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تصميم بروتوكول التوجيه . تكنولوجيا رئيسية للانترنت الجديدة يمثل 6NAPWoLالبروتوكول   :الخلاصة

 لتيا شبكة الانترنت مشروعيضهر باعتباره  LWN .اصبح ذا اهمية قصوى 6NAPWoLل
النضج  اكتسبت وجود قيد التطوير، على الرغم من لا يزالFTEI .LWN RPL عمل مجموعة اقترحتها

في هذه الأطروحة،  .أهميته والتحقيق في جيدا، سلوكها لفهم هناك حاجة في الواقع ، .ومفتوحة لإدخال تحسينات ،
. 6NAPWoLو  LWNروتوكولات اداة تدعم الب Z-rAtinAM لتصميم العمل الذي قمنا به أولا نعرض وسوف
بروتوكول  الرئيسي للبوصفها المرشح لأنها تمثل RPL للبروتوكول التوجيه تقييم الأداء بعد ذلك نقدم وسوف
 .6LoWPAN للشبكات القياسية التوجيه

Résumé : le protocole 6LoWPAN représente une technologie clé pour le nouvel 

Internet. Concevoir un protocole de routage pour 6LoWPAN devient d'importance 

primordiale. RPL apparaisse comme une ébauche d'Internet proposée par le groupe de 

travail ROLL. RPL est en cours de développement, bien qu'après avoir gagné la 

maturité, et est ouvert d'améliorations. En effet, il y a un besoin de comprendre bien son 

comportement, et étudier sa pertinence. Dans cette thèse, nous présenterons d'abord le 

travail que nous avons fait pour concevoir l'outil Z-Monitor qui supporte les protocoles 

6LoWPAN et RPL. Nous présenterons ensuite une évaluation des performances du 

protocole de routage RPL comme il représente le candidat principal pour agir en tant 

qu’un standard de routage pour les réseaux 6LoWPAN.  

Abstract: 6LoWPAN protocol represents a key technology for the new Internet. 

Designing a routing protocol for 6LoWPAN becomes of a paramount importance. RPL  

shows up as an Internet draft proposed by the IETF ROLL working group. RPL is still 

under development, although having gained maturity, and is open to improvements. 

Indeed, there is a need to understand well its behavior, and investigate its relevance. In 

this thesis, we will first present the work we have done to design Z-Monitor monitoring 

tool that supports 6LoWPAN and RPL protocols. We will then present a performance 

evaluation of the RPL routing protocol as it represents the main candidate for acting as 

the standard routing protocol for 6LoWPAN networks. 
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CHAPTER 1

INTRODUCTION

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Motivation

In recent years, the technology of Wireless Sensor Networks (WSNs) has
grown thanks to the extraordinary rate of developments in communication and
networking technologies. They are considered as the most important technolo-
gies in the 21st century. Most of the researchers and technological analysts
believe that WSNs have become an integral part of our daily life. They are
deployed in factories for condition based maintenance, in emergent environ-
ments for search and rescue, in buildings for infrastructure health monitoring
and even in bodies for patient monitoring.

With the emergence of wireless sensor networks, new themes have been
opened and new challenges have emerged to meet the needs of individuals
and the requirements of several application areas. One of the most important
problems that must be overcome is integration with Internet. Nevertheless,
the integration of IP in WSNs will offer several advantages for many applica-
tions. With more and more successful real environment WSN deployments on
one hand, and the ubiquitous of IP networks on the other hand, it is natural
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to try to figure out some approaches to connect the WSN to the IP network
infrastructure.

Most of the WSN implements IEEE 802.15.4 protocol for PHY and MAC
layers, which specifies a wireless link for LoW-power Personal Area Networks
(LoWPANs). Accordingly, the capabilities of the IEEE 802.15.4 protocol
are very limited: low bandwidth, small frame sizes and low transmit power.
Regarding these constraints, IPv6 protocol is too memory intensive to fit
into IEEE 802.15.4 frames since it requires the support of packet size much
larger than the largest IEEE 802.15.4 frame. Internet Engineering Task Force
(IETF)[11] defined a specification to apply IP into WSN called 6LoWPAN
(IPv6 over Low power Wireless Personal Area Networks). 6LoWPAN pro-
tocol represents a key technology for the new Internet where trillion of tiny
devices are expected to operate in the same network. 6LoWPAN technology
has gained more and more interest by the research community.

Since the release of 6LoWPAN, routing has been considered as the main
research and development challenge. In fact, several endeavors for specifying
an efficient routing protocol for 6LoWPAN-compliant Low-power and Lossy
Networks (LLNs) have been driven, such as Hydro [49], Hilow [50], and Dy-
molow [51]. Recently, the IETF ROLL working group [52] came up with the
IPv6 Routing Protocol for Low power and Lossy Networks (RPL) routing pro-
tocol in an attempt to standardize the routing process for LLNs. The inherent
LLNs of low data rates, high probability of node and link failures, and scare
energy resources, have turned the design of RPL challenging and different
from previous routing proposals. Moreover, RPL is still under development,
although having gained maturity, and is open to improvements. Indeed, there
is a need to understand well its behavior, and investigate its relevance. In the
literature, several studies have evaluated the performance of the RPL protocol
by using simulating tools such as in [41], [40], [42] and [43]. Despite simula-
tion can give a good level of confidence about the protocol behavior, it cannot
prove that the protocol operates correctly in all cases. In addition, it cannot
describe the real protocol behavior against link or node failures. Therefore, it
was necessary to evaluate the performance of RPL in real implementation.

1.2 Objectives

The main objective of this master project is to evaluate the behavior of
6LoWPAN networks in real implementation. We aim mainly to evaluate the
performance of the RPL routing protocol as it represents the main candidate
for acting as the routing protocol for 6LoWPAN networks. The evaluation will
be performed for different network settings to understand the impact of the
protocol attributes on the network formation performance, namely in terms
of energy, storage overhead, communication overhead, network convergence
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time and maximum hop count. This work is motivated by the fact that
simulation links doesn’t reflect an important aspect of reality. They can’t
give insight of protocols operating characteristics which may confuse protocol’s
developers/analyzers.

To understand the behavior and find out the limitations of the protocols,
it is necessary to have a powerful network monitoring and protocol analysis
at hand. There exist a few solutions for LoWPAN monitoring, but they are
either very expensive or of proprietary nature. Therefore, we aim in a first
step to design a monitoring tool. Z-Monitor [30], is an open source software
for monitoring IEEE 802.15.4-based networks, does not require special sniffer
hardware and is easy to extend. However, it does not support many IPv6
based protocols such as 6LoWPAN and RPL.

1.3 Contributions

The contributions of this Master Thesis are both practical and theoretical:

• The first contribution is practical. It consists on implementing a monitor-
ing tool that supports decoding of both 6LoWPAN and RPL protocols.
We have extended Z-Monitor to support 6LoWPAN and RPL protocols
for both operating systems Contiki and TinyOS.

• The second contribution is theoretical. It consists on conducting a set
of experiments for evaluating the performance of protocols already im-
plemented in the first contribution to understand their behavior.

• The third contribution is to experimentally evaluate the performance of
the RPL routing protocol under different network settings. The choice
of RPL is justified by the fact that this routing protocol was designed
to meet the requirements of Low power and Lossy Networks compliant
with the 6LoWPAN protocol.

1.4 Research Context

This Master project was developed within the CES laboratory at ENIS
(University of Sfax), in collaboration with (1) COINS Research Unit at CCIS/
IMAMU (College of Computer and Information Sciences / Al-ImamMohamed
bin Saud University) (2) CISTER Research Unit at ISEP/IPP (Institution
Superior de Engenharia do Porto/ Instituto Politécnico do Porto). Z-Monitor
was firstly developed at COINS Research Unit. The first version supports
only IEEE 802.15.4 and Zigbee protocols. Our mission is (i.)to reorganize
Z-Monitor’s code of the first version(ii.) to support the decoding of both
6LoWPAN and RPL protocols (iii.) to add some improvements to the design
of Z-Monitor.
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1.5 Outline

The remainder of this Thesis is structured as follow. Chapter 2 gives a brief
overview on WSNs technology followed by a description of a set of protocols
that form 6LoWPAN networks namely IEEE 802.15.4, 6LoWPAN and RPL.
In Chapter 3, we describe the design and features of Z-Monitor. In Chapter
4, we describe the different tools and scenarios used for the performance eval-
uation of RPL and we detail the main results found from this experimental
study. Conclusions and future works are finally presented in chapter 5.
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2.1 Introduction

Recent advances in the technology of wireless communications and digital
electronics have enabled the development of small inexpensive and low power
devices that can communicate with each other. These devices integrate an
acquisition unit for data collecting, a processing unit for aggregating the col-
lected data , a storage unit and a radio transmission module. They cooperate
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with each other to form a communication infrastructure called wireless sensor
mote.

Wireless Sensor Networks usually consist of many motes, that communi-
cate via radio links for information sharing and cooperative processing. These
devices are deployed randomly in an area of interest to monitor or supervise
various phenomena. The importance of WSNs has been enforced by the de-
livery of many protocols that facilitate the communication between motes,
Internet connection, routing... The IETF working group is concerned with
the specification of protocol for WSNs. It forms a set of protocols in order to
allow the sensor nodes to connect to internet.

In this chapter, we are going to present a brief overview on WSNs. We
follow this presentation by a description of 6LoWPAN networks. We will
detail namely the specification of the IEEE 802.15.4, 6LoWPAN and RPL
protocols.

2.2 Wireless Sensor Networks

A Wireless Sensor Network is typically composed of a large set of wireless
sensor nodes scattered in a controlled environment and interacting with the
physical world. This set aims the collection of specified data needed for the
monitoring/control of a predefined area/region [1]. Sensor nodes collaborate in
order to merge individual sensor readings into a high-level sensing result. For
example, to estimate the velocity, we need to integrate a time series of position
measurements. Collected data is then processed and analyzed by a control
station (or sink). Figure 2.1 [2] gives more explanation about information
process in a WSN.

Figure 2.1: WSN Typical Architecture
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2.2.1 Wireless Sensor Networks Applications

Wireless Sensor Networks are applied into a wide variety of applications
and systems. There are several kinds of WSN applications. However, we
can group them in two main classes. The first one aims to gather from the
environment information of a relatively simple form like temperature. Such
applications include entity monitoring and require limited signal processing.
The other class of applications processes and transports large volumes of a
complex data. A famous example of this application is industrial monitoring
and video surveillance. Below some application of WSN are described:

• Healthcare: Integrating a WSN in healthcare applications is potentially
beneficial for both doctors and patients. Attaching sensors to patients
assures a long-term surveillance and disease administration. In hospitals,
this technology saved the life of many patients by alerting doctors about
patient’s situation [3].

