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Abstract— The technological revolution during the last
years has carried out a great evolution especially in the
multimedia domain. Nowadays, almost everyone benefits
from various video applications such as TV broadcasting
and video conferencing. This progress involves
particularly an increase in the capacity of digital data
transmission. As a result, data compression became
increasingly significant for storage and transmission.

In this paper, we present an algorithm for fractal image
compression based on SOC in real time. The algorithm
consists of a hardware and software part. The hardware
part supports an expensive calculation; therefore it is
conceived on RTL level. The coding algorithm was
implemented on the Altera chard STRATIX-I. The
functional blocks were implemented with clock rate of 410
MHz with a maximum flow data input of 13.2 Gbit/s.

Index Terms— Fractal image compression, SOC, FPGA,
Real time, RTL level design, Functional simulation,
Temporal simulation.

I. INTRODUCTION

HE fast development of the data-processing

applications was accompanied by a significant
increase in the use of the digital images, in particular in
the field of the multimedia, the plays, the transmission
satellites or the medical imagery.
Due to their large size, digital images raise many
problems for their transmission and storage. For
example an image 512x512 pixels (value of the pixel is
8 bits) necessitates 2MB of memory capacity. Also the
real time which becomes more and more requires
nowadays then the compression of image is necessary.
Currently several methods of image compression are
proposed (JPEG, wavelets, etc.) in order to have a good
compromise between the compression ratio and the
quality of rebuilt image. Worthly mentioning is the
fractal image coding method which is based on the
fractal theory. The basic idea of this method is that the
image can be reconstructed using its self similarity
features.
it is noted that the phase of integration of the
functionalities offered by the multimedia applications in
the systems embarked in real time (i.e. the systems
which carry out several calculations within a very
limited time such as the portable telephones, TV, reader
DVD etc) became increasingly complex [1] and [7].
The implementations of the compression methods

require the performance in term of computing power,
flexibility, cost and time to market.

In this paper, we propose a hardware software design of
fractal image compression. First, we briefly present the
key concept of the hardware software fractal coding.
Then, we mention internal architecture of hardware
blocks. After that, we present the results of simulation
and implementation of the system in Stratix chard.
Finally, we conclude the paper and we present open
direction for future work and

II. FRACTAL CODING

The fractal theory applied to the image processing field
is based on the iterated function system (IFS) and has
been used mainly for data compression [12] and [15].
The basic idea of fractal coding is to exploit the
redundancy given by the self-similarities always
contained in natural images. The fractal image can be
seen as a collage made up of copies of parts of an
original image that have been transformed through
opportune geometric and massive transformations (that
is, luminance or contrast shift). The mathematical
foundation of this technique is the general theory of
contractive iterated transformations, proposed in [2] and
[10].

To understand quantitatively the principal encoding
algorithm, consider the flow chard of the fractal image
coder as shown in Figure 1. Encoding algorithm is
composed of two main parts: software and hardware.
The hardware part is called self similarity search [3] and
[5].

The software part is made up of four blocks: image
partition, domain blocks classification, domain blocks
reduction and range blocks classification [8] and [9].
First the image is partitioned in non overlapping parts of
size BxB, range blocks, and in overlapping blocks of
size 2Bx2B, domain blocks. The partition begins by
range blocks of size 16x16 pixels and domain blocks of
size 32x32 pixels. Then the domain blocks are classified
using the luminance-variance features method, where
the blocks are classified in 72 classes. Afterwards the
number of domain blocks is reduced with method of
Domain Pool Reduction. The main idea is the scanning
of the domain pool in order to remove similar or unused
domains. The range blocks are classified in 73 classes:
those blocks are classified in 2 main classes, shade and
non-shade.

For shade blocks, no self-similarity search is needed,
only the mean pixels value is used for encoding of the
range block. For non-shade blocks, further classification



in 72 classes based on luminance-variance features is
performed like as classification of domain blocks.
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Figure 1: Encoding algorithm flowchart

Finally a process of self-similarity search is begun, if
the best domain block for this range is found i.e. the
error given by the equation (2) is less a predetermined
tolerance, the location of this domain and its
transformation parameters (& , § and the symmetry

operation defined in the classification for a given R,

and D ; ) are stored and the process is repeated for the

next range square. However, if the predetermined
tolerance was not satisfied, the range square is
subdivided into four equal blocks. This control quad-
tree process continues until the tolerance condition is
satisfied, or range square of the predetermined
minimum size 4x4 pixels is reached.

The self-similarity search between range and domain
blocks is ensured by the Mean Square Error:
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Where:
¢ R, and D, ; are the pixels values of the

range and domain blocks at coordinates (i,j).
¢ o and [ are the contrast and the offset
parameters.
¢ B is the blocks width and height.
The optimal set of parameters for a given couple of
range and domain blocks is found setting the partial
derivates according to the contrast parameter & and the

brightness ,B to zero [3].
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Finally the optimal
parameters are given by:

=0 and 0 2

offset and optimal contrast

C,,(0,0)
a,, = D’?T 3)
Bop =My =, My @)

Where:
® U, and M, are respectively the mean values of
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The optimal parameters that will be used for encoding
of R are given by those of the
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Where:
° Aa = (aopt - aquan) and Aﬁ = (ﬁ()pt _ﬁquan )’
& i > ﬂqmm are and ﬂopt after quantization.

