
 1

Performances evaluation of multi-modules caches
memories for embedded systems

Hajer.CHTIOUI1, Smail.NIAR2, Mohamed.ABID1

 1CES Laboratory, University of Sfax Tunisia
2 LAMIH, University of Valenciennes, French

chtioui_hajer@yahoo.fr, smail.niar@univ-valenciennes.fr, mohamed.abid@enis.rnu.tn

Abstract—The effectiveness of caches memories in term of
energy consumption and execution time represents an
important challenge in the embedded systems design. In
response to these needs, new structures of caches appeared.
This paper concerns these structures and their effectiveness
to improve embedded system performances. In this context,
we modelled and evaluated the technique of multi-modules
caches “cache of the victims” with the simulator of embedded
architecture SimpleScalar/ARM. The results obtained are
interesting. Indeed, the rate of improvement of the miss ratio
arrives on average up to 53%. The energy consumption is
quite reduced for all the benchmarks this is noted especially
for the benchmark (cjpeg) which has a reduction ratio of the
energy consumption which arrives up to 42%.

Keywords-component; Multi-modules caches memories;
embedded systems; victim cache Simplescalar/ARM; energy
consumption

I. INTRODUCTION

With the appearance of the modern applications such as
the multimedia (audio, video, plays…) and
telecommunication, the embedded systems become more
complex. One of the serious problems with these
applications is that they require increasingly an important
flow of data. Therefore, they need an intensive use of the
memory. However, the consumption and the time access of
the memorizing units largely dominate the overall
consumption and the total performances of such
applications. Consequently, the respect of the constraints
of reliability, time design, surface, consumption and
guarantee of the performances becomes very critical. So,
the memorizing units play a very significant role in the
embedded systems. For this reason, the designers always
deal with the improvement of the memories and more
precisely the cache memories.

On the one hand, the cache memory becomes a basic
and essential mechanism in reducing the latency of access
to the memory and the consumption of energy. On the
other hand, the increase of miss ratio in caches involves a
slower path of data, which leads to a slower time of cycle
and much more energy consumption, consequently
reduction of the performances of the global system. The
basic idea of the classic solutions [1] aims to exploit the
characteristics of the cache memory either by increasing its
size or by improving its degree of associativity. However

these alternatives give reduction in the speed of research of
the block in case of success. It is important to note that the
size factor is not always exploitable for the miniaturized
systems which require the surface constraint. Then the
embedded systems designers have to propose new
structures of cache which must face those problems. A
variety of structures of caches appeared as a response to
those needs. In this paper we focus to study the multi-
models structures [2] [3] [4] [5]. They especially deal with
the improvement of the data caches in the first level (noted
L1 Dcache) seen their importance essentially in signal
processing applications which use an enormous quantity of
data.

The idea based on adding the L1 Dcache a small module
of cache and it is possible to be extended, that will be
named the multi-modules. This module is called assistance
cache or still auxiliary cache. The main purpose is to
increase the chance to have a cache success by exploiting
the principles of temporal and space locality. The temporal
locality is exploited by charging the data in L1 Dcache at
time of the first reference (first miss), whereas the space
locality is exploited by charging not only the referred data
but also the data neighbouring (a data block).

Within this framework, the objective of this paper is to
evaluate the performances of these structures in terms of
time execution and energy consumption. The stress is laid
on their utility in the SoCs (System on Chip) for the
applications of intensive signal processing. Work aims to
implement on the simulator of embarked architecture
SimpleScalar/ARM [7] a technique of multi-modules
caches. This technique [2] is named cache of the victims
(noted VC). This paper consists of three sections. The first
section is a representation of the principal works to carry
out on the multi-modules caches memories. In the second
section, we detail the key points related to the design of
model VC. The third one, initially represents the
environment of integration and simulation which we adopt.
It gathers thereafter the various results from integration.

