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Introduction générale 

 

 

 

" Calculer la probabilité d’un événement 

n’a aucun sens une fois que l’on sait qu’il 

s’est produit. L’apparition de la vie, celle 

des dinosaures, celle des Hommes, a résulté 

d’un grand nombre de bifurcations dans le 

cours des processus se déroulant sur notre 

planète; chacune de ces bifurcations s’est 

produite alors que de nombreuses autres 

étaient possibles; chacune avait une 

probabilité faible, mais il fallait bien 

qu’une de ces possibilités se produise." 

La science à l’usage des non-scientifiques, 

2003 Albert Jacquard, né en1925. 
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ous assistons aujourd’hui à des révolutions dans les moyens de fabrication, de 

production, de traitement de l’information et de communication. Ces révolutions ont 

contribué à la production d’outils et systèmes de plus en plus complexes par leurs tailles et 

leurs modes de fonctionnement. 

Ceci impose le recours à des méthodes de diagnostic de plus en plus sophistiquées tel que les 

méthodes de diagnostic à base de connaissance ou les méthodes plus récentes de diagnostic à 

base de modèle. 

Ces derniers ont surmonté certaines limites inhérentes aux approches de diagnostic à base de 

connaissance en utilisant un modèle de système afin de prédire sa panne ou chercher son 

origine. 

Parmi les modèles utilisés pour décrire la connaissance sur un système, on distingue les 

Réseaux Bayésiens (RBs) qui permettent la manipulation de connaissance incertaine.  

Cependant, l’une des limites majeures que rencontrent les utilisateurs des réseaux bayésiens 

est d’exprimer les connaissances non précises surtout dans les diagnostics où beaucoup 

d’informations sont floues. En faite, nous ne pouvons pas exprimer toutes sortes de 

connaissances par un langage précis. 

La solution est donc de combiner les réseaux bayésiens avec la logique floue, d’où la 

naissance des Réseaux Bayésiens Flous (RBFs). 

L’objectif de ce projet de mastère est d’appréhender la problématique des Réseaux Bayésiens 

Flous, ensuite de modéliser quelques systèmes par des réseaux bayésiens flous et de 

développer des algorithmes d’inférence à des fins de diagnostic exploitant la richesse de ces 

modèles. 

Dans ce projet nous cherchons à résoudre quelques problèmes constatés lors du diagnostic à 

base de Réseau Bayésien classique. Ces problèmes concernent essentiellement la modélisation 

qui s’avère difficile en présence de connaissances ambigües. Les algorithmes d’inférence et 

de diagnostic sont non génériques et non adaptés au contexte flou. 

Ce rapport est organisé selon quatre chapitres : 

Le premier chapitre propose quelques techniques de diagnostic qu’on peut classer 

essentiellement, en deux catégories : diagnostic à base de connaissances et diagnostic à base 

N
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de modèles. Notre objectif dans ce chapitre est de présenter la méthode de diagnostic de 

modèle et comment utiliser un réseau bayésien comme modèle. 

Le deuxième chapitre détaille les notions de base de la logique floue et du réseau bayésien, 

qui sont parmi les techniques les plus intéressantes pour l’aide au diagnostic. Ce modèle 

combine les avantages des réseaux bayésiens en termes de flexibilité et de facilité 

d’interprétation et les avantages de la logique floue en termes de flexibilité. 

Le troisième chapitre met en évidence la théorie de réseau bayésien flou. Il valorise ses 

avantages, invoque les applications qui l’utilisent, et détaille les approches qui existent pour 

inférer ce genre de modèle. 

Enfin, le quatrième chapitre aborde la réalisation et le test de notre application. Celle-ci se 

compose d’un éditeur graphique pour la modélisation de RBF. Ainsi, qu’un algorithme 

d’inférence permettant la mise à jour de données classiques ou floues. 
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CHAPITRE 1                                        

Contexte du diagnostic à base de 

modèles 
 

"Il entre dans toutes les actions 

humaines plus de hasard que de 

décision." André Gide (1869-1951). 
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1 Introduction 

e diagnostic est une activité présente dans de nombreux milieux : médical, administratif, 

industriel. Le terme diagnostic est issu du domaine médical où il signifie "Action de 

déterminer une maladie d’après ses symptômes". Le diagnostic technique peut être défini 

comme la recherche de l’origine des pannes ou défauts afin de réparer un système.  

Généralement, le processus du diagnostic repose sur le principe de l’observation et de 

l’analyse des symptômes d’une défaillance, dans le but de trouver le remède garantissant le 

rétablissement et réduire la probabilité de défaillance. Les décisions prises suite à un 

diagnostic sont généralement le fruit d’une expérience, d’un savoir-faire ou d’un historique. 

Dans ce premier chapitre, nous en proposons quelques techniques de diagnostic qu’on peut 

classer, essentiellement, en deux catégories : diagnostic à base de connaissances et diagnostic 

à base de modèles. 

2 Définition 

Le diagnostic est défini [1] comme étant le raisonnement menant à l'identification de la cause 

ou l'origine d'une défaillance, d'un problème ou d'une maladie, à partir des caractères ou 

symptômes relevés par des observations, des contrôles ou des tests. 

Cependant, le diagnostic est un terme commun à plusieurs disciplines, sa définition est liée à 

la nature du système considéré et du résultat attendu. Le mot diagnostic n’a pas exactement la 

même définition suivant les disciplines et les auteurs. 

Par exemple, Reiter a défini un diagnostic comme suit : « Supposons connue une description  

d’un  système  ainsi  qu’une  observation  du  comportement anormal. Le problème du 

diagnostic consiste à déterminer les composants dont le dysfonctionnement expliquerait  les 

différences observées » [Reiter, 1986]. Il utilise des littéraux pour représenter le système et les 

liens entre ses composants, un diagnostic est défini comme une conjonction de littéraux qui 

sont consistants avec la description et le comportement observé  et qui inclut un littéral pour 

chacun des représentants des composants. 

En outre, Van der Gaag [Gaag et al., 1994] a défini la notion de diagnostic comme 

l’acheminement qui permet d’identifier l’ensemble le plus probable de désordres qui 

expliquent les manifestations observées en cas de problème. 

L
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3 Méthodes de diagnostic 

Les outils de diagnostic mis à la disposition des spécialistes en maintenance et en supervision 

sont nombreux, mais leur efficacité est très inégale. Ils appartiennent généralement soit aux 

méthodes à base de connaissances soit aux méthodes plus récentes de diagnostic à base de 

modèles. Nous allons présenter, dans la suite, ces principales méthodes de diagnostic issues 

de travaux dans le domaine de l’intelligence artificielle. 

3.1 Diagnostic à base de connaissances 

Dans de nombreuses méthodes de diagnostic, la connaissance exacte du fonctionnement du 

système n’est pas indispensable, l’expérience et les tests sur site constituent la base pour les 

approches qui exploitent des connaissances de nature heuristique. Parmi les méthodes de 

diagnostic à base de connaissances nous distinguons principalement le diagnostic par 

systèmes experts. 

3.1.1    Diagnostic par systèmes experts  

Un système expert (SE) est un système d'aide à la décision basé sur un moteur d'inférence 1 et 

sur une base de connaissances [2]. Il est la transcription logicielle de la réflexion d'un expert 

dans un domaine donné. Il est capable de déduction logique et de produire une solution qui 

semble la plus juste.  

Toutefois, il reste un outil d'aide à la décision et est loin de pouvoir remplacer l'intelligence 

d'un expert, d'ailleurs il n'est concevable que pour les domaines dans lesquels il existe des 

experts humains.  

Les SEs ne sont en aucun cas des logiciels adaptatifs mais plutôt des applications dédiées à 

leur domaine d'activité, c'est pourquoi les SEs sont des progiciels2 au sens pur. Ils sont 

généralement conçus pour résoudre des problèmes de classification ou de décision.  

La mise en place d’un SE dans un milieu professionnel se fait en 5 étapes : 

1. Etude de faisabilité  

La mise en place d'un SE ne peut se faire que dans le cadre d'un domaine d'expertise dont les 

connaissances et le savoir-faire est formalisable. C'est à dire un domaine qui n'a pas trop 

                                                           
1
 Partie d'un système expert qui effectue la sélection et l'application des règles en vue de la résolution d'un 

problème donné. 
2 Contraction de produit et logiciel, est un logiciel applicatif commercial "prêt-à-porter", standardisé et 
générique, prévu pour répondre à des besoins ordinaires. 
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attrait à la sensibilité humaine. L'investissement en temps et donc en argent, pour la mise en 

place d'un SE, est énorme et nombreux sont les entreprises qui souhaiteraient s'en doter mais 

tous les domaines d'expertise ne sont pas formalisables.  

Le premier travail du cogniticien3 est donc d'évaluer le domaine et les risques d'échecs de la 

mise en place et de succès de l'outil auprès des professionnels et futurs utilisateurs. 

2. Extraction des données  

Une fois l'assurance que cette mise en place est possible, la partie la plus importante de la 

mise en place va commencer. Il s'agit d'un dialogue entre le cogniticien et l'expert afin 

d'extraire de ce dernier toutes ses connaissances et son savoir-faire.  

Un tel objectif est évidemment impossible à atteindre, mais le cogniticien va tenter de s'en 

approcher au maximum. Il devra pour cela faire preuve d'une grande compréhension des 

informations qui lui seront transmises (les experts n'étant pas forcément bons pédagogues) et 

d'un certain sens de la psychologie pour faire parler un expert qui aura tout naturellement le 

sentiment de se faire très prochainement remplacer par un système informatique. 

3. Formalisation  

Après et pendant l'extraction des données, le cogniticien devra formaliser les connaissances 

qu'il a glanées. Pour cette partie, il peut alors commencer à se tourner vers les développeurs et 

autres professionnels techniques de l'informatique afin de commencer à définir le cahier des 

charges précis, la base de connaissance et les règles d'inférence. À partir de cette étape, on a 

déjà un pied dans la technique. 

4. Design et développement  

Une fois la base de connaissances et les règles d'inférences définies, le cogniticien peut alors 

se retourner vers l'équipe technique qui va définir l'architecture technique nécessaire. Le 

cogniticien aura à partir de là le rôle de lien entre l'équipe d'experts et l'équipe de 

développement afin de peaufiner le cahier des charges et d'optimiser les métadonnées4 et 

métarègles5. 

 

 

 

                                                           
3 Personne ou ingénieur spécialisé dans l’extraction des connaissances. 
4 Les métadonnées, ou données sur les données, renseignent sur la nature, les caractéristiques et la disponibilité 
des données. Elles rendent les données compréhensibles et partageables pour les utilisateurs dans le temps. 
5 Règles contrôlant la sélection des règles à appliquer. 
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5. Tests et optimisations  

Naturellement la mise en place se termine par une série de tests auprès des experts mais aussi 

auprès d'utilisateurs lambdas6 qui sont sensés à partir de cet outil fournir les résultats d'un 

expert débutant. 

Avec le recul du temps et la confrontation à la réalité, l’utilisation des systèmes experts avait 

dégagé un ensemble de limitations [Tomsovic et al., 2000], dont la plus importante est celle 

du raisonnement incertain. En fait, un des plus grands problèmes que rencontre le cogniticien 

lorsqu'il tente de formaliser le savoir d'un expert, c'est que celui-ci est capable de raisonner 

sur des connaissances incertaines ou imprécises et qu'on ne dispose que de très peu d'outils 

pour rendre compte de cette capacité [Främling et al., 1992]. Il s’agit d’une problématique 

différente de la science objective. On assiste, alors, à la naissance d’une discipline scientifique 

appelée logique floue s’intégrant du raisonnement humain. 

3.1.2 Systèmes experts flous  

L’introduction de la logique floue dans les systèmes experts a pour but de faire face aux 

limitations des systèmes experts ordinaires surtout celle concernant le raisonnement incertain. 

Cette introduction évoque la notion des Systèmes Experts Flous. La logique floue a été 

introduite, dans les systèmes experts depuis une trentaine d’années [Ketata et al., 2005], dans 

plusieurs disciplines qui manipulent des données incertaines et des informations imprécises. 

Elle peut être intégrée sous différents aspects en fonction du domaine de l’application et du 

degré de complexité du problème. La structure générale d’un système expert flou est 

représentée par la Figure 1 qui précise également dans quels niveaux la logique floue peut 

intervenir. 

                                                           
6
 Un utilisateur qui ne fait pas usage de fonctionnalités avancées, qui ne cherche pas à comprendre le 

fonctionnement du système, ou qui n'a pas une connaissance poussée dans le domaine concerné. 
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Figure 1. Principe d’un système expert Flou [Ketata et al., 2005] 

En fait, cette discipline touche l’étape de la formalisation et du traitement des connaissances 

et permet de générer un ensemble de conclusions pondérées. La structure interne du système 

expert flou dépend de son domaine d’application et de la nature des données à représenter.  

Ainsi, des systèmes experts flous ont été conçus dans le domaine de l’électronique, 

essentiellement pour faire le diagnostic des différentes pannes qui peuvent affecter un circuit 

de transmission [Lee et al., 2000]. La logique floue a été utilisée, également, dans le domaine 

de diagnostic pour l’agriculture pour la détection  et l’identification du type de maladies 

d’insecte à partir des symptômes constatés sur les plantes [Saini et al., 2002]. Un prototype de 

logiciel a été, justement, développé dans le but d'étudier la possibilité d'utiliser la logique 

floue dans des systèmes d’aide à la décision (SAD) pour l'élevage de la vache laitière 

[Strasser, 1997]. 

