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Introduction générale

" Calculer la probabilité d’un événement
n'a aucun sens une fois que ['on sait qu'il
s’est produit. L'apparition de la vie, celle

des dinosaures, celle des Hommes, a résulté
d’un grand nombre de bifurcations dans le
cours des processus se déroulant sur notre
planéte; chacune de ces bifurcations s'est
produite alors que de nombreuses autres
étaient possibles; chacune avait une
probabilité faible, mais il fallait bien

qu’une de ces possibilités se produise.”

La science a ['usage des non-scientifiques,

2003 Albert Jacquard, né en1925.
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N ous assistons aujourd’hui a des révolutions dassn@yens de fabrication, de
production, de traitement de l'information et dencounication. Ces révolutions ont
contribué a la production d’'outils et systéemes lles gn plus complexes par leurs tailles et

leurs modes de fonctionnement.

Ceci impose le recours a des méthodes de diagrdesiitus en plus sophistiquées tel que les
meéthodes de diagnostic a base de connaissance méthodes plus récentes de diagnostic a

base de modeéle.

Ces derniers ont surmonté certaines limites inhiéseaux approches de diagnostic a base de
connaissance en utilisant un modéle de systemedafiprédire sa panne ou chercher son

origine.

Parmi les modeéles utilisés pour décrire la conaaiss sur un systeme, on distingue les

Réseaux Bayésiens (RBs) qui permettent la manipalde connaissance incertaine.

Cependant, I'une des limites majeures que renaankes utilisateurs des réseaux bayésiens
est d’exprimer les connaissances non precises uwsudans les diagnostics ou beaucoup
d’'informations sont floues. En faite, nous ne pas/gpas exprimer toutes sortes de

connaissances par un langage précis.

La solution est donc de combiner les réseaux baygsavec la logique floue, d'ou la

naissance des Réseaux Bayésiens Flous (RBFsS).

L'objectif de ce projet de mastére est d’appréhetaleroblématique des Réseaux Bayésiens
Flous, ensuite de modéliser quelques systemes @srréseaux bayeésiens flous et de
développer des algorithmes d’inférence a des fenslidgnostic exploitant la richesse de ces

modéles.

Dans ce projet nous cherchons a résoudre quelgqubmes constatés lors du diagnostic a
base de Réseau Bayésien classique. Ces problenesment essentiellement la modélisation
qui s’avere difficile en présence de connaissamaoelsigies. Les algorithmes d’inférence et

de diagnostic sont non génériques et non adaptésrdaexte flou.
Ce rapport est organisé selon quatre chapitres :

Le premier chapitre propose quelques techniquesdidgnostic qu'on peut classer

essentiellement, en deux catégories : diagnodbasa de connaissances et diagnostic a base
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de modéles. Notre objectif dans ce chapitre esprédsenter la méthode de diagnostic de

modéle et comment utiliser un réseau bayésien comaouele.

Le deuxieme chapitre détaille les notions de bastadogique floue et du réseau bayésien,
qui sont parmi les techniques les plus intéressapteir I'aide au diagnostic. Ce modele
combine les avantages des réseaux bayésiens emstedm flexibilité et de facilité

d’interprétation et les avantages de la logiquedlen termes de flexibilité.

Le troisieme chapitre met en évidence la théorierédeau bayésien flou. Il valorise ses
avantages, invoque les applications qui l'utilisezitdétaille les approches qui existent pour

inférer ce genre de modéle.

Enfin, le quatriéeme chapitre aborde la réalisattrie test de notre application. Celle-ci se
compose d'un éditeur graphique pour la modélisaienRBF. Ainsi, qu’'un algorithme

d’inférence permettant la mise a jour de donnéassajues ou floues.
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CHAPITRE 1

Contexte du diagnostic a base de
modeles

"I entre dans toutes les actions
humaines plus de hasard que de

décision.” André Gide (1869-1951).
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1 Introduction

e diagnostic est une activité présente dans de mamimilieux : médical, administratif,
L industriel. Le terme diagnostic est issu du domaimélical ou il signifie "Action de
déterminer une maladie d’'aprés ses symptomes".iagndstic technique peut étre défini
comme la recherche de I'origine des pannes ou tiéédim de réparer un systeme.

Généralement, le processus du diagnostic reposdesprincipe de I'observation et de
'analyse des symptomes d’'une défaillance, dartsutede trouver le reméde garantissant le
rétablissement et réduire la probabilité de défade. Les décisions prises suite a un

diagnostic sont généralement le fruit d’une expéee d’'un savoir-faire ou d’un historique.

Dans ce premier chapitre, nous en proposons quelgedniques de diagnostic qu’on peut
classer, essentiellement, en deux catégories nolitig a base de connaissances et diagnostic
a base de modéles.

2 Définition
Le diagnostic est défini [1] comme étant le raissment menant a l'identification de la cause
ou l'origine d'une défaillance, d'un probleme ound' maladie, a partir des caracteres ou

symptémes relevés par des observations, des cemtraldes tests.

Cependant, le diagnostic est un terme commun dephssdisciplines, sa définition est liee a
la nature du systéme considéré et du résultatcattdre mot diagnostic n’a pas exactement la

méme définition suivant les disciplines et les atge

Par exemple, Reiter a défini un diagnostic comnie: sSuSupposons connue une description
d'un systéme ainsi qu’une observation du amement anormal. Le probléeme du
diagnostic consiste a déterminer les composants$ l@odysfonctionnement expliquerait les
différences observées|[Reiter, 1986]. Il utilise des littéraux pouprésenter le systeme et les
liens entre ses composants, un diagnostic estid&imme une conjonction de littéraux qui
sont consistants avec la description et le compuatg observé et qui inclut un littéral pour
chacun des représentants des composants.

En outre, Van der Gaag [Gaag et al., 1994] a ddfninotion de diagnostic comme
'acheminement qui permet d’identifier 'ensemble plus probable de désordres qui

expliquent les manifestations observées en casaideme.
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3 Méthodes de diagnostic

Les outils de diagnostic mis a la disposition decglistes en maintenance et en supervision
sont nombreux, mais leur efficacité est trés ineghdg appartiennent généralement soit aux
méthodes a base de connaissances soit aux méthlodestcentes de diagnostic a base de
modeles. Nous allons présenter, dans la suitepriesipales méthodes de diagnostic issues

de travaux dans le domaine de l'intelligence aitfie.

3.1 Diagnostic a base de connaissances

Dans de nombreuses méthodes de diagnostic, laiseanae exacte du fonctionnement du
systeme n’est pas indispensable, I'expériencesetelsts sur site constituent la base pour les
approches qui exploitent des connaissances deenhturistique. Parmi les méthodes de
diagnostic a base de connaissances nous distingpnsipalement le diagnostic par

systemes experts.

3.1.1 Diagnostic par systéemes experts

Un systéme expert (SE) est un systéme d'aide éciaidn basé sur un moteur d'inférehes
sur une base de connaissances [2]. Il est |la mnigtisa logicielle de la réflexion d'un expert
dans un domaine donné. Il est capable de dédulciggue et de produire une solution qui

semble la plus juste.

Toutefois, il reste un outil d'aide a la décisidrest loin de pouvoir remplacer l'intelligence
d'un expert, d'ailleurs il n'est concevable querges domaines dans lesquels il existe des

experts humains.

Les SEs ne sont en aucun cas des logiciels adaptadis plutét des applications dédiées a
leur domaine d'activité, c'est pourquoi les SEst st@s progiciefs au sens pur. lls sont

généralement congus pour résoudre des problemdasdification ou de décision.
La mise en place d’'un SE dans un milieu professbsea fait en 5 étapes

1. Etude de faisabilité

La mise en place d'un SE ne peut se faire queldasedre d'un domaine d'expertise dont les

connaissances et le savoir-faire est formalisablest a dire un domaine qui n'a pas trop

! Partie d'un systéme expert qui effectue la sélectibl'application des régles en vue de la résmiut'un
probléme donné.

2 Contraction de produit et logiciel, est un logicigpplicatif commercial "prét-a-porter", standaddi®t
générique, prévu pour répondre a des besoins arekna
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attrait a la sensibilité humaine. L'investissemamtemps et donc en argent, pour la mise en
place d'un SE, est énorme et nombreux sont les@iges qui souhaiteraient s'en doter mais
tous les domaines d'expertise ne sont pas forrbédsa

Le premier travail du cogniticiérest donc d'évaluer le domaine et les risques ebéctie la

mise en place et de succes de l'outil aupres adésgsionnels et futurs utilisateurs.

2. Extraction des données

Une fois l'assurance que cette mise en place easilpe, la partie la plus importante de la
mise en place va commencer. Il s'agit d'un dialogo&e le cogniticien et I'expert afin
d'extraire de ce dernier toutes ses connaissahees savoir-faire.

Un tel objectif est évidemment impossible a attenanais le cogniticien va tenter de s'en
approcher au maximum. |l devra pour cela faire yeed'une grande compréhension des
informations qui lui seront transmises (les expeigsant pas forcément bons pédagogues) et
d'un certain sens de la psychologie pour fairegpanh expert qui aura tout naturellement le
sentiment de se faire trés prochainement rempjzarenn systéme informatique.

3. Formalisation

Apres et pendant l'extraction des données, le tiogm devra formaliser les connaissances
gu'il a glanées. Pour cette partie, il peut alormmencer a se tourner vers les développeurs et
autres professionnels techniques de l'informatafue de commencer a définir le cahier des
charges précis, la base de connaissance et les @giférence. A partir de cette étape, on a
déja un pied dans la technique.

4. Design et développement
Une fois la base de connaissances et les regidsrdiices définies, le cogniticien peut alors
se retourner vers I'équipe technique qui va défianchitecture technique nécessaire. Le
cogniticien aura a partir de la le réle de lienrentéquipe d'experts et I'équipe de
développement afin de peaufiner le cahier des elsaey d'optimiser les métadonrites

métarégled

% Personne ou ingénieur spécialisé dans I'extract&mnconnaissances.

* Les métadonnées, ou données sur les donnéesigredesur la nature, les caractéristiques etdpdiibilité
des données. Elles rendent les données comprélesnsilpartageables pour les utilisateurs darestes.

® Régles contrélant la sélection des régles a apgliq

Page7’



Modélisation et Diagnostic par Réseau Bayésien FIcAli BEN MRAD

5. Tests et optimisations

Naturellement la mise en place se termine par érie de tests auprées des experts mais aussi
auprés d'utilisateurs lambdagui sont sensés a partir de cet outil fournirrésultats d'un

expert débutant.

Avec le recul du temps et la confrontation a ldit&d’utilisation des systemes experts avait
dégagé un ensemble de limitations [Tomsovic e2800], dont la plus importante est celle
du raisonnement incertain. En fait, un des plusdggroblemes que rencontre le cogniticien
lorsqu'il tente de formaliser le savoir d'un expelest que celui-ci est capable de raisonner
sur des connaissances incertaines ou imprécisgsat ne dispose que de tres peu d'outils
pour rendre compte de cette capacité [Framling.etl892]. Il s'agit d’'une problématique
différente de la science objective. On assistesabola naissance d’'une discipline scientifique

appelée logique floue s’intégrant du raisonnemantdin.

3.1.2 Systemes experts flous

L’introduction de la logique floue dans les systénexperts a pour but de faire face aux
limitations des systémes experts ordinaires sudellé concernant le raisonnement incertain.
Cette introduction évoque la notion des Systemegefs Flous. La logique floue a été
introduite, dans les systemes experts depuis engaine d’années [Ketata et al., 2005], dans

plusieurs disciplines qui manipulent des donnéesrtaines et des informations imprécises.

Elle peut étre intégrée sous difféerents aspectomretion du domaine de I'application et du
degré de complexité du probleme. La structure gd@éd’'un systéme expert flou est
représentée par la Figure 1 qui précise égalemam duels niveaux la logique floue peut

intervenir.

® Un utilisateur qui ne fait pas usage de fonctioité@sl avancées, qui ne cherche pas a comprendre le
fonctionnement du systéme, ou qui n'a pas une ¢sgare poussée dans le domaine concerné.
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( Connaissance )

Informatique

{ Process
,

(  Acquisition ) |

Interface Experts |

SYSTEME EXPERT FLOU ]

((Représentation ) [

| Interface Utilisateurs I

( Tra it.em ent ) / \
|

Utilisateurs
( Utilisation )

Figure 1. Principe d’'un systéme expert Flou [Ketata et al03]

En fait, cette discipline touche I'étape de la fahisation et du traitement des connaissances
et permet de générer un ensemble de conclusiordepEes. La structure interne du systeme

expert flou dépend de son domaine d’applicatictedt nature des données a représenter.

Ainsi, des systemes experts flous ont été concuss da domaine de [|'électronique,
essentiellement pour faire le diagnostic des diffegs pannes qui peuvent affecter un circuit
de transmission [Lee et al., 2000]. La logique dl@uété utilisée, également, dans le domaine
de diagnostic pour l'agriculture pour la détecticet l'identification du type de maladies
d’insecte a partir des symptébmes constatés synldeses [Saini et al., 2002]. Un prototype de
logiciel a été, justement, développé dans le bétudier la possibilité d'utiliser la logique
floue dans des systemes d’'aide a la décision (Sp@ir I'élevage de la vache laitiere
[Strasser, 1997].