II. STATE OF ART

A variety of research works is realized on the multi-
module caches of which we represent some of it in this
part. These structures have the same principle that is the
addition of an auxiliary cache to L1 Dcache (figure 1). But
they are differed by the way in which they are disposed.
The techniques of exchange between them and most
interesting are their manners with which they exploit the

 2

principle of locality. We classify these structures in two
categories. The first category determines the locality of the
block by seeing its behaviour at the time of the current
turning the other word their tendency to be referred another
time. The second determines the locality of the block by
seeing its history at the time of the turns which passed
previously.

Figure 1. Principal of Multi-modules caches memories

A. Multi-modules cache Memory out of background

1) Caches of the victims
It is agreed that the direct mapped cache (noted DMC)

is simple and inexpensive to implement. But its main
disadvantage is the fixed site of the block in cache.
Consequently, if a reference program in a repetitive way
words of two different blocks which correspond to the
same line, these blocks permute continuously in cache, and
the success rate becomes weak. The traditional solution of
this problem is to increase the associativity of cache, yet
this will require an increase in the access time to cache
since the research of the block will become more
complicated. The standard of researcher Jouppi [2]
observed that in the majority of the cases, only few, blocks
of cache which are responsible for a defection in cache.
Therefore, it proposed to improve L1 Dcache by adding a
fully associative cache to it (noted FA) named cache of the
victims. The idea is to put the ejected blocks of L1 Dcache
in VC hoping that the next time there needs this block it
can be consulted quickly from the VC instead of going to
seek in the level 2 cache memory (noted L2 Dcache). The
new cache is named cache of the victims because we find
in it only blocks ejected in case cache defection.
2) ABC « Allocation By Conflit »

This structure [3] comes for the improvement of DMC
cache by adding a cache FA to it. It is similar to structure
VC but this case the decision to put a block in the principal
cache called A (DMC) or in the secondary cache called B
(FA). This fact is considered the turn running of the block
in conflict. Each time that an entering block which is put in
B. We say that a CNR (conflict without replacement)
occurred in A. With each block in A is associated a bit C
that indicates if a CNR is produced in A since its last
reference. Bit C is 0 in its initial positions. Each time a

CNR occurs, C is put at 1 for all blocks of A. the bit C of a
block is given to zero each time the block is referred. SoC
is equal to 1 indicates that at least a CNR is produced in A
during the current turn of this block which was not put in
reference from since last CNR. The block of conflict is
considered actively referred if its bit C is 0.

B. Multi-modules cache memory referring to its
background

1) Dual Cache
This technique [4] is composed of two caches S and T

disposed in parallel and a mechanism of prediction (noted
LPT for Locality Prediction Table). The LPT contains the
history of the instructions memories most recently
performed. The blocks in T are smaller than those in S.
The LPT indicates not only the type of locality associated
with the instruction memory which caused the loading of
the block (S, T or no locality), but it contains also
information allowing a preloading of the data. The
mechanism of prediction is used only when there is a miss.
In other words, a data T (having a large temporal locality)
can lie very well during a turn in the memory S, because it
is in the same block as a data S. Prediction on the level of
the LPT is made by taking of account the address
instruction, the difference in the reached addresses (the
step), and the length of the vector. A data can be localized
in the two caches.

Indeed as the blocks have different sizes, the data can
belong to a block where there has a data S and is another
block (with another size) or there is a data T. In this case,
to avoid problems of inconsistency, the reading is done in
priority in T and when a block of T is purged, it updated
there data in S.
2) NTS « No Temporel Streaming »

The goal of this structure [5] is to increase the chance to
have a success of cache. This is doing by safeguarding
longest possible in L1 Dcache the blocks with large
temporal locality. The other blocks which do not have a
good temporal locality are recovered in an auxiliary mask
added to L1 Dcache. The decision to put the block entering
the principal hiding place or that auxiliary is done by
testing the history of the block in the turns precedent and
this is using a table of history (noted for Detection Links)
which keeps information on the blocks which forward by
L1 Dcache.