Il a été intéressant, certainement, d’utiliser un système expert flou dans la conception 

d’architecture d’un réseau informatique. En fait, il s’est avéré que 70% de la connaissance 

dans ce domaine est de nature floue [Fahmy et al., 1997]. 

Enfin, le domaine du diagnostic médical avait beaucoup utilisé les systèmes experts flous 

notamment pour l’analyse du sang de la corde embryonnaire [Garibaldi et al., 2000], dans un 

logiciel d’aide pour l’enseignement des infirmières [Zajpt et al., 1997] et dans le diagnostic 

des symptômes du cancer de la peau. 

Les systèmes experts flous ont pu, dans plusieurs domaines, prouver leurs efficacités et pallier 

les problèmes de l’incertitude et l’imprécision des données et des connaissances intervenant 
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dans l’expertise. L’étude des différents systèmes déjà cités nous a prouvé la diversification de 

l’utilisation de la logique floue. En effet, la manière de son intégration dans un système expert 

diffère d’une application à une autre. Elle dépend de la nature de l’incertitude et de sa 

modélisation. La dotation et la propagation des coefficients de certitude diffèrent lorsque la 

connaissance du système est modélisée sous modélisation de Sugeno ou bien de Mamdani. 

Les systèmes experts sont une des applications de l'intelligence artificielle qui ont quitté les 

laboratoires de recherche pour être utilisées dans le monde professionnel. De nombreux 

systèmes experts ont été implantés avec succès pour résoudre des problèmes concrets. 

Néanmoins, les grandes difficultés rencontrées pendant l'extraction des connaissances des 

experts puis pendant leur formalisation forment peut être un point faible trop difficile à 

contourner dans les Systèmes Experts. La structuration des connaissances, notamment 

incertaines, reste parfois floue et mal implantée dans les SEs, en plus les contraintes liées à la 

nature des systèmes diagnostiqués rendent ces approches insuffisantes. Cela remet en question 

le modèle à la base de connaissance qui pourrait migrer vers d'autres modèles (modèles 

connexionnistes, systèmes adaptatifs, etc.).  

Au début des années quatre-vingts, d’autres approches ont permis de surmonter certaines 

limites inhérentes à ces méthodes. En particulier, l’utilisation des modèles des systèmes a 

ouvert de nouvelles voies de recherche. Ces approches sont appelées approche de diagnostic à 

base de modèles. 

3.2 Diagnostic à base de modèles  

Le raisonnement à base de modèle est une technique de l’intelligence artificielle qui est 

applicable pour résoudre de nombreux problèmes comme le contrôle, le diagnostic, etc. 

[Wotawa, 1999]. 

Le diagnostic à base de modèles a été introduit dans les années quatre-vingts par [Reiter, 

1987] et [Kleer et al., 1987], et a, depuis, été largement diffusé et repris dans de nombreux 

travaux connexes. Selon ce formalisme, une théorie logique décrit le comportement normal ou 

anormal d’un système physique. Ensuite, à partir d’observations mesurées sur le système réel, 

des hypothèses, ou encore des diagnostics, peuvent être émises afin d’expliquer son éventuel 

mauvais fonctionnement. 
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Cette approche, qui est née aux Etats Unis d’Amérique dans la communauté Intelligence 

Artificielle, présente l'avantage de se baser sur le modèle du bon fonctionnement du système 

et les observations de pannes ne sont utiles qu’au moment du diagnostic. Elle s'appuie 

uniquement sur la donnée d'un modèle de fonctionnement correct du système et procède par 

comparaison des comportements du modèle et du système réel. 

Le diagnostic à base de modèles est utilisé dans plusieurs applications notamment, dans le 

diagnostic des fautes graves dans les marchandises [Davis, 1984], [Davis et al., 1988], dans la 

médecine [Lucas, 1997], ou encore pour la réparation des systèmes [Stumptner et al., 1998], 

[Friderich et al., 1992], [Friderich et al., 1992a]. 

Dans cette catégorie de méthode de diagnostic à base de modèle, l’utilisation de réseaux 

bayésiens comme modèle pour le diagnostic semble une approche intéressante. 

3.2.1 Diagnostic par Réseaux Bayésiens  

L’intelligence artificielle a exploité des formalismes mathématiques et des propriétés issues 

de la théorie de graphes pour améliorer la modélisation et la représentation de données 

incertaines.  

Les recherches dans le domaine du diagnostic à base de modèles ont bénéficié de ces 

avancées. Ainsi, plusieurs travaux ont intégré des calculs de probabilités  pour  faciliter  la  

tâche  de maintenance et de réparation. Des approches classiques ont été augmentées, d’autres 

ont  intégré dans le modèle les connaissances incertaines. Ceci facilite la génération de 

résultats de nature probabiliste. Les réseaux bayésiens font partie de ces méthodes. Ces 

modèles intègrent l’aspect incertain dès la création du modèle. Chaque nœud comprend une 

distribution de probabilités qui est mise à jour en fonction des observations acquises. 

Ainsi, les réseaux bayésiens constituent un outil performant pour la modélisation et le 

diagnostic. En effet, ils permettent, d’une part, d’exploiter pleinement la connaissance a priori 

des systèmes à diagnostiquer et, d’autre part, de fournir l'information a posteriori nécessaire 

dans le contexte de la recherche de diagnostics.  

Par conséquence, un grand nombre d’outils utilisant des raisonnements bayésiens existent 

pour la modélisation des  systèmes et le diagnostic médical [Onisko et al., 1998], [Onisko et 

al., 1999] ou technique. Une description détaillée des réseaux bayésiens sera présentée 

ultérieurement dans ce rapport. 
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4 Conclusion 

Dans ce chapitre, nous avons présenté quelques techniques de diagnostic ainsi que leurs 

domaines d’application. 

Nous avons détaillé aussi des  méthodes de diagnostic. Ces méthodes peuvent être classées en 

deux catégories : approches à base de connaissances et approches à base de modèles. 

Parmi les méthodes de modélisation de système nous avons distingué la logique floue et les 

réseaux bayésiens. Il s’avère donc intéressant de présenter ces deux techniques. Ceci fera 

l’objet du chapitre suivant. 
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Chapitre2                                                                                                                    

Logique Floue et Réseau Bayésien 

 

"Il est dans la probabilité que mille 

choses arrivent qui sont contraires à 

la probabilité." Henry Louis Mencken 

(1880-1956). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Modélisation et Diagnostic par Réseau Bayésien Flou     Ali BEN MRAD 
 

  
Page 14 

 

  

1 Introduction 

a tâche de diagnostic est devenue de plus en plus pénible surtout face aux problèmes de 

complexités croissantes des systèmes actuels. Ceci nous impose le recours à des 

méthodes plus sophistiquées tels que la logique floue et les réseaux bayésiens. 

Il est cependant utile de détailler les notions de base de ces deux méthodes, qui sont parmi les 

techniques les plus intéressantes pour la gestion des connaissances et d’aide à la décision ou 

plus spécifiquement pour l’aide au diagnostic. C’est ce que propose ce deuxième chapitre. 

2 Logique Floue 

2.1 Introduction 

La plupart des problèmes rencontrés sont modélisables mathématiquement. Mais ces modèles 

nécessitent des hypothèses parfois trop restrictives, rendant délicate l’application au monde 

réel. Les problèmes du monde réel doivent tenir compte d’informations imprécises et 

incertaines. Prenant l’exemple d’une climatisation : si on veut obtenir une température 

fraîche, on peut se demander quelle gamme de températures conviendra (la demande est 

imprécise). On voit apparaître la difficulté d’interprétation des variables linguistiques comme 

frais, chaud,…. 

Ainsi, cette limite de la logique classique à représenter l’aspect ambigu du monde réel, a 

constitué une grande motivation pour la naissance de la logique floue.  

2.2 Définition  

La logique floue [4] est une branche de l’intelligence artificielle qui aide les ordinateurs à 

toucher et manipuler des représentations vagues et incertaines. 

C’est une approche développée par Lotfi Zadeh7, basée sur sa théorie des sous-ensembles 

flous (fuzzy sets en anglais), généralisant la théorie des ensembles classiques. Dans la nouvelle 

théorie de Zadeh, un élément peut plus ou moins appartenir à un certain ensemble.  

Les imprécisions et les incertitudes peuvent ainsi être modélisées, et les raisonnements 

acquièrent une flexibilité que ne permet pas la logique classique. 

                                                           
7 Né le 4 février 1921 à Bakou en Azerbaïdjan, de mère russe et de père azéri iranien, et a ensuite étudié à 
l'Université de Téhéran. C’est  un scientifique connu pour ses travaux en informatique et en automatique. 

L
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2.3 Historique 

Le concept flou est né en 1965 avec Lotfi Zadeh qui a déclaré qu’ « un contrôleur 

électromécanique doté d’un raisonnement humain serait plus performant qu’un contrôleur 

classique ». En 1980,  FLSmidth & Co. A/S 8 a mis en application la théorie de la logique 

floue dans le contrôle de fours à ciment, en faite c’était la première mise en œuvre pratique de 

cette théorie. 

À partir de cette année plusieurs applications ont commencé à émerger, notamment au Japon, 

jusqu’à l’année 1987 qui a marqué l’explosion de la logique floue au Japon.  

2.4 Application 

Il n’y a pas en fait de domaine où l’on ne puisse appliquer les raisonnements propres à la 

logique floue car elle a été conçue pour s’adapter aux techniques de pensée humaine. Tout 

d’abord il y a les secteurs privilégiés de la commande floue qui sont l’automatisme et la 

robotique.  

Dans ces deux secteurs la commande floue a déjà connu un franc succès et est devenue ainsi 

la source de nombreuses recherches sur la logique floue. Le troisième secteur très important 

est l’informatique (aussi bien l’intelligence artificielle que les bases de données et la 

programmation) où l’on doit souvent traiter des informations vagues et imprécises. Ensuite, 

viennent l’ingénierie, la gestion et la prise de décision. 

Cependant, la logique floue est souvent utilisée en météorologie à cause de la complexité des 

phénomènes et de l’imprécision naturelle de toute prévision. Elle est déjà utilisée en médecine 

pour l’aide au diagnostic. Elle sert beaucoup les mathématiques appliquées. Mais aussi les 

sciences humaines telles que la sociologie et la psychologie car l’homme est tout ce qu’il y a 

de plus flou. 

2.5 Théorie des sous-ensembles flous 

Considérons une personne désirant compléter le niveau d’un réservoir contenant de l’eau à 

une température donnée de façon à remplir ce réservoir d’eau à une température souhaitée T à 

l’aide d’un mitigeur9. Dans un premier temps, nous considérons trois températures possibles 

de l’eau d’alimentation : froide TF, chaude TC et tiède TT. L’eau du réservoir pourra être 

                                                           
8
 Fournisseur d'équipement et de services de ciments et d’industries minéraux. 

9 Robinetterie permettant le réglage manuel ou thermostatique de la température et éventuellement du débit du 
mélange d'eau froide et d'eau chaude. 
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appréciée comme froide, tiède ou chaude avec une certaine marge d’incertitude si on ne 

dispose pas d’appareils de mesure de température. 

La commande du mitigeur sera simple :  

• Si l’eau du réservoir est froide, mettre de l’eau chaude. 

• Si l’eau du réservoir est tiède, mettre de l’eau tiède. 

• Si l’eau du réservoir est chaude, mettre de l’eau froide. 

Sans appareils de mesure précis, on a peut-être donné une information plus nuancée, tel 

que  « tiède et plutôt chaude » et également défini des intervalles de température pour lesquels 

il n’y a pas d’incertitude comme « l’eau est nettement chaude » ou « réellement froide » et des 

zones pour lesquelles on peut hésiter. 

Pour mieux ressortir la différence entre la théorie classique et la théorie logique floue, nous 

présentons dans le Tableau 1 une illustration de notre exemple selon ces deux théories. 

Tableau 1. Fonctions d'appartenances entre la théorie classique et la théorie floue 

Théorie Classique Théorie Floue 

Mathématiquement :  

 
 

Mathématiquement :  
 
µ(x) ∈ [0, 1] 
 

Représentation graphique : 
 

 

 

Représentation graphique : 
 

 

 

D’après le Tableau 1, la logique classique ne peut utiliser que le 0 et le 1 ainsi l'eau est 

d'abord totalement froide puis tiède et enfin chaude. Cependant, dans la logique floue, nous 

pouvons observer la représentation graphique de trois fonctions d'appartenance Froid, Tiède et 
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Chaud. Ces fonctions se superposent sur des plages de température ayant les qualificatifs froid 

et tiède ainsi que tiède et chaud. On se rapproche donc du raisonnement humain. 

Egalement, en se basant sur le Tableau 1, dans la théorie classique si la température est de 

19°C alors elle appartient nécessairement au sous-ensemble Froid avec un degré 1 c’est à dire 

l’eau est Froide à 100%. Par contre en s’appuyant sur la théorie floue, l’eau de température 

19°C est en même temps froide et tiède avec des degrés d’appartenance respectivement 0.8 et 

0.2. 

La logique floue est basée sur des variables floues dites variables linguistiques à valeurs 

linguistiques dans l’univers du discours U, où chaque valeur linguistique constitue un 

ensemble flou de l’univers du discours. 

Dans l’exemple précédent nous avons une seule variable linguistique température qui peut 

prendre l’une des valeurs linguistiques froide, chaude et tiède dans l’univers du discours 

[0, 100] qui exprime l’intervalle de valeurs que peut avoir la température de l’eau. 