° Pd is the set of domains in one class

The software part is composed by four blocks: image
partition, domain blocks classification, domain pool
reduction and range blocks classification. This part is
realizable in software and offers the real time criterion.

On the other hand the hardware part or self-similarity
search does not respect the aspect of the real time when



it is implemented in software because it needs a
powerful calculation:

The computational complexity of the optimal
parameters calculation is of order of o(N), where N is
the block size.

The computational requirements, i.e. the number of
additions, multiplications and divisions needed for the

implementation of the optimal contrast parameter x,,

for blocks size N using the equation (3) are amounted
to:

= 5N additions

= 3N+1 multiplications

= 2 subtractions

= 7 divisions
According to the equation (4), the number of operations
needed for the implementation of the optimal offset

parameter ,ngt using the pre-calculated «,, is

amounted to one multiplication and one subtraction.
In the same way the Mean Square Error for a defined
couple of range and domain blocks can be calculated
using equation (1). The computational requirements are:

= N additions

= 2N multiplications

= N subtractions

= ] division
The number of MSE to be calculated during the
encoding depends on the image size, the blocks size and
the search sliding step. For example the encoding of the
image Lena 256x256 using 8x8, 16x16 and 32x32
domain blocks and a search step of 4 pixels needs of
about 200000 MSE to be calculated. That’s why the
implementation of the part self-similarity search is
necessary in hardware in order to accelerate the time
computing[4].

III. TARGET ARCHITECTURE

A mono chip system, still called SoC "System-one-
Chip" can be defined as a complex integrated circuit
which integrates complexes and heterogencous
component on the same silicon part. With the difference
of the traditional systems the mono chip systems are
dedicated to specific applications and cut to measure to
satisfy only the needs for the application. Compared to a
system on ordinary chard, SOC employs only one chip
reducing the total cost of encapsulation which accounts
for approximately 50% of the total cost of manufacture.
These characteristics as well as weak consumption and
the short duration of design allow a fast setting on the
market of an economic and powerful product "time to
market" [11] and [13].

Figure 2 presents the basic architecture of our chip. It is
composed of: processor, memory and hardware dedicate
blocks. The units communicate between them by means
of a bus. First, the processor provides the data with the
various hardware blocks and recovers the results to
safeguard them in the memory. That’s why the
processor is only connected with the memory. Initially,
it takes the untreated data.
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Figure 2: Architecture of SOC

Then, it slings defined classification before giving them
to the various hardware blocks. Finally, it recovers the
results in order to safeguard them in the memory.

The hardware blocks are composed of seven elements:

1- Block pr &pd: is calculating the mean values
domain and range.

2- Block ¥Yd &Wdr: is to calculate the mean of
product respectively domain/domain  and
domain/range

3- Optimal parameters a & f: its objective is to
calculate the optimal parameters

4-  Quantization and Inverse quantization: the first
block is quantized the optimal parameters while
the second block is un-quantized.

5- Block min(MSE): this block calculate the
minimum of mean square error

6- Control quad-tree: this block is responsible for
controlling the system of quad-tree.

IV. DESIGN OF THE SELF-SIMILARITY SEARCH:

As already mentioned, self-similarity search is
implemented in hardware dedicates blocks. One of the
serious problems is the synchronisation of the data flow
between the different hardware blocks. In order to
satisfy this requirement, we created a global State
machine. Let’s start by developing the different
hardware dedicates blocks.

A. Hardware dedicates blocks architecture:

The proposed architecture for self-similarity search is
shown in figure 3. It is composed by four stages
implemented by serial-parallel architecture: average
value, variance & covariance, the optimal parameters
and validation stage.

i. Stage of average value: it is composed by four
blocks. Each block is responsible to calculate: the
mean value of domain, mean value of range,
mean product of domain and mean product of
domain & range. These values are respectively

denotedby: ., g, W jand ¥ 4, .



calculated

M, H; Wiand Vg are

according to the size of the image blocks to be
coded (16x16, 8x8 and 4x4 pixels). The inputs
signals are the various pixels of domain and
range block and start M.

Stage of variance & covariance: this stage
contains two modules. First, the variance it’s role
calculates the square of variance of domain. That
the second, the covariance is calculating the
covariance of range and domain. These different
blocks are controlled by start COV and
start VAR.

Stage of optimal parameters: it is composed of
two modules optimal contrast parameter and
optimal offset parameter. The square of variance
of domain and the covariance of domain & range
are the inputs signals of the first module, whereas
the output is the optimal contrast parameter

(a ,, ). Optimal offset parameter module has

il.