III. STRUCTURE TO BE INTEGRATED

A. Structure VC

A L1 Dcache that using a VC is like that which is
already represented by figure 2: a large cache DMC and a
small auxiliary cache FA (1 KB). This latter is laid out
behind the DMC, and plays the role of interface with the
L2 Dcache. The search for a block is done in parallel in the
two caches. It is then enough to have a success in the
DMC. The VC will not reach and the sought word will be
delivered to the processor. In case of miss in the DMC, and
that there is a success in VC cache then the block victim
which will be ejected DMC and the desired block of VC
cache are permuted. In case of miss in the two caches, the

L1 Dcache

Auxiliary
Cache

Hierarchy
of

memory

Processor

L1 Icache

 3

block is read from the L2 Dcache then safeguarded in the
DMC.

The block which will be replaced is sent to the VC for a
future use. This small cache is laid out behind the principal
cache consequently it does not have a direct way between
VC and the processor. But there is a bidirectional way
between the DMC and the VC for that the data path, is
expensive especially when there is a success in the VC.

Figure 2. Structure of the L1 Dcache with the cache of the victims

B. Integration and simulation environment

In this part we present the environment adopted for our
experimentation and we detail our design. We choose punt
forms simulation SimpleScalar/ARM version 3.0 [7], to
simulate and to evaluate the VC model. Indeed, this punt
form has a whole of very rich tools with a good execution
during simulation. Its code written with C language, simple
and modular allowing the user to add and modify any
architecture.
1) Implementation

In this section we indicate the stages which we preceded
in the implementation of structure VC.

Among the variety of the modules that obtain
SimpleScalar/ARM. we are interested in the modules of
cache "cache" and "sim-cache". The implementation
module "cache" is characterized by a generic controller of
a memory cache at the level of view size and associativity.
The reading in case of miss is "Read-Through" i.e. the
reading is directly completed from main memory to the
CPU. The writing is "Write-back" which means that the
block is written only in the memory cache. We keep these
characteristics for the structure of cache which we
modeled.

The module "sim-cache" generates the statistics of the
memory cache and the configuration TLB for "Translation

Look-aside Buffer" (structure of cache which safeguards
the translations of the virtual addresses which attain the
cache in physical addresses). Their characteristics size and
associativity are fixed by the user. It simulates up to two
levels of instruction and data caches (they can be unified),
with an instruction and data TLB level.

Each time that there is an access to a memory cache the
module "sim-cache" calls the functions "cache_create" and
"cache_access" of the module "cache". The function
"cache_create" realizes the creation of a memory cache
whose definition is carried using the structure "struct
cache_t". The function "cache_access" reaches the cache in
writing or reading according to the order to be executed.

The quite detailed study of the principal functions
related to the design and the simulation of a memory cache
according to SimpleScalar, enables us to proceed as
follows:

We implement in the module "cache" two new
functions. The first function named "cache_access_new"
which gives access to the principal cache DMC of
technique VC. While the second function
"cache_access_vc" gives access to the secondary cache VC
of this technique.
2) Simulation results

We test the module "sim-cache" before the integration
of our model VC with six benchmarks of the MiBench
suite (bf, rijndeal, PGP, fft, sha, cjpg) for a size of L1
Dcache of 4KB and whose technique of placement is
DMC. Then, we realize the same tests for our module
"sim-cache" after the integration of model VC with size 1
KB and whose technique of placement is FA.

71.8

41.8

0.8

99.6

17.7

88.5

0
10
20
30
40
50
60
70
80
90

100

R
a

te
 o

f
im

p
ro

ve
m

e
n

t i
n

%

bf rijndeal pgp fft sha cjpeg
Benchmarks

Figure 3. Improvement rate of the miss ratio for a L1 Dcache with size

4KB

Figure 3 shows the improvement rate of the miss ratio
according to different benchmarks for a size from cache of
4KB. We note that the rate of improvement of the miss
ratio is very significant for the benchmarks bf, rijndeal, fft
and cjpeg. Indeed, this rate attains on average up to 53%
what reflects the effectiveness of the integration of our
technique.