2.6 Opérateurs en logique floue 

Il s’agit de la généralisation des opérateurs négation, intersection, et union de la théorie 

classique des ensembles. 

2.6.1 L’opérateur NON (complément) 

Il est défini mathématiquement par : A= {x| x ∉ A} et représenté par la fonction: non (µA(x)) 

= ( )
A

xµ  = 1 - µA(x). Ainsi, la Figure 2  montre les deux fonctions µA(x) et non (µA(x)). 

 

Figure 2. Représentation des fonctions µA(x) et non (µA(x)) 

2.6.2 L’opérateur ET (intersection) 

Il est défini mathématiquement par : A∩B = {x| x∈A ⋀ x∈B} et représenté par la fonction 
µA∩B(x) = µA(x) ⋀ µB(x) = min (µA(x), µB(x)). Ainsi la Figure 3 illustre la fonction 
intersection. 
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Figure 3. Illustration de la fonction intersection 

2.6.3 L’opérateur OU (union) 

Il est défini mathématiquement par : A∪B = {x| x∈A ∨ x∈B} et représenté par la fonction : 

µ(A∪B)(x) = µA(x) ∨ µB(x) = max (µA(x) , µB(x)). Ainsi, la Figure 4 illustre la fonction union. 

 

Figure 4. Illustration de la fonction union 

 

2.7 La commande floue 

Une loi de commande est habituellement construite à partir d’une approche système basée sur 

l’utilisation des informations disponibles. Dans plusieurs cas le modèle mathématique du 

processus est difficile à obtenir surtout lorsque la connaissance provient uniquement de 

mesures sur des variables caractéristiques et d’une description linguistique du fonctionnement 

du processus.  

Les approches conventionnelles sont inadaptées à l’utilisation de telles connaissances car leur 

conception nécessite généralement une modélisation mathématique. Par contre, les 

contrôleurs flous (fuzzy controller en anglais) [Raymond et al., 1995], sont recommandés 
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pour ce type de problème. En effet, la loi de commande est exprimée avec des règles 

linguistiques, déduites des informations énoncées dans un langage naturel.  

 

Figure 5. Schéma d'un contrôleur flou 

Légende : 

x représente le vecteur des entrées, xres celui des commandes, µ(x) et µ(xres) les fonctions 

d'appartenances correspondantes.  

Ainsi, la conception d’un système flou passe par trois étapes principales comme indique la 

Figure 5. La première étape est la fuzzification qui consiste à convertir les valeurs d’entrées, 

qui sont sous formes de grandeurs physiques, en grandeurs floues. La deuxième étape est 

l’ inférence (avec la base de règles) qui est en fait la  prise des décisions où chaque règle 

activée donne un sous-ensemble flou de sortie. La troisième et la dernière étape est la 

défuzzification. Elle consiste à convertir les sous-ensembles flous de sortie en valeurs 

déterminées. Pour mieux expliquer ces trois étapes, nous introduisons un exemple illustratif.  

Supposons que nous cherchons à déterminer le freinage qu’il faut appliquer à un véhicule 

compte tenu de sa vitesse V et la distance D qui le sépare du véhicule suivant, en prenant 

comme cas pratique D = 25 m et V = 55 Km/h. 

2.7.1 Fuzzification 

L’opération de fuzzification permet de passer du domaine réel au domaine du flou. Elle 

consiste à déterminer le degré d’appartenance d’une valeur (mesurée par exemple) à un 

ensemble flou. Par exemple (cf. Figure 6), si la valeur courante de la variable « Distance » est 

25 m, le degré d’appartenance à la fonction d’appartenance « Faible » est égal à 0,25 et le 

degré d’appartenance à la fonction d’appartenance « Moyenne » est égal à 0,25. 
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Figure 6. Illustration des sous-ensembles des trois variables Distance, Vitesse et Freinage  

Légende :  

D : Distance, V : Vitesse, AP : Appuie sur la pédale 

2.7.2 Inférence 

Tout d’abord, il faut construire la base de connaissance. Les contrôleurs flous utilisent en 

général une expertise exprimée sous forme de règles, dont la forme, pour un contrôleur à deux 

entrées et une sortie, est la suivante : 

Règle1 : Si X1 est A1 ET X2 est B2, alors Y est C3. 

Règle2 : Si X1 est A3 ET X2 est B1, alors Y est C2. 

L’expression « X1 est A1 ET X2 est B2 » est la prémisse de la règle1, tandis que l’expression 

« Y est C3 » est la conclusion de cette règle. 

Revenant maintenant à notre exemple, nous disposons en faite de deux règles : 

Règle1 : Si la distance entre les deux véhicules est Faible et que la vitesse de la voiture est 

Moyenne, appliquer alors un freinage Elevé pour obtenir une réduction rapide de la vitesse. 

Règle2 : Si la distance entre les deux véhicules est Moyenne et que la vitesse de la voiture est 

Elevée, freiner alors modérément. 

Nous passons ensuite au traitement des règles, en traduisant les opérateurs Et, OU et 

l’implication par l’une des fonctions vue précédemment (Minimum, Maximum, Produit,….). 

Il existe en faite plusieurs méthodes d’inférences, notamment Max-Prod, Somme-Prod et 

Max-Min. Ainsi, dans cette dernière méthode, au niveau de la condition le « Et » est 

représenté par la fonction « Min  » et le « Ou » est représenté par la fonction « Max ». Alors 

qu’au niveau de la conclusion le « Ou » est représenté par la fonction « Max » et le « Alors » 

est représenté par la fonction « Min ». 
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En appliquant cette méthode à notre exemple, nous obtenons les résultats indiqués dans la 

Figure 7: 

Si Distance est Faible       et     Vitesse est Moyenne,    alors          le Freinage est Elevé  

µ(D)                                                µ(V)                                                  µ(AP) 

       1  Faible  Moyenne  Elevée         1    Faible  Moyenne   Elevée             1                                  Elevé      régle1           

     

         0       20       40      60   D(m)        0         20       40        60  V(Km/h)       0        20       40      60   AP(cm) 

                                                                                                                 µ(AP) 

D = 35 m                                                                                                          1 

V = 53 Km/h 

                                                                                                                           0        20       40      60   AP(cm) 

 

µ(D)                                                µ(V)                                                  µ(AP) 

       1  Faible  Moyenne  Elevée         1    Faible  Moyenne   Elevée             1                   Moyen      

                                                                                                                                                                           Régle2        

         0       20       40      60   D(m)        0         20       40        60  V(Km/h)       0        20       40      60   AP(cm) 

Si Distance est Moyenne     et     Vitesse est Elevée,       alors         le Freinage est Moyen 

Figure 7. Illustration de l'inférence en appliquant la méthode Max-Min 

En procédant à la première règle on obtient :  

D = 35 m est Faible avec un degré de 0,25 et V = 53 Km/h est Moyenne avec un degré de 

0,35. Au niveau de la condition on a (D est Faible Et V est Moyenne) donc il faut prendre la 

valeur minimale entre 0,25 et 0,35 ce qui donne la valeur 0,25. Au niveau de la conclusion on 

a un « Alors » qui sera remplacé par la fonction min c'est-à-dire il faut tronquer la fonction 

d'appartenance Freinage est Elevé par la valeur 0,25. 

De même d’après la deuxième règle on obtient : 

D = 35 m est Moyenne avec un degré de 0,75 et V = 53 Km/h est Elevé avec un degré de 

0,65. Au niveau de la condition on a (D est Moyenne Et V est Elevée) donc il faut prendre la 

valeur minimale entre 0,75 et 0,65 ce qui donne la valeur 0,65. Au niveau de la conclusion on 

 0.75 

 0.25 
 0.35 

 0.65 

 Min 

 Min 

 0.25 

 0.65 

 Min 

 Min 

 ou  Max
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a un « Alors » qui sera remplacé par la fonction min c'est-à-dire il faut tronquer la fonction 

d'appartenance Freinage est Moyen par la valeur 0,65. 

Enfin, nous obtenons une fonction d'appartenance représentée par la surface hachurée. Cette 

fonction sera traitée lors de la troisième phase de défuzzification. 

2.7.3 Défuzzification 

A la fin de l’inférence, l’ensemble flou de sortie est déterminé mais il n’est pas directement 

utilisable pour donner une information précise. Il est nécessaire de passer du « monde flou » 

au « monde réel » qui est assuré par la défuzzification. En faite, il existe plusieurs méthodes, 

notamment la méthode du maximum, la méthode de la moyenne des maxima, la méthode de 

la somme pondérée et la méthode du centroïde qui est le plus souvent rencontrée.  

Ainsi, dans cette méthode, la sortie correspond à l’abscisse du centre de gravité de la surface 

de la fonction d’appartenance résultante. 

2.8 Conclusion  

Les outils fournis par la logique floue [Sur et al., 1998] permettent une modélisation des 

phénomènes pouvant, en un certain sens, s’approcher du raisonnement humain. Le fait de 

transcender le « tous ou rien» des ordinateurs introduit une souplesse faisant la puissance des 

outils flous dans de nombreux domaines. 

Au milieu des années 80, plusieurs applications industrielles utilisant la logique floue ont vu 

le jour, et ce essentiellement en Asie du Sud Est, l’Europe et l’Amérique. Elles vont du 

contrôle du métro automatique à l’élimination du tremblement pour les caméras vidéo en 

passant par le réglage de cycle sur une machine à laver. 

En outre, la flexibilité des modèles flous a permis également des applications dans des 

domaines tels que la médecine (aide au diagnostic), la finance (prévision boursière, opération 

de change), la météorologie, etc. 

Mais même bénéficière d’un effet de mode, les algorithmes flous ne sont pas nécessairement 

les meilleurs. D’autres méthodes, par exemple les réseaux bayésiens, sont aussi performants 

n’opèrent pas de la même façon et donnent des résultats satisfaisants dans un contexte 

incertain. 
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3 Réseaux Bayésiens 

3.1 Introduction 

Le domaine de la gestion des connaissances, qui connaît un intérêt croissant, est donc 

également un champ d’application potentiel pour les Réseaux Bayésiens, qui sont 

actuellement l’une des techniques les plus intéressantes de l’Intelligence Artificielle, dans la 

mesure où ceux-ci offrent un formalisme riche et intuitif de représentation de la connaissance. 

En faite, les Réseaux Bayésiens constituent aujourd’hui l’un des formalismes les plus 

complets et les plus cohérents pour l’acquisition, la représentation et l’utilisation de 

connaissances par ordinateurs. 

3.2 Définition 

Les réseaux bayésiens sont des modèles graphiques qui représentent les relations entre les 

différentes variables qui expriment des événements avec leurs probabilités de réalisation en 

tenant compte des liens qui existent entre les variables. 

Un réseau bayésien est un outil de représentation des  connaissances, qui permet de 

calculer des probabilités conditionnelles, apportant ainsi des solutions à différentes 

sortes de problématiques. La structure de ce type de réseau est simple : En faite, selon 

Judea Pearl « les réseaux bayésiens sont des graphes acycliques orientés pour lesquels 

les nœuds représentent des variables aléatoires et les arcs représentent l’indépendance 

conditionnelle entre les différents nœuds » [Pearl, 1988]. 

Formellement, un réseau bayésien est défini dans [Naïm et al., 2004] par : 

• un graphe acyclique orienté G, G = (V, E), où V est l’ensemble des nœuds de G, et 

E l’ensemble des arcs de G, 

• un espace probabiliste fini (Ω, Z, p), 

• un ensemble de variables aléatoires associées aux nœuds du graphe et définies sur 

(Ω, Z, p), tel que : 

1

( 1, 2,....., ) ( | ( ))
n

n i i
i

p V V V p V C V
=

= ∏ , où C(Vi) est l’ensemble des causes (parents) de Vi 

dans le graphe G. 
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3.3 Historique 

Encore du domaine de la recherche au début des années 90, cette théorie connaît de plus en 

plus d’applications. Le domaine d’application varie du contrôle de véhicules autonomes à la 

modélisation des risques opérationnels, en passant par le data mining et la localisation des 

gènes. 

Les réseaux bayésiens, sont le résultat de recherches effectuées dans les années 80, dues à J. 

Pearl à UCLA (University of California, Los Angeles) et à une équipe de recherche danoise à 

l’université d’Alborg. 

Cependant, les réseaux bayésiens doivent leur nom aux travaux de Thomas Bayes au XVIII 

siècle sur la théorie de probabilités, par son célèbre théorème. 

3.4 Le théorème de Bayes 

Thomas Bayes (1702-1761) est né à Londres en Angleterre et a développé un théorème qui 

porte sur le calcul de la probabilité d’un événement basé sur une connaissance a priori. Le 

théorème, de façon indirecte, fut publié à titre posthume en 1763 sous le titre de « Essay 

Towards Solving a Problem in the Doctrine of Chance ». En gros, l’application du théorème 

permet d’établir que la probabilité d’un événement est le résultat conditionnel d’une 

probabilité connue. La formule du théorème est la suivante : 

 ( | ) ( )
( | )

( | ) ( )
i i

i
k k

k

P A M P M
P M A

P A M P M
=
∑

 

P(Mi) : probabilité a priori de Mi. 

P(A | M i) : probabilité de A conditionnellement à Mi. 

P(Mi | A) : probabilité a postériori de Mi conditionnellement à A. 

3.5 Construction du réseau bayésien 

La construction d’un réseau bayésien passe par trois étapes principales [Maalej, 2006]. La 

première est l’étape qualitative qui correspond à l’identification des variables et de leur espace 

d’états en tenant compte des relations d’influence qui existent entre les variables. 

