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Abstract—This paper presents an implementation of robot
localization algorithm using FPGA technology. The adopted
localization method uses webcam tracking images. This technique
has been developed and implemented for the motion of the robot
from an initial position towards another desired position. Firstly,
we have validated our approach on PC platform using C language
and OpenCYV library. Secondly, for the autonomous navigation,
a mixed HW/SW implementation was been developed using a
high performance version of the NIOS processor coupled with
a hardware accelerator. Experimental tests on Altera Cyclone
III FPGA Starter Kit proved the effectiveness of the proposed
architecture.

Index Terms—HW/SW implementation, autonomous naviga-
tion, Altera FPGA, robot localization, webcam data, image
processing.

I. INTRODUCTION

Robot Navigation is a very quickly developing field in the
science of robotics. Mobile robots are especially being used
as a substitute for humans or to do simple work that is either
in or outside. It is becoming more and more important to be
able to determine with exactitude the position of a robot in its
environment, as well as to manage all the related mechanical,
electronic and software issues.

The robot localization problem is a key problem in making
truly autonomous robots. If a robot does not know where it
is, it can be difficult to determine what to do next. In order
to localize itself, a robot has access to relative and absolute
measurements giving the robot feedback about its driving
actions and the situation of the environment around the robot.

II. STATE OF THE ART

Relative localization consists of evaluating the position and
orientation using data of encoder and inertial sensor data. The
integration is started from the initial position and orientation
and is continuously updated. Though the technique is simple,
it is prone to error due to imprecision in modeling, noise, drift
and slip [1]. Since the position estimation are based on earlier
positions, the error in the estimates increases over time.

Absolute localization provides position measurements based
on observations made from the environment. This position
information is independent of previous position estimates [2].
The location is not derived from integrating a sequence of
successive measurements, but directly from one measurement.
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This has the advantage that the error in the position does not
grow unbounded, as is the case with relative position tech-
niques [2]. The major disadvantage of absolute measurements
is their dependence on the characteristics of the environment.

In order to compensate the drawbacks of the two techniques,

substantial improvement is provided by applying Kalman
Filtering techniques [3]. These filters can estimate states of
noisy systems in noisy environment. Another approach adapts
the position and the orientation of a mobile robot through a
weighted Extended Kalman Filter (EKF) [4] and [5]. These
methods need much calculation for a mobile robot to perform
a task. Other disadvantages are either the short range of used
sensors or the necessity to know the initial position of the
robot [6].
Other solution, in [7], uses a method which permits the vehicle
to correct its drift by direct observation using a unique embed-
ded CCD camera on a mobile robot. In [8], another localization
technique is presented. It uses the correspondence between
a current local map and the global map previously store in
memory. In [9], a method calculates the position of the robot in
order to intercept a moving target through visual feedback. The
most important disadvantage of these methods is the necessity
to know the initial position of the robot. In [10], a multi-
DSP platform, based on TIs DSPs from the C2000/C5000
families is used for motion control and data processing on the
mobile robot F.A.A K. This technology is particularly efficient
for implementation of complex localization technique. Their
internal parallel structure is suitable for image processing
algorithm. Azhar and Dimond in [11] use FPGAs for the
implementation of control and sensor fusion algorithms in
the inertial navigation system of a Mobile Inverted Pendulum
(MIP) robot. The FPGA technology, despite its little use
in robotics, has significant advantages especially important
capacity that allows to use a single PFGA to control a
robot. It can replace several DSPs and integrate specific HW
components.

The whole proposed technique consists on combine sen-
sors measurements with external absolute data to reduce the
encoder position errors and provide the best estimate of the
robot’s position. In this paper, we are interested to implement
the absolute localization algorithm (based on webcam data)
on FPGA embedded system.



The paper is organized as follows. In section 3, we describe
the proposed approach for absolute localization. Then, we
present the different algorithms used to determine absolute
position of the robot in the test platform by exposing progres-
sively validation’s results. In section 4, we detail the HW/SW
implementation on the Altera FPGA embedded system.