• Environmental monitoring: WSNs are used in such applications to mon-
itor environmental parameters like humidity and temperature. An ex-
ample of environmental monitoring applications is detection of forest
fires.

• Industrial applications: Industries look for ameliorating products/services
quality and process control. Wireless sensor technologies were involved
in this domain to help increasing the industrial efficiency. They are
used for factory automation, detection of liquid/gas leakage, real time
inventory management, etc.

• Military applications: Such applications require a high level of security.
WSNs are used in military area for that purpose. Being equipped with
the appropriate sensors, these networks enable battlefield surveillance,
sensing intruders on bases, detection of enemy units, military situation
awareness, etc. [4]

2.2.2 Typical Architecture of a Sensor Mote

A wireless Sensor device is a battery-operated device, capable of sensing
physical entities [5]. In addition to sensing, it is able to perform wireless
communication, signal processing, data storage and a limited amount of com-
putation. It is made up of four main components, as shown in figure 2.2
[6]:

• Sensing unit: is the actual interface that can observe and control phys-
ical parameters from target area. The analog signal is produced by the
sensor based on the observed phenomenon. This signal is then converted
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to digital signal by an Analog-to-Digital Converter (ADC) and then de-
livered to the processing unit for analysis.

• Transceiver: is charged of connecting motes to the network.

• Power unit: is a major weakness for sensor networks. This unit is re-
sponsible of remaining energy control and measuring the time to live of
the sensor mote. Some sensors are able to renew their energy from solar
or vibration energy.

• Processing unit: has various functions. First, it receives data from sen-
sors. Then, it processes this data. Finally, it decides when and where to
send it.

Figure 2.2: Main Component of Sensor Mote

In addition to the above units, a sensor mote may include some additional
application dependent components such as mobilizing system, power generator
and location finding system.

2.3 Overview on the IEEE 802.14.5 Protocol

IEEE 802.15.4 is a standard that defines a protocol and interconnection
of devices via radio communication in a personal area network (PAN) [7]. It
is maintained by the Institute of Electrical and Electronics Engineers (IEEE)
802.15 working group [8]. IEEE 802.15.4 defines both the Physical (PHY) and
the Media Access Control (MAC) specification for Low-Rate Wireless Personal
Area Networks (LRWPANs), leaving other higher-level layers undefined.

This standard defines two kinds of motes: Full Function Devices (FFD)
and Reduced Function Devices (RFD). Full Function Devices implement the
complete protocol set. They are capable to act as a device or as a coordinator
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when it is in charge of the whole network. Reduced Function Devices operate
with a minimal implementation of the IEEE 802.15.4 protocol. They cannot
act as a coordinator. They can only communicate with FFDs.

2.3.1 802.15.4 Addresses

In IEEE 802.15.4 protocol, a device is uniquely identified by a 64-bit ad-
dress (or long address). Long addresses are globally unique and assigned when
manufacturing. 00:12:75:00:11:6e:cd:fb is an example of a long address. Be-
cause of the limited packet size in IEEE 802.15.4 standard, nodes are allowed
to use short addresses. These addresses are 16 bits length and they are as-
signed by the PAN coordinator. However, they can be used only within the
PAN in which it was assigned. To communicate with devices outside its PAN,
a device must include the 16-bit PAN identifier of its own PAN and the PAN
of the device with which it communicates in each message.

2.3.2 Physical Layer

The physical layer is responsible for data transmission, channel selection
and energy and signal management functions. It operates on one of three
possible frequency bands: a single communication channel between 868 MHz
and 868.6 MHz, 10 communication channels between 902.0 MHz and 928.0
MHz and 16 communication channels between 2.4 GHz and 2.4835 GHz [7].

A packet is mainly composed of a synchronization header (SHR), a physical
layer header (PHR) and PHY payload. The synchronization header contains
the preamble and start of frame delimiter(SFD). This header allows the re-
ceiving device to synchronize and lock onto the bit stream. The physical layer
header contains an information of the frame length (refer to Figure 2.3).

Octets:4 1 1 variable

Preamble SFD Frame length

(7 bits)

Reserved

(1 bit)

PSDU

SHR PHR PHY payload

Figure 2.3: General Packet Format

Moving to the next layer (MAC layer), another header will be added to
the packet. This header will be inserted at the beginning of the PHY payload.
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2.3.3 Medium Access Control (MAC) Layer

The Medium Access Control layer allows the transmission of MAC frames
through the use of the physical channel. It aims to reduce or avoid packet col-
lisions in the medium. MAC layer is capable of basic data frame-type as well
as complex signalling and beaconing. This layer adds to the packet another
header called MAC Header (MHR). The main fields of the MAC header are
Frame Control, Sequence Number, Addressing fields, and Auxiliary Security
Header. The Frame Control field is 2 octets in length. It contains information
defining frame structure. It is composed of: (i.) Frame Type: 2 bits field
that specifies the type of IEEE 802.15.4 frame, (ii.) Security Enabled: defines
whether an Auxiliary Security Header should protect the MAC layer header
or not, (iii.) Frame Pending: shall be used only in beacon frames and shall
be set to one if the device sending the frame has more data for the recipi-
ent [7], (iv.) Ack. Request: specifies whether the recipient device requires
an acknowledgement when receiving a data or a MAC command frame, (v.)
PAN ID Compression: specifies if Source PAN Identifier or Destination PAN
Identifier should be carried in-line, (vi.) Dest. Addressing Mode (refer to
Figure ??) (vii.) Frame Version: indicates the version number corresponding
to the frame, (viii.) Source Addressing Mode (refer to Figure ??). Figure 2.4
presents the Frame Control field.

Bits: 

0-2

3 4 5 6 7-9 10-11 12-13 14-15

Frame 

Type

Security 

Enabled

Frame 

Pending

Ack. 

Request

PAN ID 

Compression

Reserved Dest. 

Addressing

Mode

Frame 

Version 

Source 

Addressing

Mode

000 Beacon

001 Data

010 Acknowledgement

011 MAC command

100 – 111 Reserved

00 PAN identifier and address fields are not present.

01 Reserved

10 Address field contains a 16-bits short address.

11 Address field contains a 64-bits extended address.

Figure 2.4: Frame Control Field

The Sequence Number is one octet length field. It specifies the sequence
identifier for the frame used specifically to match an acknowledgement frame
to a data or MAC command frame. The Addressing fields, is namely com-
posed of Destination PAN Identifier, Destination Address, Source PAN Identi-
fier and Source Address. The Destination PAN Identifier specifies the unique
PAN identifier of the intended recipient of the frame [7]. The broadcast PAN
identifier’s value is 0xffff. The Destination Address and Source Address length
depend respectively on the Destination Addressing Mode and Source Address-
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ing Mode subfields of the Frame Control. The Source PAN Identifier specifies
the PAN identifier of the originator of the frame. The Auxiliary Security
Header is present only when the Security Enabled subfield in the Frame Con-
trol is set to 1. It specifies the information required for security processing like
the security level. MAC payload field is appended with a 16-bits field: Frame
Check Sequence (FCS). It is used to detect errors in each frame. Figure 2.5
[7] shows the frame format of the MAC layer header.

Octets:

2

1 0/2 0/2/8 0/2 0/2/8 0/5/6/10/

14

Variable 2

Frame 

Control

Sequence

Number

Destination 

PAN 

Identifier

Destination 

Address

Source 

PAN 

Identifier

Source 

Address

Auxiliary

Security 

Header

Frame 

Payload

FCS

Addressing fields

MHR MAC 

Payload

MFR

Figure 2.5: MAC Frame Format

The MAC layer employs four frame types: beacon frame, data frame, ac-
knowledgement frame and MAC command frame. In what follow, we present
the structure of each frame according to IEEE 802.15.4-2006.

2.3.3.1 Acknowledgement Frame

Acknowledgement frames are used to confirm successful frame reception.
The structure of the acknowledgement frame is depicted in Figure 2.6 [7].
MHR header in this case is very simple. It contains only the frame control
and the sequence number fields.

Octets: 2 1 2

Frame 

Control

Sequence

Number

FCS

MHR MFR

Figure 2.6: Acknowledgement Frame Format

2.3.3.2 Beacon Frame

A beacon frame is sent by the PAN coordinator to organize the network.
Figure 2.7 [7] gives a schematic view of beacon frame fields. The MAC pay-
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load in beacon frame contains superframe specification, Guaranteed Time Slot
(GTS) fields, Pending address fields and beacon payload.

Octets: 

2

1 4/10 0/5/6/10/14 2 variable variable variable 2

Frame 

Control

Sequence

Number

Addressing

fields

Auxiliary

Security

Header

Superframe

Specification

GTS

field

Pending

Address

field

Beacon

Payload

FCS

MHR MAC Payload MFR

Figure 2.7: Beacon frame format

2.3.3.3 Data Frame

Data frames are used for carrying user data. In this case, the MAC payload
contains the data that we want to transmit. As for beacon frames, data frames
are prefixed with a MAC header and appended with a MAC footer (MFR).
Figure 2.8 [7] gives an overview of the structure of a data frame.

Octets: 2 1 4/10 0/5/6/10/14 variable 2

Frame 

Control

Sequence

Number

Addressing

fields

Auxiliary

Security

Header

Data Payload FCS

MHR MAC Payload MFR

Figure 2.8: Data Frame Format

2.3.3.4 MAC Command Frame

MAC command frames are used to handle all MAC peer entity control
transfers. Figure 2.9 shows the structure of the MAC command frame. The
MAC payload contains the command type field and the command payload
which contains the MAC command itself.

Octets: 2 1 4/10 0/5/6/10/1

4

1 variable 2

Frame 

Control

Sequence

Number

Addressin

g fields

Auxiliary

Security

Header

Command 

Frame 

Identifier

Command 

Payload

FCS

MHR MAC Payload MFR

Figure 2.9: MAC Command Frame Format
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2.4 6LoWPAN Protocol

A 6LowPAN network is made up of low-power wireless area networks
(LoWPANs). A LoWPAN is a subnet where 6LoWPAN motes share a com-
mon IPv6 address prefix. In fact, an IPv6 address is 128 bytes length. The
first 64 bits are the IPv6 address prefix and the last 64 bits are interface
identifier.

2.4.1 Adaptation Layer

The IEEE 802.15.4 link layer has a severe constraint on the size of the
transmission unit. It allows up to 127 bytes for the whole IPv6 packets in-
cluding header and payload information [10]. As mentioned in the previous
section, the maximum length of IEEE 802.15.4 headers is 39 bytes which keeps
88 bytes for upper layers. However, IPv6 header length is 40 bytes. More-
over, the length of the TCP header is another 20 bytes. Thus, implementing
IPv6 over IEEE 802.15.4 would result to only 28 bytes for application layer
protocols. For this reason, IPv6 packets may need to be compressed and/or
fragmented into multiple link layer frames.