Il a été intéressant, certainement, d'utiliser wyst&me expert flou dans la conception
d’architecture d’'un réseau informatique. En fdits’est avéré que 70% de la connaissance

dans ce domaine est de nature floue [Fahmy et397].

Enfin, le domaine du diagnostic médical avait beapcutilisé les systemes experts flous
notamment pour I'analyse du sang de la corde embgjce [Garibaldi et al., 2000], dans un
logiciel d’aide pour I'enseignement des infirmief@sjpt et al., 1997] et dans le diagnostic

des symptdmes du cancer de la peau.

Les systémes experts flous ont pu, dans plusieursmphes, prouver leurs efficacités et pallier

les problemes de l'incertitude et I'imprécision aksnées et des connaissances intervenant
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dans I'expertise. L'étude des différents systen@a dités nous a prouveé la diversification de
I'utilisation de la logique floue. En effet, la mare de son intégration dans un systéme expert
differe d’'une application & une autre. Elle dépeledla nature de l'incertitude et de sa
modélisation. La dotation et la propagation dedfuoents de certitude different lorsque la

connaissance du systeme est modélisée sous mtidélida Sugeno ou bien de Mamdani.

Les systémes experts sont une des applicationtntidligence artificielle qui ont quitté les
laboratoires de recherche pour étre utilisées dansionde professionnel. De nombreux

systemes experts ont été implantés avec succesgsmudre des problemes concrets.

Néanmoins, les grandes difficultés rencontrées gr@ntlextraction des connaissances des
experts puis pendant leur formalisation formenttp&we un point faible trop difficile a
contourner dans les Systemes Experts. La strumnrates connaissances, notamment
incertaines, reste parfois floue et mal implantéesdes SEs, en plus les contraintes liées a la
nature des systemes diagnostiqués rendent cescapprimsuffisantes. Cela remet en question
le modele a la base de connaissance qui pourrgitemivers d'autres modeles (modeles

connexionnistes, systémes adaptatifs, etc.).

Au début des années quatre-vingts, d’'autres appsoohnt permis de surmonter certaines
limites inhérentes a ces méthodes. En particuligtilisation des modeles des systemes a
ouvert de nouvelles voies de recherche. Ces apgsaidnt appelées approche de diagnostic a
base de modéles.

3.2 Diagnostic a base de modeles

Le raisonnement & base de modele est une techdiguéntelligence artificielle qui est
applicable pour résoudre de nombreux problemes @rencontrble, le diagnostic, etc.
[Wotawa, 1999].

Le diagnostic a base de modeles a été introduis ¢izs1 années quatre-vingts par [Reiter,
1987] et [Kleer et al., 1987], et a, depuis, étgdment diffusé et repris dans de nombreux
travaux connexes. Selon ce formalisme, une thémgigque décrit le comportement normal ou
anormal d’'un systeme physique. Ensuite, a paribservations mesurées sur le systeme réel,
des hypotheses, ou encore des diagnostics, peétrerédmises afin d’expliquer son éventuel

mauvais fonctionnement.
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Cette approche, qui est née aux Etats Unis d’Araéridans la communauté Intelligence
Artificielle, présente I'avantage de se baser sunbddele du bon fonctionnement du systéme
et les observations de pannes ne sont utiles gonament du diagnostic. Elle s'appuie
uniquement sur la donnée d'un modéle de fonctioenerorrect du systeme et procede par

comparaison des comportements du modele et dursysteel.

Le diagnostic a base de modeles est utilisé darsepirs applications notamment, dans le
diagnostic des fautes graves dans les marcharjliags, 1984], [Davis et al., 1988], dans la
médecine [Lucas, 1997], ou encore pour la réparates systemes [Stumptner et al., 1998],
[Friderich et al., 1992]Friderich et al., 1992a].

Dans cette catégorie de méthode de diagnostic @ deasnmodele, l'utilisation de réseaux

bayésiens comme modele pour le diagnostic semlgl@pproche intéressante.

3.2.1 Diagnostic par Réseaux Bayésiens
L’intelligence artificielle a exploité des formates mathématiques et des propriétés issues
de la théorie de graphes pour améliorer la modiélisaet la représentation de données

incertaines.

Les recherches dans le domaine du diagnostic a t@smodeles ont bénéficié de ces
avancees. Ainsi, plusieurs travaux ont intégré asuls de probabilités pour faciliter la
tache de maintenance et de réparation. Des ag®atéissiques ont été augmentées, d’autres
ont intégré dans le modele les connaissancestanes. Ceci facilite la génération de
résultats de nature probabiliste. Les réseaux mmg@dont partie de ces méthodes. Ces
modéles intégrent I'aspect incertain dés la créadio modele. Chaque nceud comprend une

distribution de probabilités qui est mise a jourf@mction des observations acquises.

Ainsi, les réseaux bayésiens constituent un owiffgpmant pour la modélisation et le
diagnostic. En effet, ils permettent, d’'une pakxgloiter pleinement la connaissarec@riori
des systéemes a diagnostiquer et, d’autre partouamif l'informationa posteriorinécessaire
dans le contexte de la recherche de diagnostics.

Par conséquence, un grand nombre d’outils utiliskas raisonnements bayésiens existent
pour la modélisation des systemes et le diagnasédical [Onisko et al., 1998], [Onisko et
al., 1999] ou technique. Une description détailties réseaux bayeésiens sera présentée

ultérieurement dans ce rapport.
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4 Conclusion

Dans ce chapitre, nous avons présenté quelquenidqaels de diagnostic ainsi que leurs

domaines d’application.

Nous avons détaillé aussi des méthodes de diagnGsts méthodes peuvent étre classées en

deux catégories : approches a base de connaissraqgzroches a base de modeles.

Parmi les méthodes de modélisation de systéme anouss distingué la logique floue et les
réseaux bayésiens. Il s’avére donc intéressantrésemer ces deux techniques. Ceci fera
I'objet du chapitre suivant.
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Chapitre?2
Logique Floue et Réseau Bayésien

"I[ est dans la probabilité que mille
choses arrivent qui sont contraires d
la probabilité.” Henry Louis Mencken
(1880-1956).
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1 Introduction
I a tache de diagnostic est devenue de plus en ghible surtout face aux problemes de
complexités croissantes des systemes actuels. i@el impose le recours a des

méthodes plus sophistiquées tels que la logique fld les réseaux bayésiens.

Il est cependant utile de détailler les notionddse de ces deux méthodes, qui sont parmi les
techniques les plus intéressantes pour la ges@srcdnnaissances et d’aide a la décision ou
plus spécifiguement pour I'aide au diagnostic. €aesque propose ce deuxieme chapitre.

2 Logique Floue

2.1 Introduction

La plupart des problemes rencontrés sont modééisabhthématiquement. Mais ces modeles
nécessitent des hypotheses parfois trop restritiendant délicate I'application au monde
réel. Les problemes du monde réel doivent tenir ptend’informations imprécises et
incertaines. Prenant I'exemple d'une climatisatiosi on veut obtenir une température
fraichg on peut se demander quelle gamme de températoresendra (la demande est
imprécise). On voit apparaitre la difficulté d’irpeétation des variables linguistiques comme

frais, chaud....

Ainsi, cette limite de la logique classique a repréer I'aspect ambigu du monde réel, a

constitué une grande motivation pour la naissaeda tbgique floue.

2.2 Définition
La logique floue [4] est une branche de lintellige artificielle qui aide les ordinateurs a

toucher et manipuler des représentations vaguasestaines.

C’est une approche développée par Lotfi Zddblasée sur sa théorie des sous-ensembles
flous (fuzzy seten anglaiy généralisant la théorie des ensembles classibags. la nouvelle

théorie de Zadeh, un élément peut plus ou moinarggpr a un certain ensemble.

Les imprécisions et les incertitudes peuvent a@tse modélisées, et les raisonnements

acquierent une flexibilité que ne permet pas laglog classique.

I'Université de Téhéran. C’est un scientifiquermopour ses travaux en informatique et en automatiq
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2.3 Historique

Le concept flou est né en 1965 avec Lotfi Zadeh gudéclaré qu'« un contréleur
électromécanique doté d’'un raisonnement humainitseias performant qu’un contrdleur
classique » En 1980, FLSmidth & Co. A/ a mis en application la théorie de la logique
floue dans le contréle de fours a ciment, en feiait la premiere mise en ceuvre pratique de

cette théorie.

A partir de cette année plusieurs applicationscomimencé a émerger, notamment au Japon,
jusqu’a I'année 1987 qui a marqué I'explosion dmtaque floue au Japon.

2.4 Application

Il N’y a pas en fait de domaine ou I'on ne puispeliguer les raisonnements propres a la
logique floue car elle a été concue pour s’adapter techniques de pensée humaine. Tout
d’abord il y a les secteurs privilégiés de la comdefloue qui sont 'automatisme et la

robotique.

Dans ces deux secteurs la commande floue a déjaeonfranc succés et est devenue ainsi
la source de nombreuses recherches sur la logigue. fLe troisieme secteur trés important
est l'informatique (aussi bien Tlintelligence aidiElle que les bases de données et la
programmation) ol’on doit souvent traiter des informations vaguesngreécises. Ensuite,

viennent I'ingénierie, la gestion et la prise deigién.

Cependant, la logique floue est souvent utiliséeétréorologie a cause de la complexité des
phénomeénes et de I'imprécision naturelle de toudgipion. Elle est déja utilisée en médecine
pour l'aide au diagnostic. Elle sert beaucoup |leghématiques appliquées. Mais aussi les
sciences humaines telles que la sociologie etyahadogie car ’homme est tout ce qu’il y a

de plus flou.

2.5 Théorie des sous-ensembles flous

Considérons une personne deésirant compléter leamidain réservoir contenant de l'eau a
une température donnée de facon a remplir ce @seleau a une température souhaitée T a
l'aide d’un mitigeuf. Dans un premier temps, nous considérons troipédesures possibles

de l'eau d’alimentation : froidef] chaude € et tiede T. L'eau du réservoir pourra étre

® Fournisseur d'équipement et de services de cine¢tindustries minéraux.
° Robinetterie permettant le réglage manuel ou thetatique de la température et éventuellement it dé
mélange d'eau froide et d'eau chaude.
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appréciée comme froide, tiede ou chaude avec unairee marge d’incertitude si on ne

dispose pas d’appareils de mesure de température.
La commande du mitigeur sera simple :

« Sil'eau du réservoir est froide, mettre de I'ehauwde.
« Sil'eau du réservoir est tiede, mettre de I'eaddi

« Sil'eau du réservoir est chaude, mettre de I'eaidé¢.

Sans appareils de mesure précis, on a peut-étneédone information plus nuancée, tel
gue «tieéde et plutdt chaude » et également dédigiintervalles de température pour lesquels
il 'y a pas d’incertitude comme « I'eau est nett@tnchaude » ou « réellement froide » et des

zones pour lesquelles on peut hésiter.

Pour mieux ressortir la différence entre la théatéssique et la théorie logique floue, nous

présentons dans le Tableaurte illustration de notre exemple selon ces deéaribs.

Tableau 1.Fonctions d'appartenances entre la théorie classigula théorie floue

Théorie Classique Théorie Floue
Mathématiquement : Mathématiquement :
R KO € [0, 1]
11011

Représentation graphique : Représentation graphique :
u(T) 4 u(D 4

1 1

F T C F T C
0 20 43 100 T(*C) 0 15 30 50 T(C)

D’aprés le Tableau 1, la logique classique ne mailiser que le O et le 1 ainsi I'eau est
d'abord totalement froide puis tiede et enfin cleau@ependant, dans la logique floue, nous
pouvons observer la représentation graphique defonctions d'appartenance Froid, Tiede et
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Chaud. Ces fonctions se superposent sur des plagesnpérature ayant les qualificatifs froid

et tiede ainsi que tiede et chaud. On se rapprdche du raisonnement humain.

Egalement, en se basant sur le Tableau 1, dam&dai¢ classique si la température est de
19°C alors elle appartient nécessairement au smessgdle Froid avec un degré 1 c’est a dire
'eau est Froide a 100%. Par contre en s’appuyantasthéorie floue, I'eau de température
19°C est en méme temps froide et tiede avec degsldtappartenance respectivement 0.8 et
0.2.

La logique floue est basée sur des variables flalies variables linguistiques a valeurs
linguistiques dans l'univers du discours U, ou aleagraleur linguistique constitue un

ensemble flou de 'univers du discours.

Dans I'exemple précédent nous avons une seuleblarimguistique température qui peut
prendre I'une des valeurs linguistiques froide, ucleaet tiede dans l'univers du discours

[0, 100] qui exprime l'intervalle de valeurs quaupavoir la température de I'eau.

2.6 Opérateurs en logique floue
Il s’agit de la généralisation des opérateurs négatintersection, et union de la théorie

classique des ensembles.