1ii.

these inputs signals: average value of domain,
average value of range after a shift of four clock
cycles, clock and optimal contrast parameter.
This module is to calculating optimal offset
parameter ( 3 ).

iv. Stage of validation: this stage is responsible to
validate the different optimal parameters by using
minimum (MSE). Figure 4 presents the internal

opt

architecture of this block. During the encoding
process, only the optimal parameters and the
domain position should be sent to the encoder.
For storage and transmission, the optimal
parameters should be quantized in order to
increase the compression ratio. The uses of the
quantized parameters at the decoder make it
necessary to correct the equation (1) by a
quantization error. That’s why optimal
parameters should be quantized and versed
quantized in order to determinate the error of
MSE.

Finally, the outputs of this block are the optimal

parameters ( ¢ ot and 8 ), minimum of MSE and

opt
the identification of coded block. These signals are
directly connected to the processor.

There are also two blocks of shift (block shift 1 and
block shift 2). These blocks have the role to
synchronise the various signals to have a correct
process. Indeed, certain blocks need the signals which
come in various stages: for example the block optimal
offset parameter needs three signals: two signals come
from the first stages: ur pixels and pd pixels. On
whereas, the third signal comes from the third stage
o__param_opt; therefore it needs to shift the first two
signals in order to have correct result, figure3.
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Figure 3: design of self-similarity search
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Figure 4: quantization, un-quantization and min (MSE) design

B. Global State Machine:

The global architecture is controlled by different states
machines. These states machines have a very significant
role in this module self-similarity search.

For simplicity of the design of the state machine, it is
important to divide it into two modules: Global State
Machine and six sub states machines: fsm M,
fsm COV, fsm VAR fsm Contarst, fsm Offset and
fsm MSE, comes respectively in these blocks: average
value, variance, covariance, optimal contrast parameter,
optimal offset parameter and validation stage.

A block diagram of a global state machine is shown in
figure 5. It is responsible to generate the different starts
signals of six sub states.

Now considering the situation when the block select is
set to “01” (image block size 8x8). Figure 6, present the
simulation of this situation. Initially, start M passes to 1
when counter is equal to x “1”. This signal activates the
state machine of the various modules of first stage
(average value). When the counter is equal to x“77,
start Var and start Cov passes to 1 and activates
respectively the module variance domain and
covariance range& domain. After three cycles of clock
start_contrast is activated. Therefore the block of
optimal contrast is beginning to work. The block of
optimal offset is started the work when start offset
receive 1. Finally, when the counter is equal to x “0d”;
start Min(MSE) passes to 1 then module of validation
begins the work and after two cycles we have the
various optimal parameters to outputs.

V. IMPLEMENTATION RESULTS

To implement the two large modules: software and
hardware (self-similarity search) we use chard FPGA
STRATIX of the Altera firm which uses processor
NIOS.
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start_Il <="0"
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Figure 5: Global State Machine

The Stratix family of FPGAs is based on a 1.5-V, 0.13-
um, all-layer copper SRAM process, with densities of
up to 79,040 logic elements (LEs) and up to 7.5 Mbits
of RAM. Stratix devices offer up to 22 digital signal
processing (DSP) blocks with up to 176 (9-bit x 9-bit)
embedded multipliers, optimized for DSP applications
that enable efficient implementation of high-




performance filters and multipliers. Stratix devices
support various I/O standards and also offer a complete
clock management solution with its hierarchical clock
structure with up to 420-MHz performance and up to 12
phase-locked loops (PLLs).

We use also environment Nios-II and Quartus for
creation, compilation, simulation, and prototyping on
this FPGA card [14].

For architecture self-similarity search we propose
several designs on RTL level in order to have a
synthesisable architecture which offers a good
compromise between the frequency, the area, the time
execution and the data flow. The presented architecture
has been simulated using Active VHDL. Thus, we
make a functional simulation to validate the correct
operation of this architecture. Then we pass to the
temporal simulation which makes it possible to
guarantee an implementation success of 95% on the
STRATIX FPGA cart.

The total implementation in FPGA for the fractal image
coding on the STRATIX chard offers these results:
Total ALUTSs: 7124

Total register: 4559

Total pins: 177

Total memory bits: 571136

Table 1 shows the area, the latency time in clock cycle
and the throughput for self-similarity search

implementation. The proposed architecture has a
frequency of 410MHz with a data flow is 13.2 Gbit/s.
therefore this architecture can be used in real time video
compression, because 25 frames/s needed 13 Gbit/s but
we use the reduction of data by 40% proposed by [3].

VI. CONCLUSION:

The main objective of the presented work was real-time
implementation of the fractal image compression on
SOC. That’s way we divided the encoding algorithm
into two parts: software and hardware (self-similarity
search).

We conceived the self-similarity search architecture,
and then we made functional and temporal simulation.
Afterwards we implemented the algorithm of coding on
the STRATIX chard. In experiments we had a
frequency of 410MHz with a data flow of 13.2 Gbit/s.
We obtained the real time coding of video image with
exploiting only the Y4 totality of the resources of the
STRATIX chard.

There are several open issues for future research. One is
how to integrate the algorithm for estimate movement in
the encoding algorithm of fractal compression, and how
to improve the algorithm of fractal compression to adapt
in HDTV.
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Figure 6: simulation diagram for Global State Machine when block_select is equal to x“01”
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