The Internet Engineering Task Force (IETF) [11] formed the IETF 6LoW-
PAN working group [12] to standardize framing and header compression for
the transmission of IPv6 packets over IEEE 802.15.4 links. It introduced an
adaptation layer that handles several functionalities to enable IEEE 802.15.4
devices to connect to IP networks. From [13], the adaptation layer (called also
the LoWPAN adaptation layer) was introduced between the IEEE 802.15.4
link layer and the network layer. The main functionalities of this layer are:
packet fragmentation and reassembly, header compression and link layer for-
warding.

2.4.1.1 Fragmentation

A packet payload is fragmented into several packets when it is too large
to fit into a single IEEE 802.15.4 frame. Fragmentation offers the ability to
encode a datagram into multiple link frames. However, it does not include
a recovery mechanism for lost packets. The frame is broken into multiple
fragments using fragment header shown in Figure 2.10 [14] below. The first
fragment does not contain datagram-offset since it defines the offset of the
fragment within the original payload. Datagram-size, the first field in frag-
ment header, indicates the size of the entire IP packet before fragmentation.
This field is present in both first and subsequent fragments because a subse-
quent fragment may arrive before the first fragment. Thus, the receiver would
not know the memory size that should be allocated for the whole frame.
Datagram-tag field is used to identify the fragmented packet.
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Figure 2.10: Fragmentation Header

2.4.1.2 Header Compression

The 6LoWPAN header compression was firstly defined in RFC 4944 [15].
This standard defines a stateless compression schema consisting of two types
of header compression: HC1 (header compression 1) and HC2 (header com-
pression 2). HC1 allows the compression of IPv6 header with the original size
of 40 bytes to 3 bytes in the best case. Similarly, HC2 defines a compres-
sion format for the transport protocol layer. 6LoWPAN header compression
according to RFC 4944 is presented in Figure 2.11.

Dispatch

(1 byte)

HC1 encoding

(1 byte)

Hop Limit

(1 byte)

Uncompressed fields

(variable)

1. 6loWPAN header compression according to RFC4944 standard

Dispatch

(1 byte)

LoWPAN-IPHC

(2 bytes)

Uncompressed fields

(variable)

0 1 1 TF NH HLIM CID SAC SAM M DAC DAM

2. 6loWPAN header compression according to IETF draft

Figure 2.11: 6LoWPAN Header Compression

The first byte in 6LoWPAN header is the dispatch. It specifies that the
following header is a compressed IPv6 header. The next byte is called HC1
encoding. It defines whether a field is compressed or not. The hop limit is
considered too hard to be compressed. It follows immediately the encoding
field. The rest of 6LoWPAN header contains uncompressed IPv6 fields. The
size of this field is variable. It depends on the encoding field value. Table 2.1
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resumes how RFC 4944 compresses the IPv6 header.

Encoding bits IPv6 Fields
Bits 0 and 1 Source Address

00: Prefix and interface identifier are carried in-line.
01: Prefix is carried in-line and interface identifier is elided.
10: Prefix is elided and interface identifier is carried in-line.
11: Prefix and interface identifier elided are elided.

Bits 2 and 3 Destination Address
00: Prefix and interface identifier are carried in-line.
01: Prefix is carried in-line and interface identifier is elided.
10: Prefix is elided and interface identifier is carried in-line.
11: Prefix and interface identifier elided are elided.

Bit 4 Traffic Class and Flow Label
0: 28 bits are carried in-line.
1: Traffic Class and Flow Label are zero.

Bits 5 and 6 Next Header
00: 8 bits are carried in-line.
01: next header is UDP.
10: next header is ICMP.
11: next header is TCP.

Bit 7 HC2 encoding
0: No more header compression bits.
1: transport layer header is compressed.

Table 2.1: 6LoWPAN Header Compression According to RFC 4944 Specification

In 6LoWPAN stateless compression, HC2 compresses only the UDP header.
1-octet field, called HC_UDP encoding, is used to compress the UDP header.
The UDP header is compressed only if the last bit in HC1 encoding is set to 1.
Table 2.2 depicts the HC2 compression according to the RFC 4944 standard.
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HC_UDP encoding UDP fields
Bit 0 UDP source port

0: carried in-line.
1: compressed to 4 bits. Source port in this case is
61616 (0xF0B0)+4 bits carried in-line.

Bit 1 UDP destination address
0: carried in-line.
1: compressed to 4 bits. Source port in this case is
61616 (0xF0B0)+4 bits carried in-line.

Bit 2 Length
0: carried in-line.
1: compressed. Length computed from IPv6 header
length information. The value of the UDP length
field is equal to the Payload Length from the IPv6
header, minus the length of any extension headers
present between the IPv6 header and the UDP header.

Bits(3-7) Reserved

Table 2.2: HC2 Header Compression According to RFC4944 standard

In some LoWPANs, a device may send or receive packets to some nodes ex-
ternal to the LoWPAN. In this case, only the interface identifier of the source
address can be compressed. The IETF working group emerged a second gen-
eration of header compression specification called draft-ietf-6lowpan-hc [16].
Compared to RFC 4944 specification, it introduced a few changes to enable the
compression of global addresses. This specification offers to nodes the oppor-
tunity to establish some additional context when joining the LoWPAN. This
context is exchanged between the motes to be used then for the address field
compression. To guarantee the context synchronization between the compres-
sor and the decompressor, 6LoWPAN nodes should use the context when a
higher layer protocol is used. This is due to the fact that higher layers protect
IPv6 addresses by using a pseudo-header-based cheksum and/or authentica-
tor. The structure of 6LoWPAN header compression in both specifications is
depicted in Figure 2.11.

Simitar to the stateless compression with RFC 4944, the context-based
header compression is composed of a dispatch, an encoding field (called also
LOWPAN-IPHC) and the uncompressed fields. The LOWPAN-IPHC field is
coded in 2 bytes . It controls which IPv6 fields are compressed. Tables 2.3
and 2.4 show how 6LoWPAN header is compressed/decompressed.
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LOWPAN-IPHC IPv6 fields
Bits 3 and 4 (TF) Traffic Class and Flow Label

00: both Flow Label and Traffic Class are carried in-line.
(4 bytes)
01: only Flow Label is carried in-line.(3 bytes)
10: only Traffic Class is carried in-line.(8 bits)
11: Traffic Class and Flow Label are compressed.

Bit 5 (NH) Next Header
0: next header is carried in-line.(8 bits)
1: next header is compressed.

Bits 6 and 7 Hop Limit
(HLIM) 00: hop limit is carried in-line.

01: hop limit is compressed and equal to 1.
10: hop limit is compressed and equal to 64.
11: hop limit is compressed and equal to 255.

Bit 8 (CID) Context Identifier Extension
0: No additional 8-bit Context Identifier Extension is used.
1: An additional 8-bit Context Identifier Extension field im-
mediately follows the DAM field.

Bit 9 (SAC) Source Address Compression
0: Source address compression uses stateless compression.
1: Source address compression uses stateful, context-based
compression.

Bits 10 and 11 Source Address Mode
(SAM) If SAC=0:

00: source address is carried in-line.(128 bits)
01: the first 64-bits of the address are elided. The value of
those bits is the link-local prefix padded with zeros.
10: the first 112 bits of the address are elided. The value
of those bits is the link-local prefix padded with zeros. The
remaining 16 bits are carried inline.
11: the address is fully elided.
If SAC=1:
00: reserved
01: The address is derived using source context identifier
(the first 4 bits of Context Identifier Extension) and the
64 bits carried inline.
10: The address is derived using source context identifier
and the 64 bits carried inline.
11: The address is derived using context information and
possibly link-layer addresses.

Bit 12 (M) Multicast Compression
0: Destination address does not use multicast compression.
1: Destination address uses multicast compression.

Table 2.3: LOWPAN-IPHC Header Compression
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LOWPAN-IPHC IPv6 fields
Bit 13 (DAC) Destination Address Compression

0: Destination address compression uses stateless compres-
sion.
1: Destination address compression uses stateful, context-
based compression.

Bits 14 and 15 Destination Address Mode
(DAM) If M=0 and DAC=0:

00: Full address is carried in-line. (128 bits)
01: The first 64-bits of the address are elided. The value
of those bits is the link-local prefix padded with zeros.
10: The first 112 bits of the address are elided. The value
of those bits is the link-local prefix padded with zeros.
The remaining 16 bits are carried inline.
11: The address is fully elided.
If M=0 and DAC=1:
00: reserved.
01: The address is derived using destination context identi-
fier and the 64 bits carried inline.
10: The address is derived using destination context identi-
fier and the 16 bits carried inline.
11: Full address is compressed.
if M=1 and DAC=0:
00: 48 bits are carried in-line. The address takes the form
FFXX::00XX:XXXX:XXXX.
01: 32 bits are carried in-line. The address takes the form
FFXX::00XX:XXXX.
10: 16 bits are carried in-line. The address takes the form
FF0X::0XXX.
11: 8 bits are carried in-line. The address takes the form
FF02::00XX.
if M=1 and DAC=1:
00: Full address is carried in-line. (128 bits)
01: 48 bits are carried in-line.
10: Reserved.
11: Reserved.

Table 2.4: LOWPAN-IPHC Header Compression (continuation)

2.4.1.3 Forwarding and Routing

In a LoWPAN, packets have to traverse multiple radio hops. This involves
two processes: routing and forwarding. They can be implemented either in
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the link layer or in the network layer. 6LoWPAN supports both forwarding
approaches. Forwarding when it is performed on link layer is called Mesh-
Under [17]. Link layer addresses are used to forward packets. A device would
therefore be seen as a single IP link. In this case, routing is performed on
the adaptation layer. However, there is problem that must be solved: to
forward a packet to its destination, a node must know the final destination
address. Besides that, nodes need to know the originator address to achieve
some services like reassembly. Thus, source and destination addresses must be
stored somewhere since each forwarding step replaces the link-layer destination
address by the address of the next hop and the link-layer source address by
the address doing the forwarding. 6LoWPAN defines mesh header in order to
store necessary information for forwarding. Mesh header is depicted in Figure
2.12.

0 1 O F Hops left

(4 bits)

Originator address

(16 – 64 bits)

Final address

(16 -64 bits)

0 1 O F 0xF Hops left

(8 bits)

Originator address

(16 – 64 bits)

Final address

(16 -64 bits)

Figure 2.12: Mesh Header

Since IEEE 802.15.4 protocol supports 16-bit and 64-bit addresses, the
value of the originator flag (O) and the final flag (F) in mesh header is set to
one if address length is 16. Hops left field defines the number of intermediate
hops between the source and the destination. When the number of hops is
less than 15, the size of Hops left is optimized to 4 bits (first case in Figure
2.12). If a value of 15 or larger is needed, four bits are set to 1 (0xF) and
another 8 bits are included for Hops left (second case in Figure 2.12). The
value of Hops left is decremented by a forwarder before sending the message
to the next hop. If it reaches zero, the packet is discarded. The sender set
the originator address to its own link-layer address and the final address to
the packet’s ultimate address.