2.6.1 L’opérateur NON (complément)
Il est défini mathématiquement paA= {x| x & A} et représenté par la fonction: non(x))

= p;(X) =1 - pa(X). Ainsi, la Figure 2montre les deux fonctions(x) et non (jA(X)).

ua(x) 4 non (ua(x))4

0 20 40 X 0 20 10 X
Figure 2. Représentation des fonctions pA(x) et non (LA(X))

2.6.2 L’opérateur ET (intersection)

Il est défini mathématiquement paANB = {x| x€A /1 xeB} et représenté par la fonction
Hane(X) = Ha(X) A ps(X) = min (Wa(X), Ms(X)). Ainsi la Figure 3 illustre la fonction
intersection.
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ua) T us(x)

0 20 30 40 X
Figure 3. lllustration de la fonction intersection

2.6.3 L’opérateur OU (union)
Il est défini mathématiquement par UB = {x| Xx€EA Vv xeB} et représenté par la fonction :

Heaue)(X) = Pa(X) V ua(X) = max (a(x) , Us(X)). Ainsi, la Figure 4 illustre la fonction union

patx) us(x)
.
AN rd
/
\\ . / L
0 20 30 40 x 0 20 30 40 x
wavex) 4
N —
L
N
0 0 30 40 x

Figure 4. lllustration de la fonction union

2.7 Lacommande floue

Une loi de commande est habituellement construgtarir d’'une approche systéme basée sur
I'utilisation des informations disponibles. Dansugieurs cas le modele mathématique du
processus est difficile a obtenir surtout lorsgaecbnnaissance provient uniquement de
mesures sur des variables caractéristiques et dieseription linguistique du fonctionnement

du processus.

Les approches conventionnelles sont inadaptéesildshtion de telles connaissances car leur
conception nécessite généralement une modélisat@thématique. Par contre, les

contrbleurs flous (fuzzycontroller en anglaiy [Raymond et al., 1995], sont recommandés
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pour ce type de probléeme. En effet, la loi de comuleaest exprimée avec des regles

linguistiques, déduites des informations énoncées dn langage naturel.

X Furgificatt ™) L(xres) Déffugificat % OKIes
UFEFIIcation erfuzArication
|:.’>[ :(>[ —

Base de regles

u(x)

Moteur

d’inférence

Figure 5. Schéma d'un contrdleur flou
Légende :

X représente le vecteur des entrées, xres celucatesnandes, p(x) et p(xres) les fonctions

d'appartenances correspondantes.

Ainsi, la conception d’'un systéeme flou passe paistétapes principales comme indique la
Figure 5. La premiére étape esfuazificationqui consiste a convertir les valeurs d’entrées,
qui sont sous formes de grandeurs physiques, emdeuas floues. La deuxieme étape est
I'inférence(avec la base de regles) qui est en fait la pies® décisions ou chaque régle
activée donne un sous-ensemble flou de sortie.rhigigme et la derniére étape est la

défuzzification.Elle consiste a convertir les sous-ensembles fldessortie en valeurs

déterminées. Pour mieux expliquer ces trois étapmss introduisons un exemple illustratif.

Supposons que nous cherchons a déterminer le deeiga’il faut appliquer a un véhicule
compte tenu de sa vitesse V et la distance D qegépare du véhicule suivant, en prenant

comme cas pratiqgue D =25 m et V = 55 Km/h.

2.7.1 Fuzzification

L'opération de fuzzification permet de passer dundme réel au domaine du flou. Elle

consiste a déterminer le degré d'appartenance duaheur (mesurée par exemple) a un
ensemble flou. Par exemple (cf. Figure 6), si lewmacourante de la variable « Distance » est
25 m, le degré d’appartenance a la fonction d’appance « Faible » est égal a 0,25 et le
degré d’appartenance a la fonction d’appartenaideyenne » est égal a 0,25.
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u(D) , uiv) uiAF)

k F 9 F
| Faible Movenne Elevée 1 |Faible Moyenne Elewée 1 |Faible Moyen Eleve

—

B
Ll .

0 20 40 60 Dim) O 20 40 60 V(Kmh) 0 20 40 60 AP(em)

Figure 6. lllustration des sous-ensembles des trois variablissance, Vitesse et Freinage

Légende :
D : Distance, V : Vitesse, AP : Appuie sur la pédal

2.7.2 Inférence
Tout d’abord, il faut construire la base de consemige. Les contrbleurs flous utilisent en
général une expertise exprimée sous forme de ratpes la forme, pour un contrdleur a deux

entrées et une sortie, est la suivante :
Réglel Si X1 est AIET X2 est B2alors Y est C3.
Regle2 'Si X1 est ASET X2 est Blalors Y est C2.

L’expression « X1 est AET X2 est B2 » est la prémisse de la réglel, tanaksl'@xpression

«Y est C3 » est la conclusion de cette regle.
Revenant maintenant a notre exemple, nous disp@sofaste de deux régles :

Reglel :Si la distance entre les deux véhicules est Fablgue la vitesse de la voiture est

Moyenne, appliquealors un freinage Elevé pour obtenir une réduction rapid la vitesse.

Régle2 :Sila distance entre les deux véhicules est Moyetigee la vitesse de la voiture est

Elevée, freinenlors modérément.

Nous passons ensuite au traitement des reglesradoidant les opérateurs Et, OU et

limplication par I'une des fonctions vue précédeemn(Minimum, Maximum, Produit,....).

Il existe en faite plusieurs méthodes d’inférencestamment Max-Prod, Somme-Prod et
Max-Min. Ainsi, dans cette derniere méthode, aueaiv de la condition le kt » est
représenté par la fonctionMin » et le « Ou » est représenté par la fonctiaMax ». Alors
gu’au niveau de la conclusion ledu » est représenté par la fonctiodlax » et le «Alors »

est représenté par la fonctiomkn ».
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En appliquant cette méthode a notre exemple, nbtenons les résultats indiqués dans la

Figure 7:
Si Distance est Faible et Vitesse est Moyenne,alors le Freinage est Elevé
(D) % | H(AP)
A ' A : A
1 Faible Moyenne EIev'ee 1 aiMoyenne Elevée 1 Elevé  réglel
D e G 2 ?
0.25—— /M 7NN e
0 20 | 40 60 D(m) 0 20 60 V(Km/h) 0 20 40 60 AP(cm) !
u(AP E
D=35m 1 v
0
6@P(cm) E
TON M(v) H(AP) !
y '
1 Faible Moyenne_Elevée 1 FaibMoyenne Elevée 1 Moyen '
075 e S S
. 0.65 Régle2

0 20 40 60'D(M) 0 20 40  60°V(Km/h) 0 ~ 2040 60 "AP(cm)
Si Distance est Moyenne et Vitesse est Elevée, alors le Freinage est Moyen

Figure 7. lllustration de l'inférence en appliquant la métleddax-Min

En procédant a la premiere regle on obtient :

D = 35 m est Faible avec un degré de 0,25 et V K& est Moyenne avec un degré de
0,35. Au niveau de la condition on a (D est Falie/ est Moyenne) donc il faut prendre la
valeur minimale entre 0,25 et 0,35 ce qui donnalaur 0,25. Au niveau de la conclusion on
a un «Alors » qui sera remplacé par la fonction min c'estra-difaut tronquer la fonction

d'appartenancEreinage est Elevpar la valeur 0,25.
De méme d’apres la deuxieme regle on obtient :

D = 35 m est Moyenne avec un degré de 0,75 et \B Kri/h est Elevé avec un degré de
0,65. Au niveau de la condition on a (D est MoyeBh& est Elevée) donc il faut prendre la

valeur minimale entre 0,75 et 0,65 ce qui donnalaur 0,65. Au niveau de la conclusion on
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a un «Alors » qui sera remplacé par la fonction min c'estra-difaut tronquer la fonction

d'appartenanckEreinage est Moyepar la valeur 0,65.

Enfin, nous obtenons une fonction d'appartenangeesentée par la surface hachurée. Cette

fonction sera traitée lors de la troisieme phasdélezzification.

2.7.3 Défuzzification

A la fin de l'inférence, I'ensemble flou de sor@ist déterminé mais il n'est pas directement
utilisable pour donner une information précisesdt nécessaire de passer du « monde flou »
au « monde réel » qui est assuré par la défuziiditaEn faite, il existe plusieurs méthodes,
notamment la méthode du maximum, la méthode deoleerme des maxima, la méthode de

la somme pondérée et la méthode du centroide glé pkis souvent rencontrée.

Ainsi, dans cette méthode, la sortie corresporidi@sdtisse du centre de gravité de la surface

de la fonction d’appartenance résultante.

2.8 Conclusion

Les outils fournis par la logique floue [Sur et, d998] permettent une modélisation des
phénoménes pouvant, en un certain sens, s’appracheaisonnement humain. Le fait de
transcender le « tous ou rien» des ordinateursdait une souplesse faisant la puissance des

outils flous dans de nombreux domaines.

Au milieu des années 80, plusieurs applicationsistrielles utilisant la logique floue ont vu
le jour, et ce essentiellement en Asie du Sud HEstyope et 'Amérique. Elles vont du
contrble du métro automatique a I'élimination dentblement pour les caméras vidéo en

passant par le réglage de cycle sur une machineea |

En outre, la flexibilité des modeéles flous a perrdgalement des applications dans des
domaines tels que la médecine (aide au diagnoktiipance (prévision boursiére, opération

de change), la météorologie, etc.

Mais méme bénéficiere d'un effet de mode, les d@lgmes flous ne sont pas nécessairement
les meilleurs. D’autres méthodes, par exempledssaux bayésiens, sont aussi performants
n‘'operent pas de la méme facon et donnent destaésidatisfaisants dans un contexte

incertain.
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3 Réseaux Bayésiens

3.1 Introduction

Le domaine de la gestion des connaissances, quiattonn intérét croissant, est donc
également un champ d’application potentiel pour Réseaux Bayésiens, qui sont
actuellement l'une des techniques les plus intérdgss de I'Intelligence Atrtificielle, dans la

mesure ou ceux-ci offrent un formalisme riche atitif de représentation de la connaissance.
En faite, les Réseaux Bayésiens constituent aufmird'un des formalismes les plus

complets et les plus cohérents pour l'acquisititan, représentation et l'utilisation de

connaissances par ordinateurs.

3.2 Définition
Les réseaux bayésiens sont des modeles graphiguespgésentent les relations entre les
différentes variables qui expriment des événemawts leurs probabilités de réalisation en

tenant compte des liens qui existent entre lesobs.

Un réseau bayésien est un outil de représentatsn donnaissances, qui permet de
calculer des probabilités conditionnelles, appdrtainsi des solutions a différentes
sortes de problématiques. La structure de ce tgpeeskau est simple : En faite, selon
Judea Peax les réseaux bayésiens sont des graphes acyclayiezgés pour lesquels
les nceuds représentent des variables aléatoirlEs etrcs représentent I'indépendance

conditionnelle entre les différents nceud®earl, 1988].
Formellement, un réseau bayésien est défini daasrjiét al., 2004] par :

e un graphe acyclique orienté G, G = (V, E), ou Vlestsemble des nceuds de G, et

E 'ensemble des arcs de G,
* un espace probabiliste fi( Z, p),

* un ensemble de variables aléatoires associeesaudndu graphe et définies sur
(Q, Z, p), tel que :

dans le graphe G.
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3.3 Historique

Encore du domaine de la recherche au début degsa®@ cette théorie connait de plus en
plus d’applications. Le domaine d’application vadie contréle de véhicules autonomes a la
modélisation des risques opérationnels, en pagsanie data mining et la localisation des

genes.

Les réseaux bayésiens, sont le résultat de redwerdfectuées dans les années 80, dues a J.
Pearl a UCLA (University of California, Los Ange)est a une équipe de recherche danoise a
'université d’Alborg.

Cependant, les réseaux bayésiens doivent leur nontravaux de Thomas Bayes au XVIII
siécle sur la théorie de probabilités, par sonbcéléhéoreme.

3.4 Le théoreme de Bayes

Thomas Bayes (1702-1761) est né a Londres en Asmggeet a développé un théoreme qui
porte sur le calcul de la probabilité d'un événetrtsasé sur une connaissare@riori. Le
théoréme, de facon indirecte, fut publié a titresthome en 1763 sous le titre deEssay
Towards Solving a Problem in the Doctrine of Chanc&n gros, I'application du théoreme
permet d’établir que la probabilité d'un événemest le résultat conditionnel d’une

probabilité connue. La formule du théoréme estilaaste :

_ P(AIM)P(M)
PM 'A)'ZP(Al M, ) P(M,)

P(M;) : probabilité a priori de M
P(A | M;) : probabilité de A conditionnellement §.M
P(Mi| A) : probabilitéa postérioride M conditionnellement a A.

3.5 Construction du réseau bayésien

La construction d’'un réseau bayésien passe pa @étaipes principales [Maalej, 2006]. La
premiére est I'étape qualitative qui corresponidantification des variables et de leur espace
d’états en tenant compte des relations d’influendeexistent entre les variables.

La deuxiéme étape est I'étape probabiliste qui istes distribuer les probabilités sur les

variables et I'appliquer au graphe qui représenteraseau bayésien.
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Finalement, I'étape quantitative qui consiste acgigé numeriquement les distributions de

probabilités conditionnelles.

3.6 Modélisation par réseau bayésien

Pour mieux comprendre l'intérét des réseaux baygsieous allons définir les notions de
graphe causal, de d-séparation et d’'indépendancditmmnelle puis nous décrivons les
algorithmes d’inférence. Nous abordons égalementétence et I'apprentissage dans les

réseaux bayésiens [Naim et al., 2004].

