• Universal Description, Discovery and Integration (UDDI) protocol used

for creating Web Service directories and searching for adequate services. A UDDI

directory entry consists on an XML file that describes a given business as well as the

services it offers. The services are defined in a UDDI document called a Type Model

(or tModel). In most of cases, the tModel includes a WSDL file that defines a SOAP

interface to an XML-based Web service. However, the tModel is extensible enough

to describe any other kind of service. Moreover, the UDDI directory includes

various ways to search for the services, through which different applications can

build applications. For example, a user can search for service providers in a given

location or for a business of a specified nature. The UDDI directory will then

deliver the required information such as links, contacts and technical data that

enable user to identify and evaluate which services can meet his/her requirements.

Furthermore, UDDI allows finding businesses that user might want to obtain from

Web services.

Web services have added a new level of functionality for service specification, publication,

discovery, composition and monitoring, which extends the role of the Web from a support

of messages interaction to a middleware for application integration.

2.1.2.2 Representational State Transfer (REST)

REpresentational State Transfer (REST) is an architectural style that has been in-

troduced for distributed hypermedia systems [31–34]. Its core goal was to apply the

powerful features of the Web to the SOA in an efficient way by making resources acces-

sible through Uniform Resource Identifiers (URIs). Using these URIs gives a powerful

concept to the RESTful architecture by making it possible to have different represen-

tations for the same resources e.g. the server can provide XML or JSON format for

machines understanding and HTML content for human interpretation. This resource

Chapter2. State of the art 19

can be accessed and mapped without restricting communication to a particular pro-

tocol. However, it is often used in conjunction with the Hypertext Transfer Protocol

(HTTP) and its CRUD-operations like POST for Creating, GET for Retrieving, PUT

for Updating and DELETE for Deleting. Two main features distinguish REST from the

existing network-based styles: i) REST decouples the functionality and the constraints

of the component from the details of its implementation. ii) It is based on applying a

uniform interface between different components to simplify the system architecture and

improve the visibility of interactions between its components.

Moreover, REST architectural style consists of a set of constraints that restricts the

behavior of its architectural components. Among the main constraints, there are the

uniform interface constraints, which are based on four main principles [31]:

1. Resource identification. One of the key features of REST is its abstraction of

any information, that can be named, to a resource. Such abstraction leads to: i)

encompass a set of information regardless of the details of their implementation

and; ii) facilitate the changes of any concept without the need to change all the

concepts that are linked to.

REST identifies each resource by a Uniform Resource Identifier (URI) that best

suits the nature of the identified concept. The quality of an identifier is evaluated

by its validity over time. The less the quality is, the more the links will be possibly

broken.

2. Manipulation of resources through representations. Resources are decoupled from

their representation, which leads to access to their content in a variety of for-

mats (e.g., HTML, XML, plain text, PDF, JPEG, etc.). Resource meta-data are

available and used, for example, to control caching, detect transmission errors,

negotiate the appropriate representation format, and perform authentication or

access control.

3. Self-descriptive Messages. For each user request, REST constraints the server

messages to be self-contained (called also state-less), i.e., each message contains

all information required to answer the task. HTTP is considered one of the main

protocols widely used to interact with messages through its methods: GET, HEAD,

OPTIONS, PUT, POST, and DELETE. The first three are used for read-only

messages, while the last three are used for updating messages.

4. Hypermedia as the engine of application state. Sharing representations by sending

self-descriptive messages to identified resources changes the state of the application.

For example, successfully POSTing or requesting (via GET) a given concept are

Chapter2. State of the art 20

accomplished via hypermedia links such as anchor tags that have an attribute

(”href”) or form tag that contains a resource URI. In such a way, a RESTful

application enables the server to inform the client of the possible paths to change

the state of the application via hypermedia.

In [33], authors used architectural principles and decisions as a comparison method to

illustrate the conceptual and technological differences between RESTful Web services

and WSDL/SOAP based Web services. Authors concluded that: On the principle level,

both two approaches have similar quantitative characteristics. On the conceptual level,

less architectural decisions must be made when deciding for Web services, but more

alternatives are available. On the technology level, the same number of decisions must be

made, but less alternatives have to be considered when building RESTful Web services.

More details are exposed in [33].

2.1.2.3 WS* specifications

The Web services community has done significant work to address the interoperability

issue, and since the introduction of the first Web services, various organizations have

introduced other Web services–related specifications. Figure 2.3 illustrates a population

of the overall SOA stack with basic standards and extended Web services specifications

that IBM, Microsoft, and other significant IT companies have developed.

Figure 2.3: Web services technologies

WS-Addressing provides an interoperable, transport-independent way of identifying mes-

sage senders and receivers that are associated with message exchange. WS-Addressing

decouples address information from the specific transport used by providing a mechanism

Chapter2. State of the art 21

to place the target, source, and other important address information directly within the

Web service message. This specification defines XML elements to identify Web services

endpoints and to secure end-to-end endpoint identification in messages.

WS-Policy proposes a framework that extends the service description features that

WSDL provides. Having more refined service descriptions, qualified by specific WS-

policies, supports much more accurate discovery of services that are compatible with

the business application that is to be deployed. In a service registry (such as a UDDI

registry), queries of WS-Policy-decorated services enable the retrieval of services that

support appropriate policies in addition to the required business interface. Other Web

services specifications will be detailed in the rest of this chapter.

2.2 Web Service Composition

Web service composition involves combining and coordinating a set of services with

the purpose of achieving functionality that cannot be realized through existing services.

This process can be performed either manually or automatically (or semi automatically

in some cases), while it can occur when designing a composite service, hence producing a

static composition schema or at run-time, when that particular service is being executed,

leading to dynamic composition schemas. With static composition the concrete services

are determined and integrated into the specification at design-time, and therefore every

change of an already integrated services has to be taken into account in the specification.

The dynamic composition of services requires the location of services based on their

capabilities and the recognition of those services that can be matched together to create

a composition. With dynamic composition, at design-time there is only a specification

of the type of a given service. The concrete service is then integrated at run-time.

Thereby it is possible that the concrete service has to be discovered first or that it

is already known at run-time. To enable automated Web service composition, several

requirements need to be addressed. These requirements include automation, dynamicity,

need for semantics, support of non functional properties (such as time, security, QoS,

privacy...), correctness, scalability, and adaptation [10].

Complex dependencies can be cerated between Web services offered by different organiza-

tions using compositional models such as choreography, orchestration, and coordination.

These models are used by most of the Web services composition approaches.We note

that these models are not used exclusively: one approach can implement more than one

model at the same time.

Chapter2. State of the art 22

2.2.1 Composition Models

2.2.1.1 Service Orchestration

The orchestration model consists in invoking and combining the services candidates via

a central coordinator, called orchestrator (figure 2.4). In general, this model is static,

so that, it is not able to adapt requirements and environment changes during run-time.

The orchestration describes the dependencies between services operations; even that

are not appearing in the service’s behavioral interface for security concerns. A lot of

orchestration researches, such as [35] and [36], differentiate between orchestration and

composition synthesis. Indeed, composition synthesis specifies the coordination process

that unrolls between services to meet the user requirements and generates a plan that is

considered as a workflow to realize the required behavior by combining the capabilities

of two-to-many services. While the orchestration consists in executing and monitoring

the workflow generated by the composition synthesis. Orchestrations are also called

executable processes since they will be executed by an orchestration engine.

Figure 2.4: Service Orchestration

Various workflow languages have been proposed for service orchestration. Below we

briefly introduce the most known languages.

• WSBPEL. WSBPEL [37] is an XML-based language for specifying workflow-

based compositions and providing interoperability between different applications.

It is based on specifying the detailed activities in the composition process that

range from an abstract model to executable composition. It handles privacy by

replacing private information by opaque activities. Among its limitations are its

support of the static compositions and the total absence of the semantic repre-

sentation of the WS. In addition, BPEL supports only implicit data flow, which

requires mechanisms for binding service instances to the workflow activities. More-

over, BPEL compositions are mainly based on the interfaces of the composed ser-

vices, so that it considers services capabilities as invocation interfaces and not as

Chapter2. State of the art 23

functionalities. Besides, it supports only interaction with WSDL Web services, so

tha supporting other service types requires some language extensions.

• Web Service Flow Language (WSFL). WSFL [38] is a graph-based language

that explicitly presents the control flow, which includes alternative execution paths,

fault handling and compensation and event handling, as well as the data flow that

defines the exchanged data between atomic activities and between the workflow

and its candidates.

• JOpera Visual Composition Language (JVCL). JVCL [39] is used by JOpera

tool to provide a visual orchestration of processes. It defines the interactions

between different services candidates through two separate graphs to specify the

control flow and the data flow. It is independent of the type of the services to be

orchestrated.

• Declarative Service Orchestration Language (DSOL). DSOL [12] is a declar-

ative, implementation-independent language that focuses on modeling different

aspects of service orchestration using the notion of abstract actions and concrete

actions. It focuses on what should we reach (the required goal) instead of how can

we reach it. Moreover, it supports the dynamic feature of the service world by

compensation and fault handling.

2.2.1.2 Service Choreography

The choreography model consists in capturing the interactions and the dependencies be-

tween a set of services to achieve a common goal. Differently to the coordination, service

choreography describes the interactions between multiple services without the control

of a coordinator agent. Orchestration is considered a more detailed, execution-driven

mechanism, whereas choreography is more abstract and does not describe any internal

action that occurs within a participating service. It encompasses all the interactions be-

tween the candidate services that are relevant with respect to the choreography’s goal.

Below, we review principal existing languages for defining choreographies.

• Web Service Choreography Interface (WSCI). WSCI [40] is an interface

choreography modeling language that aims to provide a standard for specifying

the overall collaboration between Web services providers and services users. It is

an implementation-specific language based on WSDL services description and sup-

ports bi-lateral interactions, contexts, correlations, exception handling and trans-

actions.

Chapter2. State of the art 24

Figure 2.5: Service Choreography

• Web Services Choreography Description Language (WS-CDL). WS-CDL

[41] is an XML-based specification targeted for ensuring an interoperable, long-

running and peer-to-peer interactions between services candidates involved in the

abstract business process. It defines the process collaborations by bi-lateral inter-

actions building blocks. Using a set of control flow constructs such as sequence,

choice and parallel, this language enables to compose interactions into actions. It

is an implementation-specific language based on WSDL or Java.

• BPEL4Chor. BPEL4Chor[42] is an implementation-specific choreography mod-

eling language that adds a new layer in the top of the abstract BPEL to seamlessly

support choreography and orchestration at the same time. BPEL4Chor consists

of three perspectives: participant topology, participant behavior description, and

participant grounding.

• Business Process Modeling Notation (BPMN). BPMN [43] is an implemen-

tation independent graphical modeling language used to describe both inter and

intra-organizational business processes. Moreover, it supports modeling complex

control flow scenarios as well as private and abstract processes. Such a language

still suffers from some shortfalls since it is not executable and lacks of formal

execution semantics.

Although orchestration and choreography are two different models that can be used

separately to generate a service composition, they can also be combined to provide a

complete representation. Orchestration can be utilized to describe services candidates

at lower abstraction level while choreography can provide a higher level description

of interactions between these orchestrations to fulfill users goal. In this context, [44]

proposed a framework that combines interface based and functionality based rules.

Chapter2. State of the art 25

2.2.1.3 Coordination

Service coordination is based on temporarily combining a set of service instances through

a coordination protocol. This protocol describes the possible interactions between ser-

vices candidates as well as the outcome of these interactions, whether they were suc-

cessful or not. All the communications unrolling during the coordination process are

controlled by a third party, called coordinator. Below, we introduce some coordination

specifications.

• WS-AtomicTransaction (WS-AT). WS-AT [45] is a specification for atomic

Two-Phase Commit (2PC) transactions coordination used as an extension to the

WS-Coordination framework. Such specification is used by applications that need

consistent agreement on the distributed-activities outcome with all-or-nothing

property.

• WS-BusinessActivity (WS-BA). WS-BA [46] is a specification for long-running

distributed business transactions. In general, it defines two specific agreement co-

ordination protocols for the business activity coordination type, which are Business-

Agreement-With-Participant-Completion and Business-Agreement-With-Coordinator-

Completion. Its Atomic Outcome coordination type requires that all candidates

must either confirm or ignore their work.

• WS-Coordination (WS-C). WS-C [47] is a specification for defining the context

of a short and long running coordination used to create, share and register activities

information carried across multiple services.

2.2.1.4 Semantic Web services

Web Services technology based on WSDL, SOAP and UDDI, define common standards

that ensure interoperability between heterogeneous platforms. However, although low

level interoperability is essential, SOA challenges go beyond data formats and communi-

cation protocols interoperability. The purely syntactic focus of WS technologies makes

service description non interpretable by the machine which hampers the automation of

operations, inherent to SOA, such as service discovery, composition and invocation. Se-

mantic Web services initiatives have emerged with the objective of complementing the

interoperability ensured by Web services to deal with data and behavioral heterogeneity

along with automation support for capability-based service discovery, and dynamic ser-

vice composition and invocation. The basic and common principle of these initiatives is

extending syntactic service descriptions with a semantic layer the machine can interpret

and reason over it. Ontologies play a central role for defining this semantic extension.

Chapter2. State of the art 26

Ontologies define a common vocabulary and formal semantics by providing concepts,

and relationships between them. Using a common vocabulary for describing services

capability and behaviors ensures interoperability at data level. Formal semantics enable

the application of powerful and well proven reasoning based techniques in order to enable

capability-based service discovery and automatic service composition.

[48] presented and compared several SWS initiatives. Below, we just resume some of

these initiatives.

• OWL-S. OWL-S [49] is an upper ontology for service description based on Web

Ontology Language (OWL) [50]. As depicted in figure 2.6, an OWL-S service de-

scription consists in three interrelated parts: the service profile, the process model

and the grounding. The service profile is used to describe what the service does;

the process model is used to describe how the service is used; and the grounding is

used to describe how to interact with the service. The service profile and process

model are abstract descriptions of a service, whereas the grounding specifies how

to interact with it by providing the concrete details related to message formats,

and communication protocols.

Figure 2.6: Upper Service Ontology for OWL-S

• Web Service Modeling Ontology (WSMO). WSMO [51, 52] is an ontological

conceptual model for describing various aspects related to SWS. WSMO refines

and extends the Web Service Modeling Framework (WSMF), by developing a set of

formal ontology languages. WSMF is based on two complementary principles that

WSMO inherits: strong decoupling between the various resources and a strong

mediation to ensure the interoperation between these loosely coupled components.

While WSMO provides the conceptual model for describing core elements of SWS,

WSML provides a formal language for writing, storing and communicating such

descriptions. Following the main concepts identified in the WSMF, WSMO iden-

tifies four top level elements as the main concepts for describing several aspects of

SWS, namely ontologies, Web services, goals and mediators [53].

Chapter2. State of the art 27

• Internet Reasoning Service (IRS-III). IRS-III [54] is a framework for creat-

ing and executing SWS. It acts as a semantic broker between a client application

and deployed Web services by supporting capability-based invocation. A client

sends a request encapsulating the desired goal and, by exploiting the semantic

description of Web services, IRS-III framework: (a) discovers potentially relevant

Web services; (b) selects the set of Web services which best fit the incoming re-

quest; (c) mediates any mismatches at the conceptual level; and (d) invokes the

selected Web services whilst adhering to any invocation constraints. IRS-III ser-

vice ontology defines the conceptual model of IRS-III framework. It extends the

core epistemological framework of its previous IRS-II framework by incorporating

WSMO conceptual model. Different from WSMO, IRS-III service ontology uses

its own ontology language, OCML [55]. While there are some differences between

IRS-III and WSMO conceptual models, IRS-III service ontology defines the same

concepts for describing SWS namely goals, Web service capability and interface

(choreography and orchestration), and mediators.

• METEOR-S. METEOR-S project [56, 57] addresses the usage of semantics to

support the complete lifecycle of Semantic Web processes using four kinds of se-

mantics - data, functional, non-functional and execution semantics. The data

semantics describe the data (inputs/outputs) of the Web services. The functional

semantics describe the functionality of a Web services (what it does). The non-

functional semantics describe the non-functional aspects like Quality of Service

and business rules. The execution semantics model the behavior of Web services

and processes. Unlike above initiatives, METEOR-S does not define a fully fledged

conceptual model for SWS description. It rather follows a light-weight approach

by extending WSDL files with semantic annotation. The semantic annotation is

achieved by mapping WSDL elements to ontological concepts. WSDL-S citewsdls,

METEOR-S specification for WSDL annotation, was one of the main works that

influenced SAWSDL [58] the W3C standard for WSDL and XML schema seman-

tic annotation. SAWSDL consists in adding semantics to the WSDL files using

semantic annotations associated to ontological concepts. Such annotations intro-

duce new extensions, such as model Reference and Schema Mapping attributes,

that may be applied to service interface as well as service operations [59].

The first three initiatives separate explicitly between the semantic and syntactic de-

scriptions of a Web service and link them using the concept of grounding that maps

abstract concepts and data types of the semantic description to concrete data formats

and communication protocols at the syntactic level. METOER-S, however, semantically

annotate WSDL files by linking their elements to ontology concepts and relations.

Chapter2. State of the art 28

2.2.2 Non-functional requirements

Modeling, managing and performing service related tasks such as discovery, composi-

tion, negotiation and agreement based on non functional properties become fundamental

challenges in SOA especially in real business settings.

How Web services are described is crucial for the successful realization of service related

tasks like discovery, selection, and composition. Three different layers can be consid-

ered when talking about services : (1) behavioral, semantic (2), and (3) non-functional.

The behavioral description is about how the functionality of the service can be achieved

in terms of interactions with the service as well as in terms of functionality required

from the other Web services. The semantic descriptions make easy for programmers to

combine data from different resources and services without losing the meaning. Finally,

non-functional descriptions capture constraints over the behavioral one. For example,

in case of a train booking service, invoking its functionality (booking a train ticket)

might be constrained by using a secure connection (security as non-functional prop-

erty) or by actually performing the invocation of the services in a certain point in time

(temporal availability as non-functional property). Among the three aspects of a ser-

vice description, the behavioral and semantic aspects are the most investigated aspects.

Although the third aspect, non-functional properties, did not capture a very broad atten-

tion from the Web service research community, as behavioral and semantic descriptions

did, one has to recognize the big importance of describing them. This is due to their

high relevance for all service related tasks. Non-functional properties might play an

important role in all service related tasks, especially in discovery, selection and substi-

tution of services. It is simple to imagine a scenario in which services which can fulfill

a user request and which provide basically the same functionality are selected based

on some non-functional properties like price or performance. The lack of real support

(languages, methodologies, tools) for non-functional properties might be due to various

factors. These factors include:

• Non-functional properties are usually too abstract and most of the time they are

stated informally.

• There is no clear delimitation between the functional and non-functional aspects

of a service.

• Non-functional properties are complex to model and difficult to formalize.

Different formalisms have been proposed to compose services satisfying QoS parameters.

These efforts can be classified into three main categories as depicted below.

Chapter2. State of the art 29

• Local optimization. In this type of optimization, the composition process consists in

selecting the best instance for each functionality existing in the composition plan.

For example, authors in [60] propose an heuristic composition approach named

Local Optimization and Enumeration Method (LOEM). This method is mainly

based on filtering the candidate services of each sub-goal through a local selection

and then enumerate the composed solutions to reach a close-to-optimal ones. [61]

proposes an extension to the meta-framework for service composition presented in

[62] by developing formal operations that satisfy non-functional user requirements.

Calculating the preferences over non-functional attributes is based on denoting the

non-functional valuation of each service that satisfied the functional requirements.

Then, the most dominant service will be taken. However, the main limitation of

the local optimization-based approaches consists in identifying the optimal service

at design-time phase, which can be inappropriate due to the changes that can be

appeared at the run-time level of the composition process.

• Global optimization. This category focuses on selecting the composed service that

best meets the user requirements among the other composite services. For in-

stance, researchers in [63] aim to provide an optimized selection of the most closed

composition to the user preferences among the feasible compositions through a

fuzzy system. After generating a set of execution plans, each feasible plan’s qual-

ity will be calculated and the optimized composed services are specified in a quality

vectors, from which the optimal plan will be extracted. In [64], researchers tried to

support dynamic Web service composition by a multi-objective selection method

based on multi-objective ant colony optimization (MOACO). It consists of convert-

ing the QOS global optimization into a multi-objective optimization problem with

user constraints. Furthermore, based on the MOACO, a set of optimal solutions,

known as Pareto set, is calculated through a multi-objective genetic algorithm

(MOGA).

• Hybrid approach for optimal service composition. Recently, much efforts deviated

toward combining global and local selection techniques to benefit from their pow-

erful concepts. For example, researchers in [65] proposed a mixed approach based

on i) finding the most optimal decomposition of the QoS properties into local

constraints through a mixed integer programming (MIP), and ii) identifying the

optimal composite-services that meet the QoS properties through a distributed

local selection.

An efficient approach to handle non-functional properties associated with services may

consist in considering them as constraints exhibited over the functionality of the service.

Indeed, the ability to describe non-functional properties of services in a rich way has

Chapter2. State of the art 30

applicability in the tasks of service discovery, selection, monitoring and substitution.

An increased level of service property information would also facilitate more through

decision-making by a service requestor. Non-functional properties must be considered

as early as possible in the development cycle in order to avoid costly failures.

2.3 Web services composition approaches

The past decade has witnessed significant innovative approaches to enable automatic

Web services compositions. A lot of platforms, languages, tools and techniques, have

been developed [9], [10]. Due to the diversity of the existing efforts and in order to make

the presentation of the approaches easier, we propose the following classification to the

approaches to be examined:

• Procedural Composition Approaches

• Declarative Composition Approaches

Then, for each class, we review the proposed approaches according to what composition

stage they belong: modeling, verification, and monitoring.

2.3.1 Procedural composition approaches

2.3.1.1 Modeling approaches

Various initiatives have been raised to design and model Web service compositions.

Graph-based and model-based techniques can be considered as important efforts among

these initiatives. Graph-based planning techniques consist of multi-level structures. The

first level of the graph includes the inputs and the initial state of the composition process.

Starting from the first level, a planning algorithm is applied to generate the applicable

actions within the precedent level and a new level that consists of the derived effects

of the actions will be created. This process will be iterated until reaching the required

outputs in the last level and the solution plan, if exists, is extracted. Various approaches

were developed in this context. For instance, the graph-based composition framework,

proposed in [66], consists of three main steps. The first step analyzes the given inputs,

while the second step provides the desired outputs through a third step that is based on

a graph planning algorithm to select and compose applicable services. The algorithm

used applies a backward search method for each given input of the services existing in

the final actions layer. A similar graph-based contribution was presented in [67], through

Chapter2. State of the art 31

which the existing services are represented as nodes and their possible connections are

represented as edges. To solve the composition problem, the proposed approach is based

on four main stages: preliminary stage, search stage, simulated execution stage, and

selection and execution stage, where only the first two are related to the composition

task. The preliminary stage is concerned with the inclusion of special nodes into the

(initially preprocessed) graph for representing the request parameters. The second stage

aims at searching for all sub-graphs satisfying the user request. The algorithm performs

a breadth-first search in an AND/OR tree, where an AND node is a service cell for

which all its inputs have been provided, whereas an OR node is one input which has to

be provided by at most one output of another service cell. The interesting feature that

differentiates this work from the other composition works is its independence from the

inputs given in advance. Starting from the required outputs, it checks and identifies the

missing inputs.

Other contributions use model-based composition techniques that range from Petri-Net

to workflow-based techniques. For example, a method based on Petri Net cover-ability

was proposed in [68] to provide an automatic Web service composition. Each input

and output of an atomic service are mapped into places of a Petri net, whereas each

service is considered as a transition of a Petri net. The existing of a token in a given

place means that the corresponding input was given by the user. According to the

given inputs and the desired outputs, the initial and target markings of the Petri net

can be obtained and the coverability graph can be generated and used to extract all

shortest paths covering the final marking and then identifying a sequence of service

executions from the transitions. Brogi and Corfini [69] presented Service Aggregation

Matchmaking (SAM), a system that is able to discover service compositions, or create

them when no suitable composition for a given request is found. The model used to

represent Web services is Consume-Produce-Read (CPR) Nets, a simple variant of the

standard Condition/Event Petri Nets defined by the authors to properly model the

control flow and the data flow of a service. The authors provide a translator from

OWL-S descriptions to CPR Nets. The SAM framework can handle both functional

and behavioral requests (i.e. requests declaring the desired functional properties of the

service or its desired behavior). The functional analysis returns a set of participating

services based on a functional request, while the behavioral analysis can generate a

composite service based on a set of participating services and a behavioral request. [70]

proposed a framework that automatically generates a Web service composition schema

from a high-level goal. Taking the target (objective) as input, an abstract workflow

generator creates a BPEL-based workflow that meets the objective, either by exploiting

already generated workflows or parts of them or by coordinating a set of services to

meet the goal. The generated workflow is then concretized either by finding existing

Chapter2. State of the art 32

services for each candidate activity of the resulting workflow or by recursively calling

the workflow generator in the case that no service can be found for a candidate activity.

In a more recent work, [71] propose an extension to the Partial Order Planning technique

to support actions with multiple conditional effects. The preconditions and effects are

expressed by a conjunction of predicates, whereas the conditional effects are represented

as pairs of conditions and effects. SC-APOP planner is used to generate Partial order

plans, which will be then translated to a directed acyclic graph (DAG). Each vertex of

the graph corresponds to an action and each edge corresponds to an ordering constraint.

After translation, a Transitive Reduction [72] strategy is performed on the DAG in

order to reduce the complexity of the workflow diagram to be generated. In the post-

processing phase, the final workflow diagram is derived from the reduced DAG by adding

new vertices to represent the recognized workflow patterns.

Although their efforts to provide an automatic service composition, none of these ap-

proaches considers the non-functional properties in the modeling of the composition

process. To address this issue, different approaches have been proposed, such as PAWS

[18], which is a framework focusing on the adaptation and the flexibility of the ser-

vice compositions modeled as business processes. This framework consists in creating a

BPEL process to be annotated with global and local QoS-constraints. In particular, it

includes an advanced service retrieval module that is used to discover service implemen-

tation suitable for each task in the business process. The selected service instance has

to suit the required interface and do not violate any constraint by meeting SLA negotia-

tion. If no existing service matches the required task interface, a mediator is utilized to

reconcile the interface inconsistencies. For each activity, more than one candidate ser-

vice is selected. When the process is executed by a BPEL engine, one service is invoked

for each task. Fujii and Suda [73, 74] propose an architecture for context-aware service

composition called CoSMoS. The framework is based on a semantic abstract model for

representing service components as well as service users. After receiving a user request,

the framework converts the query to a CoSMoS model instance through pre-existing nat-

ural language analysis mechanisms. The converted query will be used by the workflow

synthesis module to create an executable workflow by retrieving and interconnecting

components according to that of the request and the functional descriptions of the exist-

ing components. This module is limited to sequential and parallel composition patterns.

Then, a semantic matching module checks the functionality equivalence between the

required task and the offered service. If more than one functionally-equivalent service

are available, a context-aware discovery will be performed to select the most suitable

component. The resulted workflow will be then executed and monitored to support

the dynamicity of the context and the user requirements. Berardi et al. [75] presented

Chapter2. State of the art 33

e-Service Composition (ESC), a prototype tool that implements a model-based tech-

nique for automated service composition using Finite State Machines (FSMs). They

argue that the behavior of a service can be modeled using two schemata, an external

schema that specifies its exported (externally-visible) behavior and an internal schema

that contains information on the service instance of each action in the composition pro-

cess. Both schemata are expressed using FSM models. When attempting to synthesize

a composition, the external FSM models of the available services and the target service

are transformed to model logic formulas in Deterministic Propositional Dynamic Logic

(DPDL). If the resulting set of formulas is satisfiable, it means that there exists an FSM

for the target service. The automatically synthesized FSM can then be converted to a

BPEL process and executed in a BPEL engine. In a more recent work [76], Berardi et

al. replace FSMs with Transition Systems and use the notion of simulation to virtually

compute all possible compositions at once.

One commun pattern of the above modeling approaches is that they are mostly procedu-

ral and they over-constrain the process making it rigid and assuming the design choices

that may not be present in the requirements but only added to specify the process flow.

2.3.1.2 Verification approaches

Verification of service composition proceses, both a-priori and at run-time, is an in-

valuable tool to guarantee dependability of the client on the available services. Various

verification methods have been introduced in the literature. [15] proposed ASTRO

methodology to check the correctness of the services operations using a verification

mechanism that may be used in both on-line and off-line mode [77, 78]. [79] introduces

a formal verification approach based on Colored Petri Net (CPN) [80], which detects

the inconsistencies at design time by performing a structural and behavioral analysis

independently from the concrete-flow language. The verification is ensured by creating

a CPN model for the service composition using boundedness and liveness properties of

CPN. The resulted occurrence graph, named O-Graph, consists of a set of nodes that

represent the reachable marking, and a set of arcs that represent occurring binding el-

ements. Event-B mechanism is recently used by several verification approaches, such

as [81], which is based on transforming BPEL process into Event-B [82] models to ver-

ify the relevant properties of the composition process. Similar approach is proposed

in [83] to check the transactional consistency of service composition at design-time us-

ing refinement and proof mechanisms. Work presented in [84] propose to verify BPEL

processes using BPEL2SEM component [85], which consists of an automatic verifier to

perform a semantic analysis of the flow constructs used in the definition of BPEL4WS

Chapter2. State of the art 34

processes. Taking the BPEL process as input, BPEL2SEM translates it into Prolog-

based language and starts by checking i) if there exists at least one activity in the BPEL

definition able to start the process; ii) if the elements links are described in the flow

activity; and iii) if every link declared in the flow activity has exactly one source activity

and one target activity. These constraints are checked using inferencing prolog rules

of the Semantics Rules knowledge base and this analyze finishes by providing informa-

tion about process execution (traces) in both cases of correctness and incorrectness of

the process definition. SU Huan et al.[86] propose to verify the service composition

by converting the BPEL4WS-based composed services into Interface automata using

Promela language [87]. The generated automata will be then verified by SPIN tool [88]

to check its correctness. This approach is applicable for deterministic systems rather

than non-deterministic systems. In the same scope, other type of automata, called

Timed Automata, was proposed in [89] for verification concerns. It is based on con-

verting WSCDL-based composed services into Timed Automata and verifying it using

UPPAAL tool [90, 91]. Such method is useful in non-deterministic systems, however,

it is applicable just in the design time stage, without taking into consideration the

non-functional properties such as security and temporal requirements. To address these

issues, a recent work proposed in [92] consists of a combination of Muller Automata

(MA) and Push Down Automata (PDA), named Enhanced Stacked Automata Model

(ESAM). The proposed method is based on converting the BPEL4WS-based compos-

ite services into ESAM using Promela language. Taking the generated model and a

set of required verification properties (such as dead transition and deadlock) as inputs,

SPIN tool is used to verify whether the system design meets the requirement or not and

prove the correctness of process interactions in both deterministic and non-deterministic

systems.

