Mediterranean Conference on Embedded Computing ,,,-"" MECO - 2012

Bar, Montenegro

Automatic generation of Coprocessor program from
VHDL description

Emna Kallel, Yassine Aoudni, Mohamed Abid

Computer & Embedded Systems Laboratory, Univ. SE&,S School
BP 1173, Sfax 3038, Tunisia

Abstract—The design and implementation of complex embedded
systems including custom hardware and software idil to a large
degree based on a collaboration of semi-manual aradten poorly
interconnected design methods and tools. This usugltesults in
repetitive and longer development cycles. This papelescribes an
intelligent method to automate and accelerate the drdware
generation process. Indeed, a VHDL parser is develed to
provide an automated path from VHDL entry to Coprocessor
design. To prove the correctness of our method, a Ja source
code framework named Automatic Custom Architecture
generator (ACAgen) is developed. Experimental resut on 3D
sample application show that the proposed frameworkcan
rapidly and easily generate coprocessor. It lead®tthe design of
large and complex systems-on-chip with less costsida higher
performances.

Keywords-Automatic generation; Coprocessor;VHDL parser;
ACAgen.

. INTRODUCTION

extended with constructs, exposing all hardwaraildeto the
designer. Other project, like SA-C [5], tried toddi the
hardware details for the software designers. ThegduC
variations, excluding problematic construct andradticing
language extensions that facilitated the optimiretiand the
hardware mapping. Those extensions however meatt th
existing applications had to be rewritten. Therefotater
projects like DEFACTO [6], SPARK [7] and ROCCC [8]
considered unmodified C as input. Those projectphasize
parallelizing transformations and some also addmesmory
access optimizations. Moreover, several commetow@s that
generate hardware from HLL input also appearedQiatapult-
C [9], Impulse-C[10]. Xtensa [4] allows an efficteASIP
rapid prototyping but it don’t targets others pres@ models
like LEON, MIPS, Microblaze and NIOS-II. Despitd #lose
efforts, the automated hardware generation isgdtetome a
widely adopted industrial practice [2]. One of teasons is the
lack of automation of the research projects geiwgradrocess
which implicitly requires hardware-design knowledge

Technological advances in Field Program Gate Array T0 address this challenge, we are currently workinga

(FPGASs) have opened the possibility for researchréating
optimized custom hardware to run many algorithmsnath
greater speeds than possible on a standard conpotssor
[1]. Indeed, hardware accelerators or coprocesamsoften
used to provide efficient implementations of apgiion-
specific functions and to provide enhanced perfoceain
systems-on-chip (SoC).

Nevertheless, currently, the development of apfiioa for
such platforms needs both in-depth software andivrere
design knowledge due to its increasing fabricattost and
design complexity. Therefore, dedicated tools anthéworks
that make the hardware details transparent to tfsvare
designer are necessary. One component of such virarkés
an automated hardware design generator that takasput
from a high level language (HLL) such as C. In tpgmeration
process there are multiple challenges to be overcdrhese
challenges range from mapping the high-level (Ha)structs
to the hardware to finding the proper set of omtations and
transformations that would lead to optimal hardwdesign.
Significant researches have been done in automdtieg
creation of this hardware such that users do netl r&e high
proficiency in hardware design to be able to bérfedim. For
example, projects, like Handel-C [3], remained e
towards the hardware designers. There, the C syigax

toolset called “Automatic Custom Architecture Gexter’

(ACAgen) that automatically generates a hardwastesy (in
VHDL) and the software (in C) that executes on tietdware
without need of specialized hardware developmentedge.
The work discussed here for the ACAgen toolset ldpeea
module for the automatic implementation of the ocepssor
interface from a HLL (VHDL in our case). A VHDL pser is
developed analyzing the VHDL description input bodfthe
proper set of optimizations and transformations wauld lead
to optimal coprocessor design. The presented dedfgignis a
parser-based method that hides unnecessary detailshigh-

level design phases and provides an automatedmoathHLL

entry to hardware design. So, it can be easily byedon-HW
experts of on-chip systems implementation.

The remaining of this paper is organized as folloBection
1 describes the overall ACAgen custom instructitegration
flow. Section 2 presents the coprocessor genergioness.
Section 3 presents the FPGA based synthesis redfu#ts3D
synthesis application and discusses the experimeesalts
showing the performance of the ACAgen frameworkahy,
we end up with a conclusion.