3.6.1 Liens d'influences et graphes causaux
Un graphe causal est une représentation graphigns kquelle les causes sont liées aux

effets par des fleches orientées (cf. Figure 8).

Figure 8. Graphe causal entre A et B

S’il existe une relation causale de A vers B (F&g8), toute information sur A peut modifier
la connaissance que nous avons de B, et récipraqernoute information sur B peut
modifier la connaissance que nous avons de A. bs ses fleches indique un lien de

causalité mais pas un sens de propagation de fassance.

Les connexions entre les nceuds définissent desléoigirculation de l'information dans le

graphe. On distingue trois types de connexions :

* Connexion convergente ou Connexion em(,,’f,.-/; (Z ‘/" / dans ce cas,

l'information ne peut circuler de X & Y que si 4 esnnu.

* Connexion en sérik@ \ZJ @ I'information ne peut circuler de X a'Y
gue si Z n’est pas connu, sinon c’est directengegbnnaissance sur le nceud Z qui

influe Y.

e Connexion divergente(l‘_,./ \Z_/ (¥ ) dans ce cas, l'information ne peut

circuler de X a Y que si Z n’est pas connu.

Ainsi, la circulation de l'information a I'intérieud’'un graphe causal dépend du type de la
connexion, plutdt que du sens des fleches. Des @rsmlus détaillés sont dans [Naim et al.,
2004].
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Dans une connexion série ou divergente, le graphealune information sur I'indépendance

de X et Y : X et Y sont indépendants sachant Z. @esix cas (et dailleurs

. X —zr—vy) ~ R R .
egalemer(x,,/ N ) peuvent étre associes a la méme distributionrdiegbilité sur

X, Y et Z. Alors que la connexion convergente aes@airement une distribution de

probabilités différente.

3.6.2 D-séparation et indépendance conditionnelle
La notion ded-séparationest essentielle pour le calcul des probabilitésetla permet de
définir I'indépendance conditionnelle entre cersaneuds : Soient X, Y et Z trois nceuds du

graphe. On dit que X et Y sont d-séparés par Zofenhote<X|Z|Y>), si pour tous les

chemins entre X et Y, I'une au moins des deux daml suivantes est vérifiée :

* Le chemin converge en un nceud W, tel que ¥/ et W n’est pas une cause directe de Z.

* Le chemin passe par Z, et est soit divergent,esogérie au nceud Z.

On dit que X et Y sonhdépendants conditionnellemeni, et on note X Y | Z, si 'une des

propriétés équivalentes suivantes est veérifiée :

 P(X|ZY)=P(X]|2)
s PX,Y|2)=P(X|2).P(Y]|2)

Dans le cas général, lI'indépendance condition(¥lle Y | Z) possede les quatre propriétés

suivantes :

e Symétrie XLY|Ze Y L1LX|Z

e Décomposition XL (Y UW) |Z=>X 1LY |Z

* Union faible XL(YUW) |Z=>X LW |(ZUY)
 Contraction XLY |[ZAXLW|(ZUY)=XL(YUW)|Z

Une cinquiéme propriété peut étre ajoutée [Pe@OPPdans le cas ou toutes les distributions
de probabilités sont strictement positives :

* Intersection XLW |(ZUY)AX LY |[(ZUW)=(XL(YUW) |2
Enfin, voici le théoréme fondamental des réseayésians.
« Si X et 'Y sont d-séparés par Z, alors X et Y sodépendants sachant Z » :

<X|Z|Y> = P(X|Y,Z)=P(X|Z)
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Ainsi la structure du graphe d’'un réseau bayésiermpt de prendre en compte des
indépendances conditionnelles qui seront trés suileur les calculs d'inférence. Il faut
cependant noter que le réseau bayésien ne ré\gteytas les indépendances conditionnelles.
Plusieurs structures de graphes donnent une méstgbution de probabilités jointes,
certaines étant meilleures que d’autres, il fautteamir compte lors de la construction du

modéle.

Une description plus détaillée sur la d-séparat@nl’indépendance conditionnelle est
développée dans [Naim et al., 2004].

3.7 Inférence dans les réseaux bayésiens

L’inférence, oda mise a jour des probabilitégans un réseau bayésien se résume a un calcul
de probabilitésa posteriori Connaissant les états de certaines variable®l@gsp variables
d’observation), on détermine les probabilités desséle certaines autres variables (appelées

variables cibles) conditionnellement aux observetio

Il existe plusieurs algorithmes d’inférence darssrisseaux bayésiens classés en deux groupes
[Kotchi et al., 2003]. D’'un c6té nous avons les moées d’inférence exactes qui exploitent
les indépendances conditionnelles contenues dangdeaux et donnent a chaque inférence
les probabilitésa posterioriexactes. Par exemple I'algorithme Clustering [itzen et al.,
1988] effectue l'inférence en transformant le réisea un arbre pour lequel chaque nceud
regroupe plusieurs nceuds du réseau initial. Detréagbté nous avons les méthodes
approchées qui estiment les probabiligéposteriori Pour ces méthodes, deux exécutions

d’une inférence peuvent donner des probabiétpssterioridifférentes.

Comme exemple de méthodes approchées, nous pouedas les algorithmes
d’échantillonnage stochastique (Logic sampling [tten 1988], Likelihood weighting [Fung
et al., 1989], Backward sampling [Fung et al., J9%&If importance [Shachter et al., 1989]
et Heuristic importance [Shachter et al., 1989]) egtiment les probabilités en effectuant
plusieurs tirages dans I'ensemble des combinaigmssibles des états des variables du

réseau.

3.8 Apprentissage dans les réseaux bayésiens
Nous avons déja précisé gu’'un réseau bayésienoastittié a la fois d'un graphe (aspect
qualitatify et d'un d'ensemble de probabilités citiotnelles (aspect quantitatif).

L’apprentissage d’'un réseau bayésien doit donadrpeaux deux questions suivantes :
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* Comment estimer les lois de probabilités conditedlas ?

« Comment trouver la structure du réseau bayésien ?
Le probléme de I'apprentissage sera donc sépaiéwenparties :

» L’apprentissage des parametresi la structure du réseau est fixée, et ou difaestimer
les probabilités conditionnelles de chaque nceuctsieau.
» L’apprentissage de la structurdont le but est de trouver le meilleur grapheésentant

la tache a résoudre.

Comme pour tout probleme d’apprentissage, diff@enechniques sont possibles selon la
disponibilité de données concernant le problemmidéet, ou d’expert de ce domaine. Ces
techniques peuvent se partager en deux grandekemmi

* apprentissage a partir de donnéescompléetes ou non, par des approches statistmues
bayésiennes,

* acquisition de connaissanceavec un expert du domaine.
Une description plus détaillée sur I'apprentissagfedéveloppée dans [Naim et al., 2004].

3.9 Applications utilisant les réseaux bayésien

Les domaines d'applications des réseaux bayéstites types d'applications sont trés
variés. D'une maniere générale, un réseau bayésitra représenter la connaissance
gue I'on a d'un systeme (technique, informatigigobique, sociologique, économique,

etc.) en vue de :

. Prévoir (le comportement d'un systéeme)

. Diagnostiquer (les causes d'un phénomene observé dans un systeme
. Controler (le comportement d’'un systéme)

. Simuler (le comportement d’'un systeme)

. Analyser desdonnées(relatives au systeme)

. Prendre desdécisions(concernant un systéme)

. Etc.
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Une des raisons du boom actuel dans l'utilisaties teseaux bayésiens, réside dans
leur convivialité et leur efficacité. Ce qui fait'ds sont présents dans une multiplicité
d'applications dans les domaines de l'industriandtketing, de la santé, de la banque,
de la finance, du droit, etc. Le "systeme" dontr@présente la connaissance au moyen
d'un réseau bayésien, peut étre aussi bien le raontlel caddie d'un client de
supermarché, un navire de la marine, le patiemedaonsultation médicale, le moteur

d'une automobile, un réseau électrique, I'utilisatéun logiciel, etc. [3].

En effet, on peut citer deux applications partirdiment ambitieuses sur I'un des
aspects de I'utilisation des réseaux bayésiengléfaction de fraud® pour ce qui est
de I'apprentissage, et I'aide & la décision enasim critiqué’ pour l'inférence [Naim
et al., 2004].

Afin dillustrer la puissance des réseaux bayésmmss allons étudier un exemple de

représentation et de manipulation.

3.10 Exemple simple faisant intervenir des faits incertains

Le petit exemple [3] que nous allons utiliser paotroduire le concept de réseau
bayésien est une adaptation d'un extrait du mateutel méthode SERENE

Imaginons que nous devions modeéliser la connaissamvante : « Fantasio et Gaston
vont a leur travail en utilisant des moyens de dpant différents. Gaston utilise sa
voiture, alors que Fantasio voyage en train. Femtaanque rarement son train qui est
presque toujours a l'heure, sauf les jours de gré&weaitefois, une gréve de train
n'implique pas forcément que Fantasio soit enddiapeut partir tbt en voiture). Une
gréve de train peut aussi retarder Gaston carpetfeoque des embouteillages. Mais
Gaston est de toute fagcon souvent en retard pargengntend pas la sonnerie de son
réveil, et de ce fait, une gréve n'augmente la gdibé de son retard que d'une faible
guantité. En cas de greve, Gaston a moins de chalétee en retard que Fantasio. ».

9| 'une des applications qui fait référence poutilisation des réseaux bayésiens par le Data Mimiisg en
production a la fin des années 1990 par la soei®tricaine de télécommunication ATT.

1 Application qui a été développée par la NASA eflaboration avec la société californienne Knowledg
Industries.

12 C’est un projet qui regroupe, dans le cadre dgmamme de recherche européen Esprit, plusieursrzares
cherchant a développer une méthodologie d’utitisaties réseaux bayésiens dans le cadre du cogtrdlie du
logiciel pour les systémes critiques.
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Maintenant, étant donné cette connaissance, compmntrions-nous modeéliser les

inférences suivantes, issues d'un raisonnemeritifirftu

* Si nous savons que Fantasio est en retard, nosomemu'il y a une gréve des

trains, et donc que Gaston risque (un peu) plusdtinabitude d'étre en retard.

e Supposons que nous sachions que Gaston est eh @édie constatation augmente
notre croyance en les deux causes possibles agard (greve, réveil non entendu).
Mais si hous apprenons que Fantasio est égalemeatad, nous serons tentés d'en
déduire qu'une greve de train est en cours, et Eaause du retard de Gaston, ce
qui fait retomber quelque peu notre croyance efaitequ'il n'a pas entendu son

réveil.
Exemple de représentation de connaissances [sarRéBayesien :

Un réseau bayésien est un graphe constitué de reed@dscs, associé a un ensemble de
tables de probabilités conditionnelles appeléesiaables de probabilités de noeuds

(TPN), ainsi nommées car il y en a une et une gg@oeud du graphe.

Probléme Gréve trains
reveil
Retard Retard
Gaston Fantasio

Figure 9. Graphe du réseau bayésien

Les noeuds représentent des variables aléatoieteis (il y a quelques extensions des
réseaux bayésiens vers le domaine des variablémees, mais elles sont soumises a
de fortes limitations sur les types de distribusiarilisables : c'est pourquoi nous nous
limiterons au cas des variables discretes). Datre mxemple, les quatre variables ont

seulement deux états : 'Vrai' et 'Faux'.

Les arcs représentent des relations de cause taeaffe variables. Comme une gréve
peut provoquer le retard de Fantasio, nous modhdisette relation par un arc allant du

nceud 'Greve trains' au nceud 'Retard Fantasid-ifnire 9).
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Le grand avantage des réseaux bayésiens est detperge modéliser des relations
non déterministes. Dans notre exemple, voici lel@ab2 qui pourrait étre la table de
probabilités modélisant la dépendance entre ledeka Fantasio et la greve des trains :

Tableau 2.Table de probabilité (Retard Fantasio)

Greve trains = Vrai | Gréve trains = Faux

P (Retard
Fantasio = Vrai) 0.6 0.1
P (Retard
Fantasio = Faux) 0.4 0.9

C'est en fait la distribution de probabilité devéaiable 'Retard Fantasio', conditionnelle

a la variable 'Gréve trains' : P (Retard Fanta&iteje train).

Cette table exprime d'une maniéere formelle et peétg fait que Fantasio a tres peu de
chances d'étre en retard en temps ordinaire, m&ssq y a une greve des trains, au

contraire, il risque fort d'étre en retard (la @bitité est de 0.6).

Afin de formaliser notre connaissance décrite glagt, nous modélisons la relation
entre le retard de Gaston et ses deux causes lessgiar la table de probabilité

représentée dans le Tableau 3:

Tableau 3.Table de probabilité (Retard Gaston)

Pb. réveil Vrai Faux
Greve trains Vrai Faux Vrai Faux
P (Retard Gaston = Vrai 0.7 05 0.4 0.1
P (Retard Gaston = Faux) 03 05 0.6 0.9

Les tables de probabilités associées aux nceudse'Grains' et 'Pb. réveil' ont une
nature quelque peu différente. Ces nceuds n'‘onigpaseud parent dans ce modéle (ce
sont des nceuds racines), et nous n'‘avons dondegu'assigner des probabilités pour
leurs deux valeurs 'Vrai' et 'Faux'. En fait, naugpposerons que P (Greve trains =
Vrai) = 0.1, et que P (Pb. réveil = Vrai) = 0.4.