The second approach of forwarding is called Route-Over. It is performed
on network layer. The Route-Over forwarding approach relies on IP routing.
The routing is performed on network layer and each node can serve as an IP
router.
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2.4.2 Neighbor Discovery

Neighbor discovery mechanism was firstly introduced with the IPv6 proto-
col. The goal of this mechanism is to provide a set of key auto-configuration
features for IPv6 like discovery of neighbor presence and discovery of routers
on the link. This includes also prefix discovery, link layer addresses, infor-
mation about paths to active neighbor, etc. Neighbor discovery specifies four
ICMP message types: Router Solicitation (RS), Router Advertisement (RS),
Neighbor Solicitation (NS) and Neighbor Advertisement (NA). In what follow,
we describe the packet formats and the associated services.

Neighbor Solicitation (NS) message allows a device to check the existence
and the reachability of a neighbor. It is sent by a mote to obtain or confirm
the link layer address of a neighbor for which it knows the IP address. They
are also used for address resolution. NS messages are multicast packets whose
source address is the address of the requesting mote or the unspecified address.
The format of NS is shown in figure 2.13 [14]. It is composed mainly of ICMP
fields and the target address. The ICMP header is mainly composed by

• type: 8-bit type field that indicates the type of the message,

• code: 8-bit field used to provide additional granularity for a given ICMP
message type,

• checksum: 16-bit field that detects accidental errors that may be intro-
duced while transmitting or storing the message.

Figure 2.13: Neighbor Solicitation Message Format

Neighbor Advertisement (NA) messages are sent in response to NS mes-
sages. They provide the link layer address to the requesting mote. They are
also used in unsolicited way to inform an address change or a mobility event.



2.4. 6LoWPAN Protocol 21

The source address in these packets is the sender address. The destination ad-
dress is the requested address presented in NS message. If the source address
of NS messages is an unspecified address, then the destination address is the
multicast address. When we compare NS message format with NA message
format, presented in figure 2.14, we notice that NA contains three additional
bits. The first bit is used to indicate that the sender is a router. The sec-
ond bit indicates whether the message is sent in response to a NS request.
The third bit, or O-bit, indicates that the advertisement should override an
existing cache entry [14].

Figure 2.14: Neighbor Advertisement Message Format

Router Advertisement (RA) messages are used by routers to advertise their
presence. They are used in unsolicited way as well as in a solicited way in
response to router solicitation. Figure 2.15 shows the format of RA messages.
In addition to ICMP fields, these messages contain:

• Current Hop Limit: is used in the hop count field of an IPv6 header.

• The M-bit: advertise hosts to use the administered stateful protocol for
address auto-configuration.

• The 0-bit: indicates if other configuration information can be obtained.

• Router Lifetime: is the lifetime in seconds of the associated default route.

• Reachable Time: is the time between reachability confirmation and re-
quest.

• Retransmission timer: is the time in milliseconds between the retrans-
mission of a neighbor solicitation messages.
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Figure 2.15: Router Advertisement Message Format

The Router Solicitation message is sent by a node to request the reacha-
bility of a router. The RS messages contain simply the ICMP fields. Figure
2.16 presents the format of a router solicitation message.

Figure 2.16: Router Solicitation Message Format

2.5 The RPL Protocol

RPL is a distance-vector (DV) and a source routing protocol that is de-
signed to operate on top of several link layer mechanisms including IEEE
802.15.4 PHY and MAC layers. It targets collection-based networks, where
nodes periodically send measurements to a collection point. A key feature in
RPL is that it represents a specific routing solution for low power and lossy
networks [14] [44], which stand for networks with very limited resources in
terms of energy, computation and bandwidth turning them highly exposed to
packet losses. In fact, it has been specifically designed to meet the require-
ments of resource-constrained nodes as mentioned in the routing requirement
terminology document [45]. In particular, RPL enabled LLNs take into ac-
count two main features (i.) the prospective data rate is typically low (less
than 250 kbps), and (ii.) communication is prone to high error rates, which
results in low data throughput. A lossy link is not only characterized by a high
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Bit Error Rate (BER) but also the long inaccessibility time, which strongly
impacts the routing protocol design. In fact, the protocol was designed to
be highly adaptive to the network conditions and to provide alternate routes,
whenever default routes are inaccessible.

RPL is based on the topological concept of Directed Acyclic Graphs (DAGs).
The DAG defines a tree structure that specifies the default routes between
nodes in the LLN. However, a DAG structure is different from a typical tree
in the sense that a node might associate to multiple parent nodes in the DAG,
in contrast to classical trees where only one parent is allowed. More specifi-
cally, RPL organizes nodes as Destination-Oriented DAGs (DODAGs), where
most popular destination nodes (i.e. sinks) or those providing a default route
to the Internet (i.e. gateways) act as the roots of the DAGs. A network
may consist of one or several DODAGs, which form together an RPL instance
identified by a unique ID, called RPLInstanceID. A network may run multiple
RPL instances concurrently; but these instances are logically independent. A
node may join multiple RPL instances, but must only belong to one DODAG
within each instance. Figure 2.17 shows an example of RPL instances with
multiple DODAGs.

Rank=3

Rank=1

Rank=0

Rank=2

Rank=3

Rank=1

DODAG 
Root 1

2

3 4

5

6

DODAG 
Root 3

12

13

14

15

16

Internet, IPv6

DODAG 
Root 2

7

8 10

9

11

Instance 1 Instance 2

P2MP MP2P

DAG1 DAG2 DAG3

Figure 2.17: A RPL network with 3 DODAGs in 2 instances

2.5.1 Network Model

RPL defines three types of nodes:

• Low Power and Lossy Border Routers (LBR): it refers to the root of a
DODAG that represents a collection point in the network and has the
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ability to construct a DAG. The LBR also acts as a gateway (or edge
router) between the Internet and the LLN.

• Router: it refers to a device that can forward and generate traffic. Such
a router does not have the ability to create a new DAG, but associates
to an existing one.

• Host: it refers to an end-device that is capable of generating data traffic,
but is not able to forward traffic.

The basic topological component in RPL is the DODAG, a Destination
Oriented DAG, rooted in a special node called DODAG root. The DODAG
root has the following properties: (i.) it typically acts as an LBR, (ii.) it
represents the data sink within the directed acyclic graph, (iii.) it is typically
the final destination node in the DODAG, since it acts as a common transit
point that bridges the LLN with IPv6 networks, (iv.) it has the ability to
generate a new DODAG that trickles downward to leaf nodes.

Each node in the DODAG is assigned a rank. The rank of a node is defined
in [44] as the nodes individual position relative to other nodes with respect to
a DODAG root. It is an integer that represents the location of a node within
the DODAG. The rank strictly increases in the downstream direction of the
DAG, and strictly decreases in the upstream direction. In other words, nodes
on top of the hierarchy receive smaller ranks than those in the bottom and
the smallest rank is assigned to the DODAG root.

The architecture of a DODAG is similar to a cluster-tree topology where
all the traffic is collected in the root. However, the DODAG architecture
differs from the cluster-tree in the sense that a node can be associated not
only to its parent (with higher rank), but also to other sibling nodes (with
equal ranks). The rank is used in RPL to avoid and detect routing loops, and
allows nodes to distinguish between their parents and siblings in the DODAG.
In fact, RPL enables nodes to store a list of candidate parents and siblings
that can be used if the currently selected parent loses its routing ability.

In the construction process of network topology, each router identifies a
stable set of parents on a path towards the DODAG root, and associates
itself to a preferred parent, which is selected based on the Objective Function
(OF). The Objective Function defines how RPL nodes translate one or more
metrics into ranks, and how to select and optimize routes in a DODAG. It
is responsible for rank computation based on specific routing metrics (e.g.
delay, link quality, connectivity, etc. ...) and specifying routing constraints
and optimization objectives. The design of efficient Objective Functions is still
an open research issue. A couple of drafts have been proposed. In [46], the
draft proposes to use the Expected Number of Transmission (ETX) required to
successfully transmit a packet on the link as the path selection criteria in RPL
routing. The route from a particular node to the DODAG root represents the
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path that minimizes the sum of ETX from source to the DODAG root. In [47],
the draft proposes Objective Function 0 (OF0), which is only based on the
abstract information carried in an RPL packet, such as Rank. OF0 is agnostic
to link layer metrics, such as ETX, and its goal is to foster connectivity among
nodes in the network.

2.5.2 RPL Control Messages

RPL messages are specified as a new type of ICMPv6 Control Messages,
whose structure is depicted in figure 2.18.

According to [48], the RPL Control Message is composed of (i.) an ICMPv6
header, which consists of three fields: Type, Code and Checksum, (ii.) a
message body comprising a message base and a number of options.

Figure 2.18: RPL Control Message

The Type field specifies the type of the ICMPv6 Control Message prospec-
tively set to 155 in case of RPL (still awaiting confirmation from Internet
Assigned Number Authority (IANA), as of version 17 of the draft). The Code
field identifies the type of RPL Control Message. Four codes are currently
defined:

• DODAG Information Solicitation (DIS): The DIS message is mapped to
0x00, and is used to solicit a DODAG Information Object (DIO) from an
RPL node. The DIS may be used to probe neighbor nodes in adjacent
DODAGs. The current DIS message format contains non specified flags
and fields for future use.
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• DODAG Information Object (DIO): The DIO message is mapped to
0x01, and is issued by the DODAG root to construct a new DAG and
then sent in multicast through the DODAG structure. The DIO message
carries relevant network information that allows a node to discover a RPL
instance, learn its configuration parameters, select a DODAG parent
set, and maintain the DODAG. The format of the DIO Base Object is
presented in Fig. 2.19.

RPLInstanceID Version Number Rank

G 0 MOP Prf DTSN Flags Reserved

DODAGID

8 bits 8 bits 16 bits

Options

Figure 2.19: The DIO message format

The main DIO Base Object fields are: (i.) RPLInstanceID, is an 8-bit
information initiated by the DODAG root that indicates the ID of the
RPL instance that the DODAG is part of, (ii.) Version Number, in-
dicates the version number of a DODAG that is typically incremented
upon each network information update, and helps maintaining all nodes
synchronized with new updates, (iii.) Rank, a 16-bit field that speci-
fies the rank of the node sending the DIO message, (iv.) Destination
Advertisement Trigger Sequence Number (DTSN) is an 8-bit flag that
is used to maintain downward routes, (v.) Grounded (G) is a flag in-
dicating whether the current DODAG satisfies the application-defined
objective, (vi.) Mode of Operation (MOP) identifies the mode of opera-
tion of the RPL instance set by the DODAG root. Four operation modes
have been defined and differ in terms of whether they support downward
routes maintenance and multicast or not. Upward routes are supported
by default. Any node joining the DODAG must be able to cope with
the MOP to participate as a router, otherwise it will be admitted as a
leaf node, (vii.) DODAGPreference (Prf) is a 3-bit field that specifies
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the preference degree of the current DODAG root as compared to other
DODAG roots. It ranges from 0x00 (default value) for the least pre-
ferred degree, to 0x07 for the most preferred degree, (viii.) DODAGID
is a 128-bit IPv6 address set by a DODAG root, which uniquely iden-
tifies a DODAG. Finally, DIO Base Object may also contain an Option
field.