© 2012 MECO

Mediterranean Conference on Embedded Computing ,,,-"" MECO - 2012

II. ACAGEN CUSTOM INSTRUCTION INTEGRATION FLOW

Application © HOL Customn
Code: with custom [—f Instruction
instruction
cotnbination ¢
Synithesiz HDL
Sitnulation
Place &

Route

Texe, Power and
ressource allocation

¥

Custotn instruction Integration in
Processor core | Coprocessor

v 3 | |
W Custom Customized
. . . Texe, Power and
instruction opcode BitBtrearn .
. : ressource allocation
it egration processor core
FPGA SoC

itnplementation

Figure 1. ACAgen custom instruction integration flow

Using the ACAgen toolset, we aim to automate tleec@ss
of Custom Instruction Integration within Reconfighte SoC
and FPGA Devices. This can be successfully accaimgdi via
three important steps.

Firstly, as described in previous work [13], a VHDL
description of custom instruction is automaticadjgnerated
from a high abstraction level. The generated VHDde will
be then verified using Quartus environment. Thép still help
the designer to rapidly test and verify the funadility of the
custom instruction before integration in the NIO&e and to
get performance information about the hardware reodu
(resource allocation, execution time and powerigig®n).

The second step consists in updating the initipliegtion C
code with the custom instruction opcode. This sisp
successfully performed by developing a specifica€er [14].

In third step, the rapid integration of custom riastion in
NIOSII core consists in automatically generatingspecific
coprocessor interface to adapt the communicatitwesn the
custom hardware module and the ALU of NIOSII corae
coprocessor interface must respect:

data size and nomination for inputs and outputs

control signals for
hardware module

sequential and combinatory

In our project, we propose to use the NIOSII prgiotg
platform [18]. Indeed, NIOSII is a soft core thdfeos the
possibility to integrate 5 custom instructions gsthree main

Bar, Montenegro

registers: (dataal0..31], as inputad a

(result[0..31]) as output.

datab[0..31])

After these three steps, SOPC Builder and Quartus
environment can be used to integrate custom irtgtruc
opcode in NIOSII compiler and to generate the auited
NIOSII bitstream. In addition, performance inforiatcan be
rapidly collected to specify the custom prototyperésources
usage, execution time and power dissipation.

This work focuses on the third step of ACAgen dedigw
describing an intelligent method to automaticalgnegrate a
coprocessor interface identified ltge SOPC Builder from a
simple VHDL description. The proposed method iseldasn
the implementation of specific VHDL parser ableaalyze
the VHDL code to be converted to a coprocessor f@etow,
we will detail the design of the developed parser.

I1. COPROCESSOR GENERATION PROCESS

VHDL file

l

Lexical analysis

Token sequence

¥

Architecture detection

Head tokens Architecture tokens

\—' Data extraction

[
Data

!

Transformations

VHDL JAVA obiects

:

Coprocessor generation

Head detection Cotnponent detection

Compenent tokens

|

4% VHDL packages>

Entity detection

Entity tokens

@processor constraints

Figure 2. from VHDL file to Coprocessor interface

This module of ACAgen toolset takes as input a &mp
VHDL file and creates the corresponding coprocepsogram
(figure 2). The coprocessor integration within thdOS
processor demands some constraints. So, a VHDIepabde
to know and extract the different parts of a VHDIe fis
needed.

In our design flow, a token-based VHDL analysis is
adopted. Indeed, each line of VHDL input sourcesfilis
divided into tokens corresponding to a lexical rale the
programming language. The tokens of all sources fige
concatenated into a single token sequence. Atsteig, the
white spaces (including \n and \t and commentsjyden

© 2012 MECO

Mediterranean Conference on Embedded Computing ,,,-"" MECO - 2012

Algorithm 1. Entity detection

Input: token sequence

Output: compName {component Name}
Input/output: an initial tokens vectoV « ¢

1: for each tokemlo
2: if token = “ENTITY”