Les nceuds racines modélisent des variables indeptsdentre elles. C'est bien le cas

des nceuds Pb réveil et gréve train.
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Il peut y avoir diverses maniéres de détermineptedabilités des TPNs. Par exemple,

nous pourrions tirer P (Gréve trains = Vrai) d'ustdrique sur les jours de gréeve. Mais

en absence de telles données de retour d'expérigrest toujours possible de faire

appel a des valeurs de probabilités subjectiveduées par des experts.

L'avantage des réseaux bayésiens est de pouvaar ehéhs un cadre théorique unique

(la théorie des probabilités) les probabilités igsud'un traitement statistique de retour

d'expérience, et les probabilités subjectives.

Afin de mettre en évidence les inconvénients etalantages des réseaux bayeésiens

nous présentons dans ce qui suit une étude cornivead® la technique RB vis-a-vis

d’autres techniques.

3.11 Comparatif de la technique réseau bayésien vis-a-vis d’autres

techniques

Tableau 4.Comparatif des réseaux bayésiens a d’autres tedesi¢Naim et al., 2004]

Connaissances

Analyse de

données

Réseaux

neuronaux

Arbre de

décision

Systeme
experts

Réseaux

bayésiens

ACQUISITION

Expertise seulement

Données seulement

Mixte

Incrémental

Généralisation

Données incompléte

S

REPRESENTATION

incertitude

Lisibilité

Facilité

Homogénéité

Utilisation

Requétetlaborées

Utilité économique

Performance
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Un réseau bayésien peut étre avantageusement tsabsti differents modeles
d’évaluation, de prévision, de diagnostic, d’aidéaaécision ou de data mining. On
peut donc citer comme techniques concurrentes,tra t’'exemple, les réseaux

neuronaux, les chaines de Markov, les arbres dsioiecles arbres de défaillances.

Du point de vue des applications, les avantagekestinconvénients des réseaux
bayésiens par rapport a quelques-unes des tecenigmeurrentes peuvent se résumer
dans le Tableau 4 .

Nous avons regroupé les avantages et les incomiéngzlon les trois rubriques :
Acquisition, Représentation et Utilisation de cassances. La représentation adoptée

est la suivante :

* A chaque ligne correspond une caractéristiquepgut étre un avantage, ou la prise

en compte d’un probleme spécifique.

. Si la technique considérée permet de prendre emteowe probleme, ou

présente cet avantage, un signe + est placé daasdecorrespondante.

. Un signe * est placé pour la meilleure technique piint de vue de la

caractéristique considérée.

En faite, cette étude comparative montre les agastades réseaux bayésiens par

rapport aux techniques concurrentes. On peut résceseavantages par :

. La possibilité de rassembler et de fusionner demagsances de diverses
natures dans un méme modele : données de retoyrédience, expertise (exprimée
sous forme de regles logiques, d'équations, ou debabilités subjectives),

et observations.

* La « convivialité » : un réseau bayésien est unéteodraphique, compréhensible et

manipulable par un non-spécialiste.

. La « versatilité » : on peut se servir dun mémedéaie pour évaluer,

prévoir, diagnostiquer, et optimiser des décisions.

De l'autre c6té, d’apres le Tableau 4, on peut rgoex la limite des RBs au niveau de

la performance en terme de complexité des algodthate mise a jour. En effet, la
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géneéralité du formalisme des réseaux bayeésiens laiessen termes de représentation

que d'utilisation les rend difficiles a manipulepartir d’une certaine taille.

3.12 Conclusion

Les réseaux bayésiens sont actuellement une desidaes les plus intéressantes de
I'lA car ils permettent la représentation de lamaissance par un graphe causal intuitif
et compressible. De plus comme ils sont basés esar piobabilités, ils integrent

I'incertitude dans le raisonnement.

4 Conclusion

Dans ce chapitre nous avons présenté deux teclnigiilesées en diagnostic : la logique
floue et les réseaux bayésiens. Nous avons raaté hvantages et les atouts qu'ils offrent,
surtout pour le diagnostic.

Cependant, malgré la flexibilité des modeles fletiseurs efficacités, les réseaux bayésiens
peuvent les surpasser dans la résolution de prebigéace a leur pouvoir expressif et facilité

d’interprétation.

De lautre coté, I'une des limites majeure que otient les utilisateurs des réseaux
bayésiens est d’exprimer les connaissances norisesésurtout dans les diagnostics ou
beaucoup d’informations sont flous. En faite, noaspouvons pas exprimer toutes sortes de
connaissances dans un langage précis. La solgiatoac de combiner les réseaux bayésiens

avec la logique floue, d’ou la naissance des Ré&sBayeésiens Flous.
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CHAPITRE 3

Presentation des Réseaux Bayésiens
Flous : Fondement et outil

"I[ est dans la probabilité que mille
choses arrivent qui sont contraires d
la probabilité.” Henry Louis Mencken
(1880-1956).
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1 Introduction

lsqu’a maintenant nous avons détaillé quelquesm®iile base de la logique floue
t des réseaux bayésiens. Bien que toutes les miégentent un outil d’aide a la
décision, ces deux théories de lintelligence iaréfle sont différentes dans plusieurs
aspects. Une étude comparative, entre la théoneatmbilité (sur laquelle reposent les

Réseaux Bayésiens) et la logique floue, s’avere dusressante a mener :

Tableau 5.Comparaison entre la théorie de probabilité etdgifue floue

Probabilités Logique Floue
Exprime  [lincertitude par Exprime I'ambiguitépar rapport a
rapport a lbccurrence d’un la nature d’'un événement.
évenement.
P (AU A)=P(U)=1 W Pas nécessairementy (U)
P (AN A)=P(4)=0 W Pasnécessairement g ()

D’aprés le Tableau 5 la théorie des probabilitésigirente de la théorie de la logique
floue bien que toutes deux décrivent une notiomaigte, d’'incertain et ce a l'aide de

nombre compris entre O et 1.

Généralement, l'incertitude est groupée dans dabdgories : L'aspect aléatoire et le

manque de précision.

D’'une part, pour surmonter le probléme du manquepdcision ou encore de
'ambigtité, qui est causé par un concept mal déknl’observation, on a recours a la
théorie de la logique floue.

D’autre part, pour remédier au probleme de l'as@déatoire qui est causé par les

événements imprévisibles, la théorie de probalebtéplus appropriée.

D’aprésShijium Qui, « La fusion des deux techniques Réseau Bayésiemigjue Flou
aboutit a un résultat plus précis et robuste qudilisation de I'un ou l'autre outil
seul »[Qiu et al., 2001]
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Nombreux travaux s’orientent vers un panachageededeux techniques, et c’est ainsi

gue nous assistons a lI'apparition des réseaux ieagsffous.

Ce troisieme chapitre est consacré a la présentdgéoRéseau Bayésien Flou (RBF),
notamment, sa définition, les notions de base di cwuvelle théorie et quelques

applications.

2 Définition
Les Réseaux bayésiens Flous sont une généralisgéiaeseaux bayésiens classiques aux

réseaux bayeésiens avec des variables a état{fogslberg, 2008].

3 Lathéorie de Réseau Bayésien Flou

Comme nous avons déja signalé, les recherches epfications dans les RBFs sont rares

gue nous classons en deux axes.

D’une part, Le premier axe concernediscrétisation des variables continueskn faite,
I'utilisation de ces variables dans les RBs exigee uiscrétisation de leur domaine.
Cependant, la discrétisation classique exige lasidiv du domaine d'une variable en un
nombre finis d’intervalles puis I'affectation d’'umaleur discrete a chaque intervalle. D’apres
cette méthode tous les points d’un intervalle aul@méme valeur discrete et seront traités de

la méme facon s’ils sont dans le centre ou danisdeds de l'intervalle.

Pour cette raison, les différentes méthodes dexctiiéchantillonnage peuvent donner des
résultats différents selon les valeurs considéré@ssi, la méthode la plus lisse d'apres
[Baldwin et al., 2003] est l'utilisation d’'une dsion floue, qui doit couvrir le domaine de la
variable avec le chevauchement de fonctions flogdemt la somme des degrés

d’appartenances égale a 1.

Pour mieux visualiser I'utilité des RBFs dans lacdétisation des variables continues, des
références peuvent étre consultées tel que : [Baldtval., 2003], [Lin et al., 2006], [Park et
al., 2006], et [Pan et al., 1999].

D’autre part, le deuxieme axe de recherche dansRBEs concernd’utilisation des

variables ou événements flougui résout le probléme de I'ambiguité.
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En effet, nous pouvons rencontrer des probléemesneo le cas de diagnostic, ou nous ne
sommes pas capables d’exprimer toutes les sortesrdmissances dans un langage logique
précis. Dans ce cas l'utilisation des RBFs s’avére solution tres intéressante.

Afin d’expliquer cette technique, nous détaillorens la suite deux approches traitant des
RBFs [Fogelberg, 2008].

3.1 Premiere approche de Réseau Bayésien Flou

3.1.1 Probabilité Flou

Soit u; :U - [0,1] avec «u, » est une fonction d'appartenance du domaine « alU»

encore I'univers du discours, vers l'intervalle 19, Alors, . , (u) est le degré d’appartenance
de «u »au sous-ensemble flou’& ».

Prenons I'exemple [Tang et al., 2007] suivant pasons que <A » est un état flou dans un
espace de probabilite (X, B, P) et la fonction gagpenancep,(u)est une fonction

mesurable. Ainsi, nous pouvons considérefl«» comme un événement flou dans X de

probabilité flou :

P(A) =Y p,(X.P(X

xO X

3.1.2 Equation Bayésienne Floue
Proposons maintenant un exemple qui introduit Edigen du concept bayésien flou.

On suppose : B1 exprime : dge >;5B2 exprime : 50> age > 35 B3 exprime : 35 age
> 20; B4 exprime : age < 20.

Al exprime : revenu annuel > 100Q0A2 exprime : 1000Q> revenu annuet 3000; A3

exprime : revenu annuel < 3000.

Et les deux tableaux Tableau 6 et Tableau 7 qusgmtént respectivement les résultats du

recensement de la population et des données dabfiseal.

Tableau 6.Résultat du recensement de la population

Bl B2 B3 B4
20% | 25% | 30%| 25%
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Tableau 7.Données du bureau fiscal

P(AjjBi) |B1 [ B2 [ B3| B4

Al 01{ 02 O 0
A2 05| 0.6] 0.8 O
A3 04] 0.2 0.2] 1.0

Supposons maintenant qu’un revenu annuel d’un hoesnplus de 10000, et les probabilités
suivantes : P( = 0.07 ; P(A) = 0.49 ; P(A) = 0.44.

Quelle est la probabilité de chaque phase d’age ?

Nous cherchons donc « Rj#,) » pour tous € {1, 2, 3, 4}.

Selon I'équation bayésienne nous aurons :

P(B | A)= P(A|B).P(B)
P(A|B).P(B)* RAIB).RB)* RA B.RB* PA B P&

= 0.2857

De méme nous trouvonsP(B, | A)=0.7143; et P(B,| A)=P(B,| A)=0.00
Passons maintenant au domaine flou.

En premier lieu, si nous considérons I'événement # de la variable Bqui présente I'état
« non trop vieux », nous obtiendrons I'équatiopds@enne floue :

5 245 (B)-P(A | B).P(B)
P — il
(Bl A) P(A)

En deuxiéme lieu, si nous considérons I'événemient & de la variable AqQui présente
I'état « non trop bas », nous aurons I'équationrésanne floue :

2 HA(A).P(A|B).P(B)
P(B A==

P(4)

En dernier lieu, si nous considérons les deux éuénts flousA et@, nous obtenons comme

éguation bayésienne floue :

_— > Y Ha(B)HA(A).P(A|B).P(B)
P — 0 jo
(BI'A) =y
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3.2 Deuxieéme approche de Réseau Bayésien Flou

3.2.1 Structure du Réseau Bayésien Flou
Un RBF G =<1, 06> est caractérisé par une structuyect des parametre& Ainsi, la
spécification des RBFs et des RBs est la mémendepé, la seule différence est au niveau

de la propagation de croyance.

3.2.2 Propagation de croyance dans le Réseau Bayésienurlo
La propagation de croyance consiste a calculemisss a jour des probabilités des variables
du RB.

3.2.2.1Quelques notions de base
Un état flou est composé d’'un ou plusieurs compssgour chacun on associe un degré
d’appartenance : {X1, Xz, X3} i €St un composant aveg, X, X3 sont des probabilités flous et

Wi est le degré d’appartenance dexy, X3 a un sous-ensemble flou.

Par exemple, S = [ht, midy 3 est une variable ayant deux composants hi etdueidiegré

d’appartenance respectivement 0.7 et 0.3.

Supposons que les valeurs floues que peuvent gremdy variable sont : lo, mid et hi. Ainsi,
le composant {0.2, 0.1, Ogl peut étre soit kg, soit mid ,, soit hp, avec les probabilités

respectivement 0.2, 0.1, et 0.7.

3.2.2.2Quelques suppositions

Cette approche part de quelques suppositions ilitdat la présentation dans I'espace
disponible. En outre, ces propositions sont raiabies et ne limitent pas I'utilité générale des
RBFs.