La deuxième étape est l’étape probabiliste qui consiste à distribuer les probabilités sur les 

variables et l’appliquer au graphe qui représentera le réseau bayésien. 
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Finalement, l’étape quantitative qui consiste à spécifier numériquement les distributions de 

probabilités conditionnelles.  

3.6 Modélisation par réseau bayésien  

Pour mieux comprendre l'intérêt des réseaux bayésiens, nous allons définir les notions de 

graphe causal, de d-séparation et d’indépendance conditionnelle puis nous décrivons les 

algorithmes d’inférence. Nous abordons également l’inférence et l’apprentissage dans les 

réseaux bayésiens [Naïm et al., 2004]. 

3.6.1 Liens d’influences et graphes causaux 

Un graphe causal est une représentation graphique dans laquelle les causes sont liées aux 

effets par des flèches orientées (cf. Figure 8). 

 

Figure 8. Graphe causal entre A et B 

S’il existe une relation causale de A vers B (Figure 8), toute information sur A peut modifier 

la connaissance que nous avons de B, et réciproquement, toute  information sur B peut 

modifier la connaissance que nous avons de A. Le sens des flèches  indique un  lien de 

causalité mais pas un sens de propagation de la connaissance. 

Les connexions entre les nœuds définissent des lois de  circulation de l’information dans le 

graphe. On distingue trois types de connexions : 

• Connexion convergente ou  Connexion en V :  dans  ce  cas, 

l’information ne peut circuler de X à Y que si Z est connu.  

• Connexion en série :  l’information ne peut circuler de X à Y 

que si Z n’est  pas connu, sinon c’est directement la connaissance sur le nœud Z qui 

influe Y. 

• Connexion divergente :  dans ce cas, l’information ne peut 

circuler de X à Y que si Z n’est pas connu. 

Ainsi, la circulation de l’information à l’intérieur d’un graphe causal dépend du type de la 

connexion, plutôt que du sens des flèches. Des exemples plus détaillés sont dans [Naïm et al., 

2004]. 
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Dans une connexion série ou divergente, le graphe donne une information sur l’indépendance 

de X et Y : X et Y sont indépendants sachant Z. Ces deux cas (et d’ailleurs 

également ) peuvent être associés à la même distribution de probabilité sur 

X, Y et Z. Alors que la connexion convergente a nécessairement une distribution de 

probabilités différente.  

3.6.2 D-séparation et indépendance conditionnelle 

La notion de d-séparation est essentielle pour le calcul des probabilités car elle permet de 

définir l’indépendance conditionnelle entre certains nœuds : Soient X, Y et Z trois nœuds du 

graphe. On dit que X et Y sont d-séparés par Z (et on note <X|Z|Y>), si pour tous les 

chemins entre X et Y, l’une au moins des deux conditions suivantes est vérifiée :  

• Le chemin converge en un nœud W, tel que W ≠ Z, et W n’est pas une cause directe de Z.  

• Le chemin passe par Z, et est soit divergent, soit en série au nœud Z. 

On dit que X et Y sont indépendants conditionnellement à Z, et on note X ⊥ Y | Z, si l’une des 

propriétés équivalentes suivantes est vérifiée :  

• P(X | Z, Y) = P(X | Z)  
• P(X, Y | Z) = P(X | Z) . P(Y | Z)  

 Dans le cas général, l'indépendance conditionnelle (X ⊥ Y | Z) possède les quatre propriétés 

suivantes : 

• Symétrie    X ⊥ Y | Z ⇔ Y ⊥ X | Z  

• Décomposition  X ⊥ (Y ∪ W) | Z ⇒ X ⊥ Y | Z  

• Union faible  X ⊥ (Y ∪ W) | Z ⇒ X ⊥ W | (Z ∪ Y)  

• Contraction  X ⊥ Y | Z ∧ X ⊥ W | (Z ∪ Y) ⇒ X ⊥ (Y ∪ W) | Z 

Une cinquième propriété peut être ajoutée [Pearl, 2000] dans le cas où toutes les distributions 

de probabilités sont strictement positives :  

• Intersection X ⊥ W | (Z ∪ Y) ∧ (X ⊥ Y | (Z ∪ W)) ⇒ (X ⊥ (Y ∪ W) | Z) 

Enfin, voici le théorème fondamental des réseaux bayésiens. 

« Si X et Y sont d-séparés par Z, alors X et Y sont indépendants sachant Z » : 

<X|Z|Y> ⇒ P(X|Y,Z)=P(X|Z) 
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Ainsi la structure du graphe d’un réseau bayésien permet de  prendre en compte  des 

indépendances conditionnelles qui seront très utiles pour les calculs d’inférence. Il faut 

cependant noter que le réseau bayésien ne révèle pas toutes les indépendances conditionnelles. 

Plusieurs structures de graphes  donnent une même distribution de probabilités jointes, 

certaines étant meilleures que d’autres, il faut en tenir compte lors de la construction du 

modèle. 

Une description plus détaillée sur la d-séparation et l’indépendance conditionnelle est 

développée dans [Naïm et al., 2004]. 

3.7 Inférence dans les réseaux bayésiens  

L’inférence, ou la mise à jour des probabilités, dans un réseau bayésien se résume à un calcul 

de probabilités  a posteriori. Connaissant les états de certaines variables (appelées  variables 

d’observation), on détermine les probabilités des états de certaines autres variables (appelées 

variables cibles) conditionnellement aux observations. 

Il existe plusieurs algorithmes d’inférence dans les réseaux bayésiens classés en deux groupes 

[Kotchi et al., 2003]. D’un côté nous avons les méthodes d’inférence exactes qui exploitent 

les indépendances conditionnelles contenues dans les réseaux et donnent à chaque inférence 

les probabilités a posteriori exactes. Par exemple l’algorithme Clustering [Lauritzen et al., 

1988] effectue l’inférence en transformant le réseau en un arbre pour lequel chaque nœud 

regroupe plusieurs nœuds du réseau initial. De l’autre côté nous avons les méthodes 

approchées qui estiment les probabilités a posteriori. Pour ces méthodes, deux exécutions 

d’une inférence peuvent donner des probabilités a posteriori différentes. 

Comme exemple de méthodes approchées, nous pouvons citer les algorithmes 

d’échantillonnage stochastique (Logic sampling [Henrion, 1988], Likelihood weighting [Fung 

et al., 1989], Backward sampling [Fung et al., 1994], Self importance [Shachter et al., 1989] 

et Heuristic importance [Shachter et al., 1989]) qui estiment les probabilités en effectuant 

plusieurs tirages dans l’ensemble des combinaisons possibles des états des variables du 

réseau. 

3.8 Apprentissage dans les réseaux bayésiens 

Nous avons déjà précisé qu’un réseau bayésien est constitué à la fois d’un graphe (aspect 

qualitatif) et d’un d’ensemble de probabilités conditionnelles (aspect quantitatif). 

L’apprentissage d’un réseau bayésien doit donc rependre aux deux questions suivantes : 
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• Comment estimer les lois de probabilités conditionnelles ? 

• Comment trouver la structure du réseau bayésien ? 

Le problème de l’apprentissage sera donc séparé en deux parties :  

• L’apprentissage des paramètres, où la structure du réseau est fixée, et où il faudra estimer 

les probabilités conditionnelles de chaque nœud du réseau. 

• L’apprentissage de la structure, dont le but est de trouver le meilleur graphe représentant 

la tâche à résoudre.  

Comme pour tout problème d’apprentissage, différentes techniques sont possibles selon la 

disponibilité de données concernant le problème à traiter, ou d’expert de ce domaine. Ces 

techniques peuvent se partager en deux grandes familles : 

• apprentissage à partir de données, complètes ou non, par des approches statistiques ou 

bayésiennes, 

• acquisition de connaissances avec un expert du domaine. 

Une description plus détaillée sur l’apprentissage est développée dans [Naïm et al., 2004]. 

3.9 Applications utilisant les réseaux bayésien 

Les domaines d'applications des réseaux bayésiens, et les types d'applications sont très 

variés. D'une manière générale, un réseau bayésien sert à représenter la connaissance 

que l'on a d'un système (technique, informatique, biologique, sociologique, économique, 

etc.) en vue de : 

• Prévoir (le comportement d’un système) 

• Diagnostiquer (les causes d'un phénomène observé dans un système) 

• Contrôler  (le comportement d’un système) 

• Simuler (le comportement d’un système) 

• Analyser des données (relatives au système) 

• Prendre des décisions (concernant un système) 

• Etc. 
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Une des raisons du boom actuel dans l’utilisation des réseaux bayésiens, réside dans 

leur convivialité et leur efficacité. Ce qui fait qu’ils sont présents dans une  multiplicité 

d'applications dans les domaines de l'industrie, du marketing, de la santé, de la banque, 

de la finance, du droit, etc. Le "système" dont on représente la connaissance au moyen 

d'un réseau bayésien, peut être aussi bien le contenu du caddie d'un client de 

supermarché, un navire de la marine, le patient d'une consultation médicale, le moteur 

d'une automobile, un réseau électrique, l'utilisateur d'un logiciel, etc. [3]. 

En effet, on peut citer deux applications particulièrement ambitieuses sur l’un des 

aspects de l’utilisation des réseaux bayésiens : la détection de fraude10, pour ce qui est 

de l’apprentissage, et l’aide à la décision en situation critique11 pour l’inférence [Naïm 

et al., 2004]. 

Afin d’illustrer la puissance des réseaux bayésiens nous allons étudier un exemple de 

représentation et de manipulation. 

3.10 Exemple simple faisant intervenir des faits incertains 

Le petit exemple [3] que nous allons utiliser pour introduire le concept de réseau 

bayésien est une adaptation d'un extrait du manuel de la méthode SERENE12. 

Imaginons que nous devions modéliser la connaissance suivante : « Fantasio et Gaston 

vont à leur travail en utilisant des moyens de transport différents. Gaston utilise sa 

voiture, alors que Fantasio voyage en train. Fantasio manque rarement son train qui est 

presque toujours à l'heure, sauf les jours de grève. Toutefois, une grève de train 

n'implique pas forcément que Fantasio soit en retard (il peut partir tôt en voiture). Une 

grève de train peut aussi retarder Gaston car elle provoque des embouteillages. Mais 

Gaston est de toute façon souvent en retard parce qu'il n'entend pas la sonnerie de son 

réveil, et de ce fait, une grève n'augmente la probabilité de son retard que d'une faible 

quantité. En cas de grève, Gaston a moins de chances d'être en retard que Fantasio. ». 

                                                           
10 L’une des applications qui fait référence pour l’utilisation des réseaux bayésiens par le Data Mining mis en 
production à la fin des  années 1990 par la société américaine de télécommunication ATT. 
11 Application qui a été développée par la NASA en collaboration avec  la société californienne Knowledge 
Industries. 
12 C’est un projet qui regroupe, dans le cadre du programme de recherche européen Esprit, plusieurs partenaires 
cherchant à développer une méthodologie d’utilisation des réseaux bayésiens dans le cadre du contrôle qualité du 
logiciel pour les systèmes critiques. 
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Maintenant, étant donné cette connaissance, comment pourrions-nous modéliser les 

inférences suivantes, issues d'un raisonnement intuitif ? 

• Si nous savons que Fantasio est en retard, nous pensons qu'il y a une grève des 

trains, et donc que Gaston risque (un peu) plus que d'habitude d'être en retard. 

• Supposons que nous sachions que Gaston est en retard. Cette constatation augmente 

notre croyance en les deux causes possibles de ce retard (grève, réveil non entendu). 

Mais si nous apprenons que Fantasio est également en retard, nous serons tentés d'en 

déduire qu'une grève de train est en cours, et a été la cause du retard de Gaston, ce 

qui fait retomber quelque peu notre croyance en le fait qu'il n'a pas entendu son 

réveil.  

Exemple de  représentation de  connaissances par Réseau Bayésien : 

Un réseau bayésien est un graphe constitué de nœuds et d'arcs, associé à un ensemble de 

tables de probabilités conditionnelles appelées aussi tables de probabilités de nœuds 

(TPN), ainsi nommées car il y en a une et une seule par nœud du graphe. 

 

Figure 9. Graphe du réseau bayésien 

 Les nœuds représentent des variables aléatoires discrètes (il y a quelques extensions des 

réseaux bayésiens vers le domaine des variables continues, mais elles sont soumises à 

de fortes limitations sur les types de distributions utilisables : c'est pourquoi nous nous 

limiterons au cas des variables discrètes). Dans notre exemple, les quatre variables ont 

seulement deux états : 'Vrai' et 'Faux'. 

Les arcs représentent des relations de cause à effet entre variables. Comme une grève 

peut provoquer le retard de Fantasio, nous modélisons cette relation par un arc allant du 

nœud 'Grève trains' au nœud 'Retard Fantasio' (cf. Figure 9). 
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Le grand avantage des réseaux bayésiens est de permettre de modéliser des relations 

non déterministes. Dans notre exemple, voici le Tableau 2 qui pourrait être la table de 

probabilités modélisant la dépendance entre le retard de Fantasio et la grève des trains :  

Tableau 2. Table de probabilité (Retard Fantasio) 

 
Grève trains = Vrai Grève trains = Faux 

P (Retard 
Fantasio = Vrai) 0.6 0.1 

P (Retard 
Fantasio = Faux) 0.4 0.9 

C'est en fait la distribution de probabilité de la variable 'Retard Fantasio', conditionnelle 

à la variable 'Grève trains' : P (Retard Fantasio | Grève train). 