One common pattern of the above verification approaches is that they require to map

the process to some formal logic and then verify the process. However, this lack of

integration results in a complex model and it may not always be possible to have a

complete transformation from one modeling approach to other. Further, with the addi-

tion of non-functional requirements the transformation becomes even more complex and

challenging.

2.3.1.3 Monitoring approaches

To detect anomalous situations and maintain high level quality of the generated service

during execution phase, many efforts tried to provide an efficient runtime monitoring

of service composition process. These efforts addressed mainly the difficulty of locating

the appropriate monitoring instances that should be quickly updated or executed. To

Chapter2. State of the art 35

overcome this problem, [13] proposes an on-line Web service monitoring system that

dynamically analyzes multiple data-centric properties of composition processes. This

system is based on a Parametric Behavior Constraint Language (Par-BCL) and aim to

optimize the monitoring process by statically generating the monitored properties to a

parameter state machine behavior. Thus, the violation of a specified property can be

verified. [14] proposes an adaptive service composition (ASC) framework to adapt user

requirements changes and environment dynamicity. The proposed framework tries to

link between the required services and the existing ones depending on the type of change.

Each ASC process is based on goal-driven, environment-triggered or service-association

adaptation strategies. Astro [15] includes an execution and monitoring component based

on the ActiveBPEL engine. Robinson [16] proposes a framework and a tool to automat-

ically derive Web service monitors from high-level requirements descriptions. Bostrom

et al. [17] present a rule-based engine for monitoring service invocations and evaluating

if the service fulfills the obligations in its SLA. PAWS framework [18] supports self-

healing that allows faulty services to be substituted by other candidates and enables

recovery actions to cancel the results of the faulty services. [19, 20] aim at monitoring

the behavior compliance of Web service compositions represented as WSBPEL processes

with a set of requirements. Other approaches concentrate on capturing and monitoring

negotiations, which incorporate security policies and policy models to facilitate service

life-cycle management [21]. [22] focuses on monitoring and capturing private data use

based on Web services agreements.

Other approaches believe that monitoring QoS attributes of Web services is one of the

main aspects to guarantee the quality of the generated services and enforce Service Level

Agreements (SLAs) that are associated with business partners. For that, they focus on

monitoring QoS properties during composition process. For example, [93] introduces a

Web Service Level Agreement (WSLA) framework to provide the required specification

and monitoring of QoS-aware Web services by applying an electronic contract. Monitor-

ing of the compliance with an associated contract is implemented using the IBM Web

Services Toolkit. Researchers in [94] propose a new mechanism for QoS attributes (such

as response time and availability) monitoring by combining the client-and server-side

with a Web service runtime, called VRESCo [95], to detect the possible SLA violations

for Web services and enable subscribers to react appropriately to such violations. How-

ever, the proposed monitoring method does not go beyond the procedural methods that

need client intervention to react to SLA violations. Other efforts adapt a cross-layer

monitoring methodology for services-based systems. Among these efforts, there is the

S-Cube European Network of Excellence on Software Services and Systems [96], which

extend the well-known Monitor-Analyze-Plan-Execute loop by proposing a multi-layered

version. The loop was then applied in a preliminary prototype that integrates various

Chapter2. State of the art 36

single-layer approaches introduced in [97]. However, this integration is based mainly on

BPEL processes, and suffers from the lack of well-devised abstractions that could guide

the integration in a more general way. In the same scope, Monere system, introduced

in [98], is a multi-layer based approach that manipulates the system across its different

layers and exploits the BPEL-based workflows that compose the services to generate

structural cross-domain dependency graphs. The system components will be then mon-

itored and their parameters will be correlated to introduce the system manager with

an easy to use multi-layer diagnosis. However, this approach focused mainly on gen-

erating dependency graphs from BPEL specifications, without detailing the multi-layer

monitoring task.

Two common patterns of the above approaches can be observed. First, the run-time

monitoring of the composition process which is tightly coupled with the composition

process was not well integrated to these approaches, and therefore do not provide the

important execution time violations feedback to the composition process. Second, they

are highly procedural, which make the possibility to learn from run-time violations and

to change the process instance/model at execution time very difficult. Once again, we be-

lieve that these proposals are more oriented to low-level analysis (services/components),

while we are more interested by business activity monitoring.

2.3.2 Declarative composition approaches

2.3.2.1 Modeling approaches

In this context, some approaches were proposed. [99] defines bucket rewriting algorithms

to reformulate the user-query into a set of functionalities that directly refer to the exist-

ing services. Possible executable compositions are ranked according to user preferences

related mainly to the service level. The highest composition will be selected and re-

turned to the user. [100] proposes an approach based on modeling the available services

into RDF views over a mediated ontology. The generated views are then integrated as

annotations into WSDL files. User queries are transformed into a mediated ontologies

using SPARQL query languages. According to the reformulated query, the Web Service

Management System (WSMS) selects the candidate services through the RDF views

defined in the WSDL files. Finally, the selected services are executed and composed

through an RDF rewriting algorithm. This approach addresses only data privacy issues

when invoking the candidate services. [101] proposes an approach that complements

the above proposal by taking into consideration non-functional requirements using the

fuzzy sets theory [102]. A fuzzification of Pareto dominance is used to compute the

rank of the resulted composed services. [103] proposes a composition approach based on

Chapter2. State of the art 37

HTN planner that decomposes the desired task into sub-tasks and apply recursively the

decomposition process until satisfying the resulting sub-tasks. In case of a state change,

the whole composite process will fail, and a new re-planning will be activated. In [104],

the authors combine Constraint Satisfaction with HTN to convert user requests to valid

inputs for the HTN planner (such as SHOP2). The HTN planner generates a workflow

and a set of constraints that are then fed to a Constraint Satisfaction solver. This latter

attempts to find a solution that satisfies all constraints by invoking candidate services

with respect to a given task flow. The authors noted, however, that providing a solvable

Constraint Satisfaction set can be so difficult for some domains and may require an

expert intervention in order to create a broader set.

[105] and [106] propose to extend the HTN technique and provide an HTN-DL planner,

which consists in cascading description logic (DL) [107] representations and reasoning

over them. Various ways of the decomposition can be identified and in case of an opera-

tor matching, the planner will invoke the action and apply effects to the current state. In

case of a method matching, the decomposition process will be continued until reaching

an atomic action. An extension of the DLs, called Dynamic Description Logics (DDLs),

has been discussed in [108, 109]. For instance, G.Shen et al. proposed, in [110], a DDL-

based formalism for modeling and reasoning about Web services and their behaviors.

This formalism combines semantic and formal reasoning at a highly abstract level and

reduces the service realizability and executability by checking formulas satisfiability and

consistency. Another DDL-based composition approach is proposed in [111]. It consists

of two phases: the first phase generates a partial order diagram, and the second phase

runs the composition process using a fast algorithm according to the generated diagram.

In [112], the authors proposed an extension of the Arithmetic and Logic Class (ALC),

called Service Dynamic Description Logic (SDDL), to support the discovery and com-

position of Web services. [113] proposes a new DDL-based composition model, which

supports context-based services using a bottom-up filtering approach. This contribution

increases the DDL-reasoning efficiency by providing context-aware support and reduces

the reasoning space. It is based on an abstract reasoning without detailing the orches-

tration process and the action-based reasoning.

Zeng et al. [114] propose the formulation of service composition as a goal-directed

planning problem that takes three inputs: service composition rules (which are manu-

ally defined), goal specification and a set of business assumptions (organizational rules

and structures). To that extend, they divide an ontology to represent these concepts

and use a three-step composition schema generation process. In the first step, called

Backward-Chaining, the composition rules are exploited trying to provide a chain start-

ing from the goal and moving backwards, until no more rules exist, or the initial state

is reached. The second step, Forward-Chaining, attempts to complete the first phase

Chapter2. State of the art 38

composition schema by adding services that are required to fulfill the tasks following an

opposite direction. The final phase, Data-Flow-Inference, adds data flow to the com-

position schema, since the previous steps only contribute to the control flow aspects of

the composition. [115] creates service compositions using planning as theorem proving

in the event calculus [116]. The planning problem in the event calculus is formulated by

the domain knowledge, the event calculus axioms and a goal state. The theorem-prover

generates the plan, which is a sequence of events and temporal ordering predicates.

A two-staged composition process was proposed in [117]. The first phase is a logical

phase that handles the functional requirements and specifies the business process by

generating control flows through a logical system. The second phase is a concrete phase

that takes the control flow as a composition template and generates executable data flows

by selecting the optimal service instances according to the non-functional requirements.

The provided data flows will be then parsed into a BPEL flow that can be deployed and

executed. Researchers in [118] proposed a constraint-based composition approach that

consists of two stages, each of which includes a set of constraints targeted to handle the

composition. In the abstract stage, the user specifies the abstract composition workflow

and identifies local, choreography and non-functional constraints. The second stage in-

stantiates services candidates according to the first-stage workflow and a set of execution

constraints. The proposed framework tried to refine the Web service composition process

using a two-stage technique and a set of constraints for modeling and monitoring the

composition. Otherwise, this framework is semi-automatic and needs user intervention

especially in the first stage. However, there is no implementation details nor evaluation

study to highlight the effectiveness of the proposed framework. Other two-stage based

approaches were proposed in [119] and [120]. In the first phase, the framework classifies

candidate services based on their QoS according to the user’s preferences through an

associative classification algorithm. The second phase uses this classification to rank the

filtered QoS-optimal services focusing on their semantic functional matching.

2.3.2.2 Verification approaches

To validate the service composition, two components are proposed in [99]. The first com-

ponent is a re-writing checker used to eliminate the non-useful rewritings, which have no

potential solutions. The second component is a configurator to detect any possible incon-

sistency by enacting two types of constraints: i) business-level constraints including order

and dependency relationships in data and control flows, and ii) service-level constraints

relevant to a specific service, such as its preconditions and postconditions. Sohrabi and

McIlraith [121] introduce a modified HTN planning algorithm, named HTNWSC, which

takes into account both preferences and regulations in the plan generation procedure.

Chapter2. State of the art 39

These regulations include verification-geared constraints, such as safety, that should be

followed by any generated plan. [122] represents an automatic verification approach for

OWL-S service composition using the Spin model-checker [88]. Such verification neces-

sitates mapping OWL-S service description to SPIN’s Promela language [87]. To verify

the satisfiability of a specification over a given claims, SPIN requires Promela-based de-

sign specification and Linear Temporal Language LTL-based correctness claims, which

consist in formulae to represent the execution paths of a composition process. In case

of non-satisfiability, the statements, under which the error occurs, are identified. [123]

addresses the task of automatically verifying a service composition at design time by

checking if the system exhibits some particular behavior. The proposed methodology is

based on a bottom-up projecting style, where the application is built by putting together

the available components and identifying the possible fruitful interactions that can ex-

ist between them. These components consist of a given set of services specified by a

declarative language, called ConDec [124], augmented by a set of roles and participants.

The specified services candidates are then mapped to SCIFF rules [125] to automatically

perform the verification tasks. [126] introduces a declarative approach to specify and

verify service choreographies by mapping a set of graphical constructs of DecSerFlow

framework [127] onto logic-based languages (Linear Temporal Language and onto Ab-

ductive Logic Programming) that enable to reason over the developed models. Zahoor

proposed in [128] and [129] to use a bounded model-checking method based on satisfi-

ability solving (SAT) to verify the Web services composition processes in a declarative

manner. The proposed approach is based on a modeling formalism that consists of a

combination of Event Calculus (EC) [130] and SAT encoding process [131]. EC is used

to specify both composition and verification models, while filtering criteria are used to

remove any anomalies and conflicts (such as deadlocks) that can be derived from SAT

solver.

2.3.2.3 Monitoring approaches

The run-time monitoring of Web service compositions has been widely acknowledged as

a significant and challenging problem. There have been several proposals that deal with

different aspects of the monitoring of Web services and distributed business processes.

[23] introduces a constraint-based declarative approach that uses the same constraints in

the modeling phase as in the monitoring phase of the composition process. The proposed

framework includes execution monitors, each of which contains a set of activation con-

straints (such as pattern detection) and its associated actions as well. An event listener

is used by the monitor to listen to the (sent or received) messages attached to the com-

position process. In case of run-time violations, such as failure of instance execution or

Chapter2. State of the art 40

delay of response-time, the composition workflow will be refined. In a more recent work,

the authors defined in [24] a self-healing system that consists of three phases for compo-

sition monitoring, which are i) detection phase that detects the constraints violations or

temporal ordering mismatch by keeping track of the exchanged messages between the

composition system and the candidate services during execution process; ii) side-effects

calculation phase that extracts the side-effects of the detected violation by returning the

violated part of the plan and re-invoke the reasoner; and iii) recovery phase that recovers

the composition from violation by finding alternatives using user recovery constraints.

[132] proposes a declarative approach for monitoring functional correctness and quality

of service (QoS) metrics during the composition run-time. The Monitor is mainly based

on integrating and extending the Web Service Offerings Infrastructure (WSOI) [133] for

monitoring functional and QoS properties of the services. The monitor uses the work-

flow itself to provide an execution trace, by adding additional information, such as the

values of the service attributes at run-time and whether functional/non-functional con-

straints are verified or not, to each executed service. However, adaptation mechanisms

to overcome the detected anomalies are still underway. In the same context, [134] pro-

poses a policy-based monitoring framework, named Manageable and Adaptive Service

Compositions (MASC), to monitor functional and QoS policies of a composite service.

Service monitoring policies are specified using WS-Policy4MASC language and can be

associated to the SOAP messaging layer as well as to the orchestration engine layer. A

cross-layer monitoring of complex services is proposed in [135]. This approach uses a new

declarative language, called Multi-layer Collection and Constraint Language (mlCCL),

to ensure an on-line and off-line analyzes of the collected data in a multi-layered sys-

tem. The proposed monitoring technique was applied to SocialTools, which consists of

a set of services that are based on Service Component Architecture (SCA) components

and hosted on Amazon EC2 to collect up-to-date information about the Social networks

clients. [136] addresses the complexity of the SLA monitoring activity by introducing an

event-based monitoring framework designed for complex Service Based Systems (SBSs).

This framework is based on a hierarchical design and consists of a cross-layer monitoring

mechanism of different properties at different layers of SBSs such as the workflow execu-

tion environment of a service composition, services invocation, and services execution.

Moreover, this framework takes into consideration additional features such as events

coordination property that is based on applying a recursive monitoring method of all

the services candidates of the workflow.

Chapter2. State of the art 41

2.3.3 Synthesis

Table 2.1 resumes the main WSC approaches that are proposed to satisfy one-to-many

phases of the composition life-cycle as well as its requirements. (X) denotes that the

corresponding approach satisfies that particular phase/requirement. (∼) denotes that

the corresponding approach only partially satisfies that particular phase/requirement.

No symbol denotes that the corresponding approach does not satisfy that particular

phase/requirement.

From a technical point of view, the composition approaches described above can be

categorized into two classes. A first class aims to provide a fully automatic composition

from a large set of semantically-rich service descriptions, to be interpreted, selected,

combined, and executed by the composition engine without the intervention of the service

architect. A second class which is less ambitious leaves to service architects the goal of

defining an abstract model of the composition, which the engine interprets and makes

concrete by selecting and invoking the actual services to accomplish each task.

With relation to our objective to compose services in a declarative and integrated way,

none of the two approaches completely solve the addressed problem. Although the

former works in too specific and restricted domains, it can hardly be applied in more

general settings, since it requires all services to be semantically described with enough

details to allow the engine to choose and combine them in the right way to satisfy the

users’ goals. The latter is too restrictive and needs from the service architect to provide

an abstract yet detailed enough model of the composition, often using languages like

BPMN and BPEL, whose structure is the main source of the problems [12].

Also, from the above literature review study, it was gathered that:

• One common pattern of the studied approaches is that they tackle the composition

problem by focusing on the control flow of the composition process. The problem is

that flexibility and control on the composition process are conflicting requirements,

and therefore we should find a compromise between flexibility and control flow.

• The majority of these approaches are procedural (using imperative languages such

as BPEL and WS-CDL), which makes the composition process rigid and enable

to handle dynamically changes.

• Some important aspects for the composition such as data, temporal constraints,

security and other non functional requirements were not considered in the ap-

proaches examined.

Chapter2. State of the art 42

Approaches Modeling Verification Monitoring Recovery NFP

P
ro

ce
d

u
ra

l
C

om
p

os
it

io
n

[70] (X) (∼)
[18] (X) (∼) (X) (X)
[73] [74] (X) (∼) (X)
[75] [76] (X) (∼)
[66][67][68]
[71][67][137]

(X)

[138] (X) (X)
[69] (X) (∼)
[15] (X) (X)
[79] [81] [84]
[83] [86] [89]

(X) (X)

[92] (X)
[13] (X)
[14] (X) (X)
[16] [17] [96]
[97] [98]

(X)

[19] [20] [22] (X) (∼)
[93] [94] (X) (X)

D
ec

la
ra

ti
ve

C
om

p
os

it
io

n

[99] (X) (X) (X)
[100] (X) (∼)
[103] [104]
[139] [105]
[106]

(X)

[110] (X) (X)
[111] (X)
[112] (X)
[113] (X) (X)
[114] [115]
[140]

(X)

[117] (X) (X)
[101] [118]
[119] [120]

(X) (X)

[121] [122]
[123] [126]
[128] [129]

(X)

[141] (X) (X)
[23] [135]
[136]

(X)

[24] (X) (X)
[132] (∼) (X) (X)
[134] (X) (X)
[12] (X) (X)

Table 2.1: Comparative Study of Automated Web Service Composition Approaches

Chapter2. State of the art 43

• Non-functional properties did not capture a very broad attention from the Web

service research community despite their importance, and there is a lack of real

support (languages, methodologies, tools) for such properties

• The run-time monitoring task which is tightly coupled with the composition pro-

cess was not well integrated to the traditional composition approaches, and very

few proposals handles it by adding a new layer for the composition monitoring

and thus do not provide the important execution time violations feedback to the

composition process.

• Verification and validation of service instances or process models can hardly cope

with the complexity and dynamics of an end-to-end business compliance framework

both at design time and runtime.

• Existing formal verification methods are not integrated with the existing service

or process models, and hence a semi-automated verification is hard to achieve in

an end-to-end business compliance framework.

To provide an efficient solution that addresses the above limitations, composition ap-

proaches should respond to the following requirements:

1. Specifying composition requirements using declarative languages to help end users

for specifying the functional and nonfunctional requirements of a composite service.

2. Enabling to handle the continuous and unpredictable change of the composition

process.

3. Explicitly managing runtime faults and exceptions.

4. Offering tools that are able to specify requirements, to verify these requirements,

to monitor if the execution is compliant to the specification, and to analyze what

really happens during the execution of the composition.

5. Providing most commonly used controls and menu options and enabling all the

complex functionality through these. This is to help create a familiar environment

with most tasks organized in an intuitive fashion.

6. Enabling to incorporate the monitoring process within the composition framework,

rather than building it as an external component.

7. Supporting rapid re-design and re-deployment of services, through appropriate

reuse of parts of previously assembled services or incorporation of new components.

8. Providing support for bridging semantic gaps.

Chapter2. State of the art 44

9. Provide support to deal with the increasing number of Web services, which de-

mands for an accurate and scalable solution to select appropriate services.

10. Dealing with a set of disparate technologies while hiding all heterogeneity from the

user. This is important to unify the solutions developed by various communities

for different but related problems. The integration involves providing support for

different kinds of editors, viewers and registries.

In our work, we progress beyond the composition approaches described above by:

• providing more reusable composition strategies through abstract and well defined

languages while the majority of the approaches focus on specific technologies or

composition techniques.

• introducing expressive languages for verification and compliance concerns, tackling

the whole lifecycle (including runtime elements and governance), and integrating

formal model for behavior modeling.

• monitoring and management concepts will be provided to validate the compliance

concerns that can only be validated at runtime and to provide governance of the

composition.

2.4 Conclusion

In this chapter, we have first briefly discussed different concepts and background knowl-

edge about SOA, Web services, and their related technologies. We have presented SOA

principles, Web services reference architecture(WSDL, UDDI, SOAP), Web service ex-

tended architecture (WS*), and REST architectural style. Then, the focus was on on the

Web services composition process as an important feature to realize the objectives of our

work. The main goal was to understand the key considerations that underlay the specifi-

cation, the verification, the execution, and the monitoring of Web services compositions.

We have discussed the different existing compositions models (Orchestration, Choreog-

raphy, Coordination, and Semantic Web Services), and outlined the main requirements

of the composition process in terms of non functional concerns such as time, security,

QoS, privacy, etc. Following this step, a systematic study of existing composition ap-

proaches depicting their limitations in terms of being procedural, lack of integration and

lack of expressiveness is made. We have classified the existing composition approaches

into two main categories, which are procedural and declarative composition approaches;

and we compared them according to whether or not they address the composition global

Chapter2. State of the art 45

life-cycle (modeling, verification, and monitoring). Finally, we have presented lessons

learned from the composition literature review and discussed our work progress be-

yond existing efforts. Next chapter exposes our approach to compose Web services in a

declarative and integrated way.

Chapter 3

Capabilities driven Web Services

Description and Composition

Contents

3.1 Capabilities driven Web Services Description 47

3.1.1 Service description . 49

3.1.2 Non-Functional Properties meta-model 50

3.1.3 Workflow meta-model . 51

3.1.4 Illustrative example . 52

3.2 Integrated Framework for Web Services Composition . . . 56

3.2.1 Pre-Composition phase . 57

3.2.1.1 Goal Specification . 57

3.2.1.2 Service Specification 57

3.2.1.3 Constraints . 58

3.2.2 Abstract Composition . 59

3.2.2.1 Reasoner . 61

3.2.2.2 Filter . 61

3.2.2.3 Dependency Graph Generator (DGG) 61

3.2.3 Concrete Composition . 62

3.2.3.1 Instantiation . 62

3.2.3.2 Verification . 66

3.2.3.3 Execution . 67

3.2.4 Composition Monitoring . 68

3.3 Conclusion . 70

46

Chapter3. Capabilities driven Web Services Description and Composition 47

Providing a composition framework that supports the full round-trip process life-cycle

allows organizations to not only model and automate activities and processes, but also

to monitor critical aspects of the process, analyze change, and apply continuous process

improvements across the organization. The process modeling can be considered as the

most important stage of the composition process life cycle. It aims to provide a high-level

specification which is independent from the implementation of the process. It should

be easily understandable by modelers who create the process, developers responsible

for implementing the process, and business managers who monitor and manage the

process. Adaptation should be considered at three levels: modeling, deployment and

runtime. Any change in the execution environment of a composition process may imply

modifying the modeling of the process, or redeploying some part of it, or adapting

the runtime infrastructure to encompass the management of the new change. Yet no

solution exists for that right now and adaptation is always considered at one unique level

at a time. To address this issue, we propose, in this chapter, an integrated declarative

composition framework that serves as a unified framework to bridge the gap between

the process design, verification and monitoring and thus allowing for self-healing Web

services composition. The rest of this chapter details the ingredients and the components

of the proposed approach.

3.1 Capabilities driven Web Services Description

The concept of capability is considered as one of the most important component in the

enterprise information systems and the SOAs. Many initiatives tried to provide a seman-

tic model for service description, however, they did not give the notion of capability the

importance that deserves. They either confuse between service capability and invocation

interface or fail in modeling service functionality at several abstraction/concreteness lev-

els. Other efforts describe service capabilities in terms of Inputs, Outputs, Preconditions

and Effects, which makes it hard to be understandable by non domain-expert users. In

this scope, various efforts have been done to overcome these shortcomings and provide

a new-fashioned model that enables service discovery and composition in a semantic

way. For instance, [26] discussed two types of capabilities: i) an abstract capability that

consists of a set of states to describe what the service can provide without going into the

details; and ii) a contract capability that represents a model of the abstract capability.

It includes concrete services and their related constraints that should be fulfilled to en-

sure a successful execution. [142] proposed a three-layer capability meta-model, which

is based on a profile layer that consists of an action verb and a set of attributes. In the

same context, the authors introduced in [27, 140, 143, 144], a new conceptual model that

Chapter3. Capabilities driven Web Services Description and Composition 48

describes functional capabilities as an action verb and a set of domain specific attributes

using RDF-schema. Such description enables to represent capabilities at several levels of

abstraction, from the most abstract capability, named capability category, to the most

concrete one, named capability offer, by explicitly extracting the relation between ca-

pabilities (i.e., specify and extend) and linking between the different levels. However,

this description is inadequate when it comes to supporting composition and planning

processes. To overcome this limit, we propose an extension to the capability meta-model

introduced in [27] by adding two main additional attributes, which are preconditions and

effects, to capture the state/change of the world before/after executing the correspond-

ing action. So that a service capability consists of: i) action-verb; ii) a set of domain

specific attributes; iii) a set of preconditions and v) a set of effects. Formally speaking,

we consider a service capability as a quadruplet Cap={AV, DA, Pre, Effect}, where:

• action Verb (AV): a concept used to define the action offered by the service;

• set of attributes (DA): a finite set of domain specific attributes, each of which is

defined as a pair (attribute name, attribute value);

• Pre: a finite set of predicates that should be satisfied to execute the action;

• Effect: a finite set of facts that can be reached after executing the action and

which result in a new world state.

Through such description, the semantics of the capability can be captured at two levels,

which are:

1. Coarse-grain level: to handle the discovery process through a combination of an

action verb, domain specific attributes and semantic links between capabilities.

2. Fine-grain level: to handle the composition process via a set of preconditions and

effects.

As shown in figure 3.1, inspired from the model described in [27], the new model considers

service capability as an attribute-featured entity, over which a declarative access to the

offered functionality can be handled, discovered and composed at different abstraction

levels. Various attribute values can be specified, such as dynamic, conditional and

constrained values. Moreover, a capability can be as abstract as a category that denotes

a class of actions (capability type), as it can be very concrete and corresponds to a

specific consumer request (capability instance).

Navigation between different abstraction levels is established through semantic links

between the existing capabilities based mainly on Extend and Specifies relation types.

Chapter3. Capabilities driven Web Services Description and Composition 49

hasUnit

hasElement

hasEvaluator

Extends
Capability

Precondition

Specifies

Attribute

AttributeValue

1
1

EnumerationValue

DynamicValue

ConditionalValue

Expression

hasEvaluator

hasExpression

hasCondition

ActionVerb

Effect

1

0..1

1

1..*

1
1..*

Unit

hasMax

ConstrainedBy

ConstrainedValue

RangeValue

Constraint

hasMin

1

1..*

1

1..*

1

1..*

Figure 3.1: Capability Meta-Model

More specifically, the main relationship that can be handled between capabilities is the

link established between the capability type and its concrete implementation. Indeed,

it is considered as a kind of linking between a class and its instances. A capability type

captures the core functionality to which the individual instances belong. We assume

that the capability type remains valid when any of its instances is selected, which leads

to facilitate the compensation in case of planning failure or unavailability of the selected

instance at run-time. As depicted in figure 3.2, such instanciation is based on three

main factors: a) ensuring that the instance specifies the service type capability; b) the

preconditions of a the capability type are more specific than those of some or all of their

instances and c) the postconditions are more general than those of their instances.

3.1.1 Service description

The class Service defines a software system designed to support interoperable machine-

to-machine interaction over a network. Based on their atomicity, we distinguish two

types of services: atomic and composite services.

Chapter3. Capabilities driven Web Services Description and Composition 50

Figure 3.2: Relationship between Capability Type and Instance

• Atomic service: is a basic unit, which cannot be decomposed further and does not

rely on any other service. In the case that the features provided by an atomic

service cannot satisfy the full requirements given by the users, it needs to be

composed.

• Composite service: is considered as a collaboration of existing services that can be

atomic or composite to provide complex operations.

As depicted in figure 3.3, we describe a service via a set of capabilities, non-functional

properties and workflow model (in case of composed service). These components are

defined in detail in the following subsections.

hasChild
0..*

11..*

WorkflowModel AtomicServiceCompositeService

Service Capability11..*

1 1..*

NFP

hasChild

Figure 3.3: Service Meta-Model

3.1.2 Non-Functional Properties meta-model

As there will be many functionally-equivalent capabilities for a specific user request,

we propose to consider the non-functional aspect as part of the service description in

addition to its capability. Such extension leads mainly to filter and select the best

offer among the existing capability offers to better fulfill customer requirements and

Chapter3. Capabilities driven Web Services Description and Composition 51

ensure his/her satisfaction. Separating the capability from the non functional constraints

enables to reuse the capability under different constraints. Moreover, in their turn, these

constraints can be re-used by different capabilities.

As shown in figure 3.4, the NFP concept contains four types of NFPs: (i) user-generated

properties, e.g, reputation, (ii) policy-related properties e.g, cost and availability, (iii)

QoS properties e.g., security and trust, response time, latency and reliability, and (iv)

contextual specifications e.g., location or business requirements. The NFPs are described

by a combination of non-functional terms (attribute, metrics) and their constraints (at-

tribute values). Different to the functional perspective, the user should define the NFPs

as well as their desired constraints to sort search results according to his preferences,

which can reduce the capability offer search space.

NFPPolicy

QoS

User Generated

Reputation

Cost

Availability

Authorization

Authentication

NonRepudation

Security

Performance

Reliability

ProcessingTime

ResponseTime

Latency

Precision

AttributeValue

1

1

Environmental

Location

Temporal

Payement

Method

Monitoring

Business

Context

Specification
MeasurementUnit

hasUnit

Figure 3.4: Non-Functional Properties Meta-Model

3.1.3 Workflow meta-model

The workflow model includes the control-flow patterns used to represent the structural

knowledge of the composite service and the connections between its different compo-

nents. In general, we use workflow patterns to describe a service composition either as

a block structure or as a graph model including a set of nodes interconnected with arcs.

Due to its ability to describe different representation of the same composite service at

different granularity levels, only block model concept was considered in our conceptual

model. As illustrated in figure 3.5, the block-patterns can be classified into five main

patterns:

Chapter3. Capabilities driven Web Services Description and Composition 52

• Sequence: is a list of ordered elements that have an order and contain a Workflow-

Model.

• ParallelSynchronize: combines a synchronizing pattern and parallel split; and con-

sists of a set of branches. Each branch contains a WorkflowModel.

• ExclusiveChoice: is an exclusive (choice, merge workflow patterns) pair that con-

sists of a set of ConditionalBranches constrained by a Condition. At runtime only

one ConditionalBranch of an ExclusiveChoice can be active.

