
Mediterranean Conference on Embedded Computing MECO - 2012 Bar, Montenegro

© 2012 MECO

Automatic generation of Coprocessor program from
VHDL description

Emna Kallel, Yassine Aoudni, Mohamed Abid
Computer & Embedded Systems Laboratory, Univ. Sfax, ENIS School

BP 1173, Sfax 3038, Tunisia

Abstract—The design and implementation of complex embedded
systems including custom hardware and software is still to a large
degree based on a collaboration of semi-manual and often poorly
interconnected design methods and tools. This usually results in
repetitive and longer development cycles. This paper describes an
intelligent method to automate and accelerate the hardware
generation process. Indeed, a VHDL parser is developed to
provide an automated path from VHDL entry to Coprocessor
design. To prove the correctness of our method, a Java source
code framework named Automatic Custom Architecture
generator (ACAgen) is developed. Experimental results on 3D
sample application show that the proposed framework can
rapidly and easily generate coprocessor. It leads to the design of
large and complex systems-on-chip with less costs and higher
performances.

Keywords-Automatic generation; Coprocessor;VHDL parser;
ACAgen.

I. INTRODUCTION

Technological advances in Field Program Gate Array
(FPGAs) have opened the possibility for research in creating
optimized custom hardware to run many algorithms at much
greater speeds than possible on a standard computer processor
[1]. Indeed, hardware accelerators or coprocessors are often
used to provide efficient implementations of application-
specific functions and to provide enhanced performance in
systems-on-chip (SoC).

Nevertheless, currently, the development of applications for
such platforms needs both in-depth software and hardware
design knowledge due to its increasing fabrication cost and
design complexity. Therefore, dedicated tools and frameworks
that make the hardware details transparent to the software
designer are necessary. One component of such framework is
an automated hardware design generator that takes its input
from a high level language (HLL) such as C. In this generation
process there are multiple challenges to be overcome. These
challenges range from mapping the high-level (HL) constructs
to the hardware to finding the proper set of optimizations and
transformations that would lead to optimal hardware design.
Significant researches have been done in automating the
creation of this hardware such that users do not need a high
proficiency in hardware design to be able to benefit from. For
example, projects, like Handel-C [3], remained oriented
towards the hardware designers. There, the C syntax is

extended with constructs, exposing all hardware details to the
designer. Other project, like SA-C [5], tried to hide the
hardware details for the software designers. They used C
variations, excluding problematic construct and introducing
language extensions that facilitated the optimizations and the
hardware mapping. Those extensions however meant that
existing applications had to be rewritten. Therefore, later
projects like DEFACTO [6], SPARK [7] and ROCCC [8]
considered unmodified C as input. Those projects emphasize
parallelizing transformations and some also address memory
access optimizations. Moreover, several commercial tools that
generate hardware from HLL input also appeared like Catapult-
C [9], Impulse-C[10]. Xtensa [4] allows an efficient ASIP
rapid prototyping but it don’t targets others processor models
like LEON, MIPS, Microblaze and NIOS-II. Despite all those
efforts, the automated hardware generation is yet to become a
widely adopted industrial practice [2]. One of the reasons is the
lack of automation of the research projects generation process
which implicitly requires hardware-design knowledge.

To address this challenge, we are currently working on a
toolset called “Automatic Custom Architecture Generator”
(ACAgen) that automatically generates a hardware system (in
VHDL) and the software (in C) that executes on that hardware
without need of specialized hardware development knowledge.
The work discussed here for the ACAgen toolset develops a
module for the automatic implementation of the coprocessor
interface from a HLL (VHDL in our case). A VHDL parser is
developed analyzing the VHDL description input to find the
proper set of optimizations and transformations that would lead
to optimal coprocessor design. The presented design flow is a
parser-based method that hides unnecessary details from high-
level design phases and provides an automated path from HLL
entry to hardware design. So, it can be easily used by non-HW
experts of on-chip systems implementation.

The remaining of this paper is organized as follows. Section
1 describes the overall ACAgen custom instruction integration
flow. Section 2 presents the coprocessor generation process.
Section 3 presents the FPGA based synthesis results of a 3D
synthesis application and discusses the experimental results
showing the performance of the ACAgen framework. Finally,
we end up with a conclusion.

Mediterranean Conference on Embedded Computing MECO - 2012 Bar, Montenegro

© 2012 MECO

II. ACAGEN CUSTOM INSTRUCTION INTEGRATION FLOW

Figure 1. ACAgen custom instruction integration flow

Using the ACAgen toolset, we aim to automate the process
of Custom Instruction Integration within Reconfigurable SoC
and FPGA Devices. This can be successfully accomplished via
three important steps.

Firstly, as described in previous work [13], a VHDL
description of custom instruction is automatically generated
from a high abstraction level. The generated VHDL code will
be then verified using Quartus environment. This step will help
the designer to rapidly test and verify the functionality of the
custom instruction before integration in the NIOSII core and to
get performance information about the hardware module
(resource allocation, execution time and power dissipation).