III. DESCRIPTION OF THE ABSOLUTE LOCALIZATION
ALGORITHM

The proposed absolute localization algorithm is based on
webcam data. The provided images are treated with various
image processing techniques. The aim of treatment is to obtain
the position of the mobile robot on the platform.

The robot environment

Fig. 1.

As we shown in Fig. 1, the external absolute data are
obtained from a camera mounted on the ceiling of the test en-
vironment and ensured the absolute localization. The webcam
provides a color image which will subsequently be handled by
an image processing program to determine firstly, the reference
system and secondly the robot position. The robot used in
this work is the Mini Khpera II. It is equipped with a 68331
Motorola processor with 25 MHz of frequency, 8 Infra-red
proximity and ambient light sensors and a serial port providing
communication with the PC.

This approach is based on three steps as shown in figure 2.
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Fig. 2. The adopted approach

The step 1 consists on the localization of the four
landmarks and definition of the robot cartesian coordinate
system set up against which the position of the robot
will be calculated. In the step 2, we calculate the current
position of our robot in a sequence of images. In step 3 and
last step, we estimate the position of the robot on the platform.

This technique has been implemented and validated as a
first step, under Visual Studio with C language using OpenCV
Library. OpenCV is an open source and free computer vision
library. The only OpenCV features used in application are
loading and displaying images in graphical windows (The
images are captured from a camera and saved in the hard disk
of PC). No predefined image processing function was used.
This is in order to be able to embed quickly the application
and facilitate the hardware accelerator’s design.

The three steps shown previously will be detailed in this
section.

A. The robot Cartesian coordinate system

The aim of this part is to identify the four landmarks used
for the cartesian coordinates system set up against which the
position of the robot will be calculated. We extract the pixel
coordinates of the reference system from a reference image,
which is captured and stored in advance. This image, as shown
in figure 3, describes the workspace of the mobile robot limited
by four landmarks placed on the corners.

Fig. 3.

Reference image

After extracting coordinates of the landmarks, we can define
our reference system shown in figure 4:
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Fig. 4. Cartesian coordinates system



B. Determination of robot position

We determinate the robot position in a sequence of images:

we extract from each sequence’s frame the position of robot
Mini Khepera II.
In order to decrease the processing time, we apply a cropping
rectangle, embracing the robot, to the binary input image in
order to reduce the number of the treated pixels. The proposed
algorithm [6] is presented as follow. In the first step, we have
the first binary image with the default webcam image size
640*480 pixels. On this image we calculate the robot position
in pixels coordinates. In the second step, we define a crop
rectangle (Fig. 5) that depend on previous robot coordinates.

Fig. 5. Cropped rectangle: 70*70 pixels

C. Robot and landmark localization technique

The different algorithms used are the grayscaling, the Sobel
filter, the thresholding, erosion and Hough Circle Transform.

1) Grayscaling: A grayscale (or graylevel) image is simply
one in which the only colors are shades of gray. In fact a gray
color is one in which the red, green and blue components all
have equal intensity in RGB space [12].
A simple way to convert the image color to a graylevel is to
calculate the pixels luminance using (1):

Gray = 0.299 * Red 4 0.587 * Green + 0.114 % Blue (1)

The result after applying the grayscale on the reference image
and on one of robot position is shown in (Fig.6).

(a) Color image

(b) Grayscale image

Fig. 6. Grayscale robot position image

2) Edge Detection (Sobel Filter): We use the Sobel edge
detector to find the approximate absolute gradient magnitude
at each point of an input grayscale image in order to detect
the four landmarks and the robot.
We use a pair of 3 x 3 convolution masks, one estimating
gradient in the x-direction and the other estimating gradient

in y-direction [13]. These two masks are convolved with
the incoming image data to measure the differences in in-
tensity along the horizontal, vertical directions. These two
measurements Fj, and F, are then combined to estimate edge
magnitude and direction.

The gradient magnitude is estimated as (2):

|Mag| =/ (En)?+ (Ey)? @

Figure 7 illustrates the image resulted from Sobel filter.