• MultipleChoice: is a (multi-choice, synchronizing merge workflow patterns) pair,

which consists of a set of ConditionalBranches. At runtime there can be many

active ConditionalBranches of a MultipleChoice.

• Loop: is a block structure that executes until a stop condition becomes true.

1*
hasOrderElement

WorkflowModel

BasicActivitiesStructuredActivities

Task

Event

Sequence ParallelSynchronize MultipleChoice ExclusiveChoice Loop

BlockModel

ConditionalBranch ConditionBranchOrderElementOrder

1*

hasOrder

1

*

contains

1*hasBranch
hasConditional

Branch

1 *

1

*

hasStopCondition

hasCondition

1

*

contains

Figure 3.5: Workflow Meta-Model

3.1.4 Illustrative example

To illustrate the notion of capability-based service description, we use the Programmable

Dinner (PD) scenario proposed in [145]. The idea is to organize an event by choosing

a movie title, a theater that plays the movie and inviting friends to select a restaurant

using a map view of some proposed restaurants that exist in a predefined location.

Given a movie title, a location, a date and a list of friends, the system has to provide

the weather forecast during the given date, identify the possible restaurants existing

in the given location and suggest a list of movies that are similar to the movie title

proposed. The selected movie will be taken by the system to provide a list of theaters

that play this movie. By choosing the theater, an invitation will be sent to a given list

Chapter3. Capabilities driven Web Services Description and Composition 53

of friends. This invitation includes all the details of the event, with a list of restaurants

that are presented as markers in a Map showing their positions. Therefore, the following

requirements should be considered:

• Rq0: The goal is to send an invitation to a list of friends with a list of restaurants

in a given location marked in maps. The invitation includes all the details of the

event such as date, location, movie title and theater name.

• Rq1: The user should provide his actual location, the list of friends he/she wants

to invite, a date and a movie title.

• Rq2: Based on the given location and date, the system has to provide a weather

forecast.

• Rq3: W.r.t the location and the weather, the system has to provide a list of

restaurants that exist in the given location.

• Rq4: The identified restaurants have to be represented as markers in a map.

• Rq5: Based on the given movie title, the system has to provide a list of similar

movies.

• Rq6: Taking the list of similar movies as inputs, the system provides a list of

theaters that play these movies at the required date.

• Rq7: A mail that includes the whole details of the event accompanied with a map

of suggested restaurants has to be sent to the given list of friends.

Rq1 represents the initial state of the system, while Rq2-Rq7 represent the abstract

capabilities that are required to reach the goal described in Rq0. Listing 3.1 illustrates

the required abstract capabilities, serialized in RDF.

Chapter3. Capabilities driven Web Services Description and Composition 54

� �
@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .

@prefix cap: <http ://.../ ontology/capability#> .

@prefix md: <http ://.../ DoodleMap -Domain#> .

md:FindPlacesCap a cap:Capability;

cap:hasActionVerb md:FindPlaces;

md:hasLocation md:Location;

md:hasCriteria md:Criteria;

cap:hasPracondition md:FindPlacesPrec;

cap:hasEffect md:FindPlacesEffect.

md:FindPlacesPrec a cap:Expression;

cap:expValue "and GeoLocation ?location

Property ?criteria ."

md:FindPlacesEffect a cap:Expression;

cap:expValue "and Location ?place

hasCriteria ?place ?criteria ."

md:hasLocation a cap:attribute.

md:hasCriteria a cap:attribute.

md:CreatePollCap a cap:Capability;

cap:hasActionVerb md:CreatePoll;

md:hasPoll md:Poll;

cap:hasPracondition md:CreatePollPrec;

cap:hasEffect md:CreatePollEffect.

md:hasPoll a cap:attribute.

md:CreatePollPrec a cap:Expression;

cap:expValue "and hasName md:Poll ?Name

hasTitle md:Poll ?Title

hasOption md:Poll ?Op

EqualTo ?op ?Location ."

md:CreatePollEffect a cap:Expression;

cap:expValue "and hasData md:Poll ?ps

PollStream ?ps."

md:CreateMarkersCap a cap:Capability;

cap:hasActionVerb md:CreateMarkers;

md:hasPlaceList md:PlaceList;

cap:hasPracondition md:CreateMarkersPrec;

cap:hasEffect md:CreateMarkersEffect.

md:CreateMarkersPrec a cap:Expression;

cap:expValue "PlaceList ?pl".

md:CreateMarkersEffect a cap:Expression;

cap:expValue " MarkerList ?ml".

md:hasPlaceList a cap:attribute.

md:CreateMapWithMarkersCap a cap:Capability;

cap:hasActionVerb md:CreateMapWithMarkers;

md:hasMarkersList md:MarkerList;

cap:hasPracondition md:CreateMapWithMarkerPrec;

cap:hasEffect md:CreateMapWithMarkerEffect.

md:CreateMapWithMarkerPrec a cap:Expression;

cap:expValue "MarkerList ?ml".

md:CreateMapWithMarkerEffect a cap:Expression;

cap:expValue "and Map ?mp

Includes ?mp ?ml".

md:hasMarkersList a cap:attribute.� �
Listing 3.1: Abstract Capabilities of Programmable Dinner Scenario

Chapter3. Capabilities driven Web Services Description and Composition 55

Each abstract capability can be implemented by one-to-many executable capability in-

stances. Listing 3.2 represents two alternative instances for the abstract capability

FindPlacesCap.� �
@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .

@prefix cap: <http ://.../ ontology/capability#> .

@prefix md: <http ://.../ DoodleMap -Domain#> .

@prefix dbpedia: <http :// dbpedia.org/ontology#> .

@prefix geo: <http :// www.w3.org /2003/01/ geo/wgs84_pos#> .

md:FindPlacesByLocationCap a cap:Capability;

cap:hasActionVerb md:FindPlacesByLocation;

md:hasLocation dbpedia:Belgium;

md:hasCriteria md:FamousRestaurant;

cap:hasPracondition md:FindPlacesPrec;

cap:hasEffect md:FindPlacesEffect.

md:FindPlacesPrec a cap:Expression;

cap:expValue "and GeoLocation ?location

Property ?criteria ."

md:FindPlacesEffect a cap:Expression;

cap:expValue "and Location ?location

hasPlace ?location ?place

hasCriteria ?place ?criteria ."

dbpedia:Belgium a md:Location.

md:FamousRestaurant a md:Criteria.

md:FindPlacesByCoordinatesCap a cap:Capability;

cap:hasActionVerb md:FindPlacesByCoordinates;

md:hasLocation dbpedia:Brussels;

geo:lat md:Latitude;

geo:long md:Longitude;

md:hasCriteria md:FamousRestaurant;

cap:hasPracondition md:FindPlacesByCoordinatePrec;

cap:hasEffect md:FindPlacesByCoordinateEffect.

md:FindPlacesByCoordinatePrec a cap:Expression;

cap:expValue "and GeoLocation ?location

SearchCoordinate ?cord

Property ?criteria ."

md:FindPlacesByCoordinateEffect a cap:Expression;

cap:expValue "and Location ?cord ?place

hasCriteria ?place ?criteria ."

dbpedia:Brussels a md:Location.

md:FamousRestaurant a md:Criteria.

md:FindPlacesByLocation rdfs:subClassOf md:FindPlaces.

md:FindPlacesByCoordinates rdfs:subClassOf md:FindPlaces.

md:hasLocation a cap:attribute.

md:hasCriteria a cap:attribute.

md:hasLocation a cap:attribute.

md:hasCoordinate a cap:attribute.� �
Listing 3.2: Alternative instances for FindPlace Capability serialized in RDF

Chapter3. Capabilities driven Web Services Description and Composition 56

3.2 Integrated Framework for Web Services Composition

Using the capabilities based model discussed above, we propose a declarative framework

for Web services composition based on the three stages of abstraction, concretization

and monitoring as depicted in figure 3.6.

Figure 3.6: Modeling Framework for Web Services Composition

Abstraction refers to the high-level description of the desired service (goal), which drives

the identification of an appropriate composition strategy (abstract plan). The con-

cretization stage aims to find a solution (executable plan) to the composition process

respecting the constraints and requirements specified in the model resulting from the

design phase. Monitoring deals with the actual execution of the composite service and

is responsible for monitoring the execution and recording violation of any requirement

of the goal service at runtime. In case of detecting one-to-many constraints violation,

recovery actions can take place on both abstract and concrete stages. This framework

provides an easy way to specify functional and non-functional requirements of composite

Chapter3. Capabilities driven Web Services Description and Composition 57

services in a precise and declarative manner, and guides the user through the compo-

sition process. The staged approach is designed keeping in mind the best knowledge

engineering practices of modularity, conciseness, and scalability, while providing a fair

amount of control to the composition process. It focuses on the specification of what

level without having to state the how, which enables to preserve the autonomous nature

of interacting services and represent highly expressive interaction models without over-

specifying them. In what follows, we detail and expose the key features of the proposed

architecture.

3.2.1 Pre-Composition phase

3.2.1.1 Goal Specification

Users/Requesters provide the high-level description of the desired service (goal) using a

user-friendly interface that enables end users to specify and express their requirements

and preferences by following some instructions to build the query. A query parser

is integrated to parse and validate the query by checking syntactic correctness and

decoupling the functional requirements from the non-functional parameters (such as

QoS properties). Due to the high-level specification of the desired composite-service,

our framework guides the users for iterative refinement of the goal specification.

Definition 3.1. Query Specification: Given an ontology domain O, a user query Q

consists of an action verb Q.av ⊆ O, a set of attribute pairs (name, value) Q.att ⊆ O, a

set of preconditions Q.pre ⊆ O, a set of effects Q.eff ⊆ O, and a set of quality of service

constraints Q.qos = {(q1, v1, w1), (q2, v2, w2), ..., (qk, vk, wk)}, where qi(i = 1, 2, ..., k) is

a quality criterion, vi is the required value for criterion qi, wi is the weight assigned to

this criterion such that
∑k

i=1wi = 1, and k the number of quality criteria involved in

the query. Note that a quality criterion can be either negative, i.e. the higher the value

the lower the quality, or positive, i.e. the higher the value the higher the quality.

3.2.1.2 Service Specification

Given a Service Repository D of all the available services, the representation of each

service S ∈ D is given by definition 3.2.

Definition 3.2. Service Specification: A service s ∈ D is composed of an action verb

S.av ⊆ O, a set of attributes S.att ⊆ O, a set of preconditions S.pre ⊆ O, a set of effects

S.eff ⊆ O and a set of provided quality criteria S.qos = {(q1, v1), (q2, v2), ..., (qk, vk)},
where qi(i = 1, 2, ..., k) is a quality criterion, vi is the value associated to criterion qi

provided by the service, and k is the number of the involved criteria.

Chapter3. Capabilities driven Web Services Description and Composition 58

In order to enable working with large collections of Web services, we distinguish between

Web services types and instances. A Web Service Type is considered as an abstract capa-

bility, which includes the main functionality offered by the service. While Web services

instances are the to-be-invoked services, which consist of one-to-many capabilities and

a set of non-functional properties. This separation may lead to a significant reduction

of the search space, and therefore provides scalability to the composition process. For

example, as mentioned in [146], suppose that we have α service types in the service

repository and each service type has β service instances, if we consider the composition

approach that does not use the distinction between types and instances, then the re-

quired search space to find an executable plan is O((α× β)n). However, if we deal with

a separation strategy, this space research is significantly reduced to O(αn) +O(βn). For

example, For α = 10 , β = 5 , n = 9 , we have (α∗β)n = (10∗5)9 ,while αn+βn = 109+59.

However, it is very important to identify the relationship that a Web service type has

with its various instances. The service type represents the core functionality of the

service, while the instances represent this functionality with different attribute values

and non-functional parameters. Following this separation between services types and

instances, we have introduced two types of ontologies, which are Type Ontology and

Instance Ontology. The Type ontology describes services domain at a high level of

abstraction. It contains fine grained definitions of different types of domain-specific

services; the possible abstract capabilities and their related action verbs, domain-specific

attributes, preconditions and effects; and their non-functional attributes. The Instance

Ontology is a concrete ontology that gives a fine grained view of the existing service

instances, their capabilities, their preconditions and effects; and the possible values each

functional and non-functional attribute can have. The instance ontology is generated

using the Instance Ontology Builder (IOB). As shown in figure 3.7, IOB consists of a

Jena-Based parser and an ontology builder. The Jena API 1 takes a set of semantic

Web services as inputs and stores them in a single data structure. Given this generated

data structure and the domain ontology, the ontology builder provides a corresponding

Instance ontology. The Instance ontology is a concrete representation of the available

instances organized in a hierarchical structure reflecting the relationships between service

capabilities according to the domain ontology.

3.2.1.3 Constraints

We distinguish between behavioral constraints (orchestration and choreography aspects),

non-functional constraints, and execution constraints. Behavioral constraints are used

for plan nodes instantiation and process execution. They describe how multiple services

1http://jena.apache.org/

Chapter3. Capabilities driven Web Services Description and Composition 59

Figure 3.7: Instance Ontology Builder

can interact by exchanging messages including the business logic and execution order of

the interactions (sequence, parallel, loops, etc.) and the dependencies between services (

before, after, if-then-else, choice,..). Non-functional constraints are constraints exhibited

over the functionality of the services. They include temporal and spatial availability, ser-

vice quality, security, trust and ownership. Execution constraints specify the constraints

to be validated at run-time. These constraints are implemented as monitors, which have

an associated monitoring event/condition and actions to perform if the condition to be

monitored is encountered. All these constraints are specified in terms of capabilities

and attributes, and can be added to the process specification both at design time and

run-time.

3.2.2 Abstract Composition

The abstract composition is responsible for automatically generating an abstract capability-

based plans that meet the functional requirements of the user using a novel Proof-based

mechanism [147, 148]. Over such mechanism, providing a composition that satisfies

the user goal is reduced to generating a proof that supports the goal. The provided

proof includes a set of capabilities required to transform the world from the initial

state to another state that satisfies the required functionality. Unlike classical planners,

proof-based composer does not require new reasoning and composition tools. A generic

semantic Web reasoner that supports rule language is good enough to generate the ap-

propriate proof. Moreover, the generation of proof indicates that a solution exists for

a given composition problem. To meet the goal G, the generated plan is a sequence

of actions {Ap} = {A0, ...Ai, ...An}, so that, ∀j; 0 ≤ j ≤ n, preconditions(Ai, Si) =⇒

Chapter3. Capabilities driven Web Services Description and Composition 60

effects(Ai, Si+1) where Sj denotes the jth state in which Aj will be called, Sj+1 is the

successor state in which Aj+1 will be called, and S0 ∪ effects(Ap, Sp) |= G.

Algorithm 1 describes the composition strategy used by proof-based reasoner to generate

the abstract plans.

Algorithm 1: Abstract Composition Algorithm

Input: A set of abstract capabilities AST , a goal G, a set of abstract capabilities
description formulas {CRi} true in initial state S0.

Output: Composition plan or nil as failure.
begin

procedure FindGoal(Sc, Sf , G)
begin

if G is already true in the target state Sf , where Sc ≺ Sf then
return Sf

;
else

T ← set of abstract capabilities ∈ AST to be called in the current state Sc
such that for each ASt ∈ T , Sc |= ASt.prec and G unifies with ASt.eff ;
while T is non-empty do

foreach (ASt ∈ T) do
Unify the attributes, preconditions, effects of ASt with G;
If successful with ASt, Mark the effects as being true in state Sf and
the preconditions as being true in state Sc, where Sc < Sf , and ASt
was called in Sc.;
Return Sc

End While

End If
End procedure

P ← the set of preconditions of AST ;
while P is non-empty do

foreach (ASt ∈ P) do
P ← P ∪ASt.att;
Select the first precondition in P ;
Sr = FindGoal(S0, Si, ASt.pre) ;
while Sr results in new states and unifications do

propagate new instantiations of variables in preconditions and effects of ASt
in states Si and Sf ;
Sr = FindGoal(S0, Si, ASt.pre) ;

if the last call to FindGoal failed then
return fail ;

P ← P − {ASt} ;

Return Sf and all marked states ;

This algorithm has been proven to be sound and complete. Indeed, every plan generated

by this algorithm is a service that meets all the query requirements. However, since the

constraints enable to specify only the boundaries to the composition, the reasoner may

Chapter3. Capabilities driven Web Services Description and Composition 61

return multiple plans, and therefore the composition system is given the possibility

to pick and choose among them based on some optimization criteria (e.g., number of

service candidates) and also provide better failure resiliency (e.g., if a plan fails to

get concretized, the system can try a different plan without going through the logical

composition stage again).

The main ingredients of this stage are described as follow:

3.2.2.1 Reasoner

As shown in figure 3.8, the reasoner component behaves as a checker as well as a planner

that takes as inputs the knowledge base, the initial state, a set of rules and the goal,

and generates the proof of the goal.

Figure 3.8: Proof based Reasoner

3.2.2.2 Filter

Given the generated proof and a set of rules, the filter component re-invokes the reasoner

to provide a new proof by considering only abstract capabilities that constitute the

required abstract plan to meet the user goal. This component is responsible for avoiding

redundancy from the plan by identifying service types with potential relevance to the

goal. Such services can either be invoked using the initial state that satisfies their

preconditions, or can potentially contribute to the goal using their effects.

3.2.2.3 Dependency Graph Generator (DGG)

The core functionality of this component is to extract the dependencies among services

and represent them as a directed acyclic graph, where the candidate services represent

Chapter3. Capabilities driven Web Services Description and Composition 62

its vertexes and the dependency relationships between each two services represent the

edges between these vertexes. Algorithm 2 is used to deliver the composition plan with

the execution order of its service candidates.

Algorithm 2: Ordered Plan Generation Algorithm

Input: DADG: Directed Acyclic Dependency Graph
Output: L: list of ordered plans
begin

Queue Q=∅ ;
List L= {} ;
foreach (Vi ∈ DADG.Vertices) do

ini ← Vi.incomingsEdges ;
outi ← Vi.outgoingsEdges ;
if ini=0 then

Q← Q ∪ Vi ;

while Q 6= ∅ do
foreach (Vi, Vi+1 ∈ Q) do

if (outi > outi+1) then
Dequeue Vi from Q ;
Push Vi in L ;
Remove all outgoing edges of Vi from DADG ;

else
Dequeue Vi+1 from Q ;
Push Vi+1 in L ;
Remove all outgoing edges of Vi+1 from DADG ;

Return L ;
End

3.2.3 Concrete Composition

An abstract composition plan is a sequence of abstract capabilities that specify the

temporal ordering of different actions, whose execution leads to the goal. This plan

is then used by the concrete phase to instantiate, verify and execute the composition

process. Below, we present the role and mission of each step.

3.2.3.1 Instantiation

The Instantiation step aims to find a solution to the composition process respecting the

constraints and assumptions specified in the design phase. The plan generated by the

abstract composition stage is considered as a template for the composite service, which

in conjunction with the non-functional parameters specifications, drives the process of

matching each service type to a corresponding service instance. Usually, for each abstract

Chapter3. Capabilities driven Web Services Description and Composition 63

capability existing in the plan, there is a set of alternative Web services instances with

similar capability and different functional and non-functional attribute values. This leads

to the general optimization problem of how to select Web services for each capability

so that the overall functional and non-functional requirements of the composition are

satisfied with most preferred compositions. Thus, this stage not only handles Multiple

Criteria Decision Making (MCDM), but also guarantees the non-functional requirements

at the same time.

As depicted in figure 3.6, given the first-stage generated plan and the non-functional

requirements of the user, the instantiation phase will be invoked and the following pro-

cess will take place: the NFP handler collects the non-functional properties from the

existing service instances and provides an NFP vector for each instance. Then, taking

the generated NFP vectors as inputs, the selector picks exactly one instance from the

set of matched instances for each abstract capability existing in the plan w.r.t the re-

quired NFP parameters using the Technique for Order of Preference by Similarity to

Ideal Solution (TOPSIS) method [149, 150], which is described in the subsection ??.

Note that if there is no matching with the global constraints, the framework selects

other instances near to the optimal instances. If no alternative instance is available, the

framework automatically replace the abstract plan Pi with another plan Pi+1.

TOPSIS

TOPSIS is a theoretical rigorous method that is considered as one of the best techniques

devoted for solving Multiple Criteria Decision Technique Method (MCDM) problems

[151]. It considers qualitative and quantitative criteria with two hypothesis:

• Ideal alternative: denotes the best alternative for all attributes values.

• Negative ideal alternative: denotes the worst alternative for all attribute values.

Assuming that we have an evaluation m*n matrix M with m alternatives in rows and

n attributes or criteria in columns and we have the score xij of each alternative w.r.t

each criterion. Let B and N be a set of benefit (more is better) and negative (less is

better) attributes, respectively. Given a set of weights W={w0, .., wj , ..., wn} for each

criterion, M , B and N as inputs, TOPSIS selects the alternative that is the closest to

the ideal solution and farthest from negative ideal alternative using the following steps:

1. Create a normalized decision matrix: using the formula f1, this step converts

different attribute dimensions into normalized attributes, which leads to apply

Chapter3. Capabilities driven Web Services Description and Composition 64

comparisons across criteria.

f1: rij = xij/(
∑
x2ij), where i=0, ...,m ; j=0, ... , n.

2. Construct the weighted normalized decision matrix: this step consists in multiply-

ing each column of the normalized decision matrix MNomalized by its associated

weight wj ∈W . Each element of the new matrix MWeightedNomalized is:

f2: vij = wj ∗ rij.

3. Determine the Positive and Negative ideal solutions (PIS and NIS): using two

formulas (f3 and f4), this step allows to identify PIS and NIS as follows:

• Ideal solution (PIS):

f3: A∗ = {v∗1, ..., v∗n}, where v∗j = {max(vij) if j ∈ B;min(vij) if j ∈ N}

• Negative ideal solution (NIS):

f4: A− = {v−1 , ..., v−n }, where v−j = {min(vij) if j ∈ B;max(vij) if j ∈ N}

4. Calculate the separation measures for each alternative: this step consists in cal-

culating the distance between the target alternative Alti and the positive ideal

solution; and the distance between the alternative Alti and the negative ideal

solution as follows:

• The separation from the ideal alternative is:

S∗i = [
∑

(v∗j –vij)
2]

1
2 , where i = 1, ..., m.

• The separation from the negative ideal alternative is:

S−i = [
∑

(v−j –vij)
2]

1
2 , where i = 1, ..., m.

5. Rank the alternatives by calculating the relative closeness to the ideal solution:

C∗i = S−i /(S∗i + S−i), where 0 ≤ C∗i ≤ 1.

QoS based Selection

Some QoS properties have been emphasized in previous research works [152, 153] as the

quality evaluation criteria of Web service. These propeties are:

1. Price (qpr(s)) of a service s is the fee that its requesters have to pay for invoking

it.

2. Duration (qdu(s)) of a service s measures the expected delay between the moment

when a query is sent and the moment when the result is received. It is calculated

by summing the service processing time, which is given by the service provider as

a fixed value or as a method to inquire about it; and the average of transmission

times of past executions;

Chapter3. Capabilities driven Web Services Description and Composition 65

3. Availability (qav(s)) of a service s is the probability that it is accessible.

4. Reputation (qrep(s)) of a service s is a measure of its trustworthiness. It is calcu-

lated by the average of different end users’ ranged ranking ([0, 1]) on the service;

5. Successful execution rate (qrat(s)) of a service s is the percentage that service

requests are responded. Since the successful execution rate is measured in service-

available state, it is slightly different from the availability. It is counted as the

number of successful executions divided by the total number of service trials.

Assuming that QoS measures are quantitative and QoS values are static, QoS prop-

erty values of component Web services can be aggregated using aggregation formulas

presented in table 3.1.

Criterion Function

Reputation Arep =
1/n

∑n
i=1 qrep(si)

Price Apr = 1/n
∑n

i=1 qpr(si)

Duration Adu = 1/n
∑n

i=1 qdu(si)

Availability Aav =
∏n

i=1 qav(si)

Successful Execu-
tion Rate

Arat =
∏n

i=1 qrat(si)

Table 3.1: Aggregation functions for computing composition QoS

The Overall Reputation model is given by the average of all constituent services’ rep-

utation. The Overall Price, in turn, is calculated simply by summing the price of all

constituent services. The Overall Duration model is calculated as the sum of all con-

stituent services duration of a given composition. Availability and Successful Execution

Rate models are defined as a simple product of factor of probability without taking into

account whether or not a service is part of a critical path [152].

A matrix M is created, in which each row Mi corresponds to an instance CSi while each

column corresponds to a quality criteria qj . Each instance score is normalized using

the formula f1, where each score (rij) denotes the normalized value of QoS criterion qj

associated with a candidate instance CSi and then multiplied by a given weight using

the formula f2. Once the matrix M was normalized and weighted, for each service type

included in the abstract plan, the steps (c), (d) and (e) are applied. The instance with

higher score is selected. Then, the selected optimal instances are aggregated to determine

the overall QoS of the composite service using the aggregation formulas presented in table

3.1. The NFP-aware instantiation phase is described in algorithm 3.

Chapter3. Capabilities driven Web Services Description and Composition 66

Algorithm 3: QoS-oriented web service composition algorithm

Input: NFR: Non-Functional requirements, W: list of NFP weights, P: abstract
composition plan

Output: PExecutable: Executable plans
begin

NfpVector V ← ∅ ;
List Linstance ← {} ;
Matrix M ← ∅ ;
Matrix MWeightedNormalized ← ∅ ;
BIS ← 0; NIS ← 0; List res ← {} ;
Instance CS∗ ← {} ;
foreach (ASi ∈ P) do

Linstance ← Instanciate(ASi) ;
foreach (CSi ∈ Linstance) do

qosi ← NfpHandler(CSi) ;
V ← V ∪ (CSi, qosi) ;

while V 6= ∅ do
foreach (vi ∈ V) do

M ←M ∪ vi ;
V ← V \{vi}

End

foreach (vi ∈M) do
MWeightedNormalized ←MWeightedNormalized ∪ (NormalizedAttribute(vi) ∗wi)
;

BIS ← IdealSolution(MWeightedNormalized);
NIS ← NegativeIdealSolution(MWeightedNormalized);
foreach (v′i ∈MWeightedNormalized) do

S∗i ← CalculateDistance(v′i, BIS) ;
S−i ← CalculateDistance(v′i, NIS) ;
C∗i ← S−i /(S

∗
i + S−i) ;

res← res ∪ (CSi, C
∗
i) ;

CS∗ ← getInstance(Max(res)) ;
PExecutable ← PExecutable ∪ CS∗ ;

CheckGlobalOptimization (PExecutable, NFR, QoSaggregationFunctions) ;
Return PExecutable ;
End

3.2.3.2 Verification

The verification of the composition constraints can be done either at design time (a-

priori) or after runtime (a-posteriori) to repair design errors, and formally verify whether

the process design does have certain desired properties. The a-priori verification is im-

portant for compositions because we need to check if the specified behavior is consistent,

which is not a trivial task as soon as a composition process manages complex service de-

pendencies. The a-posteriori verification is also important to provide knowledge about

Chapter3. Capabilities driven Web Services Description and Composition 67

the context of and the reasons of discrepancies between abstract models and related

instances. This kind of verification is required since some interactions between Web

services may be dynamically specified at runtime, causing unexpected interactions with

other services, and making the a-priori verification method insufficient as it only takes

into account static aspects.

Verification enables to detect conflicts such as deadlocks and identify hard constraints

to be relaxed and side effects such as data expiry. The properties that can be checked

include (but not limited to) temporal constraints, data retention such as the maximum

time interval about data validity, behavioral constraints, and security requirements.

These properties are handled by adding constraints to the composition design. Violations

of these properties lead also to conflicts in the composition process specification. These

conflicts can be broadly categorized into the syntactic and semantic categories. The

syntactic conflicts result due to erroneous process specification and not following the

syntactic rules for process specification, such as not following the naming conventions for

instances. The reasoner allows identifying the syntactic errors providing error description

that can be used to rectify the syntactic errors. The semantic conflicts include deadlocks,

hard and conflicting constraints. For instance, the planner may not be able to find any

plan which can satisfy the specification of the composite service. This may be due to the

services in the repository, which are insufficient to create the specified composite service,

and therefore an exception indicating the problem can be generated. The plan can also

provide partial solution that is closest to the specification. Analysis of this partial plan

can help in identifying what can be composed with existing services and what are the

missing functionalities that need to be developed. Other types of failures can occur when

a binding may not exist for a given service in the plan or some requirements specified

may not be satisfied. If a binding does not exist for a service in a selected plan, a

different plan that (possibly) does not use the particular service is selected. If no such

plan exists, the user is asked to regenerate his goal without using that service. Similarly,

in case some requirements are not satisfied, the user could be asked to relax some of

these constraints that could not be satisfied. We have implemented these strategies as

recovery policies.

3.2.3.3 Execution

Finally, the execution step deals with the deployment of the composition onto a runtime

infrastructure. Now that each node in the selected plan is bound to a concrete Web

service instance, a generator produces a concrete workflow that can be deployed onto a

runtime infrastructure, to realize the composite service. For that, we first generate the

WSDL description (name, interface, port types) for the composite service. Then, we

Chapter3. Capabilities driven Web Services Description and Composition 68

define partner link types to link the component services, and proceed to the generation

of the composition flow (BPEL flow for instance). The selected plan gives the invocation

order. We use an Eclipse Modeling Framework (EMF) model of BPEL (WSDL) that is

automatically created from a BPEL (WSDL) schema2 . The model provides in-memory

representation of constructs and support for persistence to files (serialization) and load-

ing from files (de-serialization). BPEL and WSDL manipulation become significantly

simplified with the according EMF models. Execution events/messages are handled by

the monitoring engine.

3.2.4 Composition Monitoring

Monitoring is event-based mechanism and can be easily performed since the same con-

straints are used for the design, the instantiation, and the execution of the composition.

Properties to be monitored are specified by the user and added to process specifica-

tion at both design and execution time. These properties include functional constraints

(invocation and execution order), non-functional properties (security, QoS...), tempo-

ral constraints (response time, invocations delay), data constraints (data availability,

validity and expiry). Services providers can also specify additional assumptions about

the composition process in terms of events extracted from the specification. Runtime

deviations and inconsistencies are monitored by using an extension of EYE reasoner.

The monitoring framework is depicted in figure 3.9.