The second step consists in updating the initial application C
code with the custom instruction opcode. This step is
successfully performed by developing a specific C parser [14].

In third step, the rapid integration of custom instruction in
NIOSII core consists in automatically generating a specific
coprocessor interface to adapt the communication between the
custom hardware module and the ALU of NIOSII core. The
coprocessor interface must respect:

• data size and nomination for inputs and outputs

• control signals for sequential and combinatory
hardware module

In our project, we propose to use the NIOSII prototyping
platform [18]. Indeed, NIOSII is a soft core that offers the
possibility to integrate 5 custom instructions using three main

registers: (dataa[0..31], datab[0..31]) as inputs and
(result[0..31]) as output.

After these three steps, SOPC Builder and Quartus
environment can be used to integrate custom instruction
opcode in NIOSII compiler and to generate the customized
NIOSII bitstream. In addition, performance information can be
rapidly collected to specify the custom prototype by resources
usage, execution time and power dissipation.

This work focuses on the third step of ACAgen design flow
describing an intelligent method to automatically generate a
coprocessor interface identified by the SOPC Builder from a
simple VHDL description. The proposed method is based on
the implementation of specific VHDL parser able to analyze
the VHDL code to be converted to a coprocessor form. Below,
we will detail the design of the developed parser.

III. COPROCESSOR GENERATION PROCESS

Figure 2. from VHDL file to Coprocessor interface

This module of ACAgen toolset takes as input a simple
VHDL file and creates the corresponding coprocessor program
(figure 2). The coprocessor integration within the NIOS
processor demands some constraints. So, a VHDL parser able
to know and extract the different parts of a VHDL file is
needed.

 In our design flow, a token-based VHDL analysis is
adopted. Indeed, each line of VHDL input source files is
divided into tokens corresponding to a lexical rule of the
programming language. The tokens of all source files are
concatenated into a single token sequence. At this step, the
white spaces (including \n and \t and comments) between

Mediterranean Conference on Embedded Computing MECO - 2012 Bar, Montenegro

© 2012 MECO

TABLE I. COPROCESSOR CONSTRAINTS

Name port size type

Dataa 32 input

Datab 32 input

Result 32 output

Start 1 input

Reset 1 input

Done 1 output

Clk 1 input

tokens are removed from the token sequence. To automatically
detect the different components of VHDL file, several
detection algorithms analyzing tokens are developed. All
detection processes are handled in the same way as described
in Algorithm 1. The ENTITY detection Algorithm traverses
all tokens to identify the token sequence of the VHDL entity
which is then saved in a vectorv

r
. In that case, data is

automatically extracted from each generated vector. For
example, the names, sizes and types of the different Entity
inputs/outputs are identified from the extracted Entity token
sequence.After data extraction, the different identified token
sequences are transformed, i.e., tokens are added, removed, or
changed based on the coprocessor constraints as shown in
table 1. These coprocessor rules are mapped to JAVA objects
(from VJP and LPM Package described in [13]) which are
then instantiated using the new coprocessor data (figure 3).
Finally, the VHDL code for coprocessor following the
specifications for the NIOS II processor is generated. The
coprocessor 32-bits input ports are named dataa and datab and
the 32-bits output port is named result. The generated
coprocessor uses the clk, clk_en, reset, and start inputs along
with the done output.

Figure 3. Part of VJP Package

IV. RESULTS

To evaluate the described ACAgen module, we first check
its efficiency in terms of complexity and used memory.
Experimentations show that ACAgen coprocessor generation
module illustrates two original features. First, it has a small
size – 300 lines (low complexity). Second, it quickly achieves
good code coverage: in 1 ms it automatically updates
and generates the new VHDL code for coprocessor .

TABLE II. PERFORMANCE COMPARISION

ACAgen
coprocessor
generator Module

Framework to
Generate
coprocessor [12]

Lines of source code 300 552

Used memory 21 KB 33 KB

Runtime 3s 10s

Time generation 1 ms 10 ms

Total number of
Generated VHDL lines

1000 1264

Executing its low-complexity algorithms, ACAgen

coprocessor generator module is capable of rapidly generating
1000 lines of VHDL code with only 300 lines of source code.
If we compare the numbers presented in table II with
other Coprocessor generator tool, the results are still very
good. Indeed, our framework improves its flexibility on
Netbeans 5.5 version and centrino duo Core 2GHz with 21
Kbytes and 3 seconds average runtime while the other

Algorithm 1. Entity detection

Input: token sequence

Output: compName {component Name}

Input/output: an initial tokens vector φ←v
r

1: for each token do
2: if token = “ENTITY”
3: compName ← nextToken
4: if nextToken = “IS”
5: do
6: t ← nextToken {a temporary states}