(a) Input image (b) Output edges

Fig. 7. Sobel Filter on robot position image

With this filter we can transform the input image (Fig.7(a))
into a black image unless at the points where a contour is
detected that is marked in white (Fig.7(b)).

3) Image Thresholding: Image thresholding which extracts
the object from the background in an input image is one of
the most common applications in image analysis. Among the
image thresholding methods, bi-level thresholding separates
the pixels of an image into two regions (i.e. the object and
the background); one region contains pixels with gray values
smaller than the threshold value and the other contains pixels
with gray values larger than the threshold value [14]. If (4, j)
is the gray level of point (i, ) and T the threshold value, the
thresholded image g(4, j) is then defined as:

if fi,j)=>T

otherwise

white

black 3

stid) = {

We can show thresholding result image in figure 8.

(a) Input image (b) Output thresholded

Fig. 8. Thresholded robot position image

As we can see, we can reduce in Fig. 8(a) a large quantity
of informations (the white lines) while conserving in Fig. 8(a)
nearly all pertinent informations (essential to its comprehen-
sion) to separate objects from background.



4) Morphological operator (Erosion): The erosion was

been applied only to the robot position image to isolate robot
from four landmarks.
The erosion operator takes two pieces of data as inputs. The
first is the image which is to be eroded. The second is a
(usually small) set of coordinate points known as a structuring
element (also known as a kernel). It is this structuring element
that determines the precise effect of the erosion on the input
image [12].

(a) Input binary image (b) Output eroded

Fig. 9. The erode robot position image

Figure 9 shows the result after applying erosion on the
binary image. The structuring element (SE) chosen in this part,

001 0O
01 1 1 0
SE=11 1 1 1 1] isadisk with radius 5 in order to
01 1 1 0
001 0O

not change the circular form of the robot.

5) Hough Circle Transform: To locate the four landmarks
in the reference image and our robot, an algorithm for de-
tecting circles was required. This algorithm will allow us to
extract, first, center coordinates of the landmarks to define
the reference system, second and on each acquired image,
the coordinates of the robot in the environment in which
it is operating. The adopted algorithm is the Hough Circle
Transform.

The circle is actually simpler to represent in parameter space
since his parameters can be directly transfer to the parameter
space. The equation of a circle is:

= (x — a)2 + (y— b)2 4)

As it can be seen, the circle have three parameters, a, b and r.
Where a and b are the center of the circle respectively in the
x and y direction and where r is the radius. The parametric
representation of the circle is represented as follows:

{r:

The algorithm of Circular Hough Transformation can be
summarized [15] to:

a-+ r cost

b + r sinf )

1) Find edges

2) // HOUGH BEGIN

3) For each edge point:

Draw a circle with center in the edge point with
radius r and increment all coordinates that the
perimeter of the circle passes through in the ac-
cumulator matrix which essentially has the same
size as the parameter space.

4) Find one or several maxima in the accumulator:
The highest numbers (selected in an intelligent way,
in relation to the radius) correspond to the center
of the circles in the image.

5) // HOUGH END

6) Map the found parameters (1, a, b) corresponding
to the maxima back to the original image.

Applying this transform in our images, we have managed to
locate in the one hand, four landmarks (defining the reference
system of the robot) (see Fig. 10(a)) and in the other hand,
the position of the robot (Fig. 10(b)).

- Center

(b) Center of robot

Fig. 10. Centers with HCT

D. Transformation from image coordinates to real coordinates

We define the left bottom landmarks as the origin of our
system as shown in figure 11. We obtain the real image coor-
dinates by a simple difference between the pixel coordinates
either of the robot or of the reference system. The real image
coordinates (in pixels) is given by:

{ Lrobot = jr - jl (6)

Yrobot — an - il

Where 4, and j,- are the position (i,j) of the robot on the image
and i, and j; are the position (i,j) of the origin.