Figure 3.9: Monitoring Framework

2http://www.eclipse.org/emf

Chapter3. Capabilities driven Web Services Description and Composition 69

The monitoring process is initiated by the monitoring manager after receiving a request

to start a monitoring activity as specified by a monitoring policy. First, it checks if

the requested constraint or property can be monitored or not. This checking is based

on the composition process identified in the policy, and the event reporting capabilities

indicated by the type of the execution environment of the composition process. If the

requested constraint can be monitored, the monitoring manager triggers an event lis-

tener to capture events from the composition execution environment and passes to it

the events that should be collected. It also sends to the monitor the specification of the

constraint to be checked. The event listener is responsible for collecting events from the

execution environment. For each event it receives, it identifies its type and records it

in an event database in case where this event is relevant to the property being moni-

tored. Else, the received event is ignored. Then, events recorded in the event database

during the execution of the composition process are passed to the monitor in order

of their occurrence. Events generated by the composition process are of type process

startup, termination, and messages exchanged (send, receive, reply, assign...) between

the cooperating services and the composition process itself. We associate a context to

each event indicating the event meta-data (source, type (inputMessage, outputMessage),

timestamp...). The monitor may also derive some possible events or patterns that may

have happened but not recorded (given the process specification). Following this step,

it checks if these events are compliant with the properties being monitored. In case of

inconsistency, the monitor records deviations in a deviation database. This deviation

database is periodically polled by the monitoring manager to check for deviations to be

reported. When requirements variations are detected, a deviation notification is sent to

the composition manager. This notification indicates: (i) the requirement that has been

violated, (ii) the malfunctioning service(s) that violated it, and (iii) diagnostic informa-

tion regarding the violation. Based on the type of the deviation notification and service

monitoring policies, recovery policies will be triggered.

The monitor has a set of activation conditions and associated actions. The monitor

activation conditions include events contexts (temporal, spatial, semantic), policies,

event conditions, directives (for reporting monitoring violations to the actions stage),

timeValue(to delay the reporting in an attempt to give the service some time to recover

from the violation). The monitor actions include terminate/ignore/reinstantiate and

other directives.

Violations of monitoring properties are analyzed and used to initiate different recovery

actions such as ignore the violation, terminate the process, re-invoke or substitute the

service, find an alternative solution based on current process state or backtrack to some

previous state and then seek an alternative solution. A substitute recovery action is

described below. Based on the type of the deviation notification and service monitoring

Chapter3. Capabilities driven Web Services Description and Composition 70

policies, the composition system will generate queries to replace malfunctioning services

(services that become unavailable during execution). The specification of the violated

constraints serves to define these queries. A query contains structural and behavioral

properties of the required services. The structural part of a query represents the interface

of the required service (from local registry of the components services), while the behav-

ioral part is specified as a conjunction of paths. Each path contains information about

messages sent and received by the composition process, predicates, temporal constraints,

and service states. The violated requirements are transformed to query paths according

to set of rules. When the query is specified, we perform a structural matching (based

on data types and signatures of service operations) and semantic matching to match

between a service requested by a query and the services described in a service registry.

This run time discovery process can be implemented as a Web service which exposes one

operation that takes service queries as input and returns one or more candidate services

that match with the query.

3.3 Conclusion

In this chapter, we have investigated a novel approach for Web services composition that

integrates different stages of the process life-cycle in an unified and declarative way to

bridge the gap between the process design, verification and monitoring. The proposed

framework, based on the three stages of abstraction, composition, and monitoring, pro-

vides an easy way to specify functional and non-functional requirements of composite

services in a precise and declarative manner using, and guides the user through the

composition process while allowing detection of violations at both design and run time.

Abstraction aims to provide a capabilities driven specification of the composition pro-

cess. The capabilities models and abstract plans defined for the abstract composition

stage are then used to instantiate, verify and execute the composition process. The

Instantiation step aims to find a concrete solution to the composition process respecting

the constraints and assumptions specified in the model resulting from the design phase.

Then, since the proposed declarative capabilities based composition process specification

may only be partially defined and may contain conflicts or inconsistencies, the verifica-

tion step enables to identify any conflicts or hard constraints. The execution step deals

with the deployment of the composition onto a runtime infrastructure. Finally, the mon-

itoring deals with the actual execution of the composite service and is responsible for

monitoring the execution and recording violation of any requirement of the goal service

at runtime. For this purpose, we have proposed an event-based monitoring framework

that allows specifying and reasoning about the monitoring properties during composition

process execution. Violations of monitoring properties are analyzed and used to initiate

Chapter3. Capabilities driven Web Services Description and Composition 71

different recovery actions such as ignore the violation, terminate the process, re-invoke

or substitute the service, find an alternative solution based on current process state or

backtrack to some previous state and then seek an alternative solution. Formalization

of the proposed models and specifications using Notation3 and Proofs are discussed in

chapter 4.

Chapter 4

Proof based Web Services

Composition

Contents

4.1 Proof Ingredients . 73

4.1.1 Notation 3 . 74

4.1.1.1 Formal Syntax . 74

4.1.1.2 Semantics of N3 . 76

4.1.2 Euler Yap Engine (EYE) Reasoner 77

4.1.3 Proof Study . 78

4.2 Proof based Composition of Services Capabilities 81

4.2.1 N3 capabilities descriptions . 82

4.2.2 Proof based Composition . 83

4.2.3 Composition Scenario: Programmable Dinner Scenario 85

4.3 Correctness of Web services composition proofs 93

4.4 Conclusion . 96

Proof mechanisms explain how a certain goal can be reached by applying rules as in-

ferences. A proof justifies a statement through its decomposition into more elementary

pieces, which may only be combined using a strictly constrained methodology [147]. The

resulting pieces can in turn be proven until we get fundamental pieces that we cannot

decompose and have chosen to accept as truth [148]. Proofs can play a crucial role in the

dynamic world of Web services composition. They can guarantee the correctness of a

composition before its execution, and even serve as an efficient method to automatically

create such compositions. Despite the importance of proofs, they are largely neglected

by semantic Web researchers and did not attract a lot of attention as they deserve.

72

Chapter4. Proof based Web Services Composition 73

Very few works such as [154, 155] have addressed this issue and showed that proof-based

consumption of hypermedia APIs is a feasible strategy at Web scale. Based on this

conclusion, this chapter shows how Web services compositions can be achieved through

the generation of a proof based on semantic descriptions of the services functionality

and QoS. To pragmatically verify the applicability of these compositions, the notion of

pre-execution and post-execution proofs were used. First, we introduce the main in-

gredients for a proof based method. We explain Notations3 rule language depicting its

formal syntax and semantics. We introduce EYE reasoner and outline the motivations

beyond its usage compared to other semantic reasoners. We end this part by explaining

proof methods using N3 and EYE. Second, we study the generation of service composi-

tions using proofs. We discuss the mapping of capabilities based specifications into N3

and explain the composition strategy. We use an illustrative example to highlight our

ideas. Third, we explain the use of proofs in verification purposes. Finally, we conclude

the chapter.

4.1 Proof Ingredients

Proof mechanisms enable to discover knowledge derived from the truth and to distinguish

that from what is false. The notion of proof was already present in the initial Semantic

Web vision. Indeed, as shown in figure 4.1, the Proof layer is one of the higher layers of

the semantic Web stack. This layer is used to check and justify a statement in a given

context [147]. Results obtained by machines can be trusted when accompanied by an

independently verifiable, machine-readable proof document [148].

Figure 4.1: Semantic Web Stack

Chapter4. Proof based Web Services Composition 74

A proof is a conjunction of components, recursively constructed out of inferences and

extractions. Regarding our objective to generate declarative compositions, proofs will

be applied to show how a goal can be achieved instead of verifying the derivation of

facts from static knowledge. In this section, we first introduce the main ingredients of a

proof based method, which are N3 rule language and EYE reasoner. Next, we discuss

the proof generation process.

4.1.1 Notation 3

Notation 3 (N3) is an assertion and logic language which is a superset of Resource

Description Framework (RDF). N3 augments the RDF model with symbols for quan-

tification, implication, and functional predicates, as well as providing a textual syntax

alternative to RDF/XML. This language has been developed in the context of the Se-

mantic Web Interest Group. The aims of the language are:

• to optimize expression of data and logic in the same language,

• to allow RDF to be expressed,

• to allow rules to be integrated smoothly with RDF,

• to allow quoting so that statements about statements can be made, and

• to be as readable, natural, and symmetrical as possible.

In our work, we chose N3 over other formalisms such as Prolog or Datalog for two main

reasons: i) adding logic and rules to our capability-based service description, defined

in RDF, to facilitate inferences for both discovery and composition processes; and ii)

ensuring a declarative language for Web service composition process, compatible with

the architectural principles of the Web. In what follows, we present the most relevant

syntactic and semantic features of N3, based on the formalization introduced in [156,

157].

4.1.1.1 Formal Syntax

Definition 4.1. (N3 Alphabet): An N3 alphabet A consists of the following symbols

and variables:

• U: a set of URIs.

Chapter4. Proof based Web Services Composition 75

• V: a set of quantified symbols, called variables, which can be universally or exis-

tentially quantified: V=VE ∪ VU

– VE : a set of existential variables indicated by a @forSome or ” :” notation.

The existence of such type of variables in a formula F indicates that F is true

if and only if there exists some value of the variable. Note that the blank

node notation represents an unnamed existential variable.

– VU : a set of universal variables indicated by a @forAll or ”?” notation. The

existence of such type of variable in a formula F indicates that F is true for

any value of the variable.

Note that specifying the two types of variables in the same context means that the

scope of VU is outside the scope of VE . For example:

{@forAll < #r > .@forSome < #s > . < #s >< #knows >< #r >}.

means:

∀ < #r > (∃ < #s > (< #s >< #knows >< #r >)).

• Expression E: each simple entity in A, such as URI, V, Literal, False and {}, is

considered as an expression E.

• Statement S: a rule in the form F⇒G where the subject F is the premise (an-

tecedent) of the rule, and the object G is its consequent (conclusion).

• Brackets B: we distinguish three types of brackets, which are:

– Square Bracket []: usually used to represent blank node.

– Angle Bracket <>: used to quote URIs.

– Curly Bracket { } : used to express statements or formulas.

• Logical implication(⇒): a property that relates two formulas to express implica-

tion. It is almost used to define a rule: {F} ⇒ {G} means that G is true if and

only if F is true.

• Literals L: String notation for representing a given value of a variable.

Definition 4.2. (Formula F): The set F of N3 formulas over alphabet A is defined as

following:

1. Atomic: consists of a conjunction of simple expressions: e1e2e3, where e1, e2 and

e3 ∈ E.

2. Implication: consists of sub-formulas related by a logical implication: f1 ⇒ f2,

where f1 and f2 ∈ F.

Chapter4. Proof based Web Services Composition 76

3. Conjunction: obtained by composing formulae with logical connectives and quan-

tifiers: f1f2 , where f1 and f2 ∈ F.

Note that a formula/expression without any variables is considered as a ground formu-

la/expression.

Definition 4.3. (Substitution (subst)): Let A be an N3 alphabet, f ∈ F an N3 formula

over A, V a set of variables and E a set of expressions.

A substitution is an operator that recursively takes place on variables but not on equals.

It is in the form:

σ{v1/e1,v2/e2,v3/e3,...,vn/en} = σ{v1/e1}σ{v2/e2}σ{v3/e3}...σ{vn/en}, where vi ∈ V and ei ∈ E.

For example, a substitution operator σ{x/m} replaces all the occurrences of the variable

x in f1 with the expression m as following:

f1: {?x :says {?x :loves :Albert.}.}σ{x/m}= {m :says {m :loves :Albert.}.}.

4.1.1.2 Semantics of N3

Definition 4.4. (Interpretation): An interpretation I of an alphabet A consists of:

1. A non-empty domain ∆I ,

2. A mapping function δI that assigns each object to a subset of ∆I and assigns each

predicate to a subset of ∆I ∗∆I .

Definition 4.5. (Model): A semantic model of N3 is considered as a pair M = (I,W),

where I is an interpretation and W is a set of states (seen as possible worlds). For each

state w ∈ W , I associates an interpretation I(w) = (∆I , θ
I(w)
0 , .., θ

I(w)
n , ϕ

I(w)
0 , .., ϕ

I(w)
n).

Where the object θ
I(w)
i ⊆ ∆I and the predicate ϕ

I(w)
i ⊆ ∆I ∗∆I .

Definition 4.6. (Entailment): Given an interpretation I = (∆I , δI); formula f, f1,

f2 ∈ F over an alphabet A and a state s∈S. f includes variables (one at least), while f1

and f2 are ground formulae. a, b and c ∈ E are ground expressions, P is a predicate,

σx,n= subst(x, n) and σy,m= subst(y, m) where x∈ VU , y∈ VE and n, m ∈E. The

entailment (satisfaction) of a set of formulas F in a model M = (I, w), written as M|=F,

is defined by:

1. M|= f(a); iff aI ∈fI(w);

2. M|= P(b,c); iff (bI ,cI)∈ PI(W);

Chapter4. Proof based Web Services Composition 77

3. M|= f; iff ∀vU of µvU (f), ∃ µvE (f) of vE in f, so that: M|= µvU o µvE (f).

4. M|= {σx,nf} ⇒ true; iff M|= {f} ⇒ true,

5. M|= {f} ⇒ true; iff ∃ at least one substitution σy,m where M|= {σy,mf} ⇒ true;

6. M|= {f1} ⇒ {f2}; iff M|= f2 if M|= f1;

7. M|= {f1} ⇒ false; iff M 6|= f1;

4.1.2 Euler Yap Engine (EYE) Reasoner

Euler Yet another proof Engine (EYE) is an open source reasoning engine. It is a further

incremental development of Euler which is an inference engine supporting logic based

proofs. EYE is a semi-backward reasoning engine enhanced with Euler path detection.

Like all N3 reasoners such as cwm [158], the EYE reasoner enables to generate and

exchange proofs, which can be used for software synthesis or services composition [159].

Compared to other implicit reasoners such as Pellet [160] and Jena reasoners [161],

EYE, whose features include backward-chaining and high performance, leverages the

language’s support of formulas and quantification for RDF to provide a logical framework

for inferencing [162]. Also, EYE enables to define rules in a high level of abstraction

in order to be re-used by different instances within different contexts. Other important

aspect of this engine is that it supports semantic Web reasoning, enabling the dynamic

features of the Web and enhancing decentralization and open-world assumptions. The

non-availability of a resource does not mean that this resource does not exist anymore

or its related triples are becoming false. In the current design of EYE things are layered

and cascaded as shown in figure 4.2.

Figure 4.2: EYE Design [1]

Chapter4. Proof based Web Services Composition 78

4.1.3 Proof Study

In order to show how a proof can be generated using N3 and EYE, we consider a simple

example of a Doodle service used to retrieve information (such as title, language,etc)

about an existing Doodle poll. The identification code (id) of the existing Doodle poll

can be considered as the Initial state (KB) and is formalized as follows:� �
@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .

<poll01 > poll:hasId <wucm7t7z854877su >.� �
The rule can be expressed in N3 as follows:� �
@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .

@prefix poll: <http :// example.org/poll#>.

{? RequestedPoll poll:hasId ?id. }

=>

{

?RequestedPoll poll:hasTitle _:title;

poll:hasLanguage _:language.

}.� �
By considering the knowledge base and rules in a separate resources, we can increase

their reusability. These resources are then used by EYE reasoner to generate all possible

statements that can be entailed by the current state. Otherwise, rules can be triggered

recursively and lead to an infinite stream of triples. To avoid such enormous number of

entailed triples and instruct the reasoner to extract just the required triple, a specific

query should be defined. The query mechanism used by most of N3-reasoners is mainly

based on filter rules that behave in a manner similar to the SPARQL CONSTRUCT

queries. An example of a filter rule can be defined as follows:� �
@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .

@prefix poll: <http :// example.org/poll#>.

{? RequestedPoll ?p ?o}

=>

{? RequestedPoll ?p ?o.}.� �
Given the initial state, the service description (rule), and the user query as inputs, EYE

reasoner executes the query and generates the following triples:� �
<poll01 > poll:hasId <wucm7t7z854877su >.

<poll01 > poll:hasTitle _:sk0.

<poll01 > poll:hasLanguage _:sk1.� �

Chapter4. Proof based Web Services Composition 79

This conclusion was extracted from the proof illustrated in Listing 4.1, which explains

how we get these triples.

Chapter4. Proof based Web Services Composition 80

� �
@prefix poll: <http :// example.org/poll#>.

@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>.

@prefix r: <http ://www.w3.org /2000/10/ swap/reason#>.

[a r:Proof , r:Conjunction;

r:component <#lemma1 >;

r:component <#lemma2 >;

r:component <#lemma3 >;

r:gives {

<poll01 > poll:hasId <wucm7t7z854877su >.

<poll01 > poll:hasTitle _:sk0.

<poll01 > poll:hasLanguage _:sk1.

}].

<#lemma1 > a r:Inference; r:gives {<poll01 > poll:hasId <wucm7t7z854877su >};

r:evidence (<#lemma4 >);

r:rule <#lemma5 >.

<#lemma2 > a r:Inference; r:gives {<poll01 > poll:hasTitle _:sk0}; r:evidence (

<#lemma6 >);

r:rule <#lemma5 >.

<#lemma3 > a r:Inference; r:gives {<poll01 > poll:hasLanguage _:sk1}; r:evidence (

<#lemma6 >);

r:rule <#lemma5 >.

<#lemma4 > a r:Extraction; r:gives {<poll01 > poll:hasId <wucm7t7z854877su >};

r:because [a r:Parsing; r:source <doodletranslator/ex/initialstate.n3 >].

<#lemma5 > a r:Extraction; r:gives {{?x1 ?x0 ?x2} => {?x1 ?x0 ?x2}};

r:because [a r:Parsing; r:source <doodletranslator/ex/query.n3 >].

<#lemma6 > a r:Inference; r:gives {<poll01 > poll:hasTitle _:sk0.

<poll01 > poll:hasLanguage _:sk1}; r:evidence (

<#lemma4 >);

r:rule <#lemma7 >.

<#lemma7 > a r:Extraction; r:gives {{?x0 poll:hasId ?x1} => {?x0 poll:hasTitle ?x2.

?x0 poll:hasLanguage ?x3}};

r:because [a r:Parsing; r:source <doodletranslator/ex/poll_description.n3 >].� �
Listing 4.1: Example of Proof

The proof starts from the conclusion, which is gradually decomposed into atomic compo-

nents until heading toward the initial state. This is explained by the backward-chaining

algorithm used by the EYE reasoner. The proof consists of a conjunction of three com-

ponents, which are #lemma1, #lemma2 and #lemma3. We distinguish two types of

lemma: Inference and Extraction.

For instance, #lemma1 is an inference instantiated from the rule #lemma5 with the

knowledge detailed in #lemma4, and results in the fact that poll01 hasId ”wucm...su”.

Chapter4. Proof based Web Services Composition 81

However, the filter rule defined in #lemma5 is derived from the query source file, while

the evidence predicate #lemma4 details the origin of the knowledge (initial state). Due

to their direct point to the source files, #lemma4 and #lemma5 do not need further

proving. For #lemma2 and #lemma3, they use #lemma5 as a filter rule, and another

inference defined in #lemma6 that derives poll01 hasTitle : sk0 and hasLanguage :

sk1. Note that there is no bindings in the proof (no universal variables), whereas, two

existentially quantified variables are created with two blank nodes (: sk0 and : sk1).

At this end, the detailed results are unknown but the description states that there would

be details about the title and the language of the Poll01 .

The proof explained above is considered more or less simple, this is due to its use of

pre-existing axioms to explain the used assertions. For a more complex reasoning, we

propose to use the notion of proof to dynamically generate composite services, the facts

of which are unknown beforehand.

4.2 Proof based Composition of Services Capabilities

Given a set of possible capabilities, our aim is to achieve a goal (requester goal) from

an initial state. Furthermore, we might have some additional knowledge that can be

incorporated. The above can be expressed in N3 as follows:

Definition 4.7. Services composition problem. Let F be the set of N3 formulas over

an alphabet A which contains the predicates of a capability. A services composition

problem consists of the following formulas:

• A set H ⊂ Fg of ground formulas capturing all resource and application states the

client is currently aware of, the initial state .

• A formula g ∈ F , n(g) ≤ 1, which does not contain existential variables, the goal

state which indicates on a symbolic level what the client wants to achieve.

• A set R of capabilities descriptions or conjunctions of services descriptions, de-

scribing all services available to the requester, the description formulas.

• A (possibly empty) set of N3 formulas B, the background knowledge , where each

b ∈ B is either a ground formula or an implication e1 ⇒ e2: with compn(e1 ⇒
e2) = ∅ for all n > 2, which does not contain existential variables.

Below we discuss N3 capabilities descriptions and how they can serve in discovery and

composition processes. Then, we study how proof can be generated using capability

rules. We precise what kind of results it derives and how far the generated proof can

meet the desired goal.

Chapter4. Proof based Web Services Composition 82

4.2.1 N3 capabilities descriptions

We recall that a service is considered as an uplet S = {Cap,NFP, Pa∗}, where:

• Cap: represents the capability or functionality of the service and consists of:

– an action Verb (AV): concept used to define the action offered by the service;

– set of attributes (DA): a finite set of domain specific attributes pairs (attribute

name, attribute value);

– Pre: a finite set of predicates that should be satisfied to execute the service;

– Post: a finite set of facts that can be reached after executing the service and

which result in a new world.

• NFP: a set of non-functional properties pairs (propertyname, propertyvalue).

• Pa: the pattern used to represent the structural knowledge of a composite service

and the connections between its different components.

We assume that A is an N3 alphabet, f , g ∈ F a set of formulas over A, s1 is an atomic

service with a capability cap, which has an action verb av. The N3 serialization of s1

can be represented as follows:� �
s1 a svc:Service;

svc:hasCapability cap.

cap a cap:Capability.

{preconditions} => {F(cap) postconditions .}.� �
Where:

• preconditions: set of formulas that describe the required resources to execute the

service and access to its capability. Such formulas should not contain any existen-

tial variable.

• F(cap): is considered as a conjunction formula {F (cap) = g(av)h(at)} that consists

of:

1. g(av): ground formula that represents the action verb specific to a given ca-

pability. Such formula should contain only ground expressions. For instance:

g(av): cap cap:hasActionVerb av.

Chapter4. Proof based Web Services Composition 83

2. h(at): formula that includes (universal or existential or both) variables rep-

resenting the attributes of a specific capability. Its N3 representation can be

described as follows:

h(at): cap cap:attribute _:at1 , _:at2 , _:at3.

• postconditions: set of formulas used to describe the facts that can be derived after

the execution of the service. In general, such formulas contain existential variables

as well as all the universal variables contained in the preconditions.

4.2.2 Proof based Composition

We use EYE reasoner to generate capability-driven proofs. Inputs of EYE are domain

ontology triples, capability rules, initial state and the goal. Two plans will be generated:

• Planning: in this stage, the composition problem consists of:

– An initial State S includes a set of ground formulae that capture the current

state.

– A goal G: an N3 formula characterized by i) nesting level n(G) ≤ 1 ; ii) does

not include existential variables.

– A set CR of abstract capabilities describing the available functionalities in

the form of rules.

– A background knowledge (KB) that consists of a set of formulas that can be

either ground formulas or implication formulas (without existential variables).

Given the above elements, the composer tries to generate a proof to check if S ∪
CR∪BK can deliver G’, where G’ ⊆ G. If verified, an abstract plan consisting in

a set of capabilities action verbs and attributes names will be generated.

• The above generated plan with the set of services instances are then used to gener-

ate a concrete plan to be sent to an executor. This executor receives the instanti-

ated plan and tries to execute it instance by instance. Each executed instance will

be evaluated and then added to the knowledge base, where the reasoner checks if

the goal is reached or not. If the goal is reached, the engine returns an answer

back to the user, else, a new plan starting from the current state (after augmenting

the knowledge base with the last instance effects) will be generated and the loop

continues.

Chapter4. Proof based Web Services Composition 84

Algorithm 4: invokeReasoner Algorithm

Input: Initial State S, Goal specification G, set of capability type rules CRi ∈ CR,
KB, filter rule fr, CapInstances.

Output: Composition Plan meeting user goal or nil as failure.
begin

P1 ← {} ;
nCap ← 0 ;
npost ← 0 ;
if (∃Sgi ⊆ SG) where the formula S |= Sgi is True then

Generate proof P;
P1 ← P.Filter (Cap, fr);
nCap ← P1.nb(Cap);
capCheck (nCap) ;

else
return Fail.

Endif
End

Algorithm 4 describes the abstract plan generation. Given the composition problem

(S,G,CR,KB), the reasoner starts to generate the proof by checking if the initial state

satisfies one-to-many parts of the goal.

Algorithm 5: Filter Proof Algorithm

Input: Proof P, Filter Rule fr.
Output: Filtered Proof FP.
begin

FP← {};
while P 6= {} do

FP← invokeReasoner (P, fr);

End

If no entailment is satisfied, the reasoner will not be able to generate a proof, and there-

fore no solution exists for the current composition problem. Consequently, the process

halts with failure. Else, the composition will be invoked and a proof (P) will be delivered

and scanned for applications of abstract capabilities rules (CR). The number of these

applications is set to npre. If npre = 0, the process will be halted with success and the

required composition will be derived. Else, a new proof (FP) will be generated from

the proof (P) using a filter rule fr and containing the abstract capabilities (CRi=action

verbs + attributes names) of the plan. Each capability will be received by the executable

composition generator to be concretized with the best instance among the existing capa-

bility instances w.r.t NFP requirements. The selected instance will be then executed and

the attribute values will be parsed to ground formulas FG by the executor. This latter

will re-invoke the reasoner with the new composition problem (S∪FG, G, AC \ {ACi},

Chapter4. Proof based Web Services Composition 85

KB) and the process will be iterated until npre = 0. Note that in case no instance for a

given CRi was found, the reasoner will re-generate a new proof starting from the current

state and the process will be iterated until reaching the goal.

Algorithm 6: capCheck Algorithm

Input: Initial State S, Goal specification G, set of capability type rules CRi ∈ CR,
KB, filter rule fr, NFP.

Output: Composition Plan meeting user goal or nil as failure.
begin

if (nCap=0) then
Return S ;

else
for (each CRi ∈ P1) do

instancei ← CRi.getInstance(CapInstances, NFP);
instancei.Execute();
Eff ← instancei.getEffect() ;
S ← S ∪ Eff;
invokeReasoner (S, G, CR, KB) ;
if (∃Sgi ⊆ SG) where the formula S |= Sgi is True then

Generate proof P’;
P’1 ← P’.Filter (Cap, fr);
npost ← P’1.nb(Cap);

else
npost ← nCap ;

if (npost ≥ nCap) then
CR ← CR\{CRi} ;
invokeReasoner (S, G, CR, KB);

else
nCap ← npost;
capCheck (nCap) ;

Endif
Endfor

Endif
End

4.2.3 Composition Scenario: Programmable Dinner Scenario

To better understand the concept of proof-based composition and reasoning over dy-

namic capability rules, we return back to the Programmable Dinner scenario defined

in section 3.1.4, which is a composition of a set of services rules serialized in N3 as

presented below.

Chapter4. Proof based Web Services Composition 86

• Get Weather Forecast service :� �
@prefix pd: <http :// example.org/programmableDinner #>.

@prefix ex: <http :// example.org/action#>.

@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .

@prefix owl: <http :// www.w3.org /2002/07/ owl#> .

@prefix string: <http ://www.w3.org /2000/10/ swap/string#>.

@prefix svc: <http :// localhost/neologism/svc#>.

@prefix cap: <http :// localhost/neologism/cap#> .

@prefix av: <http :// localhost/neologism/av#> .

@prefix rdfs: <http ://www.w3.org /2000/01/rdf -schema#>.

@prefix geo: <http :// www.w3.org /2003/01/ geo/wgs84_pos#> .

@prefix tmp: <http :// purl.org/NET/c4dm/timeline.owl#> .

@prefix om: <http :// www.wurvoc.org/vocabularies/om -1.6/> .

?WeatherForcast a svc:Service;

svc:hasCapability ?WeatherForcastCapability;

svc:hasNFP ?wfnfp.

?WeatherForcastCapability a cap:Capability.

?event a pd:Event.

?loc a geo:SpatialThing.

?date a geo:TemporalThing.

{

?event geo:location ?loc;

tmp:atDateTime ?date.

}

=>

{

?WeatherForcast svc:hasCapability ?WeatherForcastCapability.

?WeatherForcastCapability cap:hasActionVerb pd:GetForecast;

cap:attribute _:temp.

_:temp a pd:Temperature;

pd:hasValue _:tval.

?event geo:location ?loc;

tmp:atDateTime ?date;

pd:hasTemperature _:temp.

}.

� �
• Find Restaurant Service :� �

?GetRestaurant a svc:Service;

svc:hasCapability ?GetRestaurantCapability;

svc:hasNFP ?grnfp.

?GetRestaurantCapability a cap:Capability.

?event a pd:Event.

{?event geo:location ?loc. }

=>{

?GetRestaurant svc:hasCapability ?GetRestaurantCapability.

?GetRestaurantCapability cap:hasActionVerb pd:GetRestaurantName;

cap:attribute _:rn.

_:rn a pd:Restaurant;

geo:location ?loc.

?event geo:location ?loc; pd:hasRestaurant _:rn.}.

� �

Chapter4. Proof based Web Services Composition 87

• Create Map-with-Markers Service :� �
?CreateMapWithMarkers a svc:Service;

svc:hasCapability ?CreateMapWithMarkersCapability;

svc:hasNFP ?cmnfp.

?CreateMapWithMarkersCapability a cap:Capability.

{?event geo:location ?loc;pd:hasRestaurant ?rn.}

=>

{? CreateMapWithMarkers svc:hasCapability ?CreateMapWithMarkersCapability.

?CreateMapWithMarkersCapability cap:hasActionVerb pd:CreateMapWithMarkers;

cap:attribute _:map.

_:map a pd:Map; pd:markersFor ?rn.

?event pd:hasMap _:map. }

� �
• Get similar-movies Service :� �

?SuggestMovie a svc:Service;

svc:hasCapability ?SuggestMovieCapability;

svc:hasNFP ?smnfp.

?SuggestMovieCapability a cap:Capability.

{?event a pd:Event.

?mtitle a pd:MovieTitle .}

=>

{? SuggestMovie svc:hasCapability ?SuggestMovieCapability.

?SuggestMovieCapability cap:hasActionVerb pd:SuggestMovie;

cap:attribute _:moviname.

_:moviname a pd:Movie;

pd:hasTitle _:t.

_:t a pd:MovieTitle;

pd:contains ?mtitle.

?event pd:hasMovie _:moviname.

}.

� �
• Identify Theaters Service :� �

?SuggestTheatre a svc:Service;

svc:hasCapability ?SuggestTheatreCapability;

svc:hasNFP ?gtnfp.

?SuggestTheatreCapability a cap:Capability.