La premiére supposition est quedai = 1. Cette supposition peut simplifier la combioais
entre les états des variables flous. En effetasiggemple le degré d’appartenance de hi est
0.5 alors les degrés d’appartenances de lo et ppidraennent a I'intervalle [0, 0.5].

La deuxieme supposition, concernant le RBF durantptopagation de croyance, est
'indépendance des composants. En faite, si unehlara seulement un seul parent alors il
aura le méme nombre de composants que son paemtesymémes degrés d’appartenances

(w. Par exemple, le fils de la variable S 5fhimidy 3] aura deux composants l'une avec
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u=0.7 et 'autre avep = 0.3. Cependant, si la variable posséde plusigarsnts alors les

composants des parents seront combinés avantdagaton.

Dans la suite nous présentons la propagation daece dans le cas d’'un seul parent et des

parents multiples.

3.2.2.3Propagation de croyance dans le cas d’'un seul pdren

Nous présentons dans la Figure 10 un exemple derRBffnment les tables de probabilités
de chaque nceud. Ainsi, le Tableapr8sente la distribution de probabili@gpriori de A, le
Tableau 3ésigne la distribution de probabilités conditidiesede B, le Tableau Ifiontre la

distribution de probabilités conditionnelles de &, enfin le Tableau 11 exprime la

distribution de probabilités conditionnelle de E.

Figure 10.Exemple de RBF

Tableau 8.Distribution de probabilités a priori de A

A | A=lo

A=mid

A=hi

0.7

0.1

0.2

Tableau 9.Distribution de probabilités conditionnelles de B

A—B B=lo | B=mid | B=hi
A=lo 0.6 0.2 0.2
A=mid | 0.1 0.1 0.8
A=hi 0.1 0.2 0.7

Tableau 10.Distribution de probabilités conditionnelles de C

B—C C=lo | C=mid | C=hi
B=lo 0.1 0.1 0.8
B=mid | 0.1 0.8 0.1
B=hi 0.7 0.2 0.1
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Tableau 11.Distribution de probabilités conditionnelles de E

C, D—E E=lo | E=mid | E=hi
C=lo D=lo |0.6 0.2 0.2
C=lo D=mid|{ 0.1 | 0.1 0.8
C=lo D=hi |0.1 | 0.1 0.8
C=mid D=lo 0.6 | 0.2 0.2
C=mid D=mid | 0.1 | 0.6 0.3
C=mid D=hi 0.1 | 0.6 0.3
C=hi D=lo 0.1 | 0.2 0.7
C=hi D=mid | 0.1 | 0.2 0.7
C=hi D=hi 0.8 | 0.1 0.1

Supposons que les observations dans notre RBFumdige A = [mid,, hipg. Avec cette

information nous pouvons calculer les distributidesprobabilités floues de B et C.

Ainsi, puisque A est le seul parent de B, alors sn@aurons B =[{0.1, 0.1, 0.8},
{0.1, 0.2, 0.7} g].

En outre, la distribution de probabilités floues@est calculée de la méme facon. Ainsi, nous
aurons C =do, Po.g aveca etp seront calculés en utilisant la propagation stehda RB et

en se basant sur la distribution de probabilitéslitmnnel de C :

P(C|B=lo) ={0.10.1, 0.8};

P(C|B=mid) = {0.1, 0.8, 0.1}

Et P(C|B=hi) = {0.7, 0.2, 0.1}.

Par la suiteg = {0.1, 0.1, 0.8}*0.1 + {0.1, 0.8, 0.1}*0.1+ {0.7.2, 0.1}*0.8
={0.58, 0.25, 0.17}.

EB ={0.1, 0.1, 0.8}*0.1 + {0.1, 0.8, 0.1}*0.2+ {0.M.2, 0.1}*0.7

={0.52, 0.31, 0.17}.

Finalement, C=[{0.58, 0.25, 0.17}{0.52, 0.31, 0.17} 4.

3.2.2.4Propagation de croyance dans le cas des parentgiplak
Dans le paragraphe précédent nous avons détaifjéofaagation de croyance dans le RBF

lorsque la variable possede un seul parent.
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Passons maintenant au cas des parents multipkzdcedons la distribution de probabilités

floues de E, en supposant que :

D= [{0.45, 0.30, 0.2545 {0.1, 0.8, 0.1} .

Et C= [{0.58, 0.25, 0.173,, {0.52, 0.31, 0.17}g (d’apres les calculs développés dans le
paragraphe précédent). En combinant les composistsparents C et D, nous obtenons

E = [o0.06, B0.14, Y0.24, 80.56}-

Avec

o =0.58 * 0.45 * {0.6, 0.2, 0.2} + 0.58 * 0.30 * {0, 0.1, 0.8} + 0.58 * 0.25 * {0.1, 0.1, 0.8}
+0.25 * 0.45 * {0.6, 0.2, 0.2} + 0.25 * 0.3 * {0,D.6, 0.3} + 0.25 * 0.25 * {0.1, 0.6, 0.3} +
0.17 * 0.45 * {0.1,0.2,0.7} + 0.17 * 0.3 * {0.1,0,0.7} + 0.17 * 0.25 * {0.8,0.1,0.1}
={0.3165, 0.2189, 0.4647}

De la méme maniere nous obtenfng, eto.

4 Avantage des Réseaux Bayésiens Flous

Les avantages des réseaux bayésiens flous sonatiés. Avant de les présenter, nous citons

tout d’abord quelques avantages des réseaux bagégide la logique floue.

Comme nous lI'avons mentionné, d’'un coté les résdmy€siens présentent une rationalité
statistique et une rigoureuse capacité pour I'ariée causale, de 'autre coté, la logique floue

est robuste face aux données bruitées.

En outre, I'utilisation de terme linguistique faiglla compréhension humaine du modeéle. En
addition, cette technique est particulieremeneutiland les données sont insuffisantes pour
formuler un modéle précis. En effet, elle présamie connaissance supplémentaire venant

des états flous pour aider a l'interprétation huraat la conception du systeme flou.

Quant aux réseaux bayeésiens flous, ils comportantidhesse des réseaux bayésiens

classiques et de la logique floue.

En faite, 'analyse théorique montre que l'utilisatdes variables flous est plus efficace que
celle des variables discrétes ou continues. Comsgonent, pour résoudre des problémes

complexes on a eu recours plutét au RBF qu’au RBstdjue.
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5 Recherches effectuées dans les réseaux bayésiens flous

Bien que les réseaux bayésiens flous soient trBsaefs surtout face aux probléemes

complexes, jusqu’a présent il y a eu trés peu deerehes dans cette nouvelle théorie.

Les RBFs ont été appliqués en médecine, en sécentdiagnostic... . L’article [Lin et al.,
2006] discute I'application des RBFs pour la priévisdu degré de I'astrocytortie En faite,
cette application réalise une analyse dans la gig¢vidu niveau malveillant de I'astrocytome

et fournit un outil d’aide au diagnostic pour leafges docteurs.

Cependant, d’apres [Lin et al., 2006], une exadtitule 81.67 % a été obtenue par 60

échantillons de tests, ceci satisfait I'exigence meurologistes.

Egalement, l'article [Ren et al., 2005] proposernadéle de RBF qui traite les risques et

'analyse de sécurité marine (par exemple les aotsdcausés par les roches).

Parmi les recherches exploitant ces modeles, unie éte diagnostic de défauts d'impression
a distance utilisant les RBFs illustré dans [Qialet2001]. Ainsi, les auteurs ont affirmé que
les valeurs de confiances résultantes pour le digtgnen utilisant le RBF sont plus précises

gue les valeurs issues de ['utilisation d’'un RBsslque ou la LF.

En outre, d’autres recherches [Park et al., 2006pooposé un systeme de recommandation
de musique utilisant les RBFs et ont affirmé qu@pks I'analyse du processus de
recommandation et la comparaison des résultats idsu utilisation des RBs classiques et

celle des RBFs, la satisfaction des utilisatelaag@menté.

6 Notre approche pour I'inférence dans les Réseaux bayésiens flous

6.1 Présentation de notre algorithme
Les observations que nous propageons sont de rfadues, ceci n'est pas le cas dans les
approches classiques d’inférence dans les RBs. dewglopper cet algorithme nous avons

utilisé I'algorithme arbre de jonction combiné asedt évidence modifié.

6.1.1 Arbre de jonction
Cet algorithme est applicable dans tous types sleatg, arbre ou non arbre. En premier lieu

il transforme le graphe en un arbre de jonctiots punitialise ses potentiels, ensuite il utilise

13 Tumeur du systéme nerveux central (cervelet,ezarymoelle épiniére plus rarement), ou tout simplt,
c’est le cancer du cerveau.
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la méthode message passing pour la propagatiomessages et le calcul des probabil@és

posteriori

En faite, I'algorithme se comporte de la fagon ante [Huang et al., 1996] :

» La phase de construction (ou transformation duhgrppelle nécessite un ensemble de
sous-étapes permettant de transformer le graptial ien un arbre de jonction, dont
les nceuds sont des cliques (regroupement) de nahwdgraphe initial. Cette
transformation est nécessaire, d’'une part pouridéimles boucles du graphe, et
d’autre part, pour obtenir un graphe plus efficguant au temps de calcul nécessaire
a l'inférence, mais qui reste équivalent au niveaula distribution de probabilité
représentée. Cette transformation se fait en étaises :

v la moralisation du graphe.

v la triangulation du graphe et I'extraction des w#g qui formeront les
nceuds du futur arbre.

v’ la création d’'un arbre de recouvrement minimal eépprbre de jonction.

* La phase d'initialisation : il s’agit d'initialisdes potentiels des cliques et séparateurs.

» La phase de propagation : il s'agit de la phasealeul probabiliste a proprement
parler ou les nouvelles informations concernant ooeplusieurs variables sont
propagées dans I'ensemble du réseau, de manierettée m jour I'ensemble des
distributions de probabilités du réseau. Ceci geefapassant des messages contenant
une information de mise a jour entre les cliquesatere de jonction précédemment
construit.

* La phase de marginalisation : l'arbre de jonctiamtendra la distribution de

probabilité sachant les nouvelles informationsste&dire p(U| e) ou U représente
'ensemble des variables du réseau bayésiens dtensemble des nouvelles

informations sur les variables.

6.1.2 Soft evidence
L’'observation classique dans un RB touche seulertient des états du nceud observé,
autrement dit, si on a une évidence dans un ncewsbXement I'un de ses états qui sera

observé. Ainsi, on associe la valeur 1 a cet étdfp®ur les autres.

Cependant, on ne peut pas représenter le cas @migwidence n’'est pas exacte : c'est-a-dire si
notre observation est ambigle et touche en mémepstepiusieurs états selon des

pourcentages bien définis.
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Pour surmonter cette limite, [Tu et al., 2004] déppe le concept de « soft evidence » qui

permet de mettre en évidence I'ambiguité au nivtane observation.

Cependant, et vu I'importance de ce nouveau con&epileé* a incorporé récemment « soft
evidence » que I'on trouve intégré dans les noaselersions de Gerife

Toutefois, l'inférence probabiliste aura, apres whservation d’'une évidence (e), quatre
taches [Tu et al., 2004] :

1. Mise a jour de croyance, P(X=x| e)

2. Trouver I'explication la plus probable
Dans le cas ou le réseau contient des nceudsaltititget de I'inférence est aussi de :

3. Maximiser une probabilité postérieure d’état dieeks

4. Maximiser I'utilité attendue

L’évidence classique pour un nceud particulier ‘estskervation de I'un de ses états, appelée
encore évidence dure ou simplement observationer@igmt, « soft evidence » est le type le

plus général de I'évidence qui introduit I'inceutiie de I'observation.

Ainsi, ce concept consiste a propager des valawastiiées (voir Figure 11) pour chaque état
du noceud observé. On peut résumer cet algorithneldartrois étapes suivantes :

1. Calculer les valeurs quantifiéesmpur chaque état i du nceud observé.
2. Pour chaque état i du nceud observé, on fait unérente classique en observant
I'état i.
3. Pour chaque nceud N du RB
Pour chaque état j du noeud N
Etat j 3 valeur de I'état j issu de l'inférence i % q
Fin Pour

Fin Pour

Pour mieux expliquer ce concept, on peut illustnerexemple (cf. Figure 11) détaillé dans
[Tu et al., 2004].

" SMILE (Structural Modeling, Inference, and Learnittngine) est une bibliothéque de classes C++
implémentant des modeéles graphiques probabilistegjtie les réseaux bayésiens et les diagrammdkidiice

® GeNle (Graphical Network Interface) est une integfayraphique permettant de manipuler la plupart des
fonctionnalités offertes par SMILE.
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B=1] B=0
A=1[A=0 0.9 0.1
02 | 08 e
AJAO=1[A 0=0
1 0.9 0.1 /
0 0.1 0o |,
L A0 @ A B [C=1]C=0
- ; 1 1 0.9 0.1
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Cc_o 0 0 02 08

Figure 11.Exemple pour Mise a jour de Croyance avec softeaxid

Ainsi, si I'observation est effectuée sur le nceudv&c les pourcentages 90% pour 'état 1 et

10% pour I'état 2 alors I'algorithme se déroulentoe suit :

1.