The resulting coordinates are multiplied by a constant coeffi-
cient k. This coefficient is calculated on the basis of both the
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Fig. 11. The positioning architecture adopted

real and the pixels distance between the landmarks along the
x-axis and the y-axis. The coefficient k is given by:

D,
J2 — J1
D,

14— 11

K, =
(N

Ky

where D, and D, are respectively the real distance in centime-
ters between the landmarks along the x-axis and the y-axis.

By applying these method described above on the hardware
environment described by a Intel(R) Core 2 duo PC with a
frequency 2GHz, the average processing time is about 0.009
seconds which is more than enough to provide continuous
robot navigation. In order to ensure autonomous navigation,
we decide to implement this technique of localization on an
ALTERA FPGA embedded system.

IV. IMPLEMENTATION ON ALTERA FPGA PLATFORM

Once validated on a PC, the adopted approach to detect
the robot center will be implemented on an Altera Cyclone
Il FPGA Starter Kit for autonomous navigation. In this
section, we present the steps needed in order to implement
this technique on the NIOS-II processor. Then we detail the
various stages to measure time processing. Finally, we expose
different techniques used to optimize and reduce the overall
execution time.

A. Purely Software Implementation

The first step we have to do is the adaptation of the code
which has been executed under Visual Studio using OpenCV
library. Yet, it’s impossible to migrate to an embedded program
for NIOS-II CPU with such library because the reading func-
tion used for loading and displaying image is not supported
by the NIOS-II.

So, to overcome this problem, we have declared images
in header file (.h) directly in the code (see Fig.12). This file
contains an array of pixel whose the struct pixel defines the
RGB components.

i typedef atruct {

2 unsigned char B;
unsigned char G;

4 ungigned char R;

5 }Pixel;

......
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Fig. 12. Example of header file

After importing, configuring and executing the program on
the FPGA, we need to verify the result. Since our FPGA is not
equipped with a VGA port, we have displayed in the NIOS
console the RG B components values, we put each in a matrix
and we concatenated them in order to obtain a 3 channels
matrix, using MATLAB command:

MyRGB = cat(3,Red, Green, Blue) ®)

The images obtained are identical to those shown in figure
10 on the PC version. This validates the purely software C
version developed for the NIOS.

B. Time processing measure

The implementation of the absolute localization algorithm
on the FPGA leads to an assembly of time execution which
are resumed in table I and table II.

We can notice that we obtained 166.912 seconds as time
processing for the first image (640%480 pixels). However,
the rest of images (70*70 pixels) needed only 12.169 seconds.

TABLE I
MEASURING RESULT FOR THE FIRST IMAGE
Section % of total time Time(sec) Time(clocks)
Gris and Sobel 81.6 136.13765 | 13613765110
Binarisation 0.802 1.33832 131831534
Erosion 4.77 7.95948 795947555
Hough Transform 12.9 21.47605 2147604584
Total Time : 166.912 seconds
TABLE 11
MEASURING RESULT FOR THE REMAINING IMAGES
Section % of total time | Time(sec) | Time(clocks)
Gris and Sobel 18.61 2.26168 226168335
Binarisation 0.290 0.03528 3528226
Erosion 1.4 0.17022 17021901
Hough Transform 79.7 9.70168 970168486
Total Time : 12.1697 seconds




To ensure fluid robot navigation, the processing time must
be less than 0.1 seconds. Then, we decide to accelerate our
system by various methods.

C. Tools for accelerating time processing

In order to accelerate the system and reduce the execution
time, we use different methods:

1) Tools available on the Nios II processor:

o The use of the fast version of the NIOS (NIOS-II/f core)
that provides a performance over 300 MIPS and Six-stage
pipeline to achieve maximum MIPS per MHz.

o The use of the floating-point custom instructions, that im-
plements single-precision, floating-point arithmetic oper-
ations (addition, subtraction, multiplication and division).
This IP has been used to compute the grayscale shown
in (1).

The add of these two accelerated tools leads to an assembly
of time execution which are resumed in table III and table
IV.

We can notice that we obtained 30.485 seconds as time
processing for the first image and the rest of images (70*70
pixels) needed only 4.10418 seconds.