{

?event geo:location ?loc;

tmp:atDateTime ?date;

pd:hasMovie ?moviname .}

=>

{? SuggestTheatre svc:hasCapability ?SuggestTheatreCapability.

?SuggestTheatreCapability cap:hasActionVerb pd:SuggestTheatre;

cap:attribute _:th.

_:th a pd:Theatre; geo:location _:h.

?event pd:hasTheatre _:th.

}.

� �

Chapter4. Proof based Web Services Composition 88

• Send Invitation service :� �
?SendInvitation a svc:Service;

svc:hasCapability ?SendInvitationCapability;

svc:hasNFP ?sinfp.

?SendInvitationCapability a cap:Capability.

{

?fm a pd:Mail.

?event a pd:Event.

?event geo:location ?loc;

tmp:atDateTime ?date;

pd:hasTemperature ?temp;

pd:hasRestaurant ?rn;

pd:hasMap ?map;

pd:hasMovie ?moviname;

pd:hasTheatre ?th.

}

=>

{

?SendInvitation svc:hasCapability ?SendInvitationCapability.

?SendInvitationCapability cap:hasActionVerb pd:SendInvitation;

cap:attribute _:msend.

_:msend a pd:InvitationState;

pd:hasValue _:boolean.

?event geo:location ?loc;

tmp:atDateTime ?date;

pd:hasTemperature ?temp;

pd:hasRestaurant ?rn;

pd:hasMap ?map;

pd:hasMovie ?moviname;

pd:hasTheatre ?th.

?event pd:hasInvitationState _:msend.

}.

� �
Assuming that the initial state consists of a given location, a date, a mail list and a

movie title:� �
loc:Gent a geo:SpatialThing.

date :27012015 a geo:TemporalThing.

mail:sanabaccar_at_ceslab.org a pd:Mail.

mail:mohsen_at_gmail.com a pd:Mail.

mail:ons12_at_gmail.com a pd:Mail.

pd:Titanic a pd:MovieTitle.

pd:ProgramDinner a pd:Event;

geo:location loc:Gent;

tmp:atDateTime date :27012015.� �
The goal set by the user is to send an invitation to a list of friends with a list of

restaurants in a given location marked in maps. The invitation includes all the details

of the event such as date, location, movie title and theater name. The invitation should

return the state ”sent”:

Chapter4. Proof based Web Services Composition 89

� �
{

?event geo:location ?loc;

tmp:atDateTime ?date;

pd:hasTemperature ?temp;

pd:hasRestaurant ?rn;

pd:hasMap ?map;

pd:hasMovie ?moviname;

pd:hasTheatre ?th.

?event pd:hasInvitationState ?msend.

}

=>

{

?event geo:location ?loc;

tmp:atDateTime ?date;

pd:hasTemperature ?temp;

pd:hasRestaurant ?rn;

pd:hasMap ?map;

pd:hasMovie ?moviname;

pd:hasTheatre ?th.

?event pd:hasInvitationState ?msend.

}.� �
Listing 4.2 represents an example of an N3 serialization of two concrete instances for the

abstract capability Get Weather Forecast.

Chapter4. Proof based Web Services Composition 90

� �
<http :// www.accuweather.com/> a svc:Service ;

svc:hasCapability <// localhost/neologism/cap#Capability/GetForecast_b1ae8a0f >;

svc:hasNFP <http :// localhost/neologism/NFP#ServiceNFP /6679e6d8 > .

<http :// localhost/neologism/cap#Capability/GetForecast_b1ae8a0f >

a cap:Capability ;

cap:attribute <http :// example.org/programmableDinner#forecast /204 c0b47 > ;

cap:hasActionVerb pd:GetForecast .

<http :// localhost/neologism/NFP#ServiceNFP /6679e6d8 > a nfp:Nfp ;

cap:attribute <http :// example.org/programmableDinner#ServiceCost >

, <http :// example.org/programmableDinner#ResponseTime >

, <http :// example.org/programmableDinner#Availability > .

<http :// example.org/programmableDinner#ServiceCost > a nfp:Cost ;

nfp:hasAttributeValue "10" .

<http :// example.org/programmableDinner#ResponseTime > a nfp:ResponseTime ;

nfp:hasAttributeValue "20" .

<http :// example.org/programmableDinner#Availability > a nfp:Availability ;

nfp:hasAttributeValue "0.5" .

<http :// www.weather.com/> a svc:Service ;

svc:hasCapability <// localhost/neologism/cap#Capability/GetForecast_a9a1db92 >;

svc:hasNFP <http :// localhost/neologism/NFP#ServiceNFP /87308e37 > .

<http :// localhost/neologism/cap#Capability/GetForecast_a9a1db92 >

a cap:Capability ;

cap:attribute <http :// example.org/programmableDinner#forecast /204 c0b47 > ;

cap:hasActionVerb pd:GetForecast .

<http :// localhost/neologism/NFP#ServiceNFP /87308e37 > a nfp:Nfp ;

cap:attribute <http :// example.org/programmableDinner#ServiceCost >

, <http :// example.org/programmableDinner#ResponseTime >

, <http :// example.org/programmableDinner#Availability > .

<http :// example.org/programmableDinner#ServiceCost > a nfp:Cost ;

nfp:hasAttributeValue "7" .

<http :// example.org/programmableDinner#ResponseTime > a nfp:ResponseTime ;

nfp:hasAttributeValue "23" .

<http :// example.org/programmableDinner#Availability > a nfp:Availability ;

nfp:hasAttributeValue "0.8" .� �
Listing 4.2: Alternative instances for GetWeatherForecast Capability serialized in N3

The reasoner takes the defined descriptions, the initial knowledge and the goal as inputs

and generates a proof. Note that the existing of proof means that the desired goal is

theoretically reachable over the current knowledge and the existing abstract capabilities.

Going through the generated proof, we can observe that the proof starts by describing

its main entity, which is based on a conjunction of one-to-many components. Then,

it explains step by step how the reasoner arrives at the conclusion. As shown in the

listing below, the generated proof starts from the result and describes one component

#lemma1.

Chapter4. Proof based Web Services Composition 91

� �
[a r:Proof , r:Conjunction;

r:component <#lemma1 >;

r:gives {

pd:ProgramDinner geo:location loc:Gent.

pd:ProgramDinner tmp:atDateTime <http :// example.org/date #27012015 >.

pd:ProgramDinner pd:hasTemperature _:sk2.

pd:ProgramDinner pd:hasRestaurant _:sk6.

pd:ProgramDinner pd:hasMap _:sk9.

pd:ProgramDinner pd:hasMovie _:sk16.

pd:ProgramDinner pd:hasTheatre _:sk20.

pd:ProgramDinner pd:hasInvitationState _:sk24.

}].� �
As we have mentioned so far, lemmas can be classified into two main types: Inference

and Extraction. The Inference lemmas instantiate the related filter rule with the existing

knowledge, whereas the Extraction lemmas describe the origin of the knowledge without

the need to prove it.

As illustrated in the listing below, #lemma1 is an inference to give the invitation state

as well as the details of the programmable dinner such as the date, the temperature

at this date, the restaurant where the dinner program will take place, the movie to be

watched, etc. #lemma1 uses the rule described in #lemma10 and instantiates the triples

that exist in #lemma2- #lemma9 to arrive to this conclusion.� �
<#lemma1 > a r:Inference; r:gives {pd:ProgramDinner geo:location loc:Gent.

pd:ProgramDinner tmp:atDateTime <http :// example.org/date #27012015 >.

pd:ProgramDinner pd:hasTemperature _:sk2.

pd:ProgramDinner pd:hasRestaurant _:sk6.

pd:ProgramDinner pd:hasMap _:sk9.

pd:ProgramDinner pd:hasMovie _:sk16.

pd:ProgramDinner pd:hasTheatre _:sk20.

pd:ProgramDinner pd:hasInvitationState _:sk24}; r:evidence (

<#lemma2 >

<#lemma3 ><#lemma4 >

<#lemma5 ><#lemma6 >

<#lemma7 > <#lemma8 ><#lemma9 >);

r:rule <#lemma10 >.� �
As shown in listing 4.3, the Extraction lemmas such as #lemma2 and #lemma3 are

directly point to the source file that must be parsed to get the triple or rule. These

lemmas with a filter rule (#lemma11) will be then used by an Inference lemma (#lemma4)

to instantiate the capability GetForecast and its related attributes. The same process

will be recursively iterated so that each derived triple should be justified by an Inference

lemma, which should be justified in its turn via Extraction lemmas until arriving at the

axioms existing in the input files and instantiating all the capabilities required to reach

the given goal.

Chapter4. Proof based Web Services Composition 92

� �
<#lemma2 > a r:Extraction; r:gives {pd:ProgramDinner geo:location loc:Gent};

r:because [a r:Parsing; r:source <file :///c:/pd/is.n3 >].

<#lemma3 > a r:Extraction; r:gives {pd:ProgramDinner tmp:atDateTime;

r:because [a r:Parsing; r:source <file :///c:/pd/is.n3 >].

<#lemma4 > a r:Inference; r:gives {_:sk0 svc:hasCapability _:sk1.

_:sk1 cap:hasActionVerb pd:GetForecast.

_:sk1 cap:attribute _:sk2.

_:sk2 a pd:Temperature.

_:sk2 pd:hasValue _:sk3.

pd:ProgramDinner pd:hasTemperature _:sk2};r:evidence (<#lemma2 ><#lemma3 >);

<#lemma9 > a r:Inference; r:gives {_:sk22 svc:hasCapability _:sk23.

_:sk23 cap:hasActionVerb pd:SendInvitation.

_:sk23 cap:attribute _:sk24.

_:sk24 a pd:InvitationState.

_:sk24 pd:hasValue _:sk25.

pd:ProgramDinner pd:hasInvitationState _:sk24}; r:evidence (

<#lemma18 > <#lemma14 > <#lemma2 > <#lemma3 > <#lemma4 > <#lemma5 >

<#lemma6 > <#lemma7 > <#lemma8 >);

r:rule <#lemma19 >.

<#lemma11 > a r:Extraction; r:gives {{?x0 geo:location ?x1.

?x0 tmp:atDateTime ?x2} => {_:x3 svc:hasCapability _:x4.

_:x4 cap:hasActionVerb pd:GetForecast.

_:x4 cap:attribute _:x5.

_:x5 a pd:Temperature.

_:x5 pd:hasValue _:x6.

?x0 geo:location ?x1.

?x0 tmp:atDateTime ?x2.

?x0 pd:hasTemperature _:x5}};

r:because [a r:Parsing; r:source <file :///c:/pd/rules.n3 >].

<#lemma19 > a r:Extraction; r:gives {{?x0 a pd:Mail.

?x1 a pd:Event.

?x1 geo:location ?x2.

?x1 tmp:atDateTime ?x3.

?x1 pd:hasTemperature ?x4.

?x1 pd:hasRestaurant ?x5.

?x1 pd:hasMap ?x6.

?x1 pd:hasMovie ?x7.

?x1 pd:hasTheatre ?x8} => {_:x9 svc:hasCapability _:x10.

_:x10 cap:hasActionVerb pd:SendInvitation.

_:x10 cap:attribute _:x11.

_:x11 a pd:InvitationState.

_:x11 pd:hasValue _:x12.

?x1 geo:location ?x2.

?x1 tmp:atDateTime ?x3.

?x1 pd:hasTemperature ?x4.

?x1 pd:hasRestaurant ?x5.

?x1 pd:hasMap ?x6.

?x1 pd:hasMovie ?x7.

?x1 pd:hasTheatre ?x8.

?x1 pd:hasInvitationState _:x11}};

r:because [a r:Parsing; r:source <file :///c:/pd/rules.n3 >].� �
Listing 4.3: Proof-based composition for Programmable Dinner Scenario

Chapter4. Proof based Web Services Composition 93

The proof can then be used to generate the abstract plan by simply defining filter rules

that extract the candidate services (identified by their action-verbs) and the possible

dependencies between them. P1 and P2 defined below represent two generated plans.

1. P1: [GetForecast, GetRestaurantName, CreateMapWithMarkers, SuggestMovie,

SuggestTheatre, SendInvitation]

2. P2: [GetForecast, SuggestMovie, SuggestTheatre, GetRestaurantName, CreateMap-

WithMarkers, SendInvitation]

Candidate capabilities should include the following action verbs: i) GetForecast, ii) Ge-

tRestaurantName, iii) CreateMapWithMarkers, iv) SuggestMovie, v) SuggestTheatre,

vi) SendInvitation. For the capabilities attributes, they are temporary unknown (but

they exist). Using the same instantiation and substitution operations, the blank nodes

of each capability will be instantiated one by one.

4.3 Correctness of Web services composition proofs

Once the composition process was generated using proofs, the correctness of these proofs

has to be verified to garantee the consistency of the generated plan. In this context,

[148] introduced two different kinds of proofs, pre-proof and post-proof, for a composition

problem based on proofs. The idea beyond this extension to the notion of proofs in

classical Semantic Web vision [163] is to support dynamic data. We propose to use

these types of proofs to handle dynamic data in Web services environments.

Given the initial state S, the background knowledge KB, the set of abstract capabilities

CR, and the goal G, a pre-proof assumes that the execution of all abstract capabilities

will behave as expected. This means S ∪ CR ∪KB |= G1, where G1 ⊆ G.

A post-proof considers an additional evidence about the goal. This evidence is provided

by the current execution results, which gives: S∪AC ∪KB∪{executionresults} |= G2,

where G1 and G2 are instances of G.

The verification process is important because we can never guarantee that a composition

that has proven to work in theory will always and reliably achieve the desired result

in practice, since the individual steps can fail. Some faults cannot be predicted and

may cause a composition not to reach a goal that would normally be possible. In our

case, the pre-proof assumes that correct behaviors of all involved services will lead to a

composition satisfying the desired goal. The pre-proof can be validated at design time.

Chapter4. Proof based Web Services Composition 94

However, the post-proof can be validated only after executing the composition process

and getting results.

However, checking the correctness of proofs requires to formalize them in a machine

readable way. The N3 proof vocabulary created in the context of the Semantic Web Ap-

plication Platform (SWAP) [158] provides this formalization. A proof is considered as a

conjunction of N3 formulas describing inference steps a reasoner has performed to come

to a certain conclusion. These inference steps, also called proof steps, are Axiom, Con-

junction elimination, Conjunction introduction, and Generalized modus ponens. Given

a set of formulas F over an N3 alphabet A, Γ ⊆ F a set of formulas and f, f1, f2, g ∈ F ,

then the proof steps are characterized as deduction rules as indicated below.

1. Axiom: If f ∈ Γ then Γ ` f

2. Conjunction elimination: If Γ ` f1f2 then Γ ` f1 and Γ ` f2.

3. Conjunction introduction: Let Γ ` f1 and Γ ` f2 and let ρ1,, ρm be existential

renamings such that f ′2 = ρ1 ◦, ◦ρm(f2) with comp(f1) ∩ comp(f ′2) ∩ VE = ∅
then Γ ` f1f ′2.

4. Generalized modus ponens: If Γ ` {f1} ⇒ {f2} and Γ ` g and there exist universal

replacements µ1,, µn such that µ1 ◦, ◦µn({f1} ⇒ {f2}) = {f ′1} ⇒ {f ′2} and

f ′1 = g then Γ ` f ′2.

Definition 4.8. Correctness of proof calculus. Let Γ be a set of N3 formulas and f a

formula over the same N3 alphabet A. Then, If Γ ` f then Γ |= f .

Checking the correctness of a given proof consists in proving that every proof step is

correct. [164] discussed the correctness of proof steps and provided a detail demonstra-

tion for each step. Applying this to the Web services composition problem, we consider

the correctness of Web services composition proofs as indicated in the definition below.

Definition 4.9. Correctness of Web services composition proofs. Let (S,CR,KB,G)

be a composition problem and G1 and instance of G then If S ∪ CR ∪KB ` G1 then

S ∪ CR ∪KB |= G1

To handle the correctness proof of the composition problem, the generalized modus

ponens step proof can be considered as the most important step because in this step

implication rules such capabilities descriptions are applied. In this context, let A be

an N3 alphabet, f ∈ F (G) a ground formula and {f1} ⇒ {f2} ∈ F (G) an implication

of nesting level 2 where all universal variables which occur in f2 also occur in f1. If

Chapter4. Proof based Web Services Composition 95

the generalized modus ponens is applicable to f and {f1} ⇒ {f2} then the resulting

formula does not contain universal variables. This was proved in [164].

Let A be an N3 alphabet and I = (D, δ, ω) be an interpretation of its formulas. Let

q, p, p1, ..., pn ∈ U be N3 representations of proof steps and s1, s2, s3 ∈ U . Then, the N3

proof vocabulary looks as follows:

1. Proof step types:

• I |= q a r:Proof. iff q is the proof step which leads to the proven result.

• I |= q a r:Parsing. iff q is a parsed axiom.

• I |= q a r:Conjunction. iff q is a conjunction introduction.

• I |= q ar:Inference. iff q is a generalized modus ponens.

• I |= q a r:Extraction. iff q is a conjunction elimination.

2. Proof predicates:

• I |= q r:gives {f}. iff f ∈ F is the formula obtained by applying q.

• I |= q r:source u. iff q is a parsed axiom and u ∈ U is the URI of the parsed

axiom’s source.

• I |= q r:component p. iff q is a conjunction introduction and p is a proof step

which gives one of its components.

• I |= q r:rule p. iff q is a generalized modus ponens and p is the proof step

which leads to the applied implication.

• I |= q r:evidence (p1,, pn). iff q is a generalized modus ponens and

p1,, pn are the proof steps which lead to the formulas used for the unifi-

cation with the antecedent of the implication.

• I |= q r:because p. iff q is a conjunction elimination and p is the proof step

which yields the to-be-eliminated conjunction.

3. Substitutions

• I |= q r:binding s1. iff q includes a substitution s1.

• I |= s1 r:variable s2. iff s1 is a substitution whose domain is {s2}.

• I |= s1 r:boundTo s3. iff s1 is a substitution whose range is {s3}.

The reasoner (in our case EYE) requires to be given all formulas about S∪CR∪KB and

the desired goal G to be proven in order to produce a proof for a composition problem.

The goal is provided as as the consequence of a filter rule {f} ⇒ {G}. Upon receiving

Chapter4. Proof based Web Services Composition 96

this sequence, the reasoner will proceed to prove an instance of f and returns each

provable ground instance of G if possible, or a provable instance containing existentials

otherwise.

4.4 Conclusion

In this chapter, we have explained a novel solution to automated composition and ex-

ecution of Web services. A crucial part in generating a composition is the ability to

determine whether it will satisfy a given goal without any undesired effects. This has

led us to the approach of a pragmatic proof, wherein services capabilities are incorpo-

rated as inference rules. One major advantage of using proof-based composition is that

it does not require new algorithms and tools, but can be applied with existing Semantic

Web reasoners. Those reasoners can easily incorporate external sources of knowledge

such as ontologies or business rules. Furthermore, the performance of composition gen-

eration improves with the evolution of those reasoners. Also, the fact that a third-party

tool is used allows independent validation of the composition.

We have introduced the main ingredients for a proof based method. More precisely, we

have motivated the use of N3 rule language and discussed its formalization depicting

syntax and semantic features. Then, we have presented EYE reasoner and outlined the

motivations beyond its usage compared to other semantic reasoners. We ended this part

by explaining proof methods using N3 and EYE. In a second part, we have studied the

generation of service compositions by discussing the mapping of capabilities based spec-

ifications into N3 and explaining the composition strategy relying on a Programmable

Dinner composition scenario. Finally, we have explained the use of proofs in verification

purposes. Next chapter will show how the proposed contribution was implemented and

study the performance of the proof based composition strategy.

Chapter 5

Implementation and Performance

Study

Contents

5.1 Implementation . 98

5.2 Performance Study . 101

5.2.1 Parsing and Reasoning performance 102

5.2.2 QoS-Aware Service Selection performance 104

5.2.3 Comparative study . 105

5.2.3.1 Comparison of DECSerComposer Reasoning-module

with DSOL-Engine (DEng) 105

5.2.3.2 Comparison of DECSerComposer Selection-module with

MOACO . 106

5.2.3.3 Comparison with RFC and 2P approaches 107

5.3 Conclusion . 108

In this chapter, we discuss the implementation details of the prototype that realizes the

major features of our approach to support the full round-trip composition life-cycle in

a unified and declarative way. The purpose of the implementation prototype is firstly

to demonstrate the feasibility of the proposed solution, and secondly to use it as a test

bed to evaluate the declarative integrated approach. The second part of this chapter is

dedicated to the performance study of this approach. We start by evaluating its different

components and comparing them with some existing composition frameworks. We con-

sider various criteria such as services dependencies, number of parameters (preconditions

and effects), number of instances, time consumption and scalability.

97

Chapter5. Implementation and Performance Study 98

5.1 Implementation

We have studied the feasibility of our proposed composition framework described in

chapter 3 by implementing a Java-based prototype, which is generic enough to be used

by different composition scenarios. The composition process starts when the user spec-

ifies a composition query using a user-friendly interface, allowing to define the required

functionalities and the desired non-functional attributes (such as QoS parameters), as

well as their related constraints. In a second step, the application converts the composi-

tion design into the corresponding capabilities models and the process will be launched.

As illustrated in figure 5.1, three main phases will take place:

Figure 5.1: Implementation Architecture

• The pre-processing phase: enables to parse the query, extract the functional (FR)

and non-functional (NFR) requirements and define the knowledge base such as

constraints, capability ontology, instance ontology and type ontology.

• The translation phase: focuses on converting automatically the composition design

into capabilities models. These capabilities models are then transformed into N3

specification. Specified constraints are also translated into N3 formulas.

• The reasoning phase: uses the EYE reasoner during the planning phase, to either

provide possible composition solutions or detect conflicts. In case of conflicts the

verification phase attempts to identify the cause of conflict and may resolve it by

asking to update the composition design (or the hard constraints) or re-invoking

the reasoner. In case of multiple solutions, the user may give options or preferences

Chapter5. Implementation and Performance Study 99

to rank or select one particular solution, which is then used by the Java application

to perform the actual services execution.

Figure 5.2 illustrates a snapshot of the query editor console of the prototype. The

query editor consists of two parts: first part (left panel) enables the users to define

the functional and non-functional user requirements. The required functionalities are

represented as a set of capabilities, each of which is described by a an action names

(action verbs) and a set of its related attributes (names and values). The lower left

panel allows the users to express their non-functional requirements, such as QoS, by

defining the attributes and their related constraints. A query viewer is included to

check the parsed query after defining it. The second part of the console (right panel)

allows the users to view the generated plans and their related concrete compositions.

Taking the set of the defined capabilities as inputs, a simple click on Start Generating

Plans button will invoke the reasoner and none-to-many plans may be generated and

scanned in the console. The non functional requirements will be then taken as inputs

with the generated plan to provide an optimal executable composition that consists of

a set of Web services calls (URLs).

Figure 5.2: Snapshot of the Query Editor Console

For monitoring purposes, this engine uses log4j 1 to generate logs of the events during

the execution of the composition process. This event log is fed to our framework in order

to provide the runtime information that is required for monitoring. The output of log4j

1http://logging.apache.org/log4j/2.x/

Chapter5. Implementation and Performance Study 100

is analyzed by the event receiver of the prototype in order to extract the events which

are taken into account during the monitoring process.

Figure 5.3 shows a snapshot of the monitoring console of the prototype. The upper

left panel of the monitoring console shows the formulas that express the constraints to

monitor. Using the console, the user of our framework can select one or more of the

formulas to monitor. Once selected, a formula appears in the lower left panel of the

console. When monitoring is activated, the cases which violate and satisfy the selected

formulas are shown in the monitoring console (see upper right panel of the console). The

user can select any of these cases in order to see the exact instantiation of the formula

(template) that underpins the case. This instantiation includes the events that have

been unified with the different predicates in the formula, the source and timestamp of

each of these events and the truth values of the concepts that the events have been

unified with.

Figure 5.3: Snapshot of the monitoring console

The monitoring engine is based on EYE Reasoner to (i) process the events that are

recorded in the event log by an event extractor based on the order of their occurrence,

(ii) identify other expected events that should have happened but have not been recorded

(these events can be derived from the composition requirements by deduction), and (iii)

check if these events are compliant with the constraints of the composition process.

The satisfiability of a requirement can be checked against the recorded behavior of the

composition process. More specifically, checking whether the set of the recorded events

Chapter5. Implementation and Performance Study 101

that have been generated by the execution of the composition process entail the negation

of a requirement. When requirements variations are detected, a deviation notification is

sent to the composition manager. This notification indicates: (i) the requirement that

has been violated, (ii) the malfunctioning service(s) that violated it, and (iii) diagnostic

information regarding the violation. Based on the type of the deviation notification and

the service monitoring policies, recovery techniques will be triggered. A deviation viewer

is also incorporated with the monitoring console.

5.2 Performance Study

Due to the lack of testing dataset for capability-based web services (described in N3),

and most of existing web service is based on OWL-S and WSDL, we can not test our

approach directly. Therefore, we constructed a test dataset and we published it using

the OpenLink Virtuoso [165] as data store to carry out simulation experiments and val-

idate our WSC approach. The benchmark, discussed in this section, was executed on

one 2.6 GHz Intel core i5 processor, 4 GB of RAM, and 64-bit Windows7 OS. Gener-

ally, a precise evaluation for a service composition method needs to analyze composite

services built by the method and measure the execution time of the whole composition

process. However, in contrast to traditional Web service composition methods, in our

approach the composition should be regenerated at each step. Therefore, the feasibility

of the approach depends on whether the composition cost is within reasonable limits.

Consequently, an evaluation should assess whether the composition happens sufficiently

fast for realistic composition scenarios and in presence of a reasonable number of ser-

vices to be used in the composition process. Our composition strategy relies also on the

use of EYE reasoner. Therefore, the performance of the approach depends also on how

well this reasoner performs on creating proofs for compositions of varying lengths and

complexity.

The main criteria we are considering are the composition speed-up, time consumption,

and the execution time required for selecting the optimal instance for each capability

candidate and generating the best executable composition. We claim that the composi-

tion time depends mainly from the time to determine the composition plan.

To conduct fair experiments, we need a sufficient number of services and ontologies with

a variety of sizes. However, it is very hard to collect or manually construct appropriate

data. For this reason, we have just used our programming dinner scenario, described

in section 3.1.4, and we have varied the number of capabilities and instances (for each

capability). Below, we depict the main experiments and results.

Chapter5. Implementation and Performance Study 102

5.2.1 Parsing and Reasoning performance

The experiments performed at this level aim to study the performance of the EYE

reasoner and consist in continuously increase the number of services and vary their

associated dependencies. We use the benchmark 2 framework, developed for hypermedia

API composition, and we assume that each service existing in the plan depends on one-

to-many other services candidates. Results obtained by applying EYE and cwm [158]

reasoners are depicted in figures 5.4(a) and 5.4(b) respectively.

0 10 20 30
60

80

100

120

140

160

Number of services

P
ar

si
n
g

&
R

ea
so

n
in

g
T

im
e

(m
s)

d = 1 d = 2 d = 3

(a) Benchmark results using EYE rea-
soner

0 10 20 30

80

100

120

140

160

Number of services

P
ar

si
n
g

&
R

ea
so

n
in

g
T

im
e

(m
s)

d = 1 d = 2 d = 3

(b) Benchmark results using cwm rea-
soner

Figure 5.4: Parsing and reasoning time using EYE and Cwm

As shown in figure 5.4, the overall time required to parse the existing atomic/composite

services and reason over them is quite reasonable for both reasoners and increases linearly

with the number of services descriptions as well as their related dependencies. In the

simplest case, each service candidate depends only on its precedent service (d=1). The

most complex case, in our evaluation scenario, assumes that each service depends on

three services (d=3). However, the resulted benchmarks indicate that the EYE reasoner

allows for faster processing of the existing descriptions and outputs answers in a constant

way compared to cwm. For instance, reasoning over a plan length equal to 32 services

with a number of dependencies d equal to 1 using EYE is reduced to 20 ms compared

to that reasoned by cwm. This difference increases linearly according to the continuous

increase of the number of services.

The main reason to the difference in performance between EYE and cwm is related to

their reasoning mechanisms. EYE is a backward-chaining reasoner, which starts from

the goal and works towards the initial state, whereas cwm is forward-chaining, exploring

inferences from the initial state onwards until the goal has been reached.

2Available at http://github.com/RubenVerborgh/RESTdesc-Composition-Benchmark

Chapter5. Implementation and Performance Study 103

Experiments depicted in figure 5.5 aim to measure the required time to generate plans

with different sizes by increasing the number of capabilities, varying their related de-

pendencies (we assumed that each capability depends on all the other capabilities) and

fixing their corresponding parameters to 14 (4 preconditions and 10 postconditions).

Results shown in figure 5.5 are perfectly acceptable. For instance, the generation of a

plan with 7 capabilities, 6 dependencies and 14 parameters for each capability takes less

than one second. Plans with more than 20 capabilities takes less than two seconds to

be generated.

5 10 15 20

0.5

1

1.5

Plan Size

T
im

e
T

o
P

la
n

(s
)

Figure 5.5: Time Required to generate abstract plans with different sizes

Moreover, we varied the number of attributes/predicates from 2 to 4 for the precondi-

tions and from 6 to 10 for the effects of the candidate services. Figure 5.6 shows the

impact of the number of preconditions and effects predicates on the required time of the

composition.

3 8 16
0.1

0.15

0.2

0.25

0.3

Plan Size

R
u
n
n
in

g
T

im
e

(s
)

2 Pre/6 Post 3 Pre/8 Post 4 Pre/10 Post

Figure 5.6: Required Time to generate abstract plans of different sizes varying the
number of preconditions and postconditions

Chapter5. Implementation and Performance Study 104

The most important observation is that, for a fixed size of plan, as the number of

parameters increased, the planning time is increased. Which improves the effective

impact of the number of parameters in the execution time.

5.2.2 QoS-Aware Service Selection performance

This section focuses on measuring the performance of generating the optimal composition

based on a fixed number of QoS parameters. Experiments consist in measuring the time

required to determine the optimal executable plan by varying the number of the abstract

capabilities and the number of instances for each capability.

In figure 5.7, we keep constant the plan length (number of abstract capabilities) and

vary the number of concrete instances. The plan length was fixed to 7 (7 abstract

capabilities). the number of instance varies for each capability in the abstract plan.

Results show that the execution time increases linearly according to the continuous

increase of the number of instances.

20 40 60 80

2

3

4

5

6

Number of instances per capability

R
u
n
n
in

g
T

im
e

(s
)

Figure 5.7: Time Required to identify optimal executable compositions with 7 ab-
stract capabilities

In figure 5.8, we consider plans with different sizes (between 3 and 10 abstract capabili-

ties) and vary the number of instances for each abstract capability existing in each plan.