The reduction in miss ratio involves a reduction in the
total number of access at the lower levels of the hierarchy

 4

memory. We affirm this by figure 4 which represents the
improvement rate of total number of access to the L2
Dcache according to the benchmarks.

74,8

13
1,2

99,5

16

82,7

0

20

40

60

80

100

R
at

e
of

 im
pr

ov
em

en
t

in
 %

Bf Rijndeal pgp f f t sha cjpeg

Benchmarks

Figure 4: Improvement rate of the access total number to the L2 Dcache

for L1 Dcache of 4KB

In order to evaluate the energy consumption of the
multi-modules cache structure VC, we used the energy
estimate model of CACTI 3.0 [6]. We recovered the results
illustrated by figure 5.

0

10

20

30

40

50

rijideal pgp fft cjpeg

Bnechmarks

R
ed

uc
tio

n
ra

tio
 in

 %

Figure 5: Reduction ratio of the energy consumption according to the

benchmarks

We prove referring to these results that the integration
of technique VC in SimpleScalar/ARM is very efficient for
the improvement of its performances.

We note that the energy consumption of the memory
cache is quite reduced with the integration of the multi-
modules cache structure VC. Indeed, this is marked
especially for the (cjpeg) benchmark which has a reduction
ratio of the energy consumption which arrives up to 42%.

IV. CONCLUSION

The cache memories considerably drew the attention of
the designers as of their appearance. They are particularly
attractive for the embedded systems which handle
applications of intensive signal processing.

Indeed, this memory is the best response to the needs
for these systems in term of the energy consumption and
time response. Consequently, the designers are motivated
in order to improve the performances of the cache
memory. This motivation is well marked by the appearance

of several new structures of caches such as the multi-
modules structures.

In this paper we modelled, simulated and evaluated the
performances of the multi-models cache structure VC. The
results of simulation which we obtained have makes it
possible to validate the correct function of our application.
In addition, they made it possible to evaluate the
performances of model VC in term of energy consumption.
Indeed, we referring to the results of simulation that the
integration of this model in SimpleScalar/ARM improves
the L1 Dcache miss ratio of a value which arrives on
average up to 53%. Consequently, we obtain at the level of
the energy consumption. Thus the reduction of the energy
consumption arrives up to 42% with the benchmark (cjpeg)
of the MiBench suite. In conclusion, model VC made a
success of the L1 Dcache improvement thus the
improvement of the total system.

Currently, the tendency is oriented to the design of
multiprocessor embedded architectures (MPSoC). So, we
minks studied the effectiveness of the multi-modules
caches memories for these systems.

REFERENCES
[1]http://www.pearsoneducation.fr/Documents/Catalogues/stallingschap4.

[2] N.P. Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully Associative Cache and Prefetch Buffers,”
Proceedings of ISCA-17, pp. 364–373, June 1990.

[3] E. S. Tam, “Improving Cache Performance Via Active Management,”
Ph.D. Dissertation, Dept. of EECS, University of Michigan, Ann Arbor,
1999.

[4] A. Gonzalez, C. Aliagas, and M. Valero, “Data Cache with Multiple
Caching Strategies Tuned to Different Types of Locality,” Proc. Int’l
Conf. on Supercomputing’95, July 1995, pp. 338-347

[5] J. A. Rivers and E. S. Davidson, “Reducing Conflicts in Direct-
Mapped Caches with a Temporality-Based Design,” Proceedings of the
ICPP, vol. I., pp. 151 - 160, August 1996.

[6] P. Shivakumar and N. Jouppi. CACTI 3.0: An Integrated Cache
Timing, Power, and Area Model.

WRL Research Report 2001/2, Aug. 2001.

[7] http://www.simplescalar.com

