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Abstract—The presented work proposes a MARTE (Modeling 

and Analysis of Real-Time and Embedded systems) extension for 

the specification of data-parallel applications designed to be 

executed on mppSoC, a massively parallel System-on-Chip. These 

applications can be clearly specified and generated using our 

transformation chain, which is automated and is a combination 

of contributions in different domains such as Model-Driven 

Engineering, MARTE modeling and automatic code generation. 

The modeling methodology as well as the generation process are 

validated by an image processing application example. 

I. INTRODUCTION  

Nowadays, there is a big development in the SoC domain. 
Embedded systems, at the present time, are generally dedicated 
to data-intensive processing applications where huge quantity 
of data are handled in a regular way by means of repetitive 
computations. Taking for granted that these applications are 
going to lead the destiny of embedded systems industry, what 
do we need to do to support them?  

As embedded system design is progressing to adapt 
software-rich solutions, the appeal of hardware-software co-
design for achieving the same design productivity gains that 
logic synthesis brought to hardware was strong. From a high-
level functional model, the detailed and optimized software and 
hardware implementation could be obtained thanks to the co-
design approach [1]. In fact, the incredible evolution in the 
embedded systems domain could not be achieved by hiring an 
exponentially growing number of design engineers. It is 
therefore essential to offset the gradual complexity of SoC 
design by making the productivity of SoC designers stronger. 
Adopting new design methodologies and introducing new 
levels of abstraction allows to strengthen the SoC designers’ 
efficiency. As equipment manufacturers were essential for 
manufacturing, co-design methodologies are essential for 
design. These methodologies generally applied notions that 
raised design abstraction and maintained the modeling precise 
enough at increasing levels of hierarchy.  

When dealing with massive computation and data-intensive 
processing, the use of massively parallel architectures is very 
useful.  An mppSoC (massively parallel processing SoC) 
system is a generic massively parallel embedded architecture 
designed for data-parallel applications [2].  mppSoC  is 
designed based on an  assembly  of  different components  and  
may  be  implemented  on  a  single  chip.  In addition, 
mppSoC proves very fruitful in massively parallel applications 

domain.  However, the design and implementation of such 
systems become critical due to their long design and 
development cycles. In fact, the mppSoC design is facing today 
a strong pressure on reducing time-to-market while the 
complexity of this system has been increasing.  Changing a 
SoC configuration may also necessitate extensive redesign.  
Design abstraction offers a possible solution to address the 
above issues concerning the time-to-market and complexity 
dilemma.  

It is in the context of improving the primary productivity of 
mppSoC, that our work finds its proper place. One of the 
primary principles followed during this work is the use of 
Model Driven Engineering (MDE) for SoC co-design 
specification and development. MDE is able to benefit from a 
platform based design approach, allowing abstracting and 
simplifying the system specifications, at the same time as 
integrating a compilation chain in order to obtain suitable code 
from the high level models. The mppSoC co-specification is 
managed using the MARTE profile that have been offered by 
the Object Management Group (OMG) [3].  

However, while MARTE allows abstract modeling of SoC, 
in the particular case of mppSoC, the specifications lack 
suitable semantics for expressing data-intensive computations 
and parallelism at the high abstraction levels. Our work 
addresses these limitations and introduces several contributions 
which help to integrate mppSoC specific application concepts 
in MARTE. Generating data-parallel application is enabled by 
raising the abstraction level and providing system-level design 
automation tools. The intensive parallel application is modeled 
in an UML (Unified Modeling Language) design environment 
specifying application and architecture modeling. The mppSoC 
tool implements the entire system for FPGA (Field 
Programmable Gate Arrays) prototyping board. It allows the 
designer to automatically generate the parallel SoC 
configuration and the data-parallel application, through an 
exploration step, from high-level system specification models. 
For this purpose, the mppSoC framework is based on an IP 
(Intellectual Property) library.  

The rest of this paper is organized as follows. An overview 
of the related works is given in Section 2. Section 3 gives an 
overview of the data-intensive applications and highlights their 
specifications. A brief description of the mppSoC architecture 
will be given in Section 4 focusing on the configurability of 
this architecture. Section 5 denotes the mppSoC CAD tool that 
facilitates the co-design of mppSoC through an exploration 



step. Our extension for the specification of data-parallel 
applications will be given in Section 6 and the code generation 
flow will be well explained in Section 7. Finally, a case study 
will be given in Section 8 to demonstrate the effectiveness of 
our work.    