We measure the time required for binding the executable counterparts of each plan. It

is obvious that when the number of capabilities/instances increases, the execution times

for generating executable compositions increases accordingly. However, results show

that the time to define an optimal composition increases constantly for different sizes of

the plans and with different numbers of instances.

Chapter5. Implementation and Performance Study 105

0 20 40 60 80 100 120
0

2

4

6

8

Number of instances per capability
R

u
n
n
in

g
T

im
e

(s
)

3 AS
7 AS
10 AS

Figure 5.8: Time for optimal plan bindings

5.2.3 Comparative study

In this section, we focus on comparing the performance of our composition model with

some existing approaches in the same context. Our comparative study consists of three

parts: we start by comparing the first level (abstract composition) module of our compo-

sition framework, then the second part is devoted to compare the second level (concrete

composition) module. Some experiments to evaluate the whole two-phase composition

framework are carried out in the third part.

5.2.3.1 Comparison of DECSerComposer Reasoning-module with DSOL-

Engine (DEng)

To this end, we measure the execution time of the composition process displayed by

our framework and we apply a comparative study of the results with the performance

benchmarks of DSOL-based framework, which is described in [12]. So that, we have

compared the elapsed time for the path finding of our method to the DEng3 tool and

evaluated the performance of each method based on the results. We have measured the

elapsed time to identify the composition paths using the time stamp of the system. For

fair evaluation, the original implementations of both of the approaches were compared.

To conduct fair experiments, we need a sufficient number of services and ontologies

with a variety of sizes. As show in figure 5.9, we measure the time elapsed to find

every composition path with varying the number of abstract services (AS) from 5 to 20

and each capability (AS) includes 4 preconditions and 10 postconditions. As illustrated

by the experimental results, the time required to dynamically generate plans increases

linearly with the increase of the number of capabilities. However, the time to plan taken

by our DECSerComposer is quite reduced compared to that of DEng. This difference in

3https://github.com/leandroshp/dsol

Chapter5. Implementation and Performance Study 106

planning time between the two composers can be dramatically increased in case of using

a larger number of capabilities (tasks) in the composition scenario. Moreover, although

the continuous increase of the size of the generated plans, the elapsed time to find path

does not increase rapidly in our framework. Which makes our proposed approach a good

candidate for composition process, especially over Web scale.

4 6 8 10 12 14 16

0.2

0.3

0.4

0.5

0.6

Plan Size

T
im

e
T

o
P

la
n

(s
)

DEng DECSerComposer

Figure 5.9: Time Required to generate plans with different sizes

5.2.3.2 Comparison of DECSerComposer Selection-module with MOACO

To verify the results obtained from the QoS-aware selection-module of our proposed

framework, we carry out a comparative study with MOACO-based selection approach

[64], which aims to provide an optimal Web service composition. Note that MOACO is

considered one of the best multi-objective Ant Colony Optimization (ACO) algorithm for

the bi-objective Traveling Salesman Problem (TSP) [166, 167]. To this end, we describe

in table 5.1 different composition scenarios that are based on varying the number of

both abstract services (St) and service instances (Si) and we measure the time required

to obtain optimal plan bindings for each scenario.

Table 5.1: Test Scenarios w.r.t number of service types and service instances

Test Scenario St Si

1 5 10

2 10 20

3 20 20

4 20 40

Figure 5.10 shows the time required to identify the optimal concrete compositions. As

it can be seen, for the same composition scenarios, MOACO-based approach is quietly

outperforms our proposed selection module, which is slightly slower in term of execution

Chapter5. Implementation and Performance Study 107

time. This can be explained by the high number of parameters (17 parameters) and

the multiple mathematical steps used by our TOPSIS-based selector to identify the best

instance according to each task existing in the plan. Moreover, the difference becomes

smaller as the number of services instances increases, which improves the effectiveness

of our approach at large scale data set like the Web.

1 2 3 4

2

4

6

8

10

Scenario

T
im

e
F

or
B

in
d
in

g
(s

)

MOACO DECSerComposer

Figure 5.10: Time Required to generate optimal concrete compositions with different
composition scenarios

5.2.3.3 Comparison with RFC and 2P approaches

In this section, we use a large scale data set to compare the scalability of our approach

(DECSerComposer) with that of the two declarative approaches (RFC) presented in [168]

and the two-phase approach (2P) proposed in [169, 170] with respect to the number of

services (instances). We compared the three approaches based on the execution time.

The execution time is the time spent on performing the Web services composition when

a user sends a query to the system. To this extent, we randomly generate synthetic Web

services data sets containing 10,000 Web services (instances). The parameters of Web

services are uniformly distributed and each parameter is randomly assigned into a Web

service. Then, we generate 1000 synthetic queries. The values of the parameters for

these queries are randomly selected from the parameters of all generated Web services,

and therefore the parameter domain of these queries has the same value as the parameter

domain of the services set. The number of parameters are randomly chosen according

to the number of parameters of the services set. Moreover, we consider a plan size of 3

capabilities in each generated query.

Figure 5.11 depicts the performance results for varying the number of Web services. Our

approach performed significantly better then two phase algorithm and RFC system. As

shown in the figure, the difference between the execution times of the three approaches

Chapter5. Implementation and Performance Study 108

2 4 6 8 10

0

20

40

60

80

100

Number of Web Services (thousands)
E

x
ec

u
ti

on
T

im
e

(s
)

DECSerComposer RFC 2P

Figure 5.11: Comparison of our approach with RFC and 2P systems with
#Nparameters=2-6

increases linearly. This result was expected since, in our approach, we have introduced

several optimizations compared to the two other approaches. First, the separation be-

tween services types and services instances helped in reducing the space search. Second,

the reasoning mechanism has an important impact on the overall composition execution

time.

5.3 Conclusion

In this chapter, we have discussed the implementation and studied the performance

of the proposed approach. We have also compared our approach to three declarative

approaches for Web services compositions, which are DSOL, NRC and 2P. Experiments

results clearly show the added value of the proof based composition as a viable strategy

to improve the composition process.

Regarding the limitations of the approach presented in this thesis, one observation con-

cerns the abstraction level in modeling services abstract capabilities and their related

instances. We have extensively modeled different components at an abstract level and

although the models presented are very expressive, they may need to be modified and

updated for modeling some concrete low-level details. As the proposed approach is

extensible and is based on expressive capabilities, the proposed models can thus be

modified and new ones can be added to handle other requirements such as those related

to privacy dimensions or security properties. Then, the proposed tool for the process

specification is in early phases and only serves as a proof of concept prototype. Although

it can handle partial process specification, can automatically generate N3 models and

can directly invoke the EYE reasoner and parse the results returned, it does not handle

process verification and monitoring.

Chapter 6

Conclusions and Future Work

Contents

6.1 Summary . 109

6.1.1 Problem definition . 109

6.1.2 Proposed approach . 112

6.2 Outlook and Future Work . 114

6.2.1 Services mashups and cloud service compositions 114

6.2.2 Quality of Experience driven Service Composition 115

6.2.3 Pervasive services composition 116

The current chapter summarizes this dissertation and provides potential avenues for

future work based on the aforementioned contributions. We first review the problem

description and motivations behind investigating an integrated declarative approach for

Web services compositions. Then, we draw conclusions about the contributions of this

work. The research addressed in this thesis is by no means complete and leaves enough

room for further research. Consequently, we provide an outlook on several aspects that

remain open as future work. We plan to address some of these issues in our ongoing

research work.

6.1 Summary

6.1.1 Problem definition

Web services composition has been a major research topic in the past years. A vast

number of service composition approaches have been proposed in literature. However,

despite the huge number of research efforts and fast development of composition models

109

Chapter6. Conclusions and Future Work 110

and approaches over the last years, several problems still need to be addressed. These

problems are related to the proliferation of partial solutions, the lack of expressiveness

and flexibility to handle functional and non-functional user requirements, the lack of

integration, and the lack of integrated monitoring and recovery actions.

In this dissertation, the focus was on two major bottlenecks in the current process of

modeling compositions. The first bottleneck is related to the expert level required to

achieve a given composition. Typical procedural style of modeling, inspired by work-

flow/business process paradigms do not provide the required abstractions, and therefore

fail to support dynamic, self-managed compositions and could not adapt to changes

that can happen continuously, unpredictably, and inevitably lead to failures. A lan-

guage such as the Business Process Execution Language for Web Services (WS-BPEL)

is completely an expert language. Thus, specifying and developing a composition using

WSBPEL is a lengthy, costly, and high-risk process. A second bottleneck in current

services compositions concerns their life-cycle and their management, also called their

governance. The challenge is how to achieve a full governance of the composition al-

lowing its continuous and dynamic improvement. Traditional approaches focus only on

some stages of process life-cycle and little initiatives, however, have been proposed to

integrate these related criteria using a unified formalism. Also, it is not always possible

to have a complete transformation between modeling approaches mainly if we consider

non-functional requirements into account. Lack of integration presents a major barrier

to learn from run-time failures and provide recovery actions.

The challenge at the modeling phase concerns the languages and models used to specify

services and their interactions. Mainstream SOC languages, like BPEL and BPMN,

are built with classical procedural constructors which contain explicit and complete

information about the process flow. Although this adds a lot to the control over the

composition process, however as there is trade off between the control and flexibility,

this control comes at the expense of process flexibility and thus making the process rigid

to adapt to continuously changing situations and possibly not even conforming to the

process specification requirements.

Regarding the verification phase , the focus is on the actions to take once composi-

tion specifications are given. Flexible composition of services and processes with non-

functional concerns entails the danger that important rules or constraints of the service

or process models get violated or overlooked. Today’s state-of-the-art in verifying and

validating instances of service or process models, however, can hardly cope with the com-

plexity and dynamics of an end-to-end business compliance framework – both at design

time and runtime. Furthermore, they are hard to use, especially for non-programmers.

In addition, existing formal verification methods are not integrated with the existing

Chapter6. Conclusions and Future Work 111

service or process models, and hence a semi-automated verification is hard to achieve in

an end-to-end business compliance framework.

The proposed approaches for the composition verification, in general, require mapping

the process (mostly defined using procedural approaches such as BPEL) to some formal

logic (such as petri-nets, automata or process logic) and then using model checkers

to verify the composition process. This transformation based approach has two major

limitations, first the proposed verification approaches are based on traditional procedural

approaches which have less expressibility, flexibility and adaptability and dynamism as

compared to the declarative ones. Further, the limited expressiveness makes it difficult

to verify the non-functional properties associated with the composition process.

Finally, at the monitoring phase , the challenge is to define novel principles and tech-

niques for cross-layer monitoring of composition processes, which is a challenging task

due to the versatility and the dynamicity of a service composition. Monitoring frame-

works should also deal with the scalability of the monitoring/analysis process, because it

is crucial that the solution will be able to handle a large number of services, interactions,

and events. Another challenge is dedicated to the feedback control and analysis of the

composition, i.e. the conformance monitoring and analysis. It is therefore mandatory

to be able to express constraints and properties to be monitored and analyzed. Then,

the last challenge is to incorporate the monitoring /analysis process within the execu-

tion framework in order to have a more efficient approach when compared to solution

based on external components. A major problem in traditional approaches is that the

run-time monitoring activity which is tightly coupled with the composition process was

not well integrated to these approaches, and very few proposals handles it by adding a

new layer for the composition monitoring and thus do not provide the important execu-

tion time violations feedback to the composition process. One other common pattern of

traditional approaches is they are highly procedural, which make the possibility to learn

from run-time violations and to change the process instance/model at execution time

very difficult. Once again, we believe that these proposals are more oriented to low-level

analysis (services/components), while we are more interested by business activity mon-

itoring. Moreover, the current monitoring systems depend mainly on the availability

of tools that are able to specify requirements, to verify these requirements, to monitor

if the execution is compliant to the specification, and to analyze what really happens

during the execution of the composition.

To conclude, this dissertation is motivated by the requirement to investigate a novel

approach for Web services composition that integrates the above stages of the process

life-cycle in an unified and declarative way, thereby reducing development time and

integration efforts.

Chapter6. Conclusions and Future Work 112

6.1.2 Proposed approach

As discussed above, the motivation of our work stems from the process modeling, design-

time verification, execution-time monitoring and adaptation in an integrated and declar-

ative way to cater for dynamically changing situations. Our objective was twofold. First,

we aim to provide a service specification language, designed with a declarative and logic-

based approach and powered by reasoning mechanisms to meet both functional and

non-functional user requirements and highly expressive interaction models without the

need to over-specifying them. Second, using this declarative specification language, we

target to develop a comprehensive and well-integrated framework to enable the mastery

of complexity and dependability of service compositions by achieving a full governance

of the composition. Declarative approach results in a highly flexible composition process

that may be needed to cater for dynamically changing situations while integration sim-

plifies the approach by using the similar formalism for composition design, verification

and monitoring. To achieve this objective, we have proposed an integrated declarative

framework for Web Services Composition Modeling and Engineering as depicted in fig-

ure 1.1. Based on the three stages of abstraction, composition, and monitoring, our

solution provides an easy way to specify functional and non-functional requirements of

composite services in a precise and declarative manner, and guides the user through

the composition process while allowing detection of violations at both design and run

time. The staged approach is designed keeping in mind the best knowledge engineering

practices of modularity, conciseness, and scalability, while providing a fair amount of

control to the composition process. It focuses on the specification of what level without

having to state the how, which enables to preserve the autonomous nature of interacting

services and represent expressive interaction models without the need to over-specifying

them. Details of each stage was depicted in figure 3.6. The proposed framework offer

required tools to specify requirements, to verify these requirements, to monitor if the

execution is compliant to the specification, and to analyze what really happens during

the execution of the composition. The key features of this framework are:

1. Users/Requesters provide the high-level description of the service desired (goal)

using a user-friendly interface that enables end users to specify and express their

requirements and preferences that mark the boundary of the solution (requested

service) by following some instructions to build the query. A query parser is

integrated to parse and validate the query by checking syntactic correctness and

decoupling the functional requirements from the non-functional parameters (such

as QoS properties). Because users provide high-level specification of the composite

service which may not be realizable using the published component services, our

framework guides the users for iterative refinement of the goal service specification.

Chapter6. Conclusions and Future Work 113

2. A declarative capabilities driven specification that uses Notations3 to specify the

components of the composition process and define patterns for specifying the func-

tional and non-functional aspects for process specification. We use capabilities to

express compositions, modeling both their functional and non-functional require-

ments. A Web service is described as a structured entity featured via a set of

capabilities, non-functional features and workflow (pattern) properties (in case of

a composite service). Such description considers a service as an access mechanism

to a capability, which is, in its turn, a structured entity that describes what a

service can do via an action verb and set of domain-specific attributes. Different

services can be interconnected at different levels of abstraction/concreteness by

establishing links between them.

3. A proof based approach using EYE reasoner for the process design-time verifi-

cation. The capabilities driven description is used to provide a two staged Web

service composition approach, which is purely declarative and support flexible

self-managed compositions. First, an abstraction stage consists in constructing a

composition of available services that provide the desired functionality by seman-

tically generating a composition plan of abstract capabilities. Second, a concrete

stage concretizes the abstract composition into an executable composition by se-

lecting the appropriate concrete capabilities instances based on non functional

aspects using the Technique for Order of Preference by Similarity to Ideal Solu-

tion (TOPSIS). Verification is applied both to the single services and to the whole,

dynamically evolving, composition. Proofs obtained through formal verification

could be provided and advertised. In this way, other services can reason upon the

declarative specifications, and possibly check the advertised proofs of properties,

leaving no doubts on the dependability on the services.

4. An event-based monitoring framework that allows to reason about the events and

does not require defining and extracting events from process specification, as the

events are first class objects of both design and monitoring framework. As the

proposed monitoring approach builds upon capabilities and N3 based composition

design, it allows for the specification of monitoring properties that are based on

both functional and non-functional (such as temporal, security or their combina-

tions) requirements. These properties are expressed as N3 formulas and can be

added to the process specification both during process design and during the pro-

cess execution. A continuous monitoring of the on-line behavior of services enable

to provide reliable trust levels and a dependable quality of service.

Chapter6. Conclusions and Future Work 114

5. Implementation of the above key features in a composition management system

that realizes all algorithms and models proposed in the dissertation. This man-

agement system presents all the functionalities from design phase to monitoring

and provides the corresponding tools for each phase. It was tested and evaluated

using two real scenarios such as multi-sensor surveillance application.

6.2 Outlook and Future Work

In the following, we provide an outlook on several aspects that remain open as future

work. We plan to address some of these issues in our ongoing research work.

As for the composition system resulting from the implementation of the different mod-

ules, while the current prototype is fully operational, we think there is still space to

further improve performance and also to improve reliability and robustness. First, we

are working on increasing the expressiveness of the capabilities based modeling by adding

other types of QoS facilities into the Composer. In the service management layer of the

SOC stack [10], QoS can be expressed on a high level in form of Service Level Agree-

ment (SLAs) between two partners, which is guaranteed by service advertisements. Sec-

ond, We plan to extend the composer to improve the run-time support for adding new

tasks/services to a running composition, allowing the service architect to easily inter-

vene to overcome the most complex exceptions that may happen during a long running

orchestration. Third, to fully validate our approach we want to test its feasibility in

additional real world case studies before integrating it in a widely adopted tool such as

Eclipse.

Some other aspects remain open as future work and are outlined below.

6.2.1 Services mashups and cloud service compositions

With the development of Web 2.0 technologies, one noteworthy trend over the Web is

the rapid growing services mashups [171] which combines existing services, such as Web

APIs, RESTful services into a single integrated service. Most service mashup solutions

are semi-automatic which assume that all available Web resources are known and avail-

able on the Web. User Generated Services (UGS) enable users to build mashups by

finding, combining and reusing Web resources manually. However, to facilitate the cre-

ation of service mashups, an automated composition way is highly needed. Regarding

cloud services [172] which are developed as self-contained component, how to compose

services in cloud environments and achieve high resource utility which is customized for

Chapter6. Conclusions and Future Work 115

client requests has become an important research issue. In order to realize such com-

position, multi-attribute semantics involving functional and non-functional semantics

should be taken into account for the service selection and planning procedure.

To this end, our composition strategy can be further developed and extended for the

service mashups and the cloud service composition by parsing the semantics from an-

notated Web resources and modifying the problem modeling component for the further

reuse.

6.2.2 Quality of Experience driven Service Composition

Current work in web service selection and discovery clearly show that non-functional

aspects, and mainly QoS parameters such as response time and availability, are exploited

as the key decision making criteria. However, handling the QoS information may face

some problems such as:

• the QoS information may not be updated frequently to reflect a specific environ-

ment and platform.

• the QoS information published by service providers is often limited and cannot

respond to various user concerns about service quality.

• the QoS information does not reflect the end-user’s perspective on the quality of

services.

• the QoS information does not take into account the user feedback.

One alternative to overcome the above difficulties is to consider Quality of Experience

(QoE) attributes to guide service selection to generate an optimal execution path that

meets a user imposed QoE constraints. Contrary to QoS, QoE reflects quality from the

end user point of view. The primary source of QoE is on-line reviews. Reviews come

from users with diverse platforms and different geographical locations. Hence it is more

credible source of information. End-users express their experience via online reviews to

reveal their satisfactions and disappointments about services. The idea in this direction

is to study the feasibility of adopting the perceived quality from end-user’s perspective,

as a measure customer satisfaction with a service, for service selection and composition.

However, the task of extracting QoE attributes from user reviews is challenging. User

reviews are written in natural language and presented as unstructured data. Therefore,

it is not trivial for computers to understand, analyze, and aggregate QoE from the

web [173], [174], [175]. Without an automatic aggregation and search tool, finding and

Bibliography 116

going through a large number of reviews to manually find QoE information for service

selection and composition is not feasible. Several research questions can be considered:

How to extract QoE from online reviews? How do QoE attributes relate with QoS

attributes? What about the effectiveness of QoE attributes in a service composition

process? How to handle the problem if we cannot find enough review data available

mainly for new and unpopular services? How to address bootstrapping problem for

QoE attribute identification?

To this end, our composition strategy can be further developed and extended for the

QoE driven composition by incorporating an automatic tool for mining QoE from user

reviews. This tool will enable to analyze the natural language content, identify QoE

attributes, and represent them in a structured way that can be used by our service

composition algorithms.

6.2.3 Pervasive services composition

The proliferation of ubiquitous, interconnected computing devices (e.g., PDAs, 3G mo-

bile phones), as well as recent advances in radio-frequency identification (RFID) tech-

nology and sensor networks, are fostering the emergence of environments where Internet

applications and services made available to mobile users are a commodity [176], [177],

[178], [179]. Composing services across multiple mobile devices in such an environment

presents new challenges that do not occur in traditional services composition settings

[177]. In particular, composition mechanisms in pervasive environments need to address

context awareness, heterogeneity and contingencies of devices (e.g., unpredictable avail-

ability of services and mobile devices), and personalization (e.g., service provisioning

based on user preferences). Since the devices where services are running are usually

resource constraint (e.g., limited memory and battery life), special considerations are

necessary for the efficiency and performance of composite services. From our analysis

of existing services composition prototypes (see Section 5), it is clear that relatively few

research focuses on services composition in pervasive environments. Extensive research

efforts are therefore needed in this direction.

Bibliography

[1] Ruben Verborgh and Jos De Roo. Drawing conclusions from linked data on

the web. IEEE Software, 32(5), May 2015. URL http://online.qmags.com/

ISW0515?cid=3244717&eid=19361&pg=25.

[2] A. R. Riad and Q. F. Hassan. Service-oriented architecture - a new alternative to

traditional integration methods in b2b applications. JCIT, 3(1):31–41, 2008. URL

http://dblp.uni-trier.de/db/journals/jcit/jcit3.html#RiadH08.

[3] Ahmed Elfatatry. Dealing with change: Components versus services. Commun.

ACM, 50(8):35–39, August 2007. ISSN 0001-0782. doi: 10.1145/1278201.1278203.

URL http://doi.acm.org/10.1145/1278201.1278203.

[4] Srinivas Padmanabhuni, Jai Ganesh, and Deependra Moitra. Web services, grid

computing, and business process management: Exploiting complementarities for

business agility. In Proceedings of the IEEE International Conference on Web

Services (ICWS’04), June 6-9, 2004, San Diego, California, USA, pages 666–673,

2004. URL http://doi.ieeecomputersociety.org/10.1109/ICWS.2004.127.

[5] Marc N. Haines and Marcus A. Rothenberger. How a service-oriented architecture

may change the software development process. Commun. ACM, 53(8):135–140,

August 2010. ISSN 0001-0782. doi: 10.1145/1787234.1787269. URL http://doi.

acm.org/10.1145/1787234.1787269.

[6] M. P. Papazoglou and D. Georgakopoulos. Introduction: Service-oriented com-

puting. Commun. ACM, 46(10):24–28, October 2003. ISSN 0001-0782. doi:

10.1145/944217.944233. URL http://doi.acm.org/10.1145/944217.944233.

[7] H. Rajan and M. Hosamani. Tisa: Toward trustworthy services in a service-

oriented architecture. Services Computing, IEEE Transactions on, 1(4):201–213,

Oct 2008. ISSN 1939-1374.

[8] Schahram Dustdar and Wolfgang Schreiner. A survey on web services composition.

Int. J. Web Grid Serv., 1(1):1–30, August 2005. ISSN 1741-1106. doi: 10.1504/

IJWGS.2005.007545. URL http://dx.doi.org/10.1504/IJWGS.2005.007545.

117

http://online.qmags.com/ISW0515?cid=3244717&eid=19361&pg=25
http://online.qmags.com/ISW0515?cid=3244717&eid=19361&pg=25
http://dblp.uni-trier.de/db/journals/jcit/jcit3.html#RiadH08
http://doi.acm.org/10.1145/1278201.1278203
http://doi.ieeecomputersociety.org/10.1109/ICWS.2004.127
http://doi.acm.org/10.1145/1787234.1787269
http://doi.acm.org/10.1145/1787234.1787269
http://doi.acm.org/10.1145/944217.944233
http://dx.doi.org/10.1504/IJWGS.2005.007545

Bibliography 118

[9] George Baryannis, Olha Danylevych, Dimka Karastoyanova, Kyriakos Kritikos,

Philipp Leitner, Florian Rosenberg, and Branimir Wetzstein. Service composition.

In Service Research Challenges and Solutions for the Future Internet - S-Cube -

Towards Engineering, Managing and Adapting Service-Based Systems, pages 55–

84, 2010. doi: 10.1007/978-3-642-17599-2 3. URL http://dx.doi.org/10.1007/

978-3-642-17599-2_3.

[10] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann.

Service-oriented computing: State of the art and research challenges. Computer,

40(11):38–45, November 2007. ISSN 0018-9162. doi: 10.1109/MC.2007.400. URL

http://dx.doi.org/10.1109/MC.2007.400.

[11] Girish Chafle, Gautam Das, Koustuv Dasgupta, Arun Kumar, Sumit Mittal,

Sougata Mukherjea, and Biplav Srivastava. An integrated development environ-

ment for web service composition. In ICWS, pages 839–847. IEEE Computer So-

ciety, 2007. URL http://doi.ieeecomputersociety.org/10.1109/ICWS.2007.

38.

[12] Gianpaolo Cugola, Carlo Ghezzi, and Leandro Sales Pinto. DSOL: a declar-

ative approach to self-adaptive service orchestrations. Computing, 94(7):579–

617, 2012. doi: 10.1007/s00607-012-0194-z. URL http://dx.doi.org/10.1007/

s00607-012-0194-z.

[13] Guoquan Wu, Jun Wei, Chunyang Ye, Xiaozhe Shao, Hua Zhong, and Tao Huang.

Runtime monitoring of data-centric temporal properties for web services. In IEEE

International Conference on Web Services, ICWS 2011, Washington, DC, USA,

July 4-9, 2011, pages 161–170, 2011. doi: 10.1109/ICWS.2011.124. URL http:

//doi.ieeecomputersociety.org/10.1109/ICWS.2011.124.

[14] Zhanlei Ma, Lin Liu, Hongji Yang, and John Mylopoulos. Adaptive service compo-

sition based on runtime requirements monitoring. In ICWS, pages 339–346, 2011.

URL http://doi.ieeecomputersociety.org/10.1109/ICWS.2011.83.

[15] Annapaola Marconi, Marco Pistore, Piero Poccianti, and Paolo Traverso. Auto-

matedweb service composition at work: the amazon/mps case study. In ICWS,

pages 767–774, 2007. URL http://doi.ieeecomputersociety.org/10.1109/

ICWS.2007.50.

[16] William N. Robinson. Monitoring web service requirements. In 11th IEEE Interna-

tional Conference on Requirements Engineering (RE 2003), 8-12 September 2003,

Monterey Bay, CA, USA., pages 65–74, 2003. doi: 10.1109/ICRE.2003.1232738.

URL http://dx.doi.org/10.1109/ICRE.2003.1232738.

http://dx.doi.org/10.1007/978-3-642-17599-2_3
http://dx.doi.org/10.1007/978-3-642-17599-2_3
http://dx.doi.org/10.1109/MC.2007.400
http://doi.ieeecomputersociety.org/10.1109/ICWS.2007.38
http://doi.ieeecomputersociety.org/10.1109/ICWS.2007.38
http://dx.doi.org/10.1007/s00607-012-0194-z
http://dx.doi.org/10.1007/s00607-012-0194-z
http://doi.ieeecomputersociety.org/10.1109/ICWS.2011.124
http://doi.ieeecomputersociety.org/10.1109/ICWS.2011.124
http://doi.ieeecomputersociety.org/10.1109/ICWS.2011.83
http://doi.ieeecomputersociety.org/10.1109/ICWS.2007.50
http://doi.ieeecomputersociety.org/10.1109/ICWS.2007.50
http://dx.doi.org/10.1109/ICRE.2003.1232738

Bibliography 119

[17] Gustav Bostrom, Pablo Giambiagi, and Tomas Olsson. Quality of service evalua-

tion in virtual organizations using slas. In Interoperability for Enterprise Software

and Applications, pages 211–224. ISTE, 2010. ISBN 9780470612200. doi: 10.1002/

9780470612200.ch18. URL http://dx.doi.org/10.1002/9780470612200.ch18.

[18] Danilo Ardagna, Marco Comuzzi, Enrico Mussi, Barbara Pernici, and Pier-

luigi Plebani. PAWS: A framework for executing adaptive web-service pro-

cesses. IEEE Software, 24(6):39–46, 2007. doi: 10.1109/MS.2007.174. URL

http://doi.ieeecomputersociety.org/10.1109/MS.2007.174.

[19] Luciano Baresi, Carlo Ghezzi, and Sam Guinea. Smart monitors for composed

services. In Proceedings of the 2Nd International Conference on Service Oriented

Computing, ICSOC ’04, pages 193–202, New York, NY, USA, 2004. ACM. ISBN

1-58113-871-7. doi: 10.1145/1035167.1035195. URL http://doi.acm.org/10.

1145/1035167.1035195.

[20] Khaled Mahbub and George Spanoudakis. A framework for requirents monitor-

ing of service based systems. In Service-Oriented Computing - ICSOC 2004,

Second International Conference, New York, NY, USA, November 15-19, 2004,

Proceedings, pages 84–93, 2004. doi: 10.1145/1035167.1035181. URL http:

//doi.acm.org/10.1145/1035167.1035181.

[21] Halvard Skogsrud, Boualem Benatallah, and Fabio Casati. A trust negotiation

system for digital library web services. Int. J. on Digital Libraries, 4(3):185–

207, 2004. doi: 10.1007/s00799-004-0083-y. URL http://dx.doi.org/10.1007/

s00799-004-0083-y.

[22] Salima Benbernou, Hassina Meziane, Yin Hua Li, and Mohand-Said Hacid. A pri-

vacy agreement model for web services. In IEEE SCC, pages 196–203. IEEE Com-

puter Society, 2007. URL http://doi.ieeecomputersociety.org/10.1109/

SCC.2007.14.

[23] Ehtesham Zahoor, Olivier Perrin, and Claude Godart. An integrated declara-

tive approach to web services composition and monitoring. In Web Informa-

tion Systems Engineering - WISE 2009, 10th International Conference, Poznan,

Poland, October 5-7, 2009. Proceedings, pages 247–260, 2009. doi: 10.1007/

978-3-642-04409-0 28. URL http://dx.doi.org/10.1007/978-3-642-04409-0_

28.

[24] Ehtesham Zahoor, Olivier Perrin, and Claude Godart. Disc: A declarative

framework for self-healing web services composition. In ICWS, pages 25–33.