Bar, Montenegro

VHDL_compomants
{ From vhai }

Albibudes
protected String name

Operations
public WHDL_components{)
public String getMame()
public woid setMame(String nom)
public In_out[0.."] get Outputs{)
public int get Output Number{)

outputs | public void set Dutputs(In_out outputs[0.."] 3
In_out i3 0. public In_out[0.."] getinputs()
i Fm whal } N public int getinput Nurnber()
public void removelnput(String name)
sl L public woid removeOutput{ String name)
. public void setinputs{ In_out inputs[0..*])
Operatians - RS) bl ot addinput St st ificati
BT S g e, (nEty R Shrn SeEb st 2| Pl et AR nput(ey name, g speclficdtien)
public im_ TyRsE) 0.+ public void addOutput(String name, String specification)
Gublis Strng BetTypestingl) public In_out[0.."] getinputs Outputs()
b e public In_out getinput ByName(String name)
e public In_out get Output By Name String name)
public int getinput Qutputhumberf)
Entity
CoproEntity { From vhdl }
{ Frorn vhdl } Fr
Allribues — Operations

Oprations
public CopraErtity(String name)

3: compName- nextToken
4: if nextToken ="IS”
5: do
6: t < nextToken {a temporary states}
8: while (nextToken = "END")
9: end do while
10: endif
11: endif
12:end for

TABLE 1. COPROCESSOR CONSTRAINTS
Name port size type
Dataa 32 input
Datab 32 input
Result 32 output
Start 1 input
Reset 1 input
Done 1 output
Clk 1 input

tokens are removed from the token sequence. Taratitally
detect the different components of VHDL file, seler
detection algorithms analyzing tokens are develop&itl
detection processes are handled in the same wdgsasibed
in Algorithm 1. The ENTITY detection Algorithm travses
all tokens to identify the token sequence of theDiHentity

which is then saved in a vectdr. In that case, data is
automatically extracted from each generated veckor
example, the names, sizes and types of the ditféfetity
inputs/outputs are identified from the extracteditifrtoken
sequence.After data extraction, the different iidiext token
sequences are transformed, i.e., tokens are adetadyed, or
changed based on the coprocessor constraints ag simo
table 1. These coprocessor rules are mapped to Jébjécts
(from VJP and LPM Package described in [13]) whégle
then instantiated using the new coprocessor dagaréf 3).
Finally, the VHDL code for coprocessor following eth
specifications for the NIOS Il processor is geregtatThe
coprocessor 32-bits input ports are named dataalatad and
the 32-bits output port is named result. The gdrdra
coprocessor uses the clk, clk_en, reset, andisguts along
with the done output.

public Entity(3
public In_out getinput By Name(String name)
publiz In_out get Output ByName(String name)

publiz String {05tring{)

Figure 3. Part of VIP Package

IV. RESULTS

To evaluate the described ACAgen module, we fingtc&
its efficiency in terms of complexity and used meyo
Experimentations show that ACAgen coprocessor gdioer
module illustrates two original features. Firsthds a small
size — 300 lines (low complexity). Second, it ddycachieves

good code coverage:

in 1

ms it automaticaligdates

and generates the new VHDL code for coprocessor .

TABLE II. PERFORMANCE COMPARISION
ACAgen Framework to
coprocessor Generate
generator Module coprocessor [12]
Lines of source code 300 552
Used memory 21 KB 33 KB
Runtime 3s 10s
Time generation 1ms 10 ms
gcgr?:ernaut(rendb\e}rl—lcl):f)L lines 1000 1264

Executing its

low-complexity algorithms,

ACAgen

coprocessor generator module is capable of ragieherating
1000 lines of VHDL code with only 300 lines of soercode.

If we compare the numbers presented

in tHblavith

other Coprocessor generator tool, the results stié very

good.

Indeed, our framework improves its flexipil on

Netbeans 5.5 version and centrino duo Core 2Glith 21
Kbytes and 3 seconds average runtime whiletiner

© 2012 MECO

Mediterranean Conference on Embedded Computing ,,,-"" MECO - 2012 Bar, Montenegro

TABLE lI1. SYNTHESIS RESULTS V. CONCLUSION
Logic utilization diss??avt\ﬁ:\ or In thi_s paper, we proposed an approach to coprocess
(additional cost |~ dEIe (m\';’v) Time execution generation from a VHDL description. Our automaticde
%) (additional cost | (icks number) generation approach is based on VHDL parsing bgldging
en %) token-based algorithms able to know and extractifierent
Scalar product 113 (9.6%) 2.34 (4.7%) 24537 parts of the entered VHDL file. Experimental résushow
\gergtdol:'ci' 103 (8.8%) 1.37 (2.8%) 38236 that the proposed ACAgen module can rapidly andlyeas
Mult_Mat 193 (8.8%) 3.66 (7.4%) 53543 generate coprocessor for realistic programs. Id_dem the
Projection 370 (31.6%) 3.64 (7.4%) 35900 deS|gn of large and complex systems-on-chip witls leosts
and higher performances.
SR REFERENCES
12.00%
10.00% 1 [1] Philip I. Necsulescu, Voicu Groza, “Automatic Geatesn of VHDL