II. RELATED WORKS 

The programming of data-intensive applications for SIMD 
computers has been widely investigated through the last 
decades. Research efforts were interested in finding a high 
level description of the data-parallel applications. These efforts 
specifically target different SIMD machines and have different 
levels of abstraction. Two hardware-specific languages were 
proposed in [4, 5]. CFD and Glypnir were defined to allow the 
development of a wide range of applications that are designed 
to be executed on the ILLIAC IV, a SIMD computer for array 
processing. With the emerging of ICL DAP (Distributed Array 
Processor) by the start of the 80s, the DAP FORTRAN 
language [6] was proposed. It basically adds features to the 
CFD language to support the characteristics of the ICL DAP 
architecture. Despite its popularity and ability to deal with 
serious applications, the ICL DAP remains a hardware-specific 
language. A more recent language that worth to be mention is 
the *LISP [7] high-level language. It is mainly designed for the 
Connection Machine CM-2 [8]. While the previously described 
languages depend on the target hardware requiring the 
knowledge of their special syntax, this language appeared as 
compiler directives offering simplified annotations to manage 
the parallel parts of the programs.   Another language designed 
for the CM-2 is C* [9]. It adds capabilities to the C language 
aiming to support data-parallel applications. Similarly to the 
CM-2 machine, the MasPar MP-1 computer was powerful 
enough that programmers defined a specific data-parallel 
language aiming to design high-performance programs for this 
SIMD machine. The language is named MasPar Fortran [10] 
and is based on Fortran 90. Another Fortran90-based language 
is the HPF language (High Performance Fortran) [11]. This 
language supports distributed memory parallel computers.  

The previously described languages have shown their 
ability to successfully design a wide range of data-parallel 
applications. Thus, they are architecture-specific languages. In 
fact, all these languages are defined to target one specific 
SIMD machine. As a result, the grammar of each language 
depends on the architecture characteristics.   In addition, the 
specification of a data-parallel application remains at an 
intermediate abstraction level that depends on hand coding. 
Our goal is to raise the abstraction level beyond these system-
level specification languages to be independent from any 
implementation.  

Recently, several design frameworks have been suggested 
offering high-level system design. The GASPARD [12] 
framework suggests an MDA-based approach for SoC co-
design. It exploits the MARTE profile to model high-
performance applications. In [13] a methodology was proposed 
for the design space exploration of data-parallel applications. It 
is based on a refactoring tool that manipulates the MARTE-
based models to adapt the application’s granularity to the 
architectural and execution constraints. Comparing these 
related works with our approach, we can observe that none of 

them supports the complexity involved in the design of data-
parallel applications for mppSoC. In fact, this architecture is 
specific, as a result, the applications designated to be executed 
on it are also complex. This necessitates a specific tool which 
takes into account all these characteristics. 

III. DATA-INTENSIVE APPLICATIONS DOMAIN 

Data-intensive processing is an expanded domain of 
applications which denotes the manipulation of a considerable 
amount of data and the accomplishment of numerous complex 
computations [14]. A data-intensive application is then an 
application that explores, inquires, examines, pictures and in 
general deals with very large scale data streams. 

Data-intensive applications share many common 
characteristics which are mainly: 

• The high complexity of the data structures  

The datasets are in general multi-dimensional. By 
multidimensional, we mean that they operate multidimensional 
data structures such as arrays.  

• The intensive parallelism available in the application 
functionalities 

The core characteristics of multi-dimensional data 
processing applications are multi-dimensional data structures 
that most often express parallel computations. In fact, this data 
structures are in general intensively repetitive which put on 
view the native logical parallelism available within such 
applications. An efficient exploration of the potential 
parallelism available in the application functionalities is then 
needed to cope with the applications complexity.  

• The high data storage and the computational 
requirements 

Data volumes in data-intensive applications are predicted to 
grow exponentially. Large data storage is so needed to deal 
with this big amount of streams. This considerable data streams 
are often combined with intensive computation to extract useful 
details. A high performance computation is so required due to 
the complexity of the data manipulation. 

As we have mentioned before, data-intensive applications 
deal with intensive or massive parallelism. Indeed, parallel 
applications can implement two levels of parallelism: data 
parallelism and task parallelism. The data parallelism is 
performed when all the data are identical computations, in this 
case data can be processed in parallel. The task parallelism is 
usually reserved for the situation where we focus on executing 
different tasks in parallel on different data sets. In our work we 
are mainly interested by the data parallelism kind. 

Data parallelism can be generally defined as a computation 
applied independently to each of a collection of data, allowing 
a degree of parallelism that can scale with the amount of data 
[15]. In fact, data parallelism is commonly turned to account 
when a computation incorporates some large data-structures 
that are divided across nodes. Each node accomplishes the 
same computations on a different part of the data structure. 



A data-parallel computation is characterized by a particular 
data set whose elements have the same basic properties [16]. 
For the most part, the parallel work concentrates on 
accomplishing operations on this data set that is normally 
organized into a common structure, such as an array or cube. A 
set of tasks cooperatively work on the same data structure, on 
the other hand, each task manipulates a different partition of 
the same data structure. These tasks do the same operation on 
their portion of work. The data-parallel structure of the data-
intensive applications exposes the logical parallelism present in 
the algorithm. An important part of handling the processing 
needs of these modern applications refers to finding the best 
execution platform which guarantees an intensive physical data 
parallelism. The data-parallel behavior of such applications is 
well realized on SIMD (Single Instruction Multiple Data) 
architectures. In the next paragraph, we will describe these 
kinds of architectures. 