Cette table exprime d'une manière formelle et précise le fait que Fantasio a très peu de 

chances d'être en retard en temps ordinaire, mais que s'il y a une grève des trains, au 

contraire, il risque fort d'être en retard (la probabilité est de 0.6). 

Afin de formaliser notre connaissance décrite plus haut, nous modélisons la relation 

entre le retard de Gaston et ses deux causes possibles par la table de probabilité 

représentée dans le Tableau 3: 

Tableau 3. Table de probabilité (Retard Gaston) 

Pb. réveil Vrai Faux 

Grève trains Vrai Faux Vrai Faux 
P (Retard Gaston = Vrai) 0.7 0.5 0.4 0.1 
P (Retard Gaston = Faux) 0.3 0.5 0.6 0.9 

Les tables de probabilités associées aux nœuds 'Grève trains' et 'Pb. réveil' ont une 

nature quelque peu différente. Ces nœuds n'ont pas de nœud parent dans ce modèle (ce 

sont des nœuds racines), et nous n'avons donc qu'à leur assigner des probabilités pour 

leurs deux valeurs 'Vrai' et 'Faux'. En fait, nous supposerons que P (Grève trains = 

Vrai) = 0.1, et que P (Pb. réveil = Vrai) = 0.4. 

Les nœuds racines modélisent des variables indépendantes entre elles. C'est bien le cas 

des nœuds Pb réveil et grève train. 
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Il peut y avoir diverses manières de déterminer les probabilités des TPNs. Par exemple, 

nous pourrions tirer P (Grève trains = Vrai) d'un historique sur les jours de grève. Mais 

en absence de telles données de retour d'expérience, il est toujours possible de faire 

appel à des valeurs de probabilités subjectives, évaluées par des experts. 

L'avantage des réseaux bayésiens est de pouvoir mêler dans un cadre théorique unique 

(la théorie des probabilités) les probabilités issues d'un traitement statistique de retour 

d'expérience, et les probabilités subjectives. 

Afin de mettre en évidence les inconvénients et les avantages des réseaux bayésiens 

nous présentons dans ce qui suit une étude comparative de la technique RB vis-à-vis 

d’autres techniques. 

3.11 Comparatif de la technique réseau bayésien vis-à-vis d’autres 

techniques  

Tableau 4. Comparatif des réseaux bayésiens à d’autres techniques [Naïm et al., 2004] 

Connaissances Analyse de 

données 

Réseaux 

neuronaux 

Arbre de 

décision 

Système 

experts 

Réseaux 

bayésiens 

ACQUISITION      

Expertise seulement    *  

Données seulement           +      * +       + 

Mixte           +       + +       * 

Incrémental        +        * 

Généralisation           +       * +       + 

Données incomplètes         +           * 

REPRESENTATION      

incertitude    +      * 

Lisibilité           +  + +      * 

Facilité         + *   

Homogénéité          * 

Utilisation      

Requête élaborées +        +         * 

Utilité économique +         +           * 

Performance + *    
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Un réseau bayésien peut être avantageusement substitué à différents modèles 

d’évaluation, de prévision, de diagnostic, d’aide à la décision ou de data mining. On 

peut donc citer comme techniques concurrentes, à titre d’exemple, les réseaux 

neuronaux, les chaînes de Markov, les arbres de décision, les arbres de défaillances.  

Du point de vue des applications, les avantages et les inconvénients des réseaux 

bayésiens par rapport à quelques-unes des techniques concurrentes peuvent se résumer 

dans le Tableau 4 . 

Nous avons regroupé les avantages et les inconvénients selon les trois rubriques : 

Acquisition, Représentation et Utilisation de connaissances. La représentation adoptée 

est la suivante :  

• A chaque ligne correspond une caractéristique, qui peut être un avantage, ou la prise 

en compte d’un problème spécifique.  

• Si la technique considérée permet de prendre en compte ce problème, ou 

présente cet avantage, un signe + est placé dans la case correspondante. 

• Un signe * est placé pour la meilleure technique du point de vue de la 

caractéristique considérée. 

En faite, cette étude comparative montre les avantages des réseaux bayésiens par 

rapport aux techniques concurrentes. On peut résumer ces avantages par : 

• La possibilité de rassembler et de fusionner des connaissances de diverses 

natures dans un même modèle : données de retour d’expérience, expertise (exprimée 

sous forme de règles logiques, d’équations, ou de probabilités subjectives), 

et observations. 

• La « convivialité » : un réseau bayésien est un modèle graphique, compréhensible et 

manipulable par un non-spécialiste. 

• La « versatilité » : on peut se servir d’un même modèle pour évaluer, 

prévoir, diagnostiquer, et optimiser des décisions.  

De l’autre côté, d’après le Tableau 4, on peut remarquer la limite des RBs au niveau de 

la performance en terme de complexité des algorithmes de mise à jour. En effet, la 
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généralité du formalisme des réseaux bayésiens aussi bien en termes de représentation 

que d’utilisation les rend difficiles à manipuler à partir d’une certaine taille. 

3.12 Conclusion 

Les réseaux bayésiens sont actuellement une des techniques les plus intéressantes de 

l’IA car ils permettent la représentation de la connaissance par un graphe causal intuitif 

et compressible. De plus comme ils sont basés sur des probabilités, ils intègrent 

l’incertitude dans le raisonnement. 

4 Conclusion 

Dans ce chapitre nous avons présenté deux techniques utilisées en diagnostic : la logique 

floue et les réseaux bayésiens. Nous avons relaté leurs avantages et les atouts qu’ils offrent, 

surtout pour le diagnostic. 

Cependant, malgré la flexibilité des modèles flous et leurs efficacités, les réseaux bayésiens 

peuvent les surpasser dans la résolution de problème grâce à leur pouvoir expressif et facilité 

d’interprétation. 

De l’autre côté, l’une des limites majeure que rencontrent les utilisateurs des réseaux 

bayésiens est d’exprimer les connaissances non précises surtout dans les diagnostics où 

beaucoup d’informations sont flous. En faite, nous ne pouvons pas exprimer toutes sortes de 

connaissances dans un langage précis. La solution est donc de combiner les réseaux bayésiens 

avec la logique floue, d’où la naissance des Réseaux Bayésiens Flous.  
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CHAPITRE 3                                            

Présentation des Réseaux Bayésiens 

Flous : Fondement et outil 

 

"Il est dans la probabilité que mille 

choses arrivent qui sont contraires à 

la probabilité." Henry Louis Mencken 

(1880-1956). 
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1 Introduction 

usqu’à maintenant nous avons détaillé quelques notions de base de la logique floue 

et des réseaux bayésiens. Bien que toutes les deux présentent un outil d’aide à la 

décision, ces deux théories de l’intelligence artificielle sont différentes dans plusieurs 

aspects. Une étude comparative, entre la théorie de probabilité (sur laquelle reposent les 

Réseaux Bayésiens) et la logique floue, s’avère donc intéressante à mener : 

Tableau 5. Comparaison entre la théorie de probabilité et la logique floue 

Probabilités Logique Floue 

Exprime l’incertitude par 

rapport à l’occurrence d’un 

événement. 

Exprime l’ambigüité par rapport à 

la nature d’un événement. 

P (A ∪ A )=P(U)=1 ( )A A
µ

U
 pas nécessairement = µ (U) 

P (A ∩ A )=P(∅)=0 ( )A A
µ

I
 pas nécessairement = µ (∅) 

D’après le Tableau 5 la théorie des probabilités est différente de la théorie de la logique 

floue bien que toutes deux décrivent une notion de doute, d’incertain et ce à l’aide de 

nombre compris entre 0 et 1. 

Généralement, l’incertitude est groupée dans deux catégories : L’aspect aléatoire et le 

manque de précision.  

D’une part, pour surmonter le problème du manque de précision ou encore de 

l’ambigüité, qui est causé par un concept mal défini de l’observation, on a recours à la 

théorie de la logique floue. 

D’autre part, pour remédier au problème de l’aspect aléatoire qui est causé par les 

événements imprévisibles, la théorie de probabilité est plus appropriée. 

D’après Shijium Qui, « La fusion des deux techniques Réseau Bayésien et Logique Flou 

aboutit à un résultat plus précis et robuste que l’utilisation de l’un ou l’autre outil 

seul » [Qiu et al., 2001]. 

J 
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Nombreux travaux s’orientent vers un panachage de ces deux techniques, et c’est ainsi 

que nous assistons à l’apparition des réseaux bayésiens flous. 

Ce troisième chapitre est consacré à la présentation de Réseau Bayésien Flou (RBF), 

notamment, sa définition, les notions de base de cette nouvelle théorie et quelques 

applications.  

2 Définition 

Les Réseaux bayésiens Flous sont une généralisation de réseaux bayésiens classiques aux 

réseaux bayésiens avec des variables à états flous [Fogelberg, 2008]. 

3 La théorie  de Réseau Bayésien Flou 

Comme nous avons déjà signalé, les recherches et les applications dans les RBFs sont rares 

que nous classons en deux axes. 

D’une part, Le premier axe concerne la discrétisation des variables continues. En faite, 

l’utilisation de ces variables dans les RBs exige une discrétisation de leur domaine. 

Cependant, la discrétisation classique exige la division du domaine d’une variable en un 

nombre finis d’intervalles puis l’affectation d’une valeur discrète à chaque intervalle. D’après 

cette méthode tous les points d’un intervalle auront la même valeur discrète et seront traités de 

la même façon s’ils sont dans le centre ou dans les bords de l’intervalle. 

Pour cette raison, les différentes méthodes de choix d’échantillonnage peuvent donner des 

résultats différents selon les valeurs considérées. Ainsi, la méthode la plus lisse d’après 

[Baldwin et al., 2003] est l’utilisation d’une division floue, qui doit couvrir le domaine de la 

variable avec le chevauchement de fonctions floues dont la somme des degrés 

d’appartenances égale à 1. 

Pour mieux visualiser l’utilité des RBFs dans la discrétisation des variables continues, des 

références peuvent être consultées tel que : [Baldwin et al., 2003], [Lin et al., 2006], [Park et 

al., 2006], et [Pan et al., 1999]. 

D’autre part, le deuxième axe de recherche dans les RBFs concerne l’utilisation des 

variables ou événements flous qui résout le problème de l’ambiguïté. 
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En effet, nous pouvons rencontrer des problèmes, comme le cas de diagnostic, où nous ne 

sommes pas capables d’exprimer toutes les sortes de connaissances dans un langage logique 

précis. Dans ce cas l’utilisation des RBFs s’avère une solution très intéressante. 

Afin d’expliquer cette technique, nous détaillons dans la suite deux approches traitant des 

RBFs [Fogelberg, 2008]. 

3.1 Première approche de Réseau Bayésien Flou  

3.1.1 Probabilité Flou 

Soit � : [0,1]
A

Uµ →
 
avec « �A

µ  » est une fonction d’appartenance du domaine « U », ou 

encore l’univers du discours, vers l’intervalle [0, 1]. Alors, � ( )
A

uµ est le degré d’appartenance 

de « u » au sous-ensemble flou « �A  ». 

Prenons l’exemple [Tang et al., 2007] suivant : supposons que « �A  » est un état flou dans un 

espace de probabilité (X, B, P) et la fonction d’appartenance � ( )
A

uµ est une fonction 

mesurable. Ainsi, nous pouvons considérer « �A  » comme un événement flou dans X de 

probabilité flou :  

�
�( ) ( ). ( )
A

x X

P A x P x
∈

= µ∑  

3.1.2 Equation Bayésienne Floue 

Proposons maintenant un exemple qui introduit l’équation du concept bayésien flou. 

On suppose : B1 exprime : âge > 50 ; B2 exprime : 50 ≥ âge > 35 ; B3 exprime : 35 ≥ âge 

≥ 20 ; B4 exprime : âge < 20. 

A1 exprime : revenu annuel > 10000 ; A2 exprime : 10000 ≥ revenu annuel ≥ 3000 ; A3 

exprime : revenu annuel < 3000. 

Et les deux tableaux Tableau 6 et Tableau 7 qui présentent respectivement les résultats du 

recensement de la population et des données du bureau fiscal. 

Tableau 6. Résultat du recensement de la population 

B1 B2 B3 B4 

20% 25% 30% 25% 
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Tableau 7. Données du bureau fiscal 

P(Aj|Bi) B1 B2 B3 B4 

A1 0.1 0.2 0 0 
A2 0.5 0.6 0.8 0 
A3 0.4 0.2 0.2 1.0 

 

Supposons maintenant qu’un revenu annuel d’un homme est plus de 10000, et les probabilités 

suivantes : P(A1) = 0.07 ; P(A2) = 0.49 ; P(A3) = 0.44. 

Quelle est la probabilité de chaque phase d’âge ? 

Nous cherchons donc « P(Bi|A1) » pour tous i ∈ {1, 2, 3, 4}. 

Selon l’équation bayésienne nous aurons : 

1 1 1
1 1

1 1 1 1 2 2 1 3 3 1 4 4

( | ). ( )
( | )

( | ). ( ) ( | ). ( ) ( | ). ( ) ( | ). ( )

P A B P B
P B A

P A B P B P A B P B P A B P B P A B P B
=

+ + +
 

                         = 0.2857 

De même nous trouvons : 2 1( | )P B A =0.7143 ; et 3 1( | )P B A = 4 1( | )P B A =0.00 

Passons maintenant au domaine flou. 