IEEE Computer Society, 2010. ISBN 978-0-7695-4128-0. URL http://doi.

ieeecomputersociety.org/10.1109/ICWS.2010.70.

http://dx.doi.org/10.1002/9780470612200.ch18
http://doi.ieeecomputersociety.org/10.1109/MS.2007.174
http://doi.acm.org/10.1145/1035167.1035195
http://doi.acm.org/10.1145/1035167.1035195
http://doi.acm.org/10.1145/1035167.1035181
http://doi.acm.org/10.1145/1035167.1035181
http://dx.doi.org/10.1007/s00799-004-0083-y
http://dx.doi.org/10.1007/s00799-004-0083-y
http://doi.ieeecomputersociety.org/10.1109/SCC.2007.14
http://doi.ieeecomputersociety.org/10.1109/SCC.2007.14
http://dx.doi.org/10.1007/978-3-642-04409-0_28
http://dx.doi.org/10.1007/978-3-642-04409-0_28
http://doi.ieeecomputersociety.org/10.1109/ICWS.2010.70
http://doi.ieeecomputersociety.org/10.1109/ICWS.2010.70

Bibliography 120

[25] Tim Berners-Lee and Dan Connolly. Notation3 (n3): A readable rdf syn-

tax. W3c team submission, W3C, January 2008. URL http://www.w3.org/

TeamSubmission/n3/.

[26] Uwe Keller, Rubén Lara, Holger Lausen, Axel Polleres, and Dieter Fensel. Auto-

matic location of services. In The Semantic Web: Research and Applications, Sec-

ond European Semantic Web Conference, ESWC 2005, Heraklion, Crete, Greece,

May 29 - June 1, 2005, Proceedings, pages 1–16. 2005. doi: 10.1007/11431053 1.

URL http://dx.doi.org/10.1007/11431053_1.

[27] Sami Bhiri, Wassim Derguech, and Maciej Zaremba. Modelling capabilities as

attribute-featured entities. In José Cordeiro and Karl-Heinz Krempels, editors,

WEBIST (Selected Papers), volume 140 of Lecture Notes in Business Information

Processing, pages 70–85. Springer, 2012. ISBN 978-3-642-36607-9. URL http:

//dx.doi.org/10.1007/978-3-642-36608-6_5.

[28] Jos De Roo. Euler yet another proof engine, 1999–2013. URL http://

eulersharp.sourceforge.net/.

[29] Web services glossary. http://www.w3.org/TR/ws-gloss/. Accessed: 2004-02-11.

[30] Web services architecture. URL http://www.w3.org/TR/2002/

WD-ws-arch-20021114/. Accessed: 2002-11-14.

[31] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Soft-

ware Architectures. PhD thesis, 2000. AAI9980887.

[32] Cesare Pautasso and Erik Wilde. Restful web services: principles, patterns, emerg-

ing technologies. In Proceedings of the 19th International Conference on World

Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010, pages

1359–1360, 2010. doi: 10.1145/1772690.1772929. URL http://doi.acm.org/10.

1145/1772690.1772929.

[33] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services

vs. ”big”’ web services: making the right architectural decision. In Proceedings

of the 17th International Conference on World Wide Web, WWW 2008, Beijing,

China, April 21-25, 2008, pages 805–814, 2008. doi: 10.1145/1367497.1367606.

URL http://doi.acm.org/10.1145/1367497.1367606.

[34] Victor Saquicela, Luis Manuel Vilches Blázquez, and Óscar Corcho. Adding se-

mantic annotations into (geospatial) restful services. Int. J. Semantic Web Inf.

Syst., 8(2):51–71, 2012. URL http://dx.doi.org/10.4018/jswis.2012040103.

http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/n3/
http://dx.doi.org/10.1007/11431053_1
http://dx.doi.org/10.1007/978-3-642-36608-6_5
http://dx.doi.org/10.1007/978-3-642-36608-6_5
http://eulersharp.sourceforge.net/
http://eulersharp.sourceforge.net/
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/2002/WD-ws-arch-20021114/
http://www.w3.org/TR/2002/WD-ws-arch-20021114/
http://doi.acm.org/10.1145/1772690.1772929
http://doi.acm.org/10.1145/1772690.1772929
http://doi.acm.org/10.1145/1367497.1367606
http://dx.doi.org/10.4018/jswis.2012040103

Bibliography 121

[35] Richard Hull and Jianwen Su. Tools for composite web services: a short overview.

SIGMOD Record, 34(2):86–95, 2005. doi: 10.1145/1083784.1083807. URL http:

//doi.acm.org/10.1145/1083784.1083807.

[36] Ulrich Köster, Mirco Stern, and Birgitta K. Ries. A Classification of Issues and

Approaches in Automatic Service Composition. In First International Workshop

on Engineering Service Compositions (WESC05), Amsterdam, Netherlands, De-

cember 2005.

[37] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford,

Y. Goland, A. Guzar, N. Kartha, C.K. Liu, R. Khalaf, Dieter Koenig, M. Marin,

V. Mehta, S. Thatte, D. Rijn, P. Yendluri, and A. Yiu. Web Services Business Pro-

cess Execution Language Version 2.0 (OASIS Standard). WS-BPEL TC OASIS,

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html, 2007.

[38] Frank Leymann. Web Services Flow Language (WSFL 1.0). Technical report,

IBM, may 2001. URL http://xml.coverpages.org/WSFL-Guide-200110.pdf.

[39] Cesare Pautasso and Gustavo Alonso. The jopera visual composition language.

Journal of Visual Languages and Computing (JVLC), 16:119–152, 2005. URL

http://dx.doi.org/10.1016/j.jvlc.2004.08.004.

[40] Assaf Arkin, Sid Askary, Scott Fordin, Wolfgang Jekeli, Kohsuke Kawaguchi,

David Orchard, Stefano Pogliani, Karsten Riemer, Susan Struble, Pal Takacsi-

Nagy, Ivana Trickovic, and Sinisa Zimek. Web service choreography interface

(wsci) 1.0. World Wide Web Consortium, Note NOTE-wsci10-20020808, August

2002. URL http://www.w3.org/TR/2002/NOTE-wsci-20020808.

[41] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon. Web services

choreography description language version 1.0 (w3c candidate recommendation).

2005. URL http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/.

[42] Gero Decker, Oliver Kopp, Frank Leymann, and Mathias Weske. Bpel4chor: Ex-

tending bpel for modeling choreographies. In ICWS, pages 296–303. IEEE Com-

puter Society, 2007. URL http://doi.ieeecomputersociety.org/10.1109/

ICWS.2007.59.

[43] OMG. Business Process Model and Notation (BPMN), Version 2.0. Object Man-

agement Group, January 2011. URL http://www.omg.org/spec/BPMN/2.0.

[44] Farhan Hassan Khan, Saba Bashir, M. Younus Javed, Aihab Khan, and Malik

Sikandar Hayat Khiyal. Qos based dynamic web services composition & execution.

CoRR, abs/1003.1502, 2010. URL http://arxiv.org/abs/1003.1502.

http://doi.acm.org/10.1145/1083784.1083807
http://doi.acm.org/10.1145/1083784.1083807
http://xml.coverpages.org/WSFL-Guide-200110.pdf
http://dx.doi.org/10.1016/j.jvlc.2004.08.004
http://www.w3.org/TR/2002/NOTE-wsci-20020808
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/
http://doi.ieeecomputersociety.org/10.1109/ICWS.2007.59
http://doi.ieeecomputersociety.org/10.1109/ICWS.2007.59
http://www.omg.org/spec/BPMN/2.0
http://arxiv.org/abs/1003.1502

Bibliography 122

[45] Louis Felipe Cabera, George Copeland, Max Feingold, Tom Freund, Jim John-

son, Chris Kaler, Johannes Klein, David Langworthy, Anthony Nadalin, David

Orchard, Ian Robinson, Tony Storey, and Satish Thatte. Web Services Atomic

Transaction (WS-AtomicTransaction). Technical report, BEA Systems, Inter-

national Business Machines Corporation, Microsoft Corporation Inc., November

2004.

[46] Louis Felipe Cabera, George Copeland, Tom Freund, Johannes Klein, David Lang-

worthy, Frank Leymann, David Orchard, Ian Robinson, Tony Storey, and Satish

Thatte. Web Services Business Activity Framework (WS-BusinessActivity). Tech-

nical report, BEA Systems Inc, IBM Corporation, Microsoft Corporation, Novem-

ber 2004.

[47] Luis Felipe Cabera, George Copeland, Max Feingold, Tom Freund, Jim John-

son, Chris Kaler, Johannes Klein, David Langworthy, Anthony Nadalin, David

Orchard, Ian Robinson, John Shewchuk, and Tony Storey. Web Service Coordina-

tion (WS-Coordination). Technical report, BEA Systems, International Business

Machines Corporation, Microsoft Corporation Inc., November 2004.

[48] Sami Bhiri, Walid Gaaloul, Mohsen Rouached, and Manfred Hauswirth. Semantic

web services for satisfying SOA requirements. In Advances in Web Semantics I:

Ontologies, Web Services and Applied Semantic Web, pages 374–395. 2009. doi:

10.1007/978-3-540-89784-2 15.

[49] David Martin et al. Owl-s: Semantic markup for web services, 2004. URL http:

//www.w3.org/Submission/OWL-S/.

[50] Deborah L. McGuinness and Frank van Harmelen. Owl web ontology language

overview. Technical Report REC-owl-features-20040210, W3C, 2004.

[51] John Domingue Dieter Fensel Martin Hepp Uwe Keller Michael Kifer Birgitta

König-Ries Jacek Kopecky Rubén Lara Holger Lausen Eyal Oren Axel Polleres

Dumitru Roman James Scicluna Michael Stollberg Jos de Bruijn, Christoph Bus-

sler. Web service modeling ontology (wsmo), 2005. URL http://www.w3.org/

Submission/WSMO/.

[52] Christina Feier et al. Towards intelligent web services: the web service model-

ing ontology (wsmo). In 2005 International Conference on Intelligent Computing

(ICIC’05), 2005. URL http://oro.open.ac.uk/23147/.

http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/WSMO/
http://www.w3.org/Submission/WSMO/
http://oro.open.ac.uk/23147/

Bibliography 123

[53] Kanmani Munusamy et al. Semantic web service process mediation in

wsmo:current solutions and open issues. Rome, Italy, September 2011. Think-

Mind, SERVICE COMPUTATION 2011, The Third International Conferences on

Advanced Service Computing. ISBN 978-1-61208-152-6.

[54] Liliana Cabral, John Domingue, Stefania Galizia, Alessio Gugliotta, Vlad Tanas-

escu, Carlos Pedrinaci, and Barry Norton. Irs-iii: A broker for semantic web

services based applications. In Isabel Cruz, Stefan Decker, Dean Allemang, Chris

Preist, Daniel Schwabe, Peter Mika, Mike Uschold, and LoraM. Aroyo, editors,

The Semantic Web - ISWC 2006, volume 4273 of Lecture Notes in Computer Sci-

ence, pages 201–214. Springer Berlin Heidelberg, 2006. ISBN 978-3-540-49029-6.

doi: 10.1007/11926078 15. URL http://dx.doi.org/10.1007/11926078_15.

[55] Enrico Motta. An overview of the ocml modelling language. In In Proceedings

KEML’98: 8th Workshop on Knowledge Engineering Methods and Languages,

pages 21–22, 1998.

[56] Abhijit A. Patil, Swapna A. Oundhakar, Amit P. Sheth, and Kunal Verma. Meteor-

s web service annotation framework. In Proceedings of the 13th International

Conference on World Wide Web, WWW ’04, pages 553–562, New York, NY,

USA, 2004. ACM. ISBN 1-58113-844-X. doi: 10.1145/988672.988747. URL http:

//doi.acm.org/10.1145/988672.988747.

[57] Kunal Verma, Karthik Gomadam, Amit P. Sheth, John A. Miller, and Zixin

Wu. The meteor-s approach for configuring and executing dynamic web pro-

cesses. Technical report, University of Georgia, Athens, June 2005. URL

http://lsdis.cs.uga.edu/projects/meteor-s/techRep6-24-05.pdf.

[58] Jacek Kopecký, Tomas Vitvar, Carine Bournez, and Joel Farrell. Sawsdl: Semantic

annotations for wsdl and xml schema. IEEE Internet Computing, 11(6):60–67,

November 2007. ISSN 1089-7801. doi: 10.1109/MIC.2007.134. URL http://dx.

doi.org/10.1109/MIC.2007.134.

[59] Kunal Verma and Amit Sheth. Semantically annotating a web service. IEEE

Internet Computing, 11(2):83–85, 2007. ISSN 1089-7801. doi: http://doi.

ieeecomputersociety.org/10.1109/MIC.2007.48.

[60] Lianyong Qi, Ying Tang, Wanchun Dou, and Jinjun Chen. Combining local opti-

mization and enumeration for qos-aware web service composition. In Proceedings of

the 2010 IEEE International Conference on Web Services, ICWS ’10, pages 34–41,

Washington, DC, USA, 2010. IEEE Computer Society. ISBN 978-0-7695-4128-0.

doi: 10.1109/ICWS.2010.62. URL http://dx.doi.org/10.1109/ICWS.2010.62.

http://dx.doi.org/10.1007/11926078_15
http://doi.acm.org/10.1145/988672.988747
http://doi.acm.org/10.1145/988672.988747
http://lsdis.cs.uga.edu/projects/meteor-s/techRep6-24-05.pdf
http://dx.doi.org/10.1109/MIC.2007.134
http://dx.doi.org/10.1109/MIC.2007.134
http://dx.doi.org/10.1109/ICWS.2010.62

Bibliography 124

[61] Zachary J. Oster, Ganesh Ram Santhanam, and Samik Basu. Identifying optimal

composite services by decomposing the service composition problem. In Proceed-

ings of the 2011 IEEE International Conference on Web Services, ICWS ’11, pages

267–274, Washington, DC, USA, 2011. IEEE Computer Society. ISBN 978-0-7695-

4463-2. doi: 10.1109/ICWS.2011.110. URL http://dx.doi.org/10.1109/ICWS.

2011.110.

[62] Zachary J. Oster, Ganesh Ram Santhanam, and Samik Basu. Decomposing the

service composition problem. In Proceedings of the 2010 Eighth IEEE European

Conference on Web Services, ECOWS ’10, pages 163–170, Washington, DC, USA,

2010. IEEE Computer Society. ISBN 978-0-7695-4310-9. doi: 10.1109/ECOWS.

2010.15. URL http://dx.doi.org/10.1109/ECOWS.2010.15.

[63] Mahdi Bakhashi, Abbas Olfat, Ghasem Olfat, and Farhad Mardukhi. A fuzzy-

based user-centric approach for selecting the optimal composition of services. Jour-

nal of Theoretical and Applied Information Technology, pages 72–79, 2005.

[64] Fang Qiqing, Peng Xiaoming, Liu Qinghua, and Hu Yahui. A global qos opti-

mizing web services selection algorithm based on moaco for dynamic web service

composition. 1:37–42, May 2009. doi: 10.1109/IFITA.2009.91.

[65] Mohammad Alrifai and Thomas Risse. Combining global optimization with local

selection for efficient qos-aware service composition. In Proceedings of the 18th

international conference on World wide web, WWW ’09, pages 881–890, New York,

NY, USA, 2009. ACM. ISBN 978-1-60558-487-4. doi: 10.1145/1526709.1526828.

URL http://doi.acm.org/10.1145/1526709.1526828.

[66] Peter Bartalos and Mária Bieliková. Automatic dynamic web service composition:

A survey and problem formalization. Computing and Informatics, 30(4):793–827,

2011. URL http://www.cai.sk/ojs/index.php/cai/article/view/198.

[67] V.R. Chifu, I. Salomie, A. Riger, and V. Radoi. A graph based backward chaining

method for web service composition. In Intelligent Computer Communication and

Processing, 2009. ICCP 2009. IEEE 5th International Conference on, pages 237–

244, Aug 2009. doi: 10.1109/ICCP.2009.5284755.

[68] Yan Xu, Bin Li, and Jun Wu. A petri-net coverability model for automatic web

service composition. In Industrial and Information Systems, 2009. IIS ’09. Inter-

national Conference on, pages 31–34, April 2009. doi: 10.1109/IIS.2009.20.

[69] Antonio Brogi and Sara Corfini. Ontology- and behavior-aware discovery

of web service compositions. Int. J. Cooperative Inf. Syst., 17(3):319–347,

http://dx.doi.org/10.1109/ICWS.2011.110
http://dx.doi.org/10.1109/ICWS.2011.110
http://dx.doi.org/10.1109/ECOWS.2010.15
http://doi.acm.org/10.1145/1526709.1526828
http://www.cai.sk/ojs/index.php/cai/article/view/198

Bibliography 125

2008. doi: 10.1142/S0218843008001853. URL http://dx.doi.org/10.1142/

S0218843008001853.

[70] Shalil Majithia, David W. Walker, and W. A. Gray. A framework for automated

service composition in service-oriented architectures. In Christoph Bussler, John

Davies, Dieter Fensel, and Rudi Studer, editors, ESWS, volume 3053 of Lecture

Notes in Computer Science, pages 269–283. Springer, 2004. ISBN 3-540-21999-4.

URL http://dx.doi.org/10.1007/978-3-540-25956-5_19.

[71] Bochao Wang, A. Haller, and F. Rosenberg. Generating workflow models from

owl-s service descriptions with a partial-order plan construction. In Web Services

(ICWS), 2011 IEEE International Conference on, pages 714–715, July 2011. doi:

10.1109/ICWS.2011.88.

[72] Alfred V. Aho, M. R. Garey, and Jeffrey D. Ullman. The transitive reduction of

a directed graph. SIAM J. Comput., 1(2):131–137, 1972. doi: 10.1137/0201008.

URL http://dx.doi.org/10.1137/0201008.

[73] Keita Fujii and Tatsuya Suda. Semantics-based dynamic web service composition.

Int. J. Cooperative Inf. Syst., 15(3):293–324, 2006. URL http://dx.doi.org/10.

1142/S0218843006001372.

[74] Keita Fujii and Tatsuya Suda. Semantics-based context-aware dynamic service

composition. ACM Trans. Auton. Adapt. Syst., 4(2):12:1–12:31, May 2009. ISSN

1556-4665. doi: 10.1145/1516533.1516536. URL http://doi.acm.org/10.1145/

1516533.1516536.

[75] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini,

and Massimo Mecella. Automatic service composition based on behavioral de-

scriptions. Int. J. Cooperative Inf. Syst., 14(4):333–376, 2005. doi: 10.1142/

S0218843005001201. URL http://dx.doi.org/10.1142/S0218843005001201.

[76] Daniela Berardi, Fahima Cheikh, Giuseppe De Giacomo, and Fabio Patrizi. Au-

tomatic service composition via simulation. Int. J. Found. Comput. Sci., 19(2):

429–451, 2008. doi: 10.1142/S0129054108005759. URL http://dx.doi.org/10.

1142/S0129054108005759.

[77] Fabio Barbon, Paolo Traverso, Marco Pistore, and Michele Trainotti. Run-time

monitoring of instances and classes of web service compositions. In 2006 IEEE

International Conference on Web Services (ICWS 2006), 18-22 September 2006,

Chicago, Illinois, USA, pages 63–71, 2006. doi: 10.1109/ICWS.2006.113. URL

http://doi.ieeecomputersociety.org/10.1109/ICWS.2006.113.

http://dx.doi.org/10.1142/S0218843008001853
http://dx.doi.org/10.1142/S0218843008001853
http://dx.doi.org/10.1007/978-3-540-25956-5_19
http://dx.doi.org/10.1137/0201008
http://dx.doi.org/10.1142/S0218843006001372
http://dx.doi.org/10.1142/S0218843006001372
http://doi.acm.org/10.1145/1516533.1516536
http://doi.acm.org/10.1145/1516533.1516536
http://dx.doi.org/10.1142/S0218843005001201
http://dx.doi.org/10.1142/S0129054108005759
http://dx.doi.org/10.1142/S0129054108005759
http://doi.ieeecomputersociety.org/10.1109/ICWS.2006.113

Bibliography 126

[78] R. Kazhamiakin and M. Pistore. Static verification of control and data inweb

service compositions. In Web Services, 2006. ICWS ’06. International Conference

on, pages 83–90, Sept 2006. doi: 10.1109/ICWS.2006.124.

[79] Baojun Tian and Yanlin Gu. Formal modeling and verification for web service

composition. pages 2733–2737, 2013.

[80] René David and Hassane Alla. Petri nets for modeling of dynamic systems: A

survey. Automatica, 30(2):175 – 202, 1994. ISSN 0005-1098. doi: http://dx.

doi.org/10.1016/0005-1098(94)90024-8. URL http://www.sciencedirect.com/

science/article/pii/0005109894900248.

[81] Idir Aı̈t Sadoune and Yamine Aı̈t Ameur. A proof based approach for formal

verification of transactional bpel web services. In Proceedings of the Second Inter-

national Conference on Abstract State Machines, Alloy, B and Z, ABZ’10, pages

405–406, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-11810-0, 978-3-

642-11810-4. doi: 10.1007/978-3-642-11811-1 39. URL http://dx.doi.org/10.

1007/978-3-642-11811-1_39.

[82] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineer-

ing. Cambridge University Press, New York, NY, USA, 1st edition, 2010. ISBN

0521895561, 9780521895569.

[83] Mohamed Graiet, Raoudha Maraoui, Mourad Kmimech, Mohamed Tahar Bhiri,

and Walid Gaaloul. Towards an approach of formal verification of mediation proto-

col based on web services. In iiWAS’2010 - The 12th International Conference on

Information Integration and Web-based Applications and Services, 8-10 Novem-

ber 2010, Paris, France, pages 75–82, 2010. doi: 10.1145/1967486.1967502. URL

http://doi.acm.org/10.1145/1967486.1967502.

[84] Giusy Di Lorenzo, Nicola Mazzocca, Francesco Moscato, and Valeria Vittorini. To-

wards semantics driven generation of executable web services compositions. JSW,

2(5):1–15, 2007. URL http://dx.doi.org/10.4304/jsw.2.5.1-15.

[85] G. Di Lorenzo, F. Moscato, N. Mazzocca, and V. Vittorini. Automatic analy-

sis of control flow inweb services composition processes. In Parallel, Distributed

and Network-Based Processing, 2007. PDP ’07. 15th EUROMICRO International

Conference on, pages 299–306, Feb 2007. doi: 10.1109/PDP.2007.27.

[86] SU Huan-cheng, HUANG Zhi-qiu, and LIU Lin-yuan. Interface automata-based

formal model for bpel4ws web service composition. Application Research of Com-

puters, page 1774–1777, 2009.

http://www.sciencedirect.com/science/article/pii/0005109894900248
http://www.sciencedirect.com/science/article/pii/0005109894900248
http://dx.doi.org/10.1007/978-3-642-11811-1_39
http://dx.doi.org/10.1007/978-3-642-11811-1_39
http://doi.acm.org/10.1145/1967486.1967502
http://dx.doi.org/10.4304/jsw.2.5.1-15

Bibliography 127

[87] Claus Traulsen, Jérôme Cornet, Matthieu Moy, and Florence Maraninchi. A Sys-

temC/TLM semantics in Promela and its possible applications. In 14th Workshop

on Model Checking Software SPIN, July 2007.

[88] Gerard Holzmann. Spin Model Checker, the: Primer and Reference Manual.

Addison-Wesley Professional, first edition, 2003. ISBN 0-321-22862-6.

[89] M. Emilia Cambronero, Gregorio Dı́az, Valent́ın Valero, and Enrique Mart́ınez.

Validation and verification of web services choreographies by using timed au-

tomata. The Journal of Logic and Algebraic Programming, 80:25 – 49, 2011.

ISSN 1567-8326. doi: http://dx.doi.org/10.1016/j.jlap.2010.02.001. URL http://

www.sciencedirect.com/science/article/pii/S1567832610000032. The 2nd

Workshop on Formal Languages and Analysis of Contract-Oriented Software

(FLACOS’08).

[90] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikučionis, and

Danny Bøgsted Poulsen. Uppaal smc tutorial. International Journal on Soft-

ware Tools for Technology Transfer, pages 1–19, 2015. ISSN 1433-2779. doi:

10.1007/s10009-014-0361-y.

[91] Shuhao Li, Sandie Balaguer, Alexandre David, Kim G. Larsen, Brian Nielsen, and

Saulius Pusinskas. Scenario-based verification of real-time systems using uppaal.

Formal Methods in System Design, 37(2-3):200–264, 2010.

[92] Muthumanickam Krishnan Danapaquiame Nagamouttou, Ilavarasan Egambaram

and Poonkuzhali Narasingam. A verification strategy for web services composition

using enhanced stacked automata model. SpringerPlus 2015, 27 February 2015.

[93] Asit Dan, Doug Davis, Robert Kearney, Alexander Keller, Richard P. King, Diet-

mar Kuebler, Heiko Ludwig, Mike Polan, Mike Spreitzer, and Alaa Youssef. Web

services on demand: Wsla-driven automated management. IBM Systems Jour-

nal, 43(1):136–158, 2004. doi: 10.1147/sj.431.0136. URL http://dx.doi.org/

10.1147/sj.431.0136.

[94] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar.

Comprehensive qos monitoring of web services and event-based sla violation de-

tection. In Proceedings of the 4th International Workshop on Middleware for

Service Oriented Computing, MWSOC ’09, pages 1–6, New York, NY, USA,

2009. ACM. ISBN 978-1-60558-848-3. doi: 10.1145/1657755.1657756. URL

http://doi.acm.org/10.1145/1657755.1657756.

[95] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar.

End-to-end support for qos-aware service selection, binding, and mediation in

http://www.sciencedirect.com/science/article/pii/S1567832610000032
http://www.sciencedirect.com/science/article/pii/S1567832610000032
http://dx.doi.org/10.1147/sj.431.0136
http://dx.doi.org/10.1147/sj.431.0136
http://doi.acm.org/10.1145/1657755.1657756

Bibliography 128

vresco. IEEE Trans. Serv. Comput., 3(3):193–205, July 2010. ISSN 1939-1374.

doi: 10.1109/TSC.2010.20. URL http://dx.doi.org/10.1109/TSC.2010.20.

[96] S–Cube Network of Excellence. Software services and systems, 2012. URL http:

//www.s-cube-network.eu/.

[97] Sam Guinea, Gabor Kecskemeti, Annapaola Marconi, and Branimir Wetzstein.

Multi-layered monitoring and adaptation. In Proceedings of the 9th Interna-

tional Conference on Service-Oriented Computing, ICSOC’11, pages 359–373,

Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-25534-2. doi: 10.1007/

978-3-642-25535-9 24. URL http://dx.doi.org/10.1007/978-3-642-25535-9_

24.

[98] Bruno Wassermann and Wolfgang Emmerich. Monere: Monitoring of service com-

positions for failure diagnosis. In Gerti Kappel, Zakaria Maamar, and Hamid

R. Motahari Nezhad, editors, ICSOC, volume 7084 of Lecture Notes in Com-

puter Science, pages 344–358. Springer, 2011. ISBN 978-3-642-25534-2. URL

http://dx.doi.org/10.1007/978-3-642-25535-9_23.

[99] Michaël Mrissa and Mohand-Said Hacid. Combining configuration and query

rewriting for Web service composition. Technical Report RR-LIRIS-2009-045,

LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/U-

niversité Lumière Lyon 2/École Centrale de Lyon, December 2009. URL http:

//liris.cnrs.fr/publis/?id=4563.

[100] Mahmoud Barhamgi and Djamal Benslimane. Composing data-providing web

services. In VLDB PhD Workshop, 2009. URL http://www.vldb.org/pvldb/2/

vldb09-1058.pdf.

[101] Karim Benouaret, Djamal Benslimane, Allel Hadjali, and Mahmoud Barhamgi.

Top-k web service compositions using fuzzy dominance relationship. In Proceedings

of the 2011 IEEE International Conference on Services Computing, SCC ’11, pages

144–151, Washington, DC, USA, 2011. IEEE Computer Society. ISBN 978-0-

7695-4462-5. doi: 10.1109/SCC.2011.86. URL http://dx.doi.org/10.1109/

SCC.2011.86.

[102] Didier Dubois, Hung T. Nguyen, and Henri Prade. Possibility theory, probability

and fuzzy sets: misunderstandings, bridges and gaps. . In D. Dubois and H. Prade,

editors, Fundamentals of Fuzzy Sets , The Handbooks of Fuzzy Sets Series, pages

343–438. Kluwer, Boston, Mass., 2000.

http://dx.doi.org/10.1109/TSC.2010.20
http://www.s-cube-network.eu/
http://www.s-cube-network.eu/
http://dx.doi.org/10.1007/978-3-642-25535-9_24
http://dx.doi.org/10.1007/978-3-642-25535-9_24
http://dx.doi.org/10.1007/978-3-642-25535-9_23
http://liris.cnrs.fr/publis/?id=4563
http://liris.cnrs.fr/publis/?id=4563
http://www.vldb.org/pvldb/2/vldb09-1058.pdf
http://www.vldb.org/pvldb/2/vldb09-1058.pdf
http://dx.doi.org/10.1109/SCC.2011.86
http://dx.doi.org/10.1109/SCC.2011.86

Bibliography 129

[103] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: Theory and

Practice. Morgan Kaufmann, Amsterdam, 2004. ISBN 978-1-55860-856-6. URL

http://www.sciencedirect.com/science/book/9781558608566.

[104] Incheon Paik and Daisuke Maruyama. Automatic web services composition using

combining HTN and CSP. In Seventh International Conference on Computer and

Information Technology (CIT 2007), October 16-19, 2007, University of Aizu,

Fukushima, Japan, pages 206–211, 2007. doi: 10.1109/CIT.2007.61. URL http:

//dx.doi.org/10.1109/CIT.2007.61.

[105] Ronny Hartanto and Joachim Hertzberg. Fusing dl reasoning with htn planning.

In Proceedings of the 31st annual German conference on Advances in Artificial

Intelligence, KI ’08, pages 62–69, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN

978-3-540-85844-7. doi: 10.1007/978-3-540-85845-4 8. URL http://dx.doi.org/

10.1007/978-3-540-85845-4_8.

[106] Wan M.N. Wan Kadir Sayed Gholam Hassan Tabatabaei and Suhaimi Ibrahim.

A semantic web service discovery and composition based on htn-planning

and description logic. 2013. URL http://comp.utm.my/pars/files/2013/04/

Semantic-Web-Service-Discovery-and-Composition-Based-on-HTN-Planning-and-Description-Logic.

pdf.

[107] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description Logics. In Frank van

Harmelen, Vladimir Lifschitz, and Bruce Porter, editors, Handbook of Knowledge

Representation, chapter 3, pages 135–180. Elsevier, 2008. URL download/2007/

BaHS07a.pdf.