• Destination Advertisement Object (DAO): The DAO message is mapped
to 0x02, and is used to propagate reverse route information to record the
nodes visited along the upward path. DAO messages are sent by each
node, other than the DODAG root, to populate the routing tables with
prefixes of their children and to advertise their addresses and prefixes to
their parents. After passing this DAO message through the path from
a particular node to the DODAG root through the default DAG routes,
a complete path between the DODAG root and the node is established.
Figure 2.20 illustrates the format of the DAO Base Object.

RPLInstanceID K D Flags Reserved DAOSequence

DODAGID

8 bits 8 bits 8 bits 8 bits

Options

Figure 2.20: The DAO message format

As shown in the figure, the main DIO message fields are: (i.) RPLIn-
stanceID, is an 8-bit information indicates the ID of the RPL instance
as learned from the DIO, (ii.)K flag that indicates whether and acknowl-
edgement is required or not in response to a DAOmessage, (iii.)DAOSequence
is a sequence number incremented at each DAO message, (iv.)DODAGID
is a 128-bit field set by a DODAG root which identifies a DODAG. This
field is present only when flag D is set to 1.

• Destination Advertisement Object Acknowledgment (DAO-ACK): The
DAO-ACK message is sent as a unicast packet by a DAO recipient (a
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DAO parent or DODAG root) in response to a unicast DAO message. It
carries information about RPLInstanceID, DAOSequence, and Status,
which indicate the completion. Status code are still not clearly defined,
but codes greater than 128 mean a rejection and that a node should
select an alternate parent.

2.5.3 DODAG Construction

The DODAG construction is based on the Neighbor Discovery (ND) pro-
cess, which consists in two main operation (1) Unicast transmission of DIO
control messages issued by the DODAG root to build routes in the downward
direction from the root down to client nodes, (2) Broadcast of DAO control
messages issued by client nodes and sent up to the DODAG root to build
routes in the upward direction.

In order to construct a new DODAG, the DODAG root broadcasts a DIO
message to announce its DODAGID, its Rank information to allow nodes to
determine their positions in the DODAG, and the Objective Function identi-
fied by the Objective Code Point (OCP) within the DIO Configuration option
fields. This message will be received by a client node which can be either a
node willing to join or an already joined node.

When a node willing to join the DODAG receives the DIO message, it
(i.) adds the DIO sender address to its parent list, (ii.) computes its rank
according to the Objective Function specified in the OCP filed, such that the
nodes rank is greater than that of each of its parents, and (iii.) forward the
DIO message with the updated rank information. The client node chooses
the most preferred parent among the list of its parents as the default node
through which inward traffic is forwarded. When a node already associated
with DODAG receives another DIO message, it can proceed in three different
ways (i.) discard the DIO message according to some criteria specified by
RPL, (ii.) process the DIO message to either maintain its location in an
existing DODAG or (iii.) improve its location by getting a lower rank in
the DODAG based on computing the path cost specified by the Objective
Function. Whenever a node changes its rank, it must discard all nodes in the
parents list whose ranks are smaller than the new computed nodes rank to
avoid routing loops.

2.6 Conclusion

In this chapter, we have presented an overview on wireless sensor networks.
We have also introduced 6LoWPAN networks. In a first step, we described
IEEE 802.15.4 protocol as it presents the lower layer protocol. Then, we
highlighted the different features of the 6LoWPAN adaptation layer. Finally,
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we presented the newly defined routing protocol: RPL. In the next chapter,
we describe in depth the original version of the Z-Monitor monitoring tool
and our proposition to extend this tool to support IPv6 based protocols.
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3.1 Introduction

Monitoring Wireless Sensor Networks is a fundamental task to report the
performance of the network behavior in real-world deployments. In order
to ensure that a network is operating at the desired performance level, it
is fundamental to have a powerful protocol analyzer. With respect to IP-
based networking protocols, there are numerous tools to sniff and analyze
packets. When it comes to developing low-level protocols for Wireless Sensor
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Networks using IEEE 802.15.4-based radios for communication, the choice of
such tools is limited and too expensive. Thus, it was necessary to design
a monitoring tool to sniff radio packets: Z-Monitor. Towards this goal, the
present chapter starts by presenting the new design of Z-Monitor to support
6LoWPAN networks. Then, we validate the tool by comparing its performance
with other monitoring tools.

3.2 Related Works

3.2.1 Research Efforts

Monitoring and debugging of WSNs typically require instrumentation of
sensor nodes and introduce monitoring protocols in-band with the actual sen-
sor network traffic. For instance, in [18], the authors proposed Sympathy, a
tool for automatically detecting and debugging failures in WSNs. The sys-
tem is based on sending in-band metric data to a sink, where the information
will be processed and potential failures are identified. No GUI nor protocol
analysis components are provided in this tool. Also, it only supports a fixed
set of problems (i.e. failure), while for LoWPAN, monitoring an extensible
framework is needed.

Another recognizable effort for WSN monitoring is Snif [19], which is an
extensible solution but does require multiple dedicated sniffers and does not
focus on IEEE 802.15.4-based LoWPANs. SpyGlass [20] is another WSN visu-
alization tool in which the data emitted by individual sensor nodes is collected
by gateway software and is then passed on via TCP/IP to the visualization
software on a potentially remote machine. The main focus of this work is on
the visualization and not the data analysis and network performance. In [21]
the authors have presented a multi-sniffer, multi-view application in which
special hardware multiple sniffers are deployed and data emitted by indi-
vidual sensor nodes is collected by these sniffers and is later used to view
network topology, sensing data, network performance, hardware resource de-
pletion, etc. This work also needs special hardware which is expensive and
mostly proprietary. An effort to combine real-network testbed visualization
and simulation results is made in [22]. This work is focused on providing both
simulation and visualization functions to assist the investigation of algorithms
in WSNs and cares less the testbeds monitoring.

There are some recent efforts focused on IEEE 802.15.4 monitoring, e.g.
[23], [24], and [25]. In [23] a TinyOS-based sniffer is presented which focuses
on capturing the packets and displaying the packet information. The work
does not cover ZigBee or 6LoWPAN packet handling. A distributed moni-
toring and protocol analysis tool SNDS is presented in [24]. This work tries
to combine TCP/IP networks with sensor networks but uses special sniffer
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hardware which is generally expensive and proprietary. The solution in [25]
is focused on network monitoring and management of 6LoWPAN but it con-
centrates more on providing Simple Network Management Protocol (SNMP)
inter-operability with 6LoWPAN rather than detailed packet analysis.

3.2.2 Related Products

There are some products that focused on IEEE 802.15.4 monitoring. In
this section, we give a brief overview on the existing monitoring tools. Then,
we discuss the features of each product and justify the choice of Z-Monitor.

Sensor Network Analyzer (SNA) [26] is a monitoring software for ZigBee-
based WSN developed and released by Daintree Network, which is among the
ZigBee Alliance members. The SNA has advanced visualization capabilities
and has the ability to show the network as a whole. It also enables the end-user
to view all devices and interactions simultaneously. From this system view, it
is possible to collect critical performance metrics such as end to-end latency
or packet loss. The Daintree SNA product is a comprehensive solution for
ZigBee and 802.15.4 testing, analysis and commissioning. However, its high
cost prevents its use at a wide level.

The CC2420 packet sniffer [27] captures, filters and decodes IEEE 802.15.4
MAC packets, and displays them in a convenient way. Frames may be filtered
based on frame type and addressing information. Data may be stored to
a binary file format. Data frames, beacon frames, command frames and ac-
knowledgement frames are decoded separately, and each field for each frame is
decoded and displayed separately on screen. This tool only considers the Phys-
ical, MAC and network layers of the IEEE 802.15.4/ZigBee protocol stack. It
does not present any analysis of the data application layer and does not pro-
vide any means for monitoring and controlling large-scale multi-hop networks.

The ZENA tool [28] is a wireless network analyzer that graphically dis-
plays wireless network traffic following the IEEE 802.15.4 specification on the
2.4GHz band.The ZENA analyzer supports the ZigBee, MiWi and MiWi P2P
protocols. In conjunction with the hardware packet sniffer, the software can
analyze network traffic and graphically displays decoded packets. It can also
display a graphical representation of the network topology and the messages
as they flow through the network. This information can then be saved and/or
exported for further analysis. However, it does not support the analysis of
many LoWPAN protocols such as 6LoWPAN and RPL.

Wireshark [29] is a free and open-source packet analyzer tool. It is used
largely for network troubleshooting, analysis, software and communications
protocol development, and education. It provides a user-friendly interface
with storing and filtering features. Wireshark supports capturing packets in
both from live network and from a saved capture file. The capture file format
is libpcap format like that in tcpdump. It supports various kinds of operating
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systems. However, Wireshark does not detect automatically the USB interface
of some WSN platforms to capture data. In addition, it cannot display the
graphical topology representation of the network.

Z-Monitor [30] is a free tool for monitoring, maintaining and testing ZigBee-
based WSNs. Z-Monitor was designed and implemented to be interoperable
with TKN and Open-ZB implementations, which are open source implementa-
tions of the standard distributed with TinyOS operating system. It is specially
used by researchers and students for debugging and deploying WSN applica-
tions based on LoWPANs. It supports decoding IEEE 802.15.4 and Zigbee
protocols. It has Graphical User Interface (GUI) that provides frame decod-
ing, traffic timeline, packet statistics, etc. This solution overcomes most of the
shortcoming of existing solutions. It is open source, does not require special
sniffer hardware and is easy to extend. Thus, we assert to extend Z-Monitor
to support more protocols.

3.3 Z-Monitor2.1 Design

Compared to the first version, the new version of Z-Monitor is more struc-
tured and provides a more sophisticated graphical user interface. The work
that we have done to release this new version is as follow: first, we reorga-
nized the code to make it more modular. Then, we designed a new decoding
process. Finally, we extended it to support more protocols and features.