7: tvv U
rr ←

8: while (nextToken = "END")
9: end do while
10: end if
11: end if
12: end for

Mediterranean Conference on Embedded Computing MECO - 2012 Bar, Montenegro

© 2012 MECO

TABLE III. SYNTHESIS RESULTS

Logic utilization
(additional cost

%)

Power
dissipation per
module (mW)

(additional cost
en %)

Time execution
(ticks number)

Scalar product 113 (9.6%) 2.34 (4.7%) 24537
Vectorial
product

103 (8.8%) 1.37 (2.8%) 38236

Mult_Mat 193 (8.8%) 3.66 (7.4%) 23543
Projection 370 (31.6%) 3.64 (7.4%) 35900

SPEED UP

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

scalar Vectorial Mult_mat Projection Transformation Znormal

Figure 4. Speedup offred by our solution

framework [12] works with 33 Kbytes and 10 seconds
average runtime.

Moreover, using the ACAgen module, it was easy to
implement different applications within NIOSII processor core
and the FPGA Stratix 2S180 device which includes 143520
ALUTs for hardware logic [11]. The performance results are
given by table III. We note that the mult_mat application attain
the maximum gain with 23543 ticks and additional costs of
16.5% in Logic utilization. On the other hand, it results in
power consumption increase with 7.4%.

Also, as shown in figure 4, the results indicate that our
approach can quickly (in several seconds to a minute) generate
coprocessor for realistic programs. The coprocessor design can
achieve an average speedup of 6.78X and peak speedup of
9,6X over the manual solution.

This analysis demonstrates the efficiency of our ACAgen
module to generate hardware from a high level language
(HLL). Through the VHDL parsing method presented in this
work, a designer can automatically generate its implementation
at RT level. The designer can easily and rapidly generates
different SoC configurations to look for the best alternative for
a given application.

V. CONCLUSION

In this paper, we proposed an approach to coprocessor
generation from a VHDL description. Our automatic code
generation approach is based on VHDL parsing by developing
token-based algorithms able to know and extract the different
parts of the entered VHDL file. Experimental results show
that the proposed ACAgen module can rapidly and easily
generate coprocessor for realistic programs. It leads to the
design of large and complex systems-on-chip with less costs
and higher performances.

REFERENCES

[1] Philip I. Necsulescu, Voicu Groza, “Automatic Generation of VHDL

Hardware Code from Data Flow Graphs”, IEEE International S
ymposium on Applied Computational Intelligence and Informatics •
May 2011 • Timi úoara, Romania.

[2] Y. D. Yankova, K. Bertels, S. Vassiliadis, R. J. Meeuws, and A.
Virginia, “Automated hdl generation: Comparative evaluation,” in
Proceedings of International Symposium on Circuits and Systems
(ISCAS2007), May 2007.

[3] Handel-c language reference, http://www.celoxica.com/, Celoxica web
site 2012.

[4] Quickly Create Customized Functional Blocks,
http://www.tensilica.com/products/xtensa-customizable.htm , Tensilica
web site 2012.

[5] W. A. Najjar, A. P. W. B¨ ohm, B. A. Draper, J. Hammes, R. Rinker, J.
R. Beveridge, M. Chawathe, and C. Ross, “High-level language
abstraction for reconfigurable computing.” IEEE Computer, vol. 36, no.
8, pp. 63–69, 2003.

[6] P. C. Diniz, M. W. Hall, J. Park, B. So, and H. E. Ziegler, “Bridging the
gap between compilation and synthesis in the defacto system.” in
Proceedings of 14th International Workshop on Languages and
Compilers for Parallel Computing (LCPC’01), 2001, pp. 52–70.

[7] Spark: A parallelizing approach to the high-level synthesis of digital
circuits, http://mesl.ucsd.edu/spark/, SPARK project web site 2012.

[8] ZHI GUO, WALID NAJJAR, BETUL BUYUKKURT, “Efficient
hardware code generation for FPGAs”, ACM Transactions on
Architecture and Code Optimization, Vol 5 Issue 1, May 2008.

[9] Catapult C Synthesis Overview ,
http://www.mentor.com/esl/catapult/overview, 2012.

[10] Impulse accelerated technologies, http://www.impulseaccelerated.com/,
2012

[11] Altera Corporation, Stratix II Device Handbook, 2004.

[12] Michael F. Dossis, “A Formal Design Framework to Generate
Coprocessors with Implementation Options”, International Journal of
Research and Reviews in Computer Science (IJRRCS) Vol. 2, No. 4,
August 2011, ISSN: 2079-2557.

[13] E. Kallel, Y. Aoudni, M. Abid “Object-oriented approach to Custom
Instruction design”, accepted for publication in FTFC 6-7 paris 2012.

[14] E. Kallel, Y. Aoudni and M. Abid, “Parser-based automatic code
generation approach for embedded systems” in ICCA2011, Ryadh,
Arabie Saudite, 2011, in press.