Calculer les valeurs quantifiées des états de A :

Q(A=1) = Q(A=1|A~1)

= [P(A=1| A=1) * P(A=1)] / [P(A=1| A=1) * P(A=1) + P(A=1| A=0) * P(A=0)]
=[0.9%0.2]/[0.9%0.2 + 0.1 * 0.8]

=0.6923.

Q(A=0) = Q(A=0|A=1)

= [P(A=1| A=0) * P(A=0)] / [P(A=1| A=1) * P(A=1) + P(A=1| A=0) * P(A=0)]
=[0.1*0.8]/[0.9%0.2 + 0.1 * 0.8]

=0.3077.

On remarque que Q(A=1) + Q(A=0) = 1.

En premier lieu on réalise 1&"dinférence classique en prenant comme observaétat |
(A = 1) puis on multiplie tous les états du RB RfA=1). En deuxiéme lieu on effectue
la 2™ inférence classique en prenant comme observaétat (A = 0) puis on multiplie
tous les états du RB par Q(A=0).

Enfin, pour chaque état on fait la somme de tolgssvaleurs qu'’il a prises lors de
I'étape 2.

6.1.3 Algorithme proposé
Comme on vient de signaler, notre approche d'imfégefloue est une amélioration du
concept « soft evidence ». Cependant, on peut Eslialgorithme dans les deux étapes

suivantes :
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1. Pour chaque état i du nceud observé, on fait urggente classique en observant I'état .
2. Pour chaque nceud N du RB

Pour chaque étatjde N

Etat j = Y valeur de I'état j issu de I'inférence i * degréappartenance de la
valeur observée a I'état i

Fin Pour

Fin Pour

7 Conclusion

Au cour de ce troisieme chapitre nous avons miévétience l'intérét de la théorie de RBF,
cependant, nous avons valorisé ses avantagedegigpplications qui l'utilisent, et détaillé
les notions de base de cette nouvelle théorie ecepdion et en inférence. Nous avons
proposé un algorithme d’inférence qui amélioredpproches existantes et fourni un résultat

fiable pour des observations floues.
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CHAPITRE 4
Réalisation et test

"Les questions les plus importantes de
la vie ne sont en fait, pour la plupart,
que des problemes de probabilités.”
Pierre-Simon de Laplace (1749-
1827).
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1 Introduction

u cours d’'un projet de fin d’étude (2007-2008), :sanons réalisé un éditeur graphique
A “Baysian Editor “ pour la représentation des r@se bayésiens. Ce travail a été réalisé
suite a une recherche bibliographique sur le doenaimsi qu'une étude sur les éditeurs

graphiques existants.

Cependant, I'éditeur a été repris dans un autrietpadin d’ajouter un algorithme d’inférence

pour assurer la propagation de I'information dansekseau bayésien.

“Baysian Editor” est utilisé comme point de dépaour développer le module flou décrit

dans le chapitre 3.

2 Editeur Réseau Bayésien Flou
2.1 Editeur Réseau Bayésien classique

2.1.1 Aspect graphique

Nous décrivons en premier lieu quelques principdtestionnalités de notre éditeur (cf.
Figure 12).

=~ Baysian Editor - [Metworlk 0]
Eile  Edit Algorithme:

B R B R

EEX

o | Y \ e ~— 2o oo

Etat (80 Mode --= Pasion

Figure 12.Présentation générale de I'éditeur

1: ajouter un nouveau réseau, 2: ouvrir un résedu enregistrer un réseau,

4 : imprimer/apergu réseau, 5 : aide, 6 : ajoutenceud, 7 : relier deux nceuds a l'aide d’'un
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arc, 8 : supprimer un nceud, 9 : ajouter un comnrentdO : changer la forme d’'un nceud de
la forme rectangulaire a la forme ellipse, 11 :nde la forme d’un nceud de la forme ellipse
a la forme rectangulaire, A : choisir I'algorithrdénférence, B : mise & jour les probabilités

du réseau selon l'algorithme choisi.

2.1.2 Algorithme d’inférence

Nous présentons maintenant le déroulement dessétigpalgorithme arbre de jonction en
commencant par la création du graphe sur lequebappliquer notre algorithme (cf. Figure
13).

Une fois qu’on a fini la création du graphe avex detils disponibles dans notre éditeur, on
fait entrer les probabilités de chaque noeud. Catsapilités sont décrites a I'aide d’'un expert
ou a partir d'une source d’'information. Ensuite,sghectionne nos évidences si elles existent,
comme la Figure 13 nous montre, puis on choisptathme d’inférence par un simple

Arbre de Jonckion

clique sur puis su

A ce stade, la page dans laquelle I'algorithme ev@érouler s'ouvre a coté de notre réseau

ouvert afin de permettre de voir les changementsrégs sur notre graphe par I'algorithme.

7= Baysian Editor - [Exemplel.bn]
File  Edit  Wiew  Algorithme  Tools

iR | EE S|k

Mode Properties
Skat Grid
Rename

Delete

2 R S a— I e |

skakz

View as .4 N
Locake Child 3 4 -
Annakation, .. T _‘_l

Etat ¢80 Node'ds —-> Position:{x=211,¥=-31 Centre: {H=255, ¥=24}

et 2 2B

D

Figure 13.Graphe initial
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=5 Baysian Editor

Fle  Edt stithme
iNw® | EB&IK T .

r;ie(work Thn

R o &
A A
M,H ' j \g T | ,u;_..-,;{] ] X
C c
/ i /
/ I
// /f
| ,f
xR * Rl
D D
Etat @ Node > Posiion :  Etat @ NodeiC > Position:{§=241,Y=242} Cenlre: {4=285, =250}

Figure 14.Réseau apres choix de I'algorithme

Nous remarquons maintenant deux réseaux ouvensctntient le graphe initial et I'autre ou

va se dérouler I'algorithme (dfigure 14).

Quatre boutons s’affichent dans la fenétre de gaudiacun décrit une étape de l'algorithme

Arbre de jonction.

»» Moralization

Pour réaliser la premiere phase on cliqu @

»» Triangulation

Pour réaliser la deuxieme phase on cliqud , mais dans ce cas le graphe

est triangulé, donc le graphe reste lui-méme.

»3» Arbre de Jonchion

Pour réaliser la troisieme phase on cliqu
On remarque :

v' la construction de I'arbre de jonction qui est ¢inée de cliques et de séparateurs.
v" Tlinitialisation des potentiels des cliques et déparateurs.

Afin de voir les résultats de cet algorithme, e@&slire pour appliquer la derniere phase sur le

graphe, on clique sUMESBICFUEECEUIN puis se déplacer vers le noeud choisi pour affiche

ses probabilitéa posteriori(cf. Figure 15).
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LELEE | NetworkT.bn

Update Netiork

) Information

statl | 0,34
stak? | 0,35
statd | 0,31

Etat @ Node > Postion-{x=138,Y=68} Centre: {x=218, V=104} Etat @ Node:D —> Positioni{i=258, Y=486} Centre: {=293, Y=S08}

Figure 15.Résultat final

Nous avons montré comment se déroule I'algorithimase par phase, nous indiquons que
notre éditeur permet aussi d’appliquer l'algorithewe le graphe d’'un seul coup en cliquant

sur le bouto..

2.2 Représentation des données floues

Afin d’étendre I'utilisation de cet éditeur au RBRopus pouvons accéder au module de
représentation des variables (cf. Figure 16).

Cette interface inclut un tableau contenant leihtes données liées a la variable floue tel
gue son nom, sa fonction, l'intervalle de défimtide cette fonction et la couleur qui sera
choisie dans sa représentation graphique.

Dans ce tableau, nous pouvons ajouter, inséreupprisner des lignes a travers les boutons
"Ajouter”, "Insérer" et "Supprimer".

A propos les fonctions de la variable floue, efpesivent inclure plusieurs types de fonctions
mathématiques notamment les nombres négatifs, desnghéses, les racines carrées, les
puissances, sinus, cosinus, tangente, +, -, * et /.

Pour faciliter la tache a l'utilisateur de notratéar, le bouton "Utilisation" contient les
différents détails concernant les fonctions quesn@nons de citer.

Pour mieux visualiser les sous-ensembles flous,s ndisposons de la fonctionnalité
"Représentation graphique” accessible par les boigons : "Range”, "Ecran” et "Graphe".
Ainsi, le premier bouton "Range" nous permet derfiles différentes caractéristiques de

I'échelle de graduation afin d'obtenir une meikergprésentation graphique. Les deux autres
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boutons permettent I'affichage des courbes degifmscsaisies dans le tableau.
Finalement, lors d'une évidence, nous pouvonsrskisvaleur observée dans le champ
"Valeur Observée" et cliquer sur le bouton "Calculés degrés d'appartenance" pour obtenir

les degrés d'appartenance de chaque variabledbmgele deuxiéme tableau.

3 Exemples d’'inférence flou

Nous allons a présent étudier de plus prés comfoestionne I'inférence floue dans notre

éditeur. Pour cela, nous allons illustrer deux gXesi de RBF, un exemple simple pour
mieux visualiser les aspects général de notre wditgotamment les caractéristiques des
variables flous et I'inférence floue, puis un deéme exemple plus détaillé concernant le

diagnostic du cancer de la prostate.

3.1 Exemple simple
Dans cet exemple, détaillé dans [Heckerman, 20@tjs avons cinq variables : Gaz, Fraude,

Bijou, Age et Sexe, comme indique la Figure 17.

Ainsi, supposons que la variable « Age » est uneia floue qui comporte trois sous-
ensembles flous «Jeune », « Adulte » et « Viewaractérisés par des fonctions bien
déterminées gu’on peut saisir dans le tableau fipédeide la variable floue (cf. Figure 16).

Propriety:
| General | Farmat | Yariable Floue |
Valeur Ohserveé ; 2_3 _. [ Calculer les deqgrés d'appartenances ]
Utilization ] [ Ajouter J l Inzerer ] [ Supprimer ] Mlode Graphigue
| ‘Yanable Floue . Fonction | tin | bd &= | Couleur ~ -E
Jeune 1 o 20 rouge
| Jeune A1) %+3 2 an | rouge
| Bdulte 0.17%-2 20 a0 | wert -
Adulte 1 130 40 ek
Adulte N1 u+5 40 50 | wert e
< ?
Wariable Floue Fészultat
» Jeune oy
Adulte 103
[ Ok ] [ Cancel

Figure 16.Représentation de la variable floue Age
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Supposons que I'age observeé est 23 ans, on psutacaie valeur directement dans le champ

[ Calculer les degrés d'appartenances

spécifique, puis on clique sur le boul ] pour obtenir les degrés

d’appartenance de la valeur observée a chacunadssesisembles flous comme indique la

Figure 16.

Ensuite, on clique sur le bout' pour enregistrer les donnés puis sur le bollln

afin de réaliser l'inférence.

Finalement, on obtient les résultats finals fourp& cet algorithme. Ainsi, on peut se
déplacer vers le nceud choisi pour afficher sesgtitittsa postériori(cf. Figure 17).

[ - [=]3]

_jK. Information

Jeuns | 0,7
Adulte | 0,3

Figure 17.Résultat final

3.2 Exemple de diagnostic du cancer de la prostate

3.2.1 Cancer de la prostate

Le cancer de la prostate est un cancer fréquechami la prostate et donc exclusivement le
sexe masculin. Ce cancer se développe a partirtislass de la prostate, une glande de
l'appareil reproducteur masculin, quand des calylanutent pour se multiplier de fagon

incontrblée.

Celles-ci peuvent s'étendre en migrant de la pgiaqu'a d'autres parties du corps.

Page55



Modélisation et Diagnostic par Réseau Bayésien FIcAli BEN MRAD

Le cancer de la prostate peut provoquer des dajleune difficulté d'uriner, un

dysfonctionnement érectile et d'autres symptémes.

Le traitement se fait par chirurgie, radiothérdbiethérapie hormonale et parfois

la chimiothérapi¥, ou en combinant plusieurs de ces méthodes [5].

Dans la plupart des cas, le cancer de la prosstasymptomatique, c'est-a-dire qu'il est
découvert, alors qu'il n'entraine aucune manifiestdti étant propre. Il est le plus souvent

découvert :

v Lors d'analyses sanguines incluant I'étude de I'8igéne Prostatique Spécifique),
communément connu en terme anglophone par PSAgéudi Prostatique Spécifique),
dont la valeur prédictive et l'utilisation, sansméfice prouvé en termes de santé publique,
ont recemment été remises en cause. L’APS est nintéine normalement sécrétée par
les cellules prostatiques, mais une cellule canséreen sécrete 10 fois plus qu'une

cellule normale. Cette propriété a suscité de nembespoirs en termes de dépistage.

Le taux sanguin de I'APS peut toutefois étre augmgrar de tres nombreux autres
facteurs (le volume prostatique, les infectionsowetinflammations, les contraintes
mécaniques (toucher rectal, autre)...) ou dimirarécgrtains traitements de I'hypertrophie

bénigne.

v Lors d'un toucher rectal réalisé a titre systénu@tiepu en raison de symptémes liés a une
autre maladie (en particulier I'hnypertrophie bémigle la prostate).
v Fortuitement, sur des piéces de résection proamtigrs du traitement chirurgical de

'adénome prostatique.