3.3.1 Code Reorganization

The code of the old version of Z-Monitor was not well structured: there are
no separation between the graphical interfaces and the decoding task. Figure
3.1 presents the UML diagram of Z-Monitor classes as implemented in the old
version. This version is mainly composed of seven classes:

• Zmonitor class: represents the main class of the tool. It is responsible
of displaying all the GUI on the screen and user interaction. It doesnt
contain any decoding task.

• Zsniffer class: is responsible of decoding task and drawing packet sniffer
interface.

• Zmote class: is a class that contains all the attribute of a sensor mote in
the network like its MAC address.

• PointMote class: is used to localise a sensor mote in the network. This
class is mainlly used to draw the topology.

• ThemeChange class: is used to change Z-Monitor theme.
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• Zmap class: used to draw the network topology. It looks like a simulation
of the network parameters: motes coordinates, links between motes,
motes type...

• MoteTimeLine class: is a class that displays the received packet over the
time.

Figure 3.1: Original Code Structure

It was really difficult to understand the original code of Z-Monitor. So,
in a first step, we separated the decoding task from the display task. In
addition, we added some improvements to ameliorate the display. Then, we
structured it into packages. Finally, we integrated the necessary methods or
classes to support 6LoWPAN and RPL protocols. The code of Z-Monitor
after performing all these modifications is depicted in figure 3.2.
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Figure 3.2: Z-Monitor New Code Structure

3.3.2 Design

The software design objective of Z-Monitor is to provide an open source,
extensible, modular and user-friendly solution for LoWPAN monitoring [56].
Z-Monitor allows for passive monitoring of IEEE 802.15.4-based networks
and for analyzing the network behavior through statistical data analysis. Z-
Monitor relies on a particular sensor node acting as a passive sniffer that
captures network traffic and redirects it to a user-friendly Graphical User
Interface (GUI). The fundamental advantage of Z-Monitor as compared to
commercially available products such as CC2420 Sniffer, Daintree Network
Analyzer and Zena is that it is independent of any special hardware and sim-
ply relies on a simple mote to capture traffic.

To meet the aforementioned objectives, a component-based approach has
been used to design Z-Monitor. The block diagram of the main components
is shown in figure 3.3 [31].
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Figure 3.3: Z-Monitor Design Architecture

According to figure 3.3, Z-Monitor has two types of component: hardware
and software. The hardware component is used to capture the packets; while
software components are used to store collected packets in a buffer, to perform
parsing and packet decoding and finally to display parsed frames and output
network statistics.

3.3.2.1 Hardware Component

The sniffer hardware is simply an IEEE 802.15.4-compliant sensor mote,
which passively captures the network traffic. Each received packet is redirected
to the serial interface through which the sniffer is attached to forward that
packet to the software sniffing threads. The sniffer hardware that we have used
is a simple TelosB mote that implements tknsniffer application available under
TinyOS. The tknsniffer application switches the USB port into promiscuous
mode and subsequently sniffs all packets that come along.

Z-Monitor takes the serial port of the router as an input to analyze packets
exchanged through the network. When we wanted to test it with BLIP im-
plementation, Z-Monitor was not able to capture packets because the router’s
USB port is used by the routing protocol driver. The solution that we have
proposed is to use a second router that plays the role of the sniffer for Z-
Monitor. To be sure that we grab all packets on CC2420 hardware, we forced
the address recognition and acknowledgements to be off by modifying the
makefile of the second router. However, this solution can only capture 6LoW-
PAN packets, and thus acknowledgement frames, for example, were not cap-
tured. According to 6LoWPAN specification, IP and 6LoWPAN packets are
transmitted only through data frames. This means that only IEEE 802.15.4
data frames are captured by the sniffer application in this case. Thus, we
looked for another solution to capture all packet types including acknowledg-
ments.

To this end, we used TknSniffer application as a second solution to cap-
ture the 6LoWPAN packets. TknSniffer is a tinyOS application developed by
Jan Hauer. It can be found in Z-Monitor package download. This applica-
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tion works as follow: it switches the USB port into promiscuous mode and
subsequently sniffs all packets that comes along.

3.3.2.2 Software Component

After being captured by the hardware component, a packet is sent to the
software component starting by the sniffer component. The sniffer component
reads the data from the mote through a serial forwarder and processes it to
be interpreted into a more logical format. We have implemented a Java class
Zsniffer which is used to sniff the traffic, capture packets coming from the
attached mote running tknsniffer application and redirect it to the buffer
component.

The main role of the buffering component is to store the incoming bit-
stream of data in the volatile memory to avoid any packet loss. We imple-
mented the class Zbuffer to handle this operation. There are two possible
options for buffering. The first option is to store packets into a data structure
after parsing. The second option is to store packets as a string bit-stream
before parsing. The first option has the advantage of quicker fetching of pack-
ets fields as compared to the second option, which needs to apply parsing
each time a packet is needed. However, the second buffering option has the
advantage of being independent of packet types and requires less memory size
than the first option. For that purpose, we have opted for buffering the raw
bit-stream before parsing, in particular fetching fields of previously received
packets is not a frequent or time-constrained operation.

The parser component has a key role as it is responsible of decoding the
packet correctly and extracting all its fields. The Java class Zparser was im-
plemented to parse packets of different supported protocols namely IEEE
802.15.4 MAC Layer, 6LoWPAN and ZigBee Network Layers, and ICMP
Headers (i.e. RPL routing protocol). This parsing has been verified so that
it supports the different open source implementations of these protocols. De-
coded packets are assigned to objects of the same type of packets. To this
end, we have considered a hierarchical design of packets where:

• Zpacket class represents Physical Layer attributes,

• ZIEEE802154 class inherits from Zpacket and defines IEEE 802.15.4
MAC Layer attributes,

• Z6LOWPAN class represents 6LoWPAN packets,

• ZZigBee class for ZigBee packets,

• ZICMPv6 class for ICMPv6 packets.
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These classes implement: (i.)the decoding of all IEEE 802.15.4 frames namely
data, beacon, MAC command and acknowledgement frames. (ii.) both 6LoW-
PAN stateless compression and context-based compression. (iii.) the decoding
of ICMP header including RPL packets.

The role of the data manipulation component is to display packet fields and
perform useful statistics. The display is made through a comprehensive GUI
that provides the end-user with two viewing modes for packet analysis: plain
view, in which the fields of each packet are displayed in a row with a time line
panel that shows sequence of exchanged packets, and layered view, similar to
WireShark display, in which a packet is displayed layer by layer (i.e. Physical
Layer, then MAC Layer, then Network Layer, ...). In addition to display,
Z-Monitor provides users with statistical analysis of the traffic including total
number of packets, average number of packets, average packet size, etc.

One of the problems of the Z-Monitor first version is that it does not have
a storage component. The received packets are automatically decoded and
displayed on the screen. This presents a big problem specially when perform-
ing statistics. Thus, we have implemented a component storage in the new
version of Z-Monitor to make possible the off-line analysis of the incoming
traffic. Two types of storage means are proposed: (i.) file storage: packets are
dumped into a file formatted as XML or text format. Our storage also sup-
ports WireShark format (.pcap) to ensure compatibility with it. (ii.) database
storage: packets are inserted as bit-stream records in a remote database. This
enables to efficiently share data among users over the Internet and would help
to extend Z-Monitor for supporting multiple sniffers in the future. We have
implemented the abstract class ZStorage from which two classes ZfileStorage
and ZdatabaseStorage inherits for handling file and database storage, respec-
tively.

3.3.3 Features

Several implementations have been released for 6LoWPAN protocol. Z-
Monitor supports three implementations:

• BLIP [33]: is an implementation of 6LoWPAN under TinyOS [34] oper-
ating system.

• uIPv6: is an implementation of 6LoWPAN under Contiki[35] operating
system.

• ContikiRPL: an implementation of the RPL protocol under Contiki op-
erating system.

In addition to these implementations, Z-Monitor provides an interactive
GUI and a statistical analysis of the traffic. The configuration of the network
was performed using three panels in the old version: the first panel is used to
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choose the operating system type, the second panel to select the port number
and the third panel to set the mote type. To make the configuration easier
and faster, we implemented a new configuration panel that gathers all steps
together. The new resulting panel is shown in figure 3.4.

Figure 3.4: Z-Monitor Configuration Panel

As already mentioned, Z-Monitor offers two panels for displaying packets
decoding. The first one, called packet sniffer, shows the meaning of each field
in the packet. This panel shows also the sequence of the packets received over
time. The packet sniffer panel is depicted in figure 3.5.
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Figure 3.5: Packet Sniffer Panel

The second displaying panel is called packet analysis. This panel shows
the details of each protocol namely IEEE 802.15.4, 6LoWPAN and ICMP in
case of 6LoWPAN implementation. This panel is presented in figure 3.6.

Figure 3.6: Packet Analysis Panel

Another useful panel in Z-Monitor is packet statistics. This panel is used
to display useful statistics about the number and the type of packets received
by the sniffer. This part of GUI is depicted in figure 3.7.
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Figure 3.7: Statistics Panel

3.4 Validation

In this section, we present an experimental study that shows how to per-
form monitoring and performance evaluation of ZigBee, 6LoWPAN and RPL
protocols using Z-Monitor. The objectives of the experimental study are man-
ifold:

• To demonstrate the capabilities of Z-Monitor for network monitoring.

• To validate Z-Monitor tools support for various IEEE 802.15.4-based
networks.

• To show how Z-Monitor is useful in evaluating the performance of IEEE
802.15.4-based WSNs.

• To present the collection of network statistics using Z-Monitor.

3.4.1 Network Test-Bed

The constructed network consists of 12 nodes: one sniffer mote running
tknsniffer TinyOS application, one Base Station running IPBaseStation TinyOS
application for BLIP or uip6-bridge for Contiki that does the bridging to the
nodes running uIPv6, and 10 identical router nodes distributed around the
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Base Station. The network topology scenario used in these experiments is
presented in figure 3.8.

Figure 3.8: Experimental Testbed

As shown in figure 3.8, TelosB motes were deployed within a single broad-
cast domain, i.e. a single-hop network. The transmission power of nodes
was set to 0 dBm which is the maximum available transmission power. This
transmission power makes the communication range of about 50 m. The fre-
quency channel was set to 26. We have considered the available open-source
implementations of ZigBee and 6LoWPAN protocols namely, the TinyOS
IEEE 802.15.4/ZigBee implementation, the TinyOS 6LoWPAN implementa-
tion (BLIP) and the Contiki 6LoWPAN implementation (uIPv6).

In the following sections, we (i.) demonstrate how Z-Monitor is used to
monitor and analyze BLIP and uIPv6, (ii.) evaluate and compare the perfor-
mance of two well-known 6LoWPAN implementations, i.e., uIPv6 on Contiki
and BLIP on TinyOS, and, (iii.) evaluate the performance of the recently
drafted RPL routing protocol under Contiki operating system (this part will
be detailed in the next chapter), using Z-Monitor.