[108] Dong M. Jiang Y. Zhang H Shi, Z. A logic foundation for the semantic web. In

Science in China, Series F 48(2), pages 161–178, 2005.

[109] Liang Chang, Fen Lin, and Zhongzhi Shi. A dynamic description logic for rep-

resentation and reasoning about actions. In Proceedings of the 2nd international

conference on Knowledge science, engineering and management, KSEM’07, pages

115–127, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 3-540-76718-5, 978-3-

540-76718-3. URL http://dl.acm.org/citation.cfm?id=1775431.1775448.

[110] Guohua Shen, Zhiqiu Huang, Xiaodong Zhu, and Jun Yang. Reasoning about web

services with dynamic description logics. In Mark Burgin, Masud H. Chowdhury,

Chan H. Ham, Simone A. Ludwig, Weilian Su, and Sumanth Yenduri, editors,

CSIE (6), pages 106–110. IEEE Computer Society, 2009. ISBN 978-0-7695-3507-

4. URL http://doi.ieeecomputersociety.org/10.1109/CSIE.2009.232.

http://www.sciencedirect.com/science/book/9781558608566
http://dx.doi.org/10.1109/CIT.2007.61
http://dx.doi.org/10.1109/CIT.2007.61
http://dx.doi.org/10.1007/978-3-540-85845-4_8
http://dx.doi.org/10.1007/978-3-540-85845-4_8
http://comp.utm.my/pars/files/2013/04/Semantic-Web-Service-Discovery-and-Composition-Based-on-HTN-Planning-and-Description-Logic.pdf
http://comp.utm.my/pars/files/2013/04/Semantic-Web-Service-Discovery-and-Composition-Based-on-HTN-Planning-and-Description-Logic.pdf
http://comp.utm.my/pars/files/2013/04/Semantic-Web-Service-Discovery-and-Composition-Based-on-HTN-Planning-and-Description-Logic.pdf
download/2007/BaHS07a.pdf
download/2007/BaHS07a.pdf
http://dl.acm.org/citation.cfm?id=1775431.1775448
http://doi.ieeecomputersociety.org/10.1109/CSIE.2009.232

Bibliography 130

[111] Wei Liu Yu Yue Du Bao Qi Guo Chun Yan Qiang Xu. A fast algorithm for web

service composition based on dynamic description logic. In Information Tech-

nology Journal, 9, 1150-1157. Asian Network for Scientific Information, 2011.

doi: 10.3923/itj.2010.1150.1157. URL http://scialert.net/abstract/?doi=

itj.2010.1150.1157.

[112] Zhixiong Jiang, Leqiu Qian, Xin Pen, and Shisheng Zhu. Dynamic description logic

for describing semantic web services. In Computer and Computational Sciences,

2007. IMSCCS 2007. Second International Multi-Symposiums on, pages 212 –219,

aug. 2007. doi: 10.1109/IMSCCS.2007.16.

[113] Wenjia Niu, Zhongzhi Shi, Changlin Wan, Liang Chang, and Hui Peng. A ddl-

based model for web service composition in context-aware environment. In ICWS,

pages 787–788, 2008.

[114] Liangzhao Zeng, Anne H. Ngu, Boualem Benatallah, Rodion Podorozhny, and

Hui Lei. Dynamic composition and optimization of web services. Distrib. Par-

allel Databases, 24(1-3):45–72, December 2008. ISSN 0926-8782. doi: 10.1007/

s10619-008-7030-7. URL http://dx.doi.org/10.1007/s10619-008-7030-7.

[115] Onur Aydin, Nihan Kesim Cicekli, and Ilyas Cicekli. Automated web services

composition with the event calculus. In Engineering Societies in the Agents

World VIII, 8th International Workshop, ESAW 2007, Athens, Greece, Octo-

ber 22-24, 2007, Revised Selected Papers, pages 142–157, 2007. doi: 10.1007/

978-3-540-87654-0 7. URL http://dx.doi.org/10.1007/978-3-540-87654-0_

7.

[116] Murray Shanahan. Artificial intelligence today. chapter The Event Calculus Ex-

plained, pages 409–430. Springer-Verlag, Berlin, Heidelberg, 1999. ISBN 3-540-

66428-9. URL http://dl.acm.org/citation.cfm?id=1805750.1805767.

[117] Vikas Agarwal, Girish Chafle, Koustuv Dasgupta, Neeran Karnik, Arun Kumar,

Sumit Mittal, and Biplav Srivastava. Synthy: A system for end to end compo-

sition of web services. Web Semant., 3(4):311–339, December 2005. ISSN 1570-

8268. doi: 10.1016/j.websem.2005.09.002. URL http://dx.doi.org/10.1016/j.

websem.2005.09.002.

[118] Ehtesham Zahoor, Olivier Perrin, and Claude Godart. An integrated declarative

approach to web services composition and monitoring. In Gottfried Vossen, Darrell

D. E. Long, and Jeffrey Xu Yu, editors, WISE, volume 5802 of Lecture Notes in

Computer Science, pages 247–260. Springer, 2009. ISBN 978-3-642-04408-3. URL

http://dx.doi.org/10.1007/978-3-642-04409-0_28.

http://scialert.net/abstract/?doi=itj.2010.1150.1157
http://scialert.net/abstract/?doi=itj.2010.1150.1157
http://dx.doi.org/10.1007/s10619-008-7030-7
http://dx.doi.org/10.1007/978-3-540-87654-0_7
http://dx.doi.org/10.1007/978-3-540-87654-0_7
http://dl.acm.org/citation.cfm?id=1805750.1805767
http://dx.doi.org/10.1016/j.websem.2005.09.002
http://dx.doi.org/10.1016/j.websem.2005.09.002
http://dx.doi.org/10.1007/978-3-642-04409-0_28

Bibliography 131

[119] Holleis. P. Programming interactive physical prototypes. 1st Int’l Workshop on

Design and Integration Principles for Smart Objects (DIPSO 07), 2007.

[120] Molood Makhlughian, Seyyed Mohsen Hashemi, Yousef Rastegari, and Emad Pej-

man. Web service selection based on ranking of qos using associative classification.

CoRR, abs/1204.1425, 2012.

[121] Shirin Sohrabi and Sheila A. McIlraith. Optimizing web service composition while

enforcing regulations. In Abraham Bernstein, David R. Karger, Tom Heath, Lee

Feigenbaum, Diana Maynard, Enrico Motta, and Krishnaprasad Thirunarayan,

editors, International Semantic Web Conference, volume 5823 of Lecture Notes in

Computer Science, pages 601–617. Springer, 2009. ISBN 978-3-642-04929-3. URL

http://dx.doi.org/10.1007/978-3-642-04930-9_38.

[122] Anupriya Ankolekar, Massimo Paolucci, and Katia Sycara. Towards a formal veri-

fication of owl-s process models. In Proceedings of the 4th International Conference

on The Semantic Web, ISWC’05, pages 37–51, Berlin, Heidelberg, 2005. Springer-

Verlag. ISBN 3–540-29754-5, 978-3-540-29754-3. doi: 10.1007/11574620 6. URL

http://dx.doi.org/10.1007/11574620_6.

[123] Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni. Verifying

a-priori the composition of declarative specified services. In Matteo Baldoni,

Cristina Baroglio, Jamal Bentahar, Guido Boella, Massimo Cossentino, Mehdi

Dastani, Barbara Dunin-Keplicz, Giancarlo Fortino, Marie-Peirre Gleizes, Joao

Leite, Viviana Mascardi, Julian Padget, Juan Pavon, Axel Polleres, Amal El Fal-

lah Seghrouchni, Paolo Torroni, and Rineke Verbrugge, editors, 2nd Federated

Workshop on Multi-Agent Logics, Languages, and Organisations (MALLOW’009)

- 2nd International Workshop on Agents, Web-Services and Ontologies: Integrated

Methodologies, volume 494. CEUR Electronic Workshop Proceedings, 2009. URL

http://www.ceur-ws.org/Vol-494/mallowawesomepaper2.pdf.

[124] M. Pesic and W. M. P. van der Aalst. A declarative approach for flexible busi-

ness processes management. In Proceedings of the 2006 International Conference

on Business Process Management Workshops, BPM’06, pages 169–180, Berlin,

Heidelberg, 2006. Springer-Verlag. ISBN 3-540-38444-8, 978-3-540-38444-1. doi:

10.1007/11837862 18. URL http://dx.doi.org/10.1007/11837862_18.

[125] Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello,

and Paolo Torroni. Verifiable agent interaction in abductive logic programming:

The SCIFF framework. ACM Trans. Comput. Log., 9(4), 2008. doi: 10.1145/

1380572.1380578. URL http://doi.acm.org/10.1145/1380572.1380578.

http://dx.doi.org/10.1007/978-3-642-04930-9_38
http://dx.doi.org/10.1007/11574620_6
http://www.ceur-ws.org/Vol-494/mallowawesomepaper2.pdf
http://dx.doi.org/10.1007/11837862_18
http://doi.acm.org/10.1145/1380572.1380578

Bibliography 132

[126] Marco Montali, Maja Pesic, Wil M. P. van der Aalst, Federico Chesani, Paola

Mello, and Sergio Storari. Declarative specification and verification of service

choreographiess. ACM Trans. Web, 4(1):3:1–3:62, January 2010. ISSN 1559-1131.

doi: 10.1145/1658373.1658376. URL http://doi.acm.org/10.1145/1658373.

1658376.

[127] Wil M. P. van der Aalst and Maja Pesic. Decserflow: Towards a truly declarative

service flow language. In The Role of Business Processes in Service Oriented Ar-

chitectures, 16.07. - 21.07.2006, 2006. URL http://drops.dagstuhl.de/opus/

volltexte/2006/829.

[128] Ehtesham Zahoor, Kashif Munir, Olivier Perrin, and Claude Godart. A bounded

model checking approach for the verification of web services composition. Int.

J. Web Service Res., 10(4):62–81, 2013. doi: 10.4018/ijwsr.2013100103. URL

http://dx.doi.org/10.4018/ijwsr.2013100103.

[129] Ehtesham Zahoor, Olivier Perrin, and Claude Godart. Web services composition

verification using satisfiability solving. In 2012 IEEE 19th International Confer-

ence on Web Services, Honolulu, HI, USA, June 24-29, 2012, pages 242–249, 2012.

doi: 10.1109/ICWS.2012.75. URL http://dx.doi.org/10.1109/ICWS.2012.75.

[130] R Kowalski and M Sergot. A logic-based calculus of events. New Gen. Comput.,

4(1):67–95, January 1986. ISSN 0288-3635. doi: 10.1007/BF03037383. URL

http://dx.doi.org/10.1007/BF03037383.

[131] Erik T. Mueller. Event calculus reasoning through satisfiability. Journal of Logic

and Computation, 14(5):703–730, 2004. doi: 10.1093/logcom/14.5.703. URL http:

//logcom.oxfordjournals.org/content/14/5/703.abstract.

[132] K. Taylor, P. Brebner, M. Kearney, D. Zhang, K. Lam, and V. Tosic. Towards

declarative monitoring of declarative service compositions. In Data Engineering

Workshop, 2007 IEEE 23rd International Conference on, pages 315–322, April

2007. doi: 10.1109/ICDEW.2007.4401011.

[133] Vladimir Tosic, Wei Ma, Bernard Pagurek, and Babak Esfandiari. Web service

offerings infrastructure (wsoi) - a management infrastructure for xml web services.

In NOMS (1), pages 817–830. IEEE, 2004. URL http://dx.doi.org/10.1109/

NOMS.2004.1317770.

[134] Abdelkarim Erradi, Piyush Maheshwari, and Vladimir Tosic. Ws-policy based

monitoring of composite web services. Web Services, European Conference on, 0:

99–108, 2007. doi: http://doi.ieeecomputersociety.org/10.1109/ECOWS.2007.31.

http://doi.acm.org/10.1145/1658373.1658376
http://doi.acm.org/10.1145/1658373.1658376
http://drops.dagstuhl.de/opus/volltexte/2006/829
http://drops.dagstuhl.de/opus/volltexte/2006/829
http://dx.doi.org/10.4018/ijwsr.2013100103
http://dx.doi.org/10.1109/ICWS.2012.75
http://dx.doi.org/10.1007/BF03037383
http://logcom.oxfordjournals.org/content/14/5/703.abstract
http://logcom.oxfordjournals.org/content/14/5/703.abstract
http://dx.doi.org/10.1109/NOMS.2004.1317770
http://dx.doi.org/10.1109/NOMS.2004.1317770

Bibliography 133

[135] L. Baresi and S. Guinea. Event-based multi-level service monitoring. In Web

Services (ICWS), 2013 IEEE 20th International Conference on, pages 83–90, June

2013. doi: 10.1109/ICWS.2013.21.

[136] Marco Comuzzi and George Spanoudakis. A framework for hierarchical and re-

cursive monitoring of service based systems. In Fourth International Conference

on Internet and Web Applications and Services, ICIW 2009, 24-28 May 2009,

Venice/Mestre, Italy, pages 383–388, 2009. doi: 10.1109/ICIW.2009.63. URL

http://dx.doi.org/10.1109/ICIW.2009.63.

[137] D. Skogan, R. Groenmo, and I Solheim. Web service composition in uml. In Enter-

prise Distributed Object Computing Conference, 2004. EDOC 2004. Proceedings.

Eighth IEEE International, pages 47–57, Sept 2004. doi: 10.1109/EDOC.2004.

1342504.

[138] R. Groenmo and M.C. Jaeger. Model-driven semantic web service composition.

In Software Engineering Conference, 2005. APSEC ’05. 12th Asia-Pacific, pages

8 pp.–, Dec 2005. doi: 10.1109/APSEC.2005.81.

[139] Luokai Hu, Shi Ying, Kai Zhao, and Rui Chen. A semantic web service de-

scription language. In Proceedings of the 2009 WASE International Conference

on Information Engineering - Volume 02, ICIE ’09, pages 449–452, Washing-

ton, DC, USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3679-8. doi:

10.1109/ICIE.2009.205. URL http://dx.doi.org/10.1109/ICIE.2009.205.

[140] Wassim Derguech and Sami Bhiri. Business process model overview: Determining

the capability of a process model using ontologies. In BIS, pages 62–74, 2013.

[141] Joachim Peer. A pop-based replanning agent for automatic web service com-

position. In The Semantic Web: Research and Applications, Second European

Semantic Web Conference, ESWC 2005, Heraklion, Crete, Greece, May 29 -

June 1, 2005, Proceedings, pages 47–61, 2005. doi: 10.1007/11431053 4. URL

http://dx.doi.org/10.1007/11431053_4.

[142] Wenbin Li, Youakim Badr, and Frederique Biennier. Towards A Capability Model

for Web Service Composition. In ICWS 2013, pages 609–610, June 2013. URL

http://liris.cnrs.fr/publis/?id=6183.

[143] Wassim Derguech, Souleiman Hasan, Sami Bhiri, and Edward Curry. Organizing

Capabilities using Formal Concept Analysis. In 22th IEEE International Con-

ference on Enabling Technologies: Infrastructures for Collaborative Enterprises,

Hammamet, Tunisia, 2013. URL http://www.edwardcurry.org/publications/

WETICE_2013.pdf.

http://dx.doi.org/10.1109/ICIW.2009.63
http://dx.doi.org/10.1109/ICIE.2009.205
http://dx.doi.org/10.1007/11431053_4
http://liris.cnrs.fr/publis/?id=6183
http://www.edwardcurry.org/publications/WETICE_2013.pdf
http://www.edwardcurry.org/publications/WETICE_2013.pdf

Bibliography 134

[144] Wassim Derguech and Sami Bhiri. Capability modelling - case of logistics ca-

pabilities. In Marcello La Rosa and Pnina Soffer, editors, Business Process

Management Workshops, volume 132 of Lecture Notes in Business Informa-

tion Processing, pages 519–529. Springer, 2012. ISBN 978-3-642-36284-2. URL

http://dx.doi.org/10.1007/978-3-642-36285-9_53.

[145] Gianpaolo Cugola, Leandro Sales Pinto, and Giordano Tamburrelli. Qos-aware

adaptive service orchestrations. In 2012 IEEE 19th International Conference on

Web Services, Honolulu, HI, USA, June 24-29, 2012, pages 440–447, 2012. doi:

10.1109/ICWS.2012.104. URL http://dx.doi.org/10.1109/ICWS.2012.104.

[146] Vikas Agarwal, Girish Chafle, Koustuv Dasgupta, Neeran Karnik, Arun Kumar,

Sumit Mittal, and Biplav Srivastava. Synthy: A system for end to end composition

of web services. Web Semantics: Science, Services and Agents on the World Wide

Web, 3(4), 2011. ISSN 1570-8268. URL http://www.websemanticsjournal.org/

index.php/ps/article/view/79.

[147] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific

American, 284(5):34–43, may 2001. URL http://www.sciam.com/article.cfm?

articleID=00048144-10D2-1C70-84A9809EC588EF21.

[148] Ruben Verborgh. Serendipitous Web Applications through Semantic Hypermedia.

PhD thesis, Ghent University, Ghent, Belgium, February 2014. URL http://

ruben.verborgh.org/phd/ruben-verborgh-phd.pdf.

[149] Amir Yousefli, A. Deheshvar, and T. Komijani. Ranking vague sets using topsis

method. Journal of Intelligent and Fuzzy Systems, 25(4):853–858, 2013. URL

http://dx.doi.org/10.3233/IFS-120663.

[150] Yong-Bin Li and Jian-Ping Zhang. Topsis method for hybrid multiple attribute

decision making with 2-tuple linguistic information and its application to com-

puter network security evaluation. Journal of Intelligent and Fuzzy Systems, 26

(3):1563–1569, 2014. doi: 10.3233/IFS-130876. URL http://dx.doi.org/10.

3233/IFS-130876.

[151] Ding-Yuan Cheng, Kuo-Ming Chao, Chi-Chun Lo, and Chen-Fang Tsai. A

user centric service-oriented modeling approach. World Wide Web, 14(4):431–

459, 2011. doi: 10.1007/s11280-011-0115-7. URL http://dx.doi.org/10.1007/

s11280-011-0115-7.

http://dx.doi.org/10.1007/978-3-642-36285-9_53
http://dx.doi.org/10.1109/ICWS.2012.104
http://www.websemanticsjournal.org/index.php/ps/article/view/79
http://www.websemanticsjournal.org/index.php/ps/article/view/79
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://ruben.verborgh.org/phd/ruben-verborgh-phd.pdf
http://ruben.verborgh.org/phd/ruben-verborgh-phd.pdf
http://dx.doi.org/10.3233/IFS-120663
http://dx.doi.org/10.3233/IFS-130876
http://dx.doi.org/10.3233/IFS-130876
http://dx.doi.org/10.1007/s11280-011-0115-7
http://dx.doi.org/10.1007/s11280-011-0115-7

Bibliography 135

[152] Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas, Jayant

Kalagnanam, and Henry Chang. Qos-aware middleware for web services compo-

sition. IEEE Trans. Softw. Eng., 30(5):311–327, May 2004. ISSN 0098-5589. doi:

10.1109/TSE.2004.11.

[153] Frederico Alvares De Oliveira and José M. Parente de Oliveira. Qos-based approach

for dynamic web service composition. j-jucs, 17(5):712–741, mar 2011.

[154] Ruben Verborgh, Thomas Steiner, Erik Mannens, Rik Van de Walle, and Joaquim

Gabarró Vallés. Proof-based automated Web API composition and integration.

In Proceedings of the International Conference on Advanced IT, Engineering and

Management, pages 181–182, February 2013.

[155] Ruben Verborgh, Vincent Haerinck, Thomas Steiner, Davy Van Deursen, Sofie Van

Hoecke, Jos De Roo, Rik Van de Walle, and Joaquim Gabarró. Functional com-

position of sensor web apis. In Proceedings of the 5th International Workshop on

Semantic Sensor Networks, SSN12, Boston, Massachusetts, USA, November 12,

2012, pages 65–80, 2012. URL http://ceur-ws.org/Vol-904/paper6.pdf.

[156] Tim Berners-Lee. Notation 3 logic, August 2005. URL http://www.w3.org/

DesignIssues/Notation3.

[157] Tim Berners-Lee and Dan Connolly. Notation3 (n3): A readable rdf syntax, March

2011. URL http://www.w3.org/TeamSubmission/n3/.

[158] Tim Berners-Lee. Cwm, 2000–2009. URL http://www.w3.org/2000/10/swap/

doc/cwm.html.

[159] James L. Rash, Christopher Rouff, Walt Truszkowski, Diana F. Gordon, and

Michael G. Hinchey, editors. Formal Approaches to Agent-Based Systems, First

International Workshop, FAABS 2000 Greenbelt, MD, USA, April 5-7, 2000, Re-

vised Papers, volume 1871 of Lecture Notes in Computer Science, 2001. Springer.

ISBN 3-540-42716-3.

[160] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden

Katz. Pellet: A practical owl-dl reasoner. Web Semant., 5(2):51–53, June 2007.

ISSN 1570-8268. doi: 10.1016/j.websem.2007.03.004. URL http://dx.doi.org/

10.1016/j.websem.2007.03.004.

[161] Georgios Meditskos and Nick Bassiliades. Dlejena: A practical forward-chaining

owl 2 rl reasoner combining jena and pellet. Web Semantics: Science, Services

and Agents on the World Wide Web, 8(1), 2010. ISSN 1570-8268. URL http:

//www.websemanticsjournal.org/index.php/ps/article/view/176.

http://ceur-ws.org/Vol-904/paper6.pdf
http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/2000/10/swap/doc/cwm.html
http://www.w3.org/2000/10/swap/doc/cwm.html
http://dx.doi.org/10.1016/j.websem.2007.03.004
http://dx.doi.org/10.1016/j.websem.2007.03.004
http://www.websemanticsjournal.org/index.php/ps/article/view/176
http://www.websemanticsjournal.org/index.php/ps/article/view/176

Bibliography 136

[162] Tim Berners-lee, Dan Connolly, Lalana Kagal, Yosi Scharf, and Jim Hendler.

N3logic: A logical framework for the world wide web. Theory Pract. Log. Program.,

8(3):249–269, May 2008. ISSN 1471-0684. doi: 10.1017/S1471068407003213. URL

http://dx.doi.org/10.1017/S1471068407003213.

[163] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific

American, 284(5):34–43, May 2001. URL http://www.sciam.com/article.cfm?

articleID=00048144-10D2-1C70-84A9809EC588EF21.

[164] Sofie Van Hoecke Sam Coppens Jos De Roo Thomas Steiner ErikMannens

Ruben Verborgh, Dörthe Arndt and Rik Van deWalle. The pragmatic proof:

Hypermedia api composition and execution. Theory and Practice of Logic Pro-

gramming, 2014.

[165] Virtuoso universal server. http://virtuoso.openlinksw.com.

[166] C. Garcia-martinez, O. Cordon, and F. Herrera. An empirical analysis of multiple

objective ant colony optimization algorithms for the bi-criteria tsp. In Proceed-

ings of the 4th International Workshop on Ant Colony Optimization and Swarm

Intelligence, pages 61–72. Springer, 2004.

[167] Carlos Garćıa-Mart́ınez, Oscar Cordón, and Francisco Herrera. A taxonomy and

an empirical analysis of multiple objective ant colony optimization algorithms

for the bi-criteria TSP. European Journal of Operational Research, 180(1):116–

148, 2007. doi: 10.1016/j.ejor.2006.03.041. URL http://dx.doi.org/10.1016/

j.ejor.2006.03.041.

[168] Joonho Kwon, Hyeonji Kim, Daewook Lee, and Sukho Lee. Redundant-free web

services composition based on a two-phase algorithm. In ICWS, pages 361–368,

2008.

[169] Srividya Kona, Ajay Bansal, and Gopal Gupta. Automatic composition of seman-

ticweb services. In ICWS, pages 150–158, 2007.

[170] Ajay Bansal, Srividya Kona, M. Brian Blake, and Gopal Gupta. An agent-based

approach for composition of semantic web services. In WETICE, pages 12–17,

2008.

[171] Djamal Benslimane, Schahram Dustdar, and Amit P. Sheth. Services mashups:

The new generation of web applications. IEEE Internet Computing, 12(5):13–

15, 2008. doi: 10.1109/MIC.2008.110. URL http://doi.ieeecomputersociety.

org/10.1109/MIC.2008.110.

http://dx.doi.org/10.1017/S1471068407003213
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://virtuoso.openlinksw.com
http://dx.doi.org/10.1016/j.ejor.2006.03.041
http://dx.doi.org/10.1016/j.ejor.2006.03.041
http://doi.ieeecomputersociety.org/10.1109/MIC.2008.110
http://doi.ieeecomputersociety.org/10.1109/MIC.2008.110

Bibliography 137

[172] Karim Benouaret, Djamal Benslimane, and Allel HadjAli. On the use of fuzzy

dominance for computing service skyline based on qos. In IEEE International

Conference on Web Services, ICWS 2011, Washington, DC, USA, July 4-9,

2011, pages 540–547, 2011. doi: 10.1109/ICWS.2011.93. URL http://doi.

ieeecomputersociety.org/10.1109/ICWS.2011.93.

[173] Bipin Upadhyaya, Ying Zou, Iman Keivanloo, and Joanna W. Ng. Quality of

experience: What end-users say about web services? In 2014 IEEE International

Conference on Web Services, ICWS, 2014, Anchorage, AK, USA, June 27 - July

2, 2014, pages 57–64, 2014. doi: 10.1109/ICWS.2014.21. URL http://dx.doi.

org/10.1109/ICWS.2014.21.

[174] Bipin Upadhyaya, Ying Zou, Joanna W. Ng, Tinny Ng, and Diana H. Lau. Towards

quality of experience driven service composition. In 2014 IEEE World Congress

on Services, SERVICES 2014, Anchorage, AK, USA, June 27 - July 2, 2014,

pages 18–20, 2014. doi: 10.1109/SERVICES.2014.13. URL http://dx.doi.org/

10.1109/SERVICES.2014.13.

[175] Shaohua Wang, Bipin Upadhyaya, Ying Zou, Iman Keivanloo, and Joanna W.

Ng. Automatic propagation of user inputs in service composition for end-users. In

2014 IEEE International Conference on Web Services, ICWS, 2014, Anchorage,

AK, USA, June 27 - July 2, 2014, pages 73–80, 2014. doi: 10.1109/ICWS.2014.23.

URL http://dx.doi.org/10.1109/ICWS.2014.23.

[176] Giovanni Acampora, Matteo Gaeta, Vincenzo Loia, and Athanasios V. Vasilakos.

Interoperable and adaptive fuzzy services for ambient intelligence applications.

ACM Trans. Auton. Adapt. Syst., 5(2):8:1–8:26, May 2010. ISSN 1556-4665.

doi: 10.1145/1740600.1740604. URL http://doi.acm.org/10.1145/1740600.

1740604.

[177] J. Bronsted, K.M. Hansen, and M. Ingstrup. Service composition issues in perva-

sive computing. Pervasive Computing, IEEE, 9(1):62–70, Jan 2010. ISSN 1536-

1268. doi: 10.1109/MPRV.2010.11.

[178] M. Reza Rahimi, Nalini Venkatasubramanian, Sharad Mehrotra, and Athana-

sios V. Vasilakos. Mapcloud: Mobile applications on an elastic and scalable 2-tier

cloud architecture. In Proceedings of the 2012 IEEE/ACM Fifth International

Conference on Utility and Cloud Computing, UCC ’12, pages 83–90, Washing-

ton, DC, USA, 2012. IEEE Computer Society. ISBN 978-0-7695-4862-3. doi:

10.1109/UCC.2012.25. URL http://dx.doi.org/10.1109/UCC.2012.25.

http://doi.ieeecomputersociety.org/10.1109/ICWS.2011.93
http://doi.ieeecomputersociety.org/10.1109/ICWS.2011.93
http://dx.doi.org/10.1109/ICWS.2014.21
http://dx.doi.org/10.1109/ICWS.2014.21
http://dx.doi.org/10.1109/SERVICES.2014.13
http://dx.doi.org/10.1109/SERVICES.2014.13
http://dx.doi.org/10.1109/ICWS.2014.23
http://doi.acm.org/10.1145/1740600.1740604
http://doi.acm.org/10.1145/1740600.1740604
http://dx.doi.org/10.1109/UCC.2012.25

Bibliography 138

[179] Quan Z. Sheng, Jian Yu, and Schahram Dustdar. Enabling Context-Aware Web

Services: Methods, Architectures, and Technologies. Chapman & Hall/CRC, 1st

edition, 2010. ISBN 1439809852, 9781439809853.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivations and Problem statement
	1.1.1 Composition modeling
	1.1.2 Composition verification
	1.1.3 Composition monitoring
	1.1.4 Lack of integration

	1.2 Objectives and Contributions
	1.2.1 Objectives
	1.2.2 Contributions

	1.3 Thesis outline

	2 State of the art
	2.1 SOA and Web services
	2.1.1 Service Oriented Architecture
	2.1.2 Web services and Architectural Styles

	2.2 Web Service Composition
	2.2.1 Composition Models
	2.2.2 Non-functional requirements

	2.3 Web services composition approaches
	2.3.1 Procedural composition approaches
	2.3.2 Declarative composition approaches
	2.3.3 Synthesis

	2.4 Conclusion

	3 Capabilities driven Web Services Description and Composition
	3.1 Capabilities driven Web Services Description
	3.1.1 Service description
	3.1.2 Non-Functional Properties meta-model
	3.1.3 Workflow meta-model
	3.1.4 Illustrative example

	3.2 Integrated Framework for Web Services Composition
	3.2.1 Pre-Composition phase
	3.2.2 Abstract Composition
	3.2.3 Concrete Composition
	3.2.4 Composition Monitoring

	3.3 Conclusion

	4 Proof based Web Services Composition
	4.1 Proof Ingredients
	4.1.1 Notation 3
	4.1.2 Euler Yap Engine (EYE) Reasoner
	4.1.3 Proof Study

	4.2 Proof based Composition of Services Capabilities
	4.2.1 N3 capabilities descriptions
	4.2.2 Proof based Composition
	4.2.3 Composition Scenario: Programmable Dinner Scenario

	4.3 Correctness of Web services composition proofs
	4.4 Conclusion

	5 Implementation and Performance Study
	5.1 Implementation
	5.2 Performance Study
	5.2.1 Parsing and Reasoning performance
	5.2.2 QoS-Aware Service Selection performance
	5.2.3 Comparative study

	5.3 Conclusion

	6 Conclusions and Future Work
	6.1 Summary
	6.1.1 Problem definition
	6.1.2 Proposed approach

	6.2 Outlook and Future Work
	6.2.1 Services mashups and cloud service compositions
	6.2.2 Quality of Experience driven Service Composition
	6.2.3 Pervasive services composition