En premier lieu, si nous considérons l’événement flou �B  de la variable Bi qui présente l’état 
« non trop vieux », nous obtiendrons  l’équation bayésienne floue : 

�
� ( ). ( | ). ( )

( | )
( )

i j i iB
i I

j
j

B P A B P B
P B A

P A
∈

µ
=
∑

 

En deuxième lieu, si nous considérons l’événement flou �A  de la variable Aj qui présente 
l’état « non trop bas », nous aurons l’équation bayésienne floue : 

�
�

�

( ). ( | ). ( )

( | )
( )

j j i iA
j J

i

A P A B P B

P B A
P A

∈

µ
=
∑

 

En dernier lieu, si nous considérons les deux événements flous �A  et�B , nous obtenons comme 

équation bayésienne floue : 

� �
� �

�

( ). ( | ). ( )

( | )
( )

i j j i iB A
i I j J

A P A B P B

P B A
P A

∈ ∈

µ (Β ).µ
=
∑ ∑
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3.2 Deuxième approche de Réseau Bayésien Flou  

3.2.1 Structure du Réseau Bayésien Flou 

Un RBF G = <η, θ> est caractérisé par une structure η et des paramètres θ. Ainsi, la 

spécification des RBFs et des RBs est la même, cependant, la seule différence est au niveau 

de la propagation de croyance. 

3.2.2 Propagation de croyance dans le Réseau Bayésien Flou 

La propagation de croyance consiste à calculer les mises à jour des probabilités des variables 

du RB. 

3.2.2.1 Quelques notions de base 

Un état flou est composé d’un ou plusieurs composants, pour chacun on associe un degré 

d’appartenance μ : {x1, x2, x3} µi est un composant avec x1, x2, x3 sont des probabilités flous et 

µi est le degré d’appartenance de x1, x2, x3 à un sous-ensemble flou.  

Par exemple, S = [hi0.7, mid0.3] est une variable ayant deux composants hi et mid de degré 

d’appartenance respectivement 0.7 et 0.3. 

Supposons que les valeurs floues que peuvent prendre une variable sont : lo, mid et hi. Ainsi, 

le composant {0.2, 0.1, 0.7}
0.2

 peut être soit lo0.2, soit mid0.2, soit hi0.2 avec les probabilités 

respectivement 0.2, 0.1, et 0.7.     

3.2.2.2 Quelques suppositions 

Cette approche part de quelques suppositions qui facilitent la présentation dans l’espace 

disponible. En outre, ces propositions sont raisonnables et ne limitent pas l’utilité générale des 

RBFs. 

La première supposition est que la ∑ μ = 1. Cette supposition peut simplifier la combinaison 

entre les états des variables flous. En effet, si par exemple le degré d’appartenance de hi est 

0.5 alors les degrés d’appartenances de lo et mid appartiennent à l’intervalle [0, 0.5].  

La deuxième supposition, concernant le RBF durant la propagation de croyance, est 

l’indépendance des composants. En faite, si une variable a seulement un seul parent alors il 

aura le même nombre de composants que son parent avec les mêmes degrés d’appartenances 

(μ). Par exemple, le fils de la variable S = [hi0.7, mid0.3] aura deux composants l’une avec 
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µ = 0.7 et l’autre avec µ = 0.3. Cependant, si la variable possède plusieurs parents alors les 

composants des parents seront combinés avant la propagation. 

Dans la suite nous présentons la propagation de croyance dans le cas d’un seul parent et des 

parents multiples. 

3.2.2.3 Propagation de croyance dans le cas d’un seul parent 

Nous présentons dans la Figure 10 un exemple de RBF notamment les tables de probabilités 

de chaque nœud. Ainsi, le Tableau 8 présente la distribution de probabilités à priori de A, le 

Tableau 9 désigne la distribution de probabilités conditionnelles de B, le Tableau 10 montre la 

distribution de probabilités conditionnelles de C, et enfin le Tableau 11 exprime la 

distribution de probabilités conditionnelle de E. 

 

Figure 10. Exemple de RBF 

Tableau 8. Distribution de probabilités à priori de A 

A A=lo A=mid A=hi  
 0.7 0.1 0.2 

 

Tableau 9. Distribution de probabilités conditionnelles de B 

A→B B=lo B=mid B=hi 
A=lo 0.6 0.2 0.2 
A=mid 0.1 0.1 0.8 
A=hi 0.1 0.2 0.7 

 

Tableau 10. Distribution de probabilités conditionnelles de C 

B→C C=lo C=mid C=hi 
B=lo 0.1 0.1 0.8 
B=mid 0.1 0.8 0.1 
B=hi 0.7 0.2 0.1 
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Tableau 11. Distribution de probabilités conditionnelles de E 

C, D→E E=lo E=mid E=hi 
C=lo              D=lo 0.6 0.2 0.2 
C=lo              D=mid 0.1 0.1 0.8 
C=lo              D=hi 0.1 0.1 0.8 
C=mid          D=lo 0.6 0.2 0.2 
C=mid          D=mid 0.1 0.6 0.3 
C=mid          D=hi 0.1 0.6 0.3 
C=hi             D=lo 0.1 0.2 0.7 
C=hi             D=mid 0.1 0.2 0.7 
C=hi             D=hi 0.8 0.1 0.1 

 

Supposons que les observations dans notre RBF indique que A = [mid0.2, hi0.8]. Avec cette 

information nous pouvons calculer les distributions de probabilités floues de B et C. 

Ainsi, puisque A est le seul parent de B, alors nous aurons B = [{0.1, 0.1, 0.8}0.2, 

{0.1, 0.2, 0.7}0.8]. 

En outre, la distribution de probabilités floues de C est calculée de la même façon. Ainsi, nous 

aurons C = [α0.2, β0.8] avec α et β seront calculés en utilisant la propagation standard de RB et 

en se basant sur la distribution de probabilités conditionnel de C :  

P(C|B=lo) = {0.1, 0.1, 0.8} ; 

 P(C|B=mid) = {0.1, 0.8, 0.1} ;  

Et P(C|B=hi) = {0.7, 0.2, 0.1}. 

Par la suite, α = {0.1, 0.1, 0.8}*0.1 + {0.1, 0.8, 0.1}*0.1+ {0.7, 0.2, 0.1}*0.8 

                     = {0.58, 0.25, 0.17}. 

               Et β = {0.1, 0.1, 0.8}*0.1 + {0.1, 0.8, 0.1}*0.2+ {0.7, 0.2, 0.1}*0.7 

                      = {0.52, 0.31, 0.17}. 

Finalement, C= [{0.58, 0.25, 0.17}0.2,{0.52, 0.31, 0.17}0.8]. 

3.2.2.4 Propagation de croyance dans le cas des parents multiples 

Dans le paragraphe précédent nous avons détaillé la propagation de croyance dans le RBF 

lorsque la variable possède un seul parent.  
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Passons maintenant au cas des parents multiples et calculons la distribution de probabilités 

floues de E, en supposant que : 

D= [{0.45, 0.30, 0.25}0.3, {0.1, 0.8, 0.1}0.7]. 

Et C= [{0.58, 0.25, 0.17}0.2, {0.52, 0.31, 0.17}0.8] (d’après les calculs développés dans le 

paragraphe précédent). En combinant les composants des parents C et D, nous obtenons 

E = [α0.06, β0.14, γ0.24, δ0.56}. 

Avec 

α = 0.58 * 0.45 * {0.6, 0.2, 0.2} + 0.58 * 0.30 * {0.1, 0.1, 0.8} + 0.58 * 0.25 * {0.1, 0.1, 0.8} 
+ 0.25 * 0.45 * {0.6, 0.2, 0.2} + 0.25 * 0.3 * {0.1, 0.6, 0.3} + 0.25 * 0.25 * {0.1, 0.6, 0.3} + 
0.17 * 0.45 * {0.1, 0.2, 0.7} + 0.17 * 0.3 * {0.1,0.2,0.7} + 0.17 * 0.25 * {0.8,0.1,0.1} 
= {0.3165, 0.2189, 0.4647} 

De la même manière nous obtenons β, γ, et δ. 

4 Avantage des Réseaux Bayésiens Flous 

Les avantages des réseaux bayésiens flous sont très variés. Avant de les présenter, nous citons 

tout d’abord quelques avantages des réseaux bayésiens et de la logique floue. 

Comme nous l’avons mentionné, d’un côté les réseaux bayésiens présentent une rationalité 

statistique et une rigoureuse capacité pour l’inférence causale, de l’autre côté, la logique floue 

est robuste face aux données bruitées.  

En outre, l’utilisation de terme linguistique facilite la compréhension humaine du modèle. En 

addition, cette technique est particulièrement utile quand les données sont insuffisantes pour 

formuler un modèle précis. En effet, elle présente une connaissance supplémentaire venant 

des états flous pour aider à l’interprétation humaine et la conception du système flou. 

Quant aux réseaux bayésiens flous, ils comportent la richesse des réseaux bayésiens 

classiques et de la logique floue. 

En faite, l’analyse théorique montre que l’utilisation des variables flous est plus efficace que 

celle des variables discrètes ou continues. Conséquemment, pour résoudre des problèmes 

complexes on a eu recours plutôt au RBF qu’au RB classique. 
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5 Recherches effectuées dans les réseaux bayésiens flous 

Bien que les réseaux bayésiens flous soient très efficaces surtout face aux problèmes 

complexes, jusqu’à présent il y a eu très peu de recherches dans cette nouvelle théorie. 

Les RBFs ont été appliqués en médecine, en sécurité, en diagnostic… . L’article [Lin et al., 

2006] discute l’application des RBFs pour la prévision du degré de l’astrocytome13. En faite, 

cette application réalise une analyse dans la prévision du niveau malveillant de l’astrocytome 

et fournit un outil d’aide au diagnostic pour les jeunes docteurs. 

Cependant, d’après [Lin et al., 2006], une exactitude de 81.67 % a été obtenue par 60 

échantillons de tests, ceci satisfait l’exigence des neurologistes. 

Egalement, l’article [Ren et al., 2005] propose un modèle de RBF qui traite les risques et 

l’analyse de sécurité marine (par exemple les accidents causés par les roches). 

Parmi les recherches exploitant ces modèles, une étude de diagnostic de défauts d’impression 

à distance utilisant les RBFs illustré dans [Qiu et al., 2001]. Ainsi, les auteurs ont affirmé que 

les valeurs de confiances résultantes pour le diagnostic en utilisant le RBF sont plus précises 

que les valeurs issues de l’utilisation d’un RB classique ou la LF.  

En outre, d’autres recherches [Park et al., 2006] ont proposé un système de recommandation 

de musique utilisant les RBFs et ont affirmé que, d’après l’analyse du processus de 

recommandation et la comparaison des résultats issus de l’utilisation des RBs classiques et 

celle des RBFs, la satisfaction des utilisateurs a augmenté. 

6 Notre approche pour l’inférence dans les Réseaux bayésiens flous 

6.1 Présentation de notre algorithme 

Les observations que nous propageons sont de nature floues, ceci n’est pas le cas dans les 

approches classiques d’inférence dans les RBs. Pour développer cet algorithme nous avons 

utilisé l’algorithme arbre de jonction combiné avec soft évidence modifié. 

6.1.1  Arbre de jonction 

Cet algorithme est applicable dans tous types de réseaux, arbre ou non arbre. En premier lieu 

il transforme le graphe en un arbre de jonction, puis il initialise ses potentiels, ensuite il utilise 

                                                           
13  Tumeur du système nerveux central (cervelet, cerveau, moelle épinière plus rarement), ou tout simplement, 
c’est le cancer du cerveau. 
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la méthode message passing pour la propagation des messages et le calcul des probabilités a 

posteriori. 

En faite, l’algorithme se comporte de la façon suivante [Huang et al., 1996] : 

• La phase de construction (ou transformation du graphe) : elle nécessite un ensemble de 

sous-étapes permettant de transformer le graphe initial en un arbre de jonction, dont 

les nœuds sont des cliques (regroupement) de nœuds du graphe initial. Cette 

transformation est nécessaire, d’une part pour éliminer les boucles du graphe, et 

d’autre part, pour obtenir un graphe plus efficace quant au temps de calcul nécessaire 

à l’inférence, mais qui reste équivalent au niveau de la distribution de probabilité 

représentée. Cette transformation se fait en trois étapes : 

� la moralisation du graphe. 

� la triangulation du graphe et l’extraction des cliques qui formeront les 

nœuds du futur arbre. 

� la création d’un arbre de recouvrement minimal, appelé arbre de jonction. 

• La phase d’initialisation : il s’agit d’initialiser les potentiels des cliques et séparateurs. 

• La phase de propagation : il s’agit de la phase de calcul probabiliste à proprement 

parler où les nouvelles informations concernant une ou plusieurs variables sont 

propagées dans l’ensemble du réseau, de manière à mettre à jour l’ensemble des 

distributions de probabilités du réseau. Ceci se fait en passant des messages contenant 

une information de mise à jour entre les cliques de l’arbre de jonction précédemment 

construit. 

• La phase de marginalisation : l’arbre de jonction contiendra la distribution de 

probabilité sachant les nouvelles informations, c’est-à-dire   où  représente 

l’ensemble des variables du réseau bayésien et  l’ensemble des nouvelles 

informations sur les variables. 

6.1.2 Soft evidence 

L’observation classique dans un RB touche seulement l’un des états du nœud observé, 

autrement dit, si on a une évidence dans un nœud X, seulement l’un de ses états qui sera 

observé. Ainsi, on associe la valeur 1 à cet état et 0 pour les autres. 