TABLE III
MEASURING RESULT FOR THE FIRST IMAGE
Section % of total time | Time(sec) | Time(clocks)
Sobel 67.61 20.60082 | 2060081908
Binarisation 0.786 0.23956 23956105
Erosion 6.34 1.93425 193425323
Hough Transform 25.3 7.71108 771107747
Total Time : 30.486 seconds
TABLE IV

MEASURING RESULT FOR THE REMAINING IMAGES

Section % of total time | Time(sec) | Time(clocks)
Sobel 6.66 0.27339 27339231
Binarisation 0.147 0.00602 602300
Erosion 0.905 0.03716 3715793
Hough Transform 92.3 3.78730 378730007
Total Time : 4.10418 seconds

2) Creation of hardware accelerator: We notice in Table
IIT that the Sobel function monopolizes 67.6% of total time
since it contains complex operations (equation (2)).

So, we design a Hardware Accelerator that computes
equation (2) to HW in order to accelerate execution time for
the first image We realize a system composed of a NIOS II
Processor that communicates with HW accelerator through

the Avalon bus (see Fig. 13):
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Fig. 13. The Sobel Hardware Accelerator

The schematic block of the Sobel HW accelerator is shown
in figure 14.
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Fig. 14. A schematic block of sobel accelerator

The visualizing images after adding the Sobel Accelerator
are identical to those shown in figure 10.
These results validate the design of the figure 13.

With all these accelerating tools (NIOS-II/f, Floating Point
coprocessor and the Sobel accelerator), we reached a 16.617
seconds of execution time for the first image (Tab. V) which
corresponds to 90% of time decrease against previous time.

TABLE V
MEASURING RESULT FOR THE FIRST IMAGE AFTER ACCELERATION
Section % Time(sec) | Time(clocks)
Sobel 38.6 6.40658 640657845
Binarisation 1.440 0.23955 23955376
Erosion 10.04 1.72875 172875110
Hough Transform |49.6 8.24190 824190103
Total Time : 16.6171 seconds

For the rest of the images, we reached 3.889 seconds that
corresponds to 75% of time decrease (Tab. VI):



TABLE VI
MEASURING RESULT FOR THE REMAINING IMAGES AFTER

ACCELERATION
Section % Time(sec) | Time(clocks)
Sobel 3.35 0.13031 13030674
Binarisation 0.158 0.00615 615323
Erosion 0.958 0.03728 3727687
Hough Transform |95.5 3.71578 371577659
Total Time : 3.88982 seconds

V. CONCLUSION

In this work, we have realized an application that ensures

the absolute localization of the robot Khepera II in its
workspace using webcam data. We developed a C version
of the localization algorithm using OpenCV library. Then
we implemented it on an ALTERA FPGA embedded system
using the NIOS processor. We used specific computation
hardware (floating point coprocessor) and a custom Hardware
accelerator (Sobel) to reduce the overall execution time.
The obtained results proved the effectiveness of the proposed
HW/SW architecture in accelerating the processing time.
However, it still enough to ensure continuous and real
time robot navigation. The further improved the obtained
values, an implementation of a parallel architecture with a
multi-processor FPGA system will be held in future work.
Due to the limited capacity of the used FPGA (Cyclone III
FPGA Starter kit), other optimizations techniques cannot be
used especially multiprocessor techniques. These techniques
are particularly efficient especially for application with high
inherent parallelism like our navigation application. Direct
navigation of the robot using the Cyclone III FPGA Starter
kit is not possible due to the lack of DVI input nor VGA
output.

We plan in our ongoing work to realize all the application
using the ML 507 platform with PowerPC processor which
is more performant than NIOS and integrating the camera for
images acquisition.

Furthermore, the use of the camera is restricted to an
internal environment (indoor) to be able to fix it, while in an
external environment, it will be harder to do it. So, to overcome
this problem, a multi-sensors (GPS, cameras or DGPS) fusion
approach is a way to improve environment perception in a
real-life scenario would involve a much larger area.
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