Lorsqu'il est symptomatique, le cancer de la ptestat le plus souvent a un stade avance.
peut entrainer :

une rétention aigué d'urine,
une hématuri&,

une impuissance sexuelle,

AN NN

une altération de I'état général,

16 | a radiothérapie est une méthode de traitementdégional des cancers, utilisant des radiations gétruire
les cellules cancéreuses en bloquant leur capasgémultiplier.

" La chimiothérapie est I'usage de certaines subssachimiques pour traiter une maladie.

¥ L’hématurie est un terme médical désignant lagnés de sang dans les urines. En fait on dépigteience
de globules rouges en quantité anormalement élevée.
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v des douleurs et/ou le dysfonctionnement ou la ligfa@ie d'autres organes liés a la

présence de métastaSes

3.2.2 Problématique et solution

Actuellement, le cancer de la prostate est le galecplus fréquent et la deuxiéme cause de
mortalité par cancer chez les hommes. Pour suigmlution des patients traités pour ce
cancer, les médecins utilisent depuis plusieurgesite dosage sanguin de 'APS. En faite,
I'APS est le meilleur indicateur de I'évolution dancer de la prostate. Une augmentation de
son taux dans le temps signale une progressioa maladie.

Le dosage de I'APS est donc essentiel pour suoue les patients qui ont subi un traitement
pour un cancer de la prostate ou qui ont opté pohservation en présence d’'une tumeur

localisée.

Cependant, les seuils de significativité sont diffis a établir. Il est admis, toutefois, qu'un
taux de 'APS (APS libre / APS total) compris enfi@ et 20 est douteux, mais qu'il est

nettement significatif au-dela.

Ainsi, une valeur du taux de 'APS supérieure 2o#@nte le diagnostic vers un adénome de
la prostate (tumeur bénigne de la prostate) quinéeessite pas de démarrer d'autres
explorations qui sont invasives.

D’un autre c6té, une valeur de I'APS inférieur adtignte le diagnostic vers un cancer de la
prostate qui sera confirmé et identifié par unesie de la prostate (exploration invasive et

traumatique).

Cependant, si la valeur du taux de I'APS est siardee 10 et 20, le médecin aura besoin d’'un
pourcentage qui I'oriente vers I'un des chemins@ppuyant aussi sur d’autres parametres

diagnostic. C’est un vrai flou pour le médecin.

Sur le plan pratique, le jugement d’'un taux de IBAén faveur d’'un adénome et d’'un cancer,
est une valeur subjective que nous pouvons l'objecpar un prototype issu de I'étude des
statistiques des cas déja vue (cf. Figure 18).

¥ Une métastase est la croissance d'un organismegsath ou d'une celluléumorale & distance du site
initialement atteint.
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W(T_APrs) 4

i Cancer T _APS Adenome_T _APS

0 10 20 Taux de ' APS

Figure 18. Sous-ensembles flous de la variable Taux de I'APS

3.2.3 Reéseau Bayésien Flou pour le diagnostic du cancee th prostate
Le cancer de la prostate occupe la deuxieme placéerenes de fréquence des cancers
touchants 'homme. D’ou l'intérét d’'un diagnostigpoce de ce cancer pour I'éradiquer a un

stade primaire.

En effet, un diagnostic précoce permet une prisehamge rapide qui permet un traitement

efficace pouvant amener a une guérison parfois &imp

Toutefois, il N’y a pas vraiment un tableau cliregelair et évident qui permet ce diagnostic
mais ce sont des ensembles de critéres qui dofimeptession au médecin que son patient a

une grande probabilité d’avoir ce cancer.

Récemment des travaux sur le diagnostic du careé grostate ont vu le jour [Mahjoub et
al., 2010]. Cette étude présente un outil d’aida décision pour le diagnostic, sauf que le
modéele utilise des Tables de Probabilités Condigdies (TPCs) classiques mais ne traite pas

les connaissances ambigues.

Par ailleurs, cette démarche, qui reste toujounseflpour le clinicienlui impose parfois de
demander beaucoup d’examens complémentaires qupadnis de maniere abusifs et aussi

tromatique comme la biopsie de la prostate.

Notre objectif est d’éclaircir un chemin diagnogigi guide le médecin vers l'une des trois
VOIX : soit que son patient a une grande probabiiavoir ce cancer, soit par contre il s’agit
plutét d’'une tumeur bénigne ou adénome. Ce sontldes diagnostics qui occupent le plus
un praticien. Soit le troisieme chemin qu’il s’aditin autre diagnostic dont on s’intéresse pas

beaucoup dans notre étude c’est la prostatite

%% Infection aigué ou chronique de la prostate.
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Pour atteindre un diagnostic il faut rassemblercig®res cliniques tels que les plaintes du
patient, les motifs de consultation et les critéyiedogiques comme la valeur de I'APS et le
taux de 'APS.

Cependant, le médecin se confronte a un autre gigéficoncerne le taux de I'APS qui peut
avoir une valeur non significative quant elle estnprise entre 10 et 20. Dans cet intervalle,
le médecin se sent hésitant et ne peut pas étrmaitifre ni par le bien ni par le mal, d’ou

I'intérét d’'un pourcentage qui lui guide dans siag@de décision.

Afin d’étudier ce cancer, nous proposons le moaeleéseau bayésien flou (cf. Figure 19).
Ce modéle est synthétisé a partir de I'étude decamcer et en tenant compte des

recommandations d’un ensemble de praticien.

Dans notre RBF (cf. Figure 19) nous avons pris emsiclération les parametres les plus
frappants guidant aux diagnostics et nous avora/éste substituer tout ce qui est flou et tout
ce qui est intuition par un degré d’appartenanceeprésente une valeur plus réaliste et plus

scientifique qu’une valeur ambigue.

Algorithme Toals

2 AL

rFEw IR 1 B -

= — Eeho PR 1
N M :
- R R )

Etat d'APS

Sympt

e
et 2 M
Taux d'APS

Biopsie CAT

Figure 19. RBF pour le diagnostic du cancer de la prostate
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Pour atteindre notre objectif nous avons suividsannement classique des médecins. En
effet, ces derniers recueillent les informatiorlsrs@in ordre bien précis avec des alternances
parfois centripetes et parfois centrifuges selomprissence ou I'absence d'indice alarmant

orientant vers un diagnostic ou vers un autre.

Ainsi, nous avons construit un RBF qui refletetlategie diagnostic du médecin ou il trouve

les réponses a la plupart des questions.

Toutefois, la question la plus précoce qu’il cherast lage de son patient. En effet, la
probabilité d’avoir unetumeur de la prostate augmente avec la progression de I'age et
oriente le médecin vers ce chemin. Par contre, ptus patient est jeune plus le médecin
pense a unprostatite.

Cependant, pour avoir une vision plus claire, letelar a recours au dosage d&HS donnant
ainsi une valeur qui ne peut étre interprétablegdonction de I'age du patient. Nous parlons

donc d’'unétat de 'APS que par tranche d’age.

La valeur de 'APS, qui est interprétée par le fabaire et récupérée par le médecin, peut étre
soit élevée soit normale. Ainsi, une valeur éledéd’APS inquiéte le clinicien surdtat de
la prostate de son patient qui dépend en faite d’autres paraset

En effet, ce sont les données dieliographiequi se résument en quatre possibilités (états) :

v’ Prostate de volume normal et Aspect normal.
v’ Prostate de volume normal et Aspect anormal.
v’ Prostate de volume anormal et Aspect normal.

v’ Prostate de volume anormal et Aspect anormal.

Ces données seront confrontées, d’'une part aveouleher rectal (TR), qui donne les
informations sur le volume de la prostate et sopeets et dautre part avec la
symptomatologiedu patient qui a une relation directe avec I'éfatla prostate, c'est-a-dire
soit présence de symptomatologie urinaire qui cordique la prostate a vraiment augmenté
de volume, soit I'absence de symptomatologie géiimine pas une modification de I'état de

la prostate.

L’idéal pour le médecin est d’avoir un contexterbiétabli ou tous les données suivent le
méme sens et par la suite ménent a I'un des deukats : soit d’'un adénome de la prostate,
soit d'un cancer avec une grande probabilité.
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En revanche, sur le plan pratique ce n’est pa®tosijle cas et les données observées sont
difficiles a interpréter et aménent nulle part. Dibfait appel a une variable plus fiable pour

ce type de diagnostic qui esttérix de 'APS.

Ce dernier est tres significatif s'il appartienfun des intervalles (<10 ou >20) mais dans le
cas eéchéant ou il tombe sur I'intervalle de vaféau (entre 10 et 20), un autre défit confronte

le médecin.

A ce stade, nous intervenons pour surmonter l'aiiitéigen représentant la variable taux de
'APS comme variable floue, tout en définissantftasctions d’appartenances spécifiques des

sous-ensembles flous (taux menant a un adénoraaxettenant a un cancer) (cf. Figure 20).

Propriety:

| General Fg[malj Yanable Floue |
Valeur Obsetrvé !12 | l Calculer lez degrés d'appartenances ]
Utilization J [ Ajouter ] [ Ingerer J [ Supprimer ] Mode Graphicue
RS e e
4 Taux menant & un cancer |1 0 10 | vert ¥
Taux menant & un cancer | n[017R+2 10 20 | wert k4
Taux menant & un adenome: | 0,71 10 20 | violet v
Taux menant & un adenome | 1 20 40 | vinlet v
| Wariable Flous Résulkat
| Taus menant & un cancer 0e
b | Taus menant & un adenome | 0z
£ | b3
[ 0k l [ Cancel ]

Figure 20.Sous-ensembles flous de la variable Taux de I'APS

Ainsi, cette variable floue participe a établir pwurcentage décisif a la prise en charge ; c’est
le degré d’appartenance, issu de la projectioradaleur observée du taux de I'APS sur les
sous-ensembles flous (cf. Figure 21) ou encore nobteen cliquant sur

[ Caleer les degrés dappatinances | gans notre editeur (cf. Figure 20), qui nous a@idmnnaitre s'il

s’agit d’'une tumeur ou d’un adénome qui sont ete fl@is deux états de la variabBlemeur.
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w(T_APS) ¢
1 Cancer T _APS Adenome T _APS
0.8 |---—-----mmmmmm--
0 10 12 20 Taux de "APS

Figure 21.Degré d'appartenance aux sous-ensembles flous hrible Taux de I'APS

Si encore la problématique n’est pas résolue, unietleexamen, qui est |laiopsie va

participer a la décision.

En faite, une biopsie positive pour un cancer cordile diagnostic a 100% et la conduite a
tenir (CAT) sera dans ce sens. Par contre, une biopsie w&gaést pas concluante mais
c’est un bon soulagement pour I'inquiétude du midetdu patient surtout.

Ainsi, nous distinguons deux états pour la CATIit sae biopsie positive qui nécessite un
traitement du cancer et suj\goit une biopsie négative qui exige tumtement d’adénomet

surveillance.

4 Conclusion
Ce dernier chapitre présente I'éditeur graphiquédiéd@ la présentation et I'inférence des
RBFs. L'objectif de cet éditeur est d'illustrer déroulement d’'un diagnostic a partir de la

modélisation en passant par I'inférence et en amtiaux résultats.

La modélisation des nceuds flous fait appel notamiraex degrés d’appartenance aux sous-
ensembles flous, l'inférence quant a elle se basd¢agorithme JLO en tenant compte des
degrés d’appartenances de la valeur observée. dlgsagpects sont présentés a travers deux
exemples. Le premier est un exemple classique digdeature, le deuxieme, plus détaillé,

concernant le diagnostic du cancer de la prostate.
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Conclusion générale

"L’ homme raisonnable s’adapte au
monde ; " homme déraisonnable
s’obstine a essayer d adapter le

monde a lui-méme. Tout progreés

dépend donc de ["homme

déraisonnable.”

George Bernard Shaw (1856-1950).
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Tout au long de ce projet de recherche, nous sonp@&ses par plusieurs étapes. Une
premiere phase de recherche bibliographique coaneides techniques de diagnostic
nous a permis de constater que malgré leurs digsrdeurs efficacités restent en lieu étroit

avec la nature du systeme a étudier.

Ainsi, cette premiere phase nous a permis d’iflentia technique des réseaux bayésiens en
tant que outil de diagnostic trés intéressant. Geget, I'une des limites majeures que

rencontrent les utilisateurs de ce type de réseasix,d’exprimer les connaissances non
précises surtout si plusieurs informations sontigids. Etant donné que, nous ne pouvons

pas exprimer toutes sortes de connaissance ddasgage preécis.

Aprés avoir détaillé les deux techniques a savseau bayésien et logique floue, dans un
deuxieme temps, nous avons pu démontrer 'app@tpguit offrir le panachage de ces deux

techniques qui a conduit a la naissance de laithderréseau bayésien flou.

Suite a cette étude, nous avons mis en évidentetbébrie en détaillant ses avantages, citer

les applications qui I'utilisent et détaillant slamdement théorique.

En s’inspirant des résultats de toutes ces rechsyetous avons pu en premier lieu modéliser
guelques systémes par réseaux bayésiens flousj neup a permis de développer un module
supplémentaire de représentation des variables #laun éditeur graphique de représentation
de RB en deuxieme lieux, ainsi que de développealgarithme exploitant la richesse de

cette récente théorie, puis tester et comparegdidhme que nous avons développé par des

exemples illustratifs et par rapport a d’autresdr.
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