8.00% - Hardware Code from Data Flow Graphs”, |IEEE Intdorsl S

6.00% | ymposium on Applied Computational Intelligence aimformatics ¢

B May 2011 Timi Goara, Romania.

4.00% 1 [21 Y. D. Yankova, K. Bertels, S. Vassiliadis, R. J. édevs, and A.

2.00% - Virginia, “Automated hdl generation: Comparative akaation,” in
Proceedings of International Symposium on Circuared Systems

0.00% - T T T T T

(ISCAS2007), May 2007.

| Vectorial Mult t Projecti Transformati Zni | . .
seeer eetone v rolection Hransformetion - #horma [3] Handel-c language referendetp://www.celoxica.com/Celoxica web
]) site 2012.
Figure 4. Speedup offred by our solution [4] Quickly Create Customized Functional Blocks,

http://www.tensilica.com/products/xtensa-customiedtim , Tensilica
web site 2012.

p [5] W. A. Najjar, A. P. W. B" ohm, B. A. Draper, J. Hares, R. Rinker, J.
framework [12] works with 33 Kbytes and 1@csends R. Beveridge, M. Chawathe, and C. Ross, “High-lelmiguage

average runtime. abstraction for reconfigurable computing.” IEEE Garter, vol. 36, no.
8, pp. 63-69, 2003.

P. C. Diniz, M. W. Hall, J. Park, B. So, and H.Zegler, “Bridging the
gap between compilation and synthesis in the defagstem.” in

Moreover, using the ACAgen module, it was easy to[6
implement different applications within NIOSII pexsor core]

and the FPGA Stl‘atix 28180 deVice Wh|Ch inClude352@ Proceedings of 14th International WOI'kShOp on mes and
ALUTs for hardware logic [11]. The performanceuks are Compilers for Parallel Computing (LCPC'01), 200f, 52-70.
given by table Ill. We note that the mult_mat apglion attain [7] Spark: A parallelizing approach to the high-levghthesis of digital
the maximum gain with 23543 ticks and additionastsoof circuits, http://mesl.ucsd.edu/spari8PARK project web site 2012.
16.5% in Logic utilization. On the other hand, ésults in [8] ZHI GUO, WALID NAJJAR, BETUL BUYUKKURT, “Efficient
power consumption increase with 7.4%. hardyvare code generati_on_ fo_r FPGAs”, ACM Transastioon
Architecture and Code Optimization, Vol 5 Issuéthy 2008

Also, as shown in figure 4, the results indicatattbur [9] catapult c Synthesis Overview .
approach can quickly (in several seconds to a mjrygnerate http://www.mentor.com/esl/catapult/overvief012.
coprocessor for realistic programs. The coprocesssign can [10] Impulse accelerated technologiéstp:/www.impulseaccelerated.cam/
achieve an average speedup of 6.78X and peak gpexfdu 2012
9,6X over the manual solution. [11] Altera Corporation, Stratix Il Device Handbook, 200

. . .. [12] Michael F. Dossis, “A Formal Design Framework to néete

This analysis demonstrates the efficiency of ourAgén Coprocessors with Implementation Options”, Inteioral Journal of
module to generate hardware from a high level laggu Research and Reviews in Computer Science (IJRR@E)2/ No. 4,
(HLL). Through the VHDL parsing method presentecthis August 2011, ISSN: 2079-2557.

work, a designer can automatically generate itdémpntation [13] E. Kallel, Y. Aoudni, M. Abid “Object-oriented appach to Custom
at RT level. The designer can easily and rapidipegates Instruction design”, accepted for publication inFET6-7 paris 2012.

different SoC configurations to look for the betemative for ~ [14] E. Kallel, Y. Aoudni and M. Abid, "Parser-based auatic code
a given application generation approach for embedded systems” in ICGA2(Ryadh,

Arabie Saudite, 2011, in press.

© 2012 MECO