3.4.2 WPAN Monitoring and Analysis of Standard Protocols

Zigbee [9] is a specification ratified by ZigBee Alliance on 2004. It defines
a protocol for upper layers ranging from the network layer to the application
layer. It uses the IEEE 802.15.4-2003 standard for lower layers. This technol-
ogy is intended to be less expensive and simpler than other technologies such



3.4. Validation 43

as Bluetooth. Zigbee is targeted to applications that require long battery life,
a low data rate, and secure networking.

Figure 3.9 shows a screenshot of Z-Monitor tool analyzing a ZigBee proto-
col based on the official TinyOS implementation of the IEEE 802.15.4/ZigBee
protocol stack [37]. It is clear from the screenshot that the ZigBee packets are
correctly parsed and all the packet types (Beacon, Acknowledgement, Data
frames, MAC command) are supported.

Figure 3.9: ZigBee Protocol Analysis using Z-Monitor

The experiment consists in monitoring the 6LoWPAN network during the
set-up phase (i.e. node joining process with the Base Station). The joining
process between a router and the Base Station under BLIP can be observed
in Figure 3.10. In this example, we observe the node join process for the
node with ID 0x0002 that sends a router solicitation message to the Base
Station with ID 0x0064, which responds to its request by sending a router
advertisement message. The node 0x0002 joins the network after receiving
this network advertisement.
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Figure 3.10: 6LoWPAN Protocol Analysis using Z-Monitor

It is clear from the above examples that Z-Monitor can effectively handle
IEEE 802.15.4-based protocols, and helps in collecting statistical data based
on the observed traffic. In what follows, we demonstrate how Z-Monitor can
be used to evaluate the performance of the 6LoWPAN and Zigbee protocols,
providing another dimension of Z-Monitor capabilities.

3.4.3 Performance Evaluation of Implementations using Z-Monitor

In our study, we measure the network convergence time metric of each
router node, which is the duration a node spends to join the 6LoWPAN net-
work for both implementations under study. We also measure the convergence
time for RPL-based networks, which is the necessary time to construct the
DODAG structure for RPL.

Z-Monitor goes beyond the passive monitoring (i.e. sniffing and displaying)
of network traffic as it can be used for analyzing the performance of the IEEE
802.15.4-based protocols. To illustrate this fact, we run experiments where
Z-Monitor was used to analyze the network joining time of each node, and
consequently the network convergence time. In what follows, we present the
experimental results of the evaluation of ZigBee and 6LoWPAN protocols.

3.4.3.1 Performance Evaluation of Zigbee Protocol

To evaluate the performance of Zigbee, We considered a cluster-tree topol-
ogy composed of one ZigBee Coordinator, three ZigBee routers and seven End
Devices. The Beacon Order was set to 8 leading to a Beacon Interval of 3.97
seconds and the Superframe order was set to 4. In this experiment, each node
uses the LocalTime interface to compute its joining time to the network and
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sends the computed values to the ZigBee Coordinator. We observed with Z-
Monitor the time when the ZigBee Coordinator receives this message and this
time is considered as the joining time of the node. All the 10 motes (routers
and end-devices) wake up at the same time. Figure 3.11 shows the joining
time of each node captured by Z-Monitor.
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Figure 3.11: Convergence time of ZigBee WPAN (10 nodes)

It is clear from the figure that the first ZigBee router joins the network
after three beacons (12 seconds) which is expected. In addition, the joining
time grows linearly with the ZigBee network size. This is because ZigBee
end-devices cannot join the network before the joining of their parents (the
routers).

3.4.3.2 Performance Evaluation of 6LoWPAN Protocol

Figure 3.12 shows the required time by each node to join the 6LoWPAN
network for the uIPv6 and BLIP implementations. We powered all the nodes
on at the same time and measured the time when the node receives the router
advertisement message from the Base Station for both implementations.
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Figure 3.12: Convergence Time of 6LoWPAN with BLIP and uIPv6

It can be observed from Figure 3.12 that the nodes join the network suc-
cessively although they are deployed at the same time. This is due to the
fact that the Base Station is unable to respond simultaneously to the requests
of neighbor solicitation when the network becomes bigger. In addition, we
observe how the convergence time increases with the network size almost lin-
early. Also, when comparing the two implementations, it can be seen that the
uIPv6 allows a shorter time convergence than BLIP. This is due to the fact
that the nodes installed with BLIP send synchronization packets periodically
which causes the latency in the joining process.

3.5 Reliability of Z-Monitor

We have run several experiments to test the reliability of Z-Monitor soft-
ware. The reliability is measured by the packet loss ratio, i.e. the percentage
of packets transmitted but not captured by Z-Monitor. Several scenarios were
considered in which we varied the number of active nodes (i.e. transmitting
nodes) and the duration of the experiment. The scenarios are summarized in
Table 3.1. The traffic consists of UDP Echo messages sent from the gateway
(IPBaseStation) to the active nodes using the UDPEcho TinyOS application,
with a period of 1 packet/second.
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Scenario ID Number of Duration Packet Loss
Active Nodes Ratio

Scenario 1 1 node 10 minutes 0.00
Scenario 2 2 nodes 10 minutes 0.001
Scenario 3 2 nodes 60 minutes 0.001
Scenario 4 5 nodes 10 minutes 0.00
Scenario 5 5 nodes 30 minutes 0.00
Scenario 6 7 nodes 10 minutes 0.002
Scenario 7 7 nodes 30 minutes 0.00
Scenario 8 7 nodes 60 minutes 0.006

Table 3.1: Experimental Scenarios for Reliability Test

One can observe that the packet loss ratio does not exceed 0.6% in all
scenarios, where most of the scenarios show around 100% of successful packet
capture. We have also compared the packet loss ratio of Z-Monitor against
that observed with the well-known WireShark sniffer, and we observed that
both results are very close to each other. This clearly demonstrates the relia-
bility of Z-Monitor. Though, we are currently working towards analyzing the
cause of temporary packet losses to reduce them at the maximum aiming at
achieving zero loss ratio in future releases.

We argue that the high reliability achieved with Z-Monitor is a result of
prioritizing the capture and buffering threads over the parsing and display
threads in the Java application. In fact, we granted more priority to the
sniffer and buffering threads to avoid losing packets due to the processing of
others by the parsing and the display processes.

3.6 Conclusion

In this chapter, we have presented our extension of the monitoring tool
and protocol analyzer Z-Monitor. Firstly, we have explained our contribution
in the new design of Z-Monitor. Secondly, we presented main features of Z-
Monitor. Finally, We demonstrated the capabilities of Z-Monitor to monitor
the behavior and evaluate the performance of IEEE 802.15.4, ZigBee and
6LoWPANs. We have used Z-Monitor in conjunction with other tools to
evaluate the performance of the RPL protocol and this performance evaluation
is detailed in the next chapter.
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4.1 Introduction

In this chapter, we pursue the performance evaluation of the RPL routing
protocol. This performance study is conducted with real implementation un-
der Contiki operating system called ContikiRPL [38]. In the literature, several
research works have evaluated the performance of the RPL protocol from dif-
ferent perspectives. Their goals were roughly to understand and analyze the
behavior of certain mechanisms specified in the IETF draft and to propose
some enhancements to potential shortcomings and open issues. Firstly, we
describe these works and present their results. Secondly, we give an overview
on the RPL protocol. Then, a description of the experimental methodology is
introduced. In the final part, we present and discuss the experimental results.
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4.2 Related Works

Several works have proposed simulation and experimental models for the
sake of experimenting with RPL and evaluating its performance. In [39], the
authors presented a performance evaluation study of RPL through an OM-
NET++ simulation model. They used ETX as a default link metric to build
the DAG. Simulation results showed that the performance of P2P routing in
RPL for the considered topology is close to the shortest path between source
and destination and it is better when the root is in the middle. In addition,
they found that 90% of the nodes need to store less than 20 entries in their
routing tables. They found also that for a node closer to the sink, the data
packet amount is much higher than control packet. For leaf nodes, the amount
of control packets are more than data packets. They demonstrated the effi-
ciency of the trickle timer in controlling the packet overhead and stabilizing
the network. In addition, the paper demonstrated the significant effect of
the global repair duration on the number of control packet overhead. How-
ever, the simulations were performed for a small-scale network, preventing the
generalization of results for large-scale networks.

In [40], the authors compared between the P2P routing based on RPL
and the simple shortest path routing algorithm. They demonstrated via NS-2
simulations of a large-scale network that the RPL P2P routes are significantly
sub-optimal as compared to the minimum cost (shortest) routes, mainly when
the source and destination are close to each other. However, the authors did
not propose a solution to this problem.

In [41], the authors proposed a performance evaluation of the RPL protocol
in the context of smart grid applications. Using OMNET++ simulation model
of RPL, they demonstrated the capability of the trickle timer in RPL to
bound the control overhead and reduce communication latency. In addition,
they demonstrated that RPL quickly performs local repair of link outage and
provides a path quality close to an optimized shortest path for an outdoor
environment. Also, they showed that in RPL Point-to-Point (P2P) routing,
the path quality is not drastically worse than the shortest path. This result
even improves when the DAG root is located in the middle of the network.
The results showed that, in most cases, the total end-to-end delay is in the
order of milli-seconds.

In [42], the authors presented a performance evaluation study of the RPL
routing protocol using the Contiki COOJA simulator [43]. They mainly eval-
uated the network overhead, the throughput and the end-to-end delays for
two network sizes of 20 and 100 motes. They concluded that RPL leads to a
fast network set-up and limited communication delays. The authors reported
a network set-up time, i.e. the time required to let the control overhead drop
from 100% to about 25%, of about 10 minutes for 20 nodes, which is relatively
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high for such a medium-scale networks. They also observed that DAO mes-
sages represent the main factor that increases the control overhead of RPL.
It can be concluded that RPL is open to further amendments to optimize the
network formation process in terms of convergence time and control overhead.

All the works mentioned above evaluated the RPL protocol using simu-
lators. Simulation models are appropriate for providing insights on the RPL
protocol behavior. However, in general, these models are not able to report
the exact performance of the protocol as they rely on emulated channel mod-
els, which may differ from real channels, and make abstraction on hardware
resources and their usage. As such, experimental models are of paramount
importance to assess the real protocol behavior and performance. Thus, we
provide the main efforts that contributed to the implementation of experi-
mental prototypes of the RPL protocol.