Cependant, on ne peut pas représenter le cas où notre évidence n’est pas exacte : c'est-à-dire si 

notre observation est ambigüe et touche en même temps plusieurs états selon des 

pourcentages bien définis. 
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Pour surmonter cette limite, [Tu et al., 2004] développe le concept de « soft evidence » qui 

permet de mettre en évidence l’ambigüité au niveau d’une observation. 

Cependant, et vu l’importance de ce nouveau concept, Smile14 a incorporé récemment « soft 

evidence » que l’on trouve intégré dans les nouvelles versions de Genie15.  

Toutefois, l’inférence probabiliste aura, après une observation d’une évidence (e), quatre 

tâches [Tu et al., 2004] : 

1. Mise à jour de croyance, P(X=x| e) 

2. Trouver l’explication la plus probable 

Dans le cas où le réseau contient des nœuds utilités l’objet de l’inférence est aussi de : 

3. Maximiser une probabilité postérieure d’état du réseau 

4. Maximiser l’utilité attendue 

L’évidence classique pour un nœud particulier est l’observation de l’un de ses états, appelée 

encore évidence dure ou simplement observation. Cependant, « soft evidence » est le type le 

plus général de l’évidence qui introduit l’incertitude de l’observation. 

Ainsi, ce concept consiste à propager des valeurs quantifiées (voir Figure 11) pour chaque état 

du nœud observé. On peut résumer cet algorithme dans les trois étapes suivantes : 

1. Calculer les valeurs quantifiées qi pour chaque état i du nœud observé. 
2. Pour chaque état i du nœud observé, on fait une inférence classique en observant 

l’état i.   
3. Pour chaque nœud N du RB 

                     Pour chaque état j du nœud N 

                     Etat j = ∑ valeur de l’état j issu de l’inférence i * qi 

                     Fin Pour 

            Fin Pour 

Pour mieux expliquer ce concept, on peut illustrer un exemple (cf. Figure 11) détaillé dans 

[Tu et al., 2004].  

                                                           
14

 SMILE (Structural Modeling, Inference, and Learning Engine) est une bibliothèque de classes C++ 
implémentant des modèles graphiques probabilistes tels que les réseaux bayésiens et les diagrammes d’influence. 
15

 GeNIe (Graphical Network Interface) est une interface graphique permettant de manipuler la plupart des 
fonctionnalités offertes par SMILE. 
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Figure 11. Exemple pour Mise à jour de Croyance avec soft evidence 

Ainsi, si l’observation est effectuée sur le nœud A avec les pourcentages 90% pour l’état 1 et 

10%  pour l’état 2 alors l’algorithme se déroule comme suit : 

1. Calculer les valeurs quantifiées des états de A : 

Q(A=1) = Q(A=1|Ao=1) 

= [P(Ao=1| A=1) * P(A=1)] / [P(Ao=1| A=1) * P(A=1) + P(Ao=1| A=0) * P(A=0)] 

= [0.9 * 0.2] / [0.9*0.2 + 0.1 * 0.8] 

= 0.6923. 

Q(A=0) = Q(A=0|Ao=1)  

= [P(Ao=1| A=0) * P(A=0)] / [P(Ao=1| A=1) * P(A=1) + P(Ao=1| A=0) *   P(A=0)] 

= [0.1 * 0.8] / [0.9*0.2 + 0.1 * 0.8] 

= 0.3077. 

On remarque que  Q(A=1) + Q(A=0) = 1. 

2. En premier lieu on réalise la 1ère inférence classique en prenant comme observation l’état 

(A = 1) puis on multiplie tous les états du RB par Q(A=1). En deuxième lieu on effectue 

la 2ème inférence classique en prenant comme observation l’état (A = 0) puis on multiplie 

tous les états du RB par Q(A=0).  

3. Enfin, pour chaque état on fait la somme de toutes les valeurs qu’il a prises lors de 

l’étape 2.   

6.1.3 Algorithme proposé 

Comme on vient de signaler, notre approche d’inférence floue est une amélioration du 

concept « soft evidence ». Cependant, on peut résumer l’algorithme dans les deux étapes 

suivantes : 
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1. Pour chaque état i du nœud observé, on fait une inférence classique en observant l’état i.   
2. Pour chaque nœud N du RB 

                     Pour chaque état j de N 

Etat j = ∑ valeur de l’état j issu de l’inférence i * degré d’appartenance de la 
valeur observée à l’état i  

                     Fin Pour 

            Fin Pour 

7 Conclusion 

Au cour de ce troisième chapitre nous avons mis en évidence l’intérêt de la théorie de RBF, 

cependant, nous avons valorisé ses avantages, cité les applications qui l’utilisent, et détaillé 

les notions de base de cette nouvelle théorie en conception et en inférence. Nous avons 

proposé un algorithme d’inférence qui améliore les approches existantes et fourni un résultat 

fiable pour des observations floues. 
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CHAPITRE 4                                         

Réalisation et test 
 

"Les questions les plus importantes de 

la vie ne sont en fait, pour la plupart, 

que des problèmes de probabilités." 

Pierre-Simon de Laplace (1749-

1827). 
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1 Introduction 

u cours d’un projet de fin d’étude (2007-2008), nous avons réalisé un éditeur graphique 

‘’Baysian Editor ‘’ pour la représentation des réseaux bayésiens. Ce travail a été réalisé 

suite à une recherche bibliographique sur le domaine ainsi qu’une étude sur les éditeurs 

graphiques existants. 

Cependant, l’éditeur a été repris dans un autre projet afin d’ajouter un algorithme d’inférence 

pour assurer la propagation de l’information dans le réseau bayésien. 

‘’Baysian Editor‘’ est utilisé comme point de départ pour développer le module flou décrit 

dans le chapitre 3. 

2 Editeur Réseau Bayésien Flou 

2.1 Editeur Réseau Bayésien classique 

2.1.1 Aspect graphique 

Nous décrivons en premier lieu quelques principales fonctionnalités de notre éditeur (cf. 
Figure 12). 

 

Figure 12. Présentation générale de l'éditeur 

1 : ajouter un nouveau réseau, 2 : ouvrir un réseau, 3 : enregistrer un réseau, 

4 : imprimer/aperçu réseau, 5 : aide, 6 : ajouter un nœud, 7 : relier deux nœuds à l’aide d’un 

A

1 

2 
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11 
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arc, 8 : supprimer un nœud, 9 : ajouter un commentaire, 10 : changer la forme d’un nœud de 

la forme rectangulaire à la forme ellipse, 11 : changer la forme d’un nœud de la forme ellipse 

à la forme rectangulaire, A : choisir l’algorithme d’inférence, B : mise à jour les probabilités 

du réseau selon l’algorithme choisi. 

2.1.2 Algorithme d’inférence 

Nous présentons maintenant le déroulement des étapes de l’algorithme arbre de jonction  en 

commençant par la création du graphe sur lequel on va appliquer notre algorithme (cf. Figure 

13). 

Une fois qu’on a fini la création du graphe avec les outils disponibles dans notre éditeur, on 

fait entrer les probabilités de chaque nœud. Ces probabilités sont décrites à l’aide d’un expert 

ou à partir d’une source d’information. Ensuite, on sélectionne nos évidences si elles existent, 

comme la Figure 13 nous montre, puis on choisi l’algorithme d’inférence par un  simple 

clique sur  puis sur . 

À ce stade, la page dans laquelle l’algorithme va se dérouler s’ouvre à coté de notre réseau 

ouvert afin de permettre de voir les changements apportés sur notre graphe par l’algorithme. 

 

Figure 13. Graphe initial 
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Figure 14. Réseau après choix de l’algorithme 

Nous remarquons maintenant deux réseaux ouverts, l’un contient le graphe initial et l’autre où 

va se dérouler l’algorithme (cf. Figure 14).  

Quatre boutons s’affichent dans la fenêtre de gauche, chacun décrit une étape de l’algorithme 

Arbre de jonction. 

Pour réaliser la première phase on clique sur . 

Pour réaliser la deuxième phase on clique sur , mais dans ce cas le graphe 

est triangulé, donc le graphe reste lui-même. 

Pour réaliser la troisième phase on clique sur  . 

On  remarque : 

� la construction de l’arbre de jonction qui est constituée de cliques et de séparateurs. 

�   l’initialisation des potentiels des cliques et des séparateurs. 

Afin de voir les résultats de cet algorithme, c'est-à-dire  pour appliquer la dernière phase sur le 

graphe, on clique sur , puis se déplacer vers le nœud choisi pour afficher 

ses probabilités a posteriori (cf. Figure 15).  



Modélisation et Diagnostic par Réseau Bayésien Flou     Ali BEN MRAD 
 

  
Page 53 

 

  

 

Figure 15. Résultat final 

Nous avons montré comment se déroule l’algorithme phase par phase, nous indiquons que 
notre éditeur permet aussi d’appliquer l’algorithme sur le graphe d’un seul coup en cliquant 

sur le bouton . 

2.2 Représentation des données floues  

Afin d’étendre l’utilisation de cet éditeur au RBF, nous pouvons accéder au module de 

représentation des variables (cf. Figure 16).   

Cette interface inclut un tableau contenant les différentes données liées à la variable floue tel 

que son nom, sa fonction, l'intervalle de définition de cette fonction et la couleur qui sera 

choisie dans sa représentation graphique. 

Dans ce tableau, nous pouvons ajouter, insérer ou supprimer des lignes à travers les boutons 

"Ajouter", "Insérer" et "Supprimer". 

À propos les fonctions de la variable floue, elles peuvent inclure plusieurs types de fonctions 

mathématiques notamment les nombres négatifs, les parenthèses, les racines carrées, les 

puissances, sinus, cosinus, tangente, +, -, * et /. 

Pour faciliter la tâche à l'utilisateur de notre éditeur, le bouton "Utilisation" contient les 

différents détails concernant les fonctions que nous venons de citer. 

Pour mieux visualiser les sous-ensembles flous, nous disposons de la fonctionnalité 

"Représentation graphique" accessible par les trois boutons : "Range", "Ecran" et "Graphe". 

Ainsi, le premier bouton "Range" nous permet de fixer les différentes caractéristiques de 

l'échelle de graduation afin d'obtenir une meilleure représentation graphique. Les deux autres 
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boutons permettent l'affichage des courbes des fonctions saisies dans le tableau. 

Finalement, lors d'une évidence, nous pouvons saisir la valeur observée dans le champ 

"Valeur Observée" et cliquer sur le bouton "Calculer les degrés d'appartenance" pour obtenir 

les degrés d'appartenance de chaque variable floue dans le deuxième tableau. 

3 Exemples d’inférence flou 

Nous allons à présent étudier de plus prés comment fonctionne l’inférence floue dans notre 

éditeur. Pour cela, nous allons illustrer deux exemples de RBF, un exemple simple pour 

mieux visualiser les aspects général de notre éditeur, notamment les caractéristiques des 

variables flous et l’inférence floue, puis un  deuxième exemple plus détaillé concernant le 

diagnostic du cancer de la prostate. 

3.1 Exemple simple 

Dans cet exemple, détaillé dans [Heckerman, 2004], nous avons cinq variables : Gaz, Fraude, 

Bijou, Age et Sexe, comme indique la Figure 17. 

Ainsi, supposons que la variable « Age » est une variable floue qui comporte trois sous-

ensembles flous « Jeune », « Adulte » et « Vieux » caractérisés par des fonctions bien 

déterminées qu’on peut saisir dans le tableau spécifique de la variable floue (cf. Figure 16). 

 

Figure 16. Représentation de la variable floue Age 
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Supposons que l’âge observé est 23 ans, on peut saisir cette valeur directement dans le champ 

spécifique, puis on clique sur le bouton  pour obtenir les degrés 

d’appartenance de la valeur observée à chacun des sous-ensembles flous comme indique la 

Figure 16. 

Ensuite, on clique sur le bouton  pour enregistrer les donnés puis sur le bouton  

afin de réaliser l’inférence. 

Finalement, on obtient les résultats finals fournis par cet algorithme. Ainsi, on peut se 

déplacer vers le nœud choisi pour afficher ses probabilités à postériori (cf. Figure 17). 

 

Figure 17. Résultat final 

3.2 Exemple de diagnostic du cancer de la prostate 

3.2.1 Cancer de la prostate 

Le cancer de la prostate est un cancer fréquent touchant la prostate et donc exclusivement le 

sexe masculin. Ce cancer se développe à partir des tissus de la prostate, une glande de 

l'appareil reproducteur masculin, quand des cellules y mutent pour se multiplier de façon 

incontrôlée. 

Celles-ci peuvent s'étendre en migrant de la prostate jusqu'à d'autres parties du corps. 
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Le cancer de la prostate peut provoquer des douleurs, une difficulté d'uriner, un 

dysfonctionnement érectile et d'autres symptômes. 

Le traitement se fait par chirurgie, radiothérapie16, thérapie hormonale et parfois 

la chimiothérapie17, ou en combinant plusieurs de ces méthodes [5]. 

Dans la plupart des cas, le cancer de la prostate est asymptomatique, c'est-à-dire qu'il est 

découvert, alors qu'il n'entraîne aucune manifestation lui étant propre. Il est le plus souvent 

découvert : 

� Lors d'analyses sanguines incluant l'étude de l’APS (Antigène Prostatique Spécifique), 

communément connu en terme anglophone par PSA (Antigène Prostatique Spécifique), 

dont la valeur prédictive et l'utilisation, sans bénéfice prouvé en termes de santé publique, 

ont récemment été remises en cause. L’APS est une protéine normalement sécrétée par 

les cellules prostatiques, mais une cellule cancéreuse en sécrète 10 fois plus qu'une 

cellule normale. Cette propriété a suscité de nombreux espoirs en termes de dépistage.  