4.3 Experiment Settings

To evaluate the performance of the RPL protocol, we deployed a real net-
work composed of 30 motes comprising one sink node acting as the DAG root,
and 29 RPL routers. The motes are deployed in an indoor office environment
composed of three rooms. all wireless devices are battery powered except the
DAG root mote which is connected to a PC through its USB port. The PC
runs Z-Monitor to control and analyze the experiments. The transmission
power is set to -15 dBm. We considered two scenarios: (i.) a single broadcast
domain scenario, where all nodes hear each other, and (ii.) a multiple broad-
cast domain scenario, where nodes are placed in a multi-hop topology such
that the routers are distant from each other with a range varying from 1 to
4 hops. Figure 4.1 shows our experimental testbed for the evaluation of RPL
in the multi-hop topology. We have deployed the motes in 3 rooms in the
laboratory. We show in this figure one observed instantiation of the parent to
child relationship within the formed DAG in the experiment. The node with
ID 23 is the DAG root.
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Figure 4.1: Experimental testbed for multi-hop topology

4.3.1 Hardware platform

The hardware platform used in these experiments is TelosB [36]. This
platform was originally developed at UC Berkeley. Now, it is produced by the
Crossbow Technology company. It is a battery powered wireless module with
USB programming capabilities. TelosB are equipped with 16-bit RISC MCU
clocked at 8 MHz, 16 registers, 10 kB of RAM, 48 kB of flash memory and 16
kB of EEPROM. It integrates an 8MHz Texas Instruments MSP430 micro-
controller and a Temperature, Humidity and Light sensors. This structure of
the TelosB mote is presented in Figure 4.2.
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Figure 4.2: Telosb Module

4.3.2 Software implementation

The RPL implementation used in these experiments is ContikiRPL [1].
ContikiRPL is the first real-world implementation of RPL developed under
Contiki operating system [6]. It implements the version 18 of the specifica-
tion. One of the main features of ContikiRPL is that it provides a simple
programming interface for designing and evaluating Objective Functions.

ContikiRPL is structured into layers. microIPv6 layer is responsible of
packet forwarding. IPv6 packets are then passed to 6LoWPAN layer for header
compression and fragmentation. 6LoWPAN layer in tern sends packets to
contiki MAC layer. The default MAC layer in Contiki OS is CSMA/CA. The
CSMA/CA mechanism places outgoing packets on a queue. These packets
are transmitted in order to the radio duty cycling (RDC) layer. Packets are
finally transmitted through the radio link by the RDC link. Figure 4.3 [7]
shows the layers that a packet must go through in Contiki OS.
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Figure 4.3: ContikiRPL Layers

4.4 Experimental Results

4.4.1 DAG Convergence Time

The DAG convergence time represents the time at which the DAG is com-
pletely constructed and all the motes have joined the network. Figure 4.4
shows the average measured convergence time for different network sizes, and
for single and multiple broadcast domains. Each experiment is repeated five
times and results are presented with 90% confidence interval.
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Figure 4.4: Convergence Time for RPL networks

We observe that the convergence time linearly increases with the number of
nodes in the DAG for both single and multiple broadcast domains. However,
the convergence time in the multiple broadcast domain is at least 4 times
larger than that of the single broadcast domain. This illustrates the impact of
the number of hops on the time needed to join the network. Furthermore, we
notice that the convergence time becomes remarkably large when the number
of nodes increases. This is mainly due to three reasons: (i.) the lossy nature of
the channel, since control packets need to be retransmitted when they are lost;
This confirms the results drawn in [53], where the authors demonstrated using
COOJA simulator that the convergence time with a lossy channel is much
larger than that with a perfect channel (ii.) The duty cycle radio protocol
used in ContikiMAC, which induces additional delays in particular when the
topology grows, (iii.) the impact of the trickle timer parameter (Imin is equal
to 4s), which makes the DIO retransmissions occur after an important delay.

4.4.2 Power Consumption

The power consumption represents the average energy consumed of each
node in the DAG during the DAG construction process. Figure 4.5 shows the
average power consumption for different network sizes. The power consump-
tion was measured during the joining process.
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Figure 4.5: Average power consumption

A straightforward observation is that the power consumption increases
with the number of routers in the DAG, which is expected. We also observe
that the multiple broadcast domain consumes more power in the network set-
up process than the single broadcast domain does. However, the gap becomes
smaller as the number of nodes increases and the average consumed energy
converges towards 2 mW for both scenarios. This demonstrates that the effect
of multi-hop becomes less important for large networks and that the number
of nodes represents the major factor of energy dissipation.

4.4.3 Packet Loss

For the quest to assess the reliability of RPL, we measured the packet loss
ratio, which is defined as the ratio of the number of lost packets to the total
number of packets. Packet losses occur when one or more data packets trav-
eling across the DAG fail to reach their destinations. Each router randomly
sends Hello data packets to the root at an average rate of 1 packet/minute.
We have chosen a large period to avoid overloading the network and prevent
collisions. We have used the data collection tool of ContikiOS to collect the
Hello data packets at the root. Figure 4.6 depicts the packet loss ratio for
different hop counts between the DAG root and a router mote.
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Figure 4.6: Packet Loss Ratio for different hops

Figure 4.6 shows that the packet loss ratio for 1 and 2 hops is relatively
low (between 1% to 4%). However, this ratio significantly increases with
greater hop counts reaching 20% for 4 hops. This is due to the following
reasons: (i.) packet losses have a cumulative effect when the number of hops
increases, due to increasing chances for a packet to get lost from one hop to
another, (ii.) link quality fluctuations of low power and lossy links, which
results in temporary losses of connectivity in particular for those disturbed
by obstacles. This was the case of large hop counts in our experiment. These
results raise questions about the effectiveness of the default objective function
relying on the ETX metric to select routes. Considering more efficient link
quality estimators such as 4-Bits [54] and F-LQE [55] is a promising approach
to promote the reliability of RPL through the selection of more stable and
higher-quality routes. This represents an open research issue in RPL design.

4.4.4 Packet Delay

We evaluated the end-to-end delays in a RPL network to understand its
timeliness behavior. We used the Ping application to measure the round-trip
time between two nodes placed at a certain number of hops. The packet delay
is defined as the duration between the transmission time of the Ping Request
message and the reception time of the Ping Reply message. We have used
the analyzer tools Wireshark [29] and Z-Monitor [30] for delay measurements.
Figure 4.7 shows the measured packet delays for different hop counts between
the source and destination with a confidence interval of 90%.
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Figure 4.7: Packet delay for different hop count

Figure 4.7 shows that the packet delay increases almost linearly with the
number of hops between the source and destination. It varies from 1 second
for single hop distant motes to 2.7s for motes that are 4 hops away. This
represents an acceptable real-time performance considering the low-power and
resource limitation nature of sensor nodes. However, there is a room and a
need to improve the timeliness performance of RPL through the adoption
of QoS mechanisms to optimize the routing process and reduce end-to-end
delays.

4.5 Conclusion

In this chapter, we have detailed our experimental performance evaluation
of the RPL routing protocol. The main conclusion from this experimental
work is that RPL has several benefits for LLN networks as it minimizes the
power consumption of the nodes mainly in sparse networks and does not
introduce much latency in receiving packets.

However, the RPL protocol requires much convergence time mainly in large
scale networks, and causes packet losses when the motes are far from the DAG
root. These issues should be considered by researchers in order to improve
the quality of service of the RPL protocol.



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Low power and Lossy Networks (LLNs) are composed of many embedded
devices with limited power, memory, and processing resources. They are in-
terconnected by a variety of links, such as IEEE 802.15.4, low power WiFi,
etc. There is a wide scope of application areas for LLNs, including industrial
monitoring, building automation, healthcare, environmental monitoring, etc.
The lack of an IP-based network architecture prohibited sensor networks from
interoperating with the Internet, limiting their real-world impact. To over-
come this disconnect, the IETF has specified standards at various layers of
the protocol stack with the goal of connecting low-power and lossy networks
to the Internet.

One very promising technology is 6LoWPAN, which consists in integrating
the IPv6 network layer on top of IEEE 802.15.4 MAC layer, as a complete
protocol stack for tiny sensor nodes. This integration enables the interop-
erability with the Internet, which enable to deploy, monitor wireless sensor
networks as large-scale. While 6loWPAN is considered as the most promising
technology for enabling such a large scale deployment and interoperability,
there are several issues that need to be addressed to ensure its adequacy with
WSNs requirements, mainly in terms of energy and limited resources of sensor
nodes. In addition, there is a need to discover the behavior of this protocol
in a real-world deployment.

This thesis addressed the problem of evaluating the performance of 6LoW-
PAN based networks and the RPL routing protocol. The reason behind the
choice of RPL is that it represents the main candidate for acting as the stan-
dard routing protocol for 6LoWPAN networks that allows the integration of
IPv6 into wireless sensor networks. To facilitate this performance evaluation
and to be sure of the accuracy of the results, it was necessary to use a mon-
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itoring tool. RPL specification was recently released. Therefore, it is not
supported by the most of the monitoring tools. After analyzing all the solu-
tions, we assert that there is a need of a LoWPAN network monitoring and
analyzing tool that is not only compatible with latest technologies like 6LoW-
PAN and RPL, but also provides extensibility. In this master project, we
extended the Z-Monitor monitoring tool to overcome most of the shortcoming
of the existing solutions and to support 6LoWPAN and RPL protocols.

In this Thesis, we started by reorganizing the original Z-Monitor code and
identified its limits. In a second step, we have designed a new sniffing approach
for packet decoding. Then, we have adapted Z-Monitor to support three open
source implementations: two for 6LoWPAN (BLIP and uIPv6) and one for
the RPL protocol (ContikiRPL). Finally, we added some features that would
help later on in the performance evaluation (Chapter 3).

Our developed tool was used to evaluate the performance of 6LoWPAN
and the RPL routing protocol in a real implementation (chapter 4). We have
measured the packet loss, the packet delay, the convergence time and the
average power consumption for different network settings and for different
network sizes.

From this experimental study, we concluded that the number of nodes has
a great impact on the convergence time. We noticed also that the number
of nodes represents the major factor of energy dissipation. In addition, we
concluded that the packet loss is high mainly for more distant routers, which
raises the question of promoting the reliability of RPL through the selection
of more stable and higher quality routes. Packet delays in RPL are acceptable
for applications considering the low-power and resource limitation nature of
sensor nodes.

In summary, we identified a set of problems related to the behavior of the
RPL protocol. Thus, there is a great need to add some improvements to this
protocol in order to fulfill the requirements that some LLN applications may
impose.

We are currently working towards extending Z-Monitor to support more
advanced features including (1) support of multi-hop topologies through the
use of multiple sniffers so that it will be easier and practical to analyze the
behavior of large scale networks, (2) extending parsing component to support
new COTS protocols implementations such as TinyRPL, which has recently
been released, (3) integrating advanced filtering and statistical analysis fea-
tures.

We aim also to propose some improvements to the RPL protocol in order
to overcome the drawbacks that were found in our experimental study. Future
works include the optimization of the design of RPL Objective Functions in
order to fit the application requirements and to optimize the paths between
routers in the network.
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