Le taux sanguin de l’APS peut toutefois être augmenté par de très nombreux autres 

facteurs (le volume prostatique, les infections et/ou inflammations, les contraintes 

mécaniques (toucher rectal, autre)...) ou diminué par certains traitements de l'hypertrophie 

bénigne.  

� Lors d'un toucher rectal réalisé à titre systématique, ou en raison de symptômes liés à une 

autre maladie (en particulier l'hypertrophie bénigne de la prostate). 

� Fortuitement, sur des pièces de résection prostatique lors du traitement chirurgical de 

l'adénome prostatique. 

Lorsqu'il est symptomatique, le cancer de la prostate est le plus souvent à un stade avancé. Il 

peut entraîner : 

� une rétention aiguë d'urine, 

� une hématurie18, 

� une impuissance sexuelle, 

� une altération de l'état général, 

                                                           
16 La radiothérapie est une méthode de traitement locorégional des cancers, utilisant des radiations pour détruire 
les cellules cancéreuses en bloquant leur capacité à se multiplier. 
17 La chimiothérapie est l'usage de certaines substances chimiques pour traiter une maladie. 
18 L’hématurie est un terme médical désignant la présence de sang dans les urines. En fait on dépiste la présence 
de globules rouges en quantité anormalement élevée. 
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� des douleurs et/ou le dysfonctionnement ou la défaillance d'autres organes liés à la 

présence de métastases19. 

3.2.2 Problématique et solution 

Actuellement, le cancer de la prostate est le cancer le plus fréquent et la deuxième cause de 

mortalité par cancer chez les hommes. Pour suivre l’évolution des patients traités pour ce 

cancer, les médecins utilisent depuis plusieurs années le dosage sanguin de l’APS. En faite, 

l’APS est le meilleur indicateur de l’évolution du cancer de la prostate. Une augmentation de 

son taux dans le temps signale une progression de la maladie.  

Le dosage de l’APS est donc essentiel pour suivre tous les patients qui ont subi un traitement 

pour un cancer de la prostate ou qui ont opté pour l’observation en présence d’une tumeur 

localisée.  

Cependant, les seuils de significativité sont difficiles à établir. Il est admis, toutefois, qu'un 

taux de l’APS (APS libre / APS total) compris entre 10 et 20 est douteux, mais qu'il est 

nettement significatif au-delà.  

Ainsi, une valeur du taux de l’APS supérieure à 20 oriente le diagnostic vers un adénome de 

la prostate (tumeur bénigne de la prostate) qui ne nécessite pas de démarrer d’autres 

explorations qui sont invasives.  

D’un autre côté, une valeur de l’APS inférieur à 10 oriente le diagnostic vers un cancer de la 

prostate qui sera confirmé et identifié par une biopsie de la prostate (exploration invasive et 

traumatique). 

Cependant, si la valeur du taux de l’APS est située entre 10 et 20, le médecin aura besoin d’un 

pourcentage qui l’oriente vers l’un des chemins en s’appuyant aussi sur d’autres paramètres 

diagnostic. C’est un vrai flou pour le médecin. 

Sur le plan pratique, le jugement d’un taux de l’APS en faveur d’un adénome et d’un cancer, 

est une valeur subjective que nous pouvons l’objectiver par un prototype issu de l’étude des 

statistiques des cas déjà vue (cf. Figure 18).                                       

                                                           
19

 Une métastase est la croissance d'un organisme pathogène ou d'une cellule tumorale à distance du site 
initialement atteint. 
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Figure 18. Sous-ensembles flous de la variable Taux de l’APS 

3.2.3 Réseau Bayésien Flou pour le diagnostic du cancer de la prostate 

Le cancer de la prostate occupe la deuxième place en termes de fréquence des cancers 

touchants l’homme. D’où l’intérêt d’un diagnostic précoce de ce cancer pour l’éradiquer à un 

stade primaire. 

En effet, un diagnostic précoce permet une prise en charge rapide qui permet un traitement 

efficace pouvant amener à une guérison parfois complète. 

Toutefois, il n’y a pas vraiment un tableau clinique clair et évident qui permet ce diagnostic 

mais ce sont des ensembles de critères qui donnent l’impression au médecin que son patient à 

une grande probabilité d’avoir ce cancer. 

Récemment des travaux sur le diagnostic du cancer de la prostate ont vu le jour [Mahjoub et 

al., 2010]. Cette étude présente un outil d’aide à la décision pour le diagnostic, sauf que le 

modèle utilise des Tables de Probabilités Conditionnelles (TPCs) classiques mais ne traite pas 

les connaissances ambigües.  

Par ailleurs, cette démarche, qui reste toujours floue pour le clinicien, lui impose parfois de 

demander beaucoup d’examens complémentaires qui sont parfois de manière abusifs et aussi 

tromatique comme la biopsie de la prostate. 

Notre objectif est d’éclaircir un chemin diagnostic qui guide le médecin vers l’une des trois 

voix : soit que son patient à une grande probabilité d’avoir ce cancer, soit par contre il s’agit 

plutôt d’une tumeur bénigne ou adénome. Ce sont les deux diagnostics qui occupent le plus 

un praticien. Soit le troisième chemin qu’il s’agit d’un autre diagnostic dont on s’intéresse pas 

beaucoup dans notre étude c’est la prostatite20.    

                                                           
20

 Infection aiguë ou chronique de la prostate. 
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Pour atteindre un diagnostic il faut rassembler les critères cliniques tels que les plaintes du 

patient, les motifs de consultation et les critères biologiques comme la valeur de l’APS et le 

taux de l’APS. 

Cependant, le médecin se confronte à un autre défit qui concerne le taux de l’APS qui peut 

avoir une valeur non significative quant elle est comprise entre 10 et 20. Dans cet intervalle, 

le médecin se sent hésitant et ne peut pas être affirmative ni par le bien ni par le mal, d’où 

l’intérêt d’un pourcentage qui lui guide dans sa prise de décision. 

Afin d’étudier ce cancer, nous proposons le modèle en réseau bayésien flou (cf. Figure 19). 

Ce modèle est synthétisé à partir de l’étude de ce cancer et en tenant compte des 

recommandations d’un ensemble de praticien. 

Dans notre RBF (cf. Figure 19) nous avons pris en considération les paramètres les plus 

frappants guidant aux diagnostics et nous avons essayé de substituer tout ce qui est flou et tout 

ce qui est intuition par un degré d’appartenance qui représente une valeur plus réaliste et plus 

scientifique qu’une valeur ambigüe. 

 

Figure 19.  RBF pour le diagnostic du cancer de la prostate 
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Pour atteindre notre objectif nous avons suivi le raisonnement classique des médecins. En 

effet, ces derniers recueillent les informations selon un ordre bien précis avec des alternances 

parfois centripètes et parfois centrifuges selon la présence ou l’absence d’indice alarmant 

orientant vers un diagnostic ou vers un autre. 

Ainsi, nous avons construit un RBF qui reflète la stratégie diagnostic du médecin où il trouve 

les réponses à la plupart des questions. 

Toutefois, la question la plus précoce qu’il cherche est l’âge de son patient. En effet, la 

probabilité d’avoir une tumeur de la prostate augmente avec la progression de l’âge et 

oriente le médecin vers ce chemin. Par contre, plus son patient est jeune plus le médecin 

pense à une prostatite. 

Cependant, pour avoir une vision plus claire, le docteur a recours au dosage de l’APS donnant 

ainsi une valeur qui ne peut être interprétable qu’en fonction de l’âge du patient. Nous parlons 

donc d’un état de l’APS que par tranche d’âge. 

La valeur de l’APS, qui est interprétée par le laboratoire et récupérée par le médecin, peut être 

soit élevée soit normale. Ainsi, une valeur élevée de l’APS inquiète le clinicien sur l’état de 

la prostate de son patient qui dépend en faite d’autres paramètres. 

En effet, ce sont les données de l’échographie qui se résument en quatre possibilités (états) : 

� Prostate de volume normal et Aspect normal. 

� Prostate de volume normal et Aspect anormal. 

� Prostate de volume anormal et Aspect normal. 

� Prostate de volume anormal et Aspect anormal. 

Ces données seront confrontées, d’une part avec le toucher rectal (TR), qui donne les 

informations sur le volume de la prostate et son aspect, et d’autre part avec la 

symptomatologie du patient qui a une relation directe avec l’état de la prostate, c'est-à-dire 

soit présence de symptomatologie urinaire qui confirme que la prostate a vraiment augmenté 

de volume, soit l’absence de symptomatologie qui n’élimine pas une modification de l’état de 

la prostate. 

 L’idéal pour le médecin est d’avoir un contexte bien établi où tous les données suivent le 

même sens et par la suite mènent à l’un des deux résultats : soit d’un adénome de la prostate, 

soit d’un cancer avec une grande probabilité. 
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En revanche, sur le plan pratique ce n’est pas toujours le cas et les données observées sont 

difficiles à interpréter et amènent nulle part. D’où il fait appel à une variable plus fiable pour 

ce type de diagnostic qui est le taux de l’APS.    

Ce dernier est très significatif s’il appartient à l’un des intervalles (<10 ou >20) mais dans le 

cas échéant où il tombe sur l’intervalle de valeur flou (entre 10 et 20), un autre défit confronte 

le médecin. 

À ce stade, nous intervenons pour surmonter l’ambigüité en représentant la variable taux de 

l’APS comme variable floue, tout en définissant les fonctions d’appartenances spécifiques des 

sous-ensembles flous (taux menant à un adénome et taux menant à un cancer) (cf. Figure 20). 

 

Figure 20. Sous-ensembles flous de la variable Taux de l'APS 

Ainsi, cette variable floue participe à établir un pourcentage décisif à la prise en charge ; c’est 

le degré d’appartenance, issu de la projection de la valeur observée du taux de l’APS sur les 

sous-ensembles flous (cf. Figure 21) ou encore obtenu en cliquant sur 

 dans notre éditeur (cf. Figure 20), qui nous aide à connaître s’il 

s’agit d’une tumeur ou d’un adénome qui sont en faite les deux états de la variable Tumeur.    
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Figure 21. Degré d'appartenance aux sous-ensembles flous de la variable Taux de l'APS 

Si encore la problématique n’est pas résolue, un dernier examen, qui est la biopsie, va 

participer à la décision. 

En faite, une biopsie positive pour un cancer confirme le diagnostic à 100% et la conduite à 

tenir (CAT ) sera dans ce sens. Par contre, une biopsie négative n’est pas concluante mais 

c’est un bon soulagement pour l’inquiétude du médecin et du patient surtout. 

Ainsi, nous distinguons deux états pour la CAT : soit une biopsie positive qui nécessite un 

traitement du cancer et suivi, soit une biopsie négative qui exige un traitement d’adénome et 

surveillance.   

4 Conclusion 

Ce dernier chapitre présente l’éditeur graphique dédié à la présentation et l’inférence des 

RBFs. L’objectif de cet éditeur est d’illustrer le déroulement d’un diagnostic à partir de la 

modélisation en passant par l’inférence et en arrivant aux résultats. 

La modélisation des nœuds flous fait appel  notamment aux degrés d’appartenance aux sous-

ensembles flous, l’inférence quant à elle se base sur l’algorithme JLO en tenant compte des 

degrés d’appartenances de la valeur observée. Ces deux aspects sont présentés à travers deux 

exemples. Le premier est un exemple classique de la littérature, le deuxième, plus détaillé, 

concernant le diagnostic du cancer de la prostate. 
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Conclusion générale 

 

"L’homme raisonnable s’adapte au 

monde ; l’homme déraisonnable 

s’obstine à essayer d’adapter le 

monde à lui-même. Tout progrès 

dépend donc de l’homme 

déraisonnable.” 

George Bernard Shaw (1856-1950). 
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out au long de ce projet de recherche, nous sommes passés par plusieurs étapes. Une 

première phase de recherche  bibliographique concernant les techniques de diagnostic 

nous a permis de constater que malgré leurs diversités, leurs efficacités restent en lieu étroit 

avec la nature du système à étudier. 

Ainsi, cette première phase  nous a permis d’identifier la technique des réseaux bayésiens en 

tant que outil de diagnostic très intéressant. Cependant, l’une des limites majeures que 

rencontrent les utilisateurs de ce type de réseaux, est d’exprimer les connaissances non 

précises surtout si plusieurs informations sont ambigües. Étant donné que, nous ne pouvons 

pas exprimer toutes sortes de connaissance dans un langage précis. 

Après avoir détaillé les deux techniques à savoir réseau bayésien et logique floue, dans un 

deuxième temps, nous avons pu démontrer l’apport que peut offrir le panachage de ces deux 

techniques qui a conduit à la naissance de la théorie de réseau bayésien flou. 

Suite à cette étude, nous avons mis en évidence cette théorie en détaillant ses avantages, citer 

les applications qui l’utilisent et détaillant son fondement théorique. 

En s’inspirant des résultats de toutes ces recherches, nous avons pu en premier lieu modéliser 

quelques systèmes par réseaux bayésiens flous, ce qui nous a permis de développer un module 

supplémentaire de représentation des variables flous à un éditeur graphique de représentation 

de RB en deuxième lieux, ainsi que de développer un algorithme exploitant la richesse de 

cette récente théorie, puis tester et comparer l’algorithme que nous avons développé par des 

exemples illustratifs et par rapport à d’autres travaux. 
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