IV. A TYPICAL ARCHITECTURE FOR THE DATA-INTENSIVE 

APPLICATIONS 

A. mppSoC general overview 

mppSoC is an IP-based massively parallel architecture [17]. 
As presented in the figure 1, it is composed of a number of 
processing elements (the PEs) working in perfect 
synchronization.  A small amount of local and private memory 
is attached to each PE. Every PE is potentially connected to its 
neighbors via a regular network. The whole system is 
controlled by an Array Controller Unit (ACU).  Furthermore, 
each  PE  is  connected  to  an  entry  of  mpNoC,  a  massively 
parallel  Network-on-Chip  that  potentially  connects  each  PE 
to  one  another,  performing  efficient  irregular 
communications.  

B. A parametric architecture for data-parallel applications 

The mppSoC system can be customized to target diverse 
applications [18].  Our design  approach  aims  to  define  an  
mppSoC  configuration adapted  to  a  given  application.    
This  customization  is achieved  with  the  parameterization  as  
well  as  the extensibility  and  the  configurability  of  the  
architecture.  In fact, mppSoC is parametric in terms of:   

 The  number  of  PEs  

 The  memories’ sizes 

 The type of PE: miniMIPS, NIOS, OpenRISC... 

It has three configurable aspects:   

 The processor design methodology  

The  processor  design  methodology  is  the  manner  to 
assemble  processor  IPs  to  build  the  SIMD  system.  We 
distinguish two methodologies:  processor reduction and 
processor replication.  The former consists on reducing an 
available open-core processor in order to build a processing 
element with a small reduced size. This  methodology allows  
putting  a  large  number  of  PEs  on  a  single  chip. Whereas 
the replication methodology consists on implementing the 
ACU as well as the PE by the same processor IP so that the 
designing process is faster.   

 The integrated neighboring network’s topology 

The configurable neighborhood interconnection network is 
implemented  to  assure  inter-PE  communications  depending 
on  its  configurable  topology that can be  Mesh,  Torus,  Xnet,  
Linear array or Ring.    

 The  mpNoC interconnection network’s type  

The mpNoC is integrated to manage point-to-point 
communications through different types of connections. In  
fact,  the  mpNoC  includes  a  configurable router  which  can  
be  of  different  types  (Shared  Bus, Crossbar,  Delta  MIN  
(omega,  baseline  and  butterfly)).  Added to that, the mpNoC 
can perform different communication modes (PE-PE, PE-ACU, 
PE-Device). 

Depending on the data-parallel application, we can choose 
to integrate none, one or both mppSoC networks to build a 
given mppSoC configuration. We can also vary the design 
methodology and the values of PE number and memories’ sizes 
to obtain good performances. We clearly notice that there is a 
compromise between the mppSoC performances and the 
chosen mppSoC configuration for a given data-parallel 
application. So, it is important to propose a solution that can 
select the suitable configuration according to the application 
constraints.  

 

Fig. 1. mppSoC architecture overview 

V. THE MPPSOC CAD TOOL 

The mppSoC tool is proposed as an Eclipse plugin (figure 
2). This tool allows users to specify an mppSoC system, to 
explore the design space based on high-level analysis, and 
finally to automatically generate both the application and 
architecture source code. The entry point corresponding to the 
high-level specifications is a MARTE-compliant model. Such a 
model is specified by a user with UML modeling tools such as 
Papyrus [19]. A major goal of our tool is to rapidly design an 
mppSoC system that meets the needed requirements, in 
particular those related to performances. This goal is achieved 
by considering high-level models and the different 
configuration choices that are reached via the refinement chains 
provided in our framework. For that purpose, some precise 
ordered design steps should be respected. Based on these steps, 
we define a methodology dedicated to the high-level design 
space exploration for high performance mppSoC.  



 

Fig. 2. The mppSoC CAD tool 

The designer should exploit the stereotypes provided by the 
extended version of MARTE. So, he specifies the potential 
parallelism available in the different system parts: data-parallel 
application representing the software part and massively 
parallel architecture characterizing the hardware part. We 
distinguish four sub-steps that are combined in different ways: 

A. Description of system functionality and architecture 

 Here the user defines the application algorithm on the one 
hand, and the hardware architecture on the other hand. This 
step depends on the designer choices. If he wants to go through 
the design space exploration step, he must specify the data-
parallel application and model the necessary parts of the 
architecture. But if he just wants to generate the application and 
architecture code without exploring design alternatives, he has 
to specify both the architecture by fixing all parameters related 
to his configuration.  Our tool includes two extensions to model 
a complete mppSoC system. These extensions allow to model 
the mppSoC configuration and the data-parallel application. 
The second extension will be the focus of this paper. General 
information about the first extension can be found in [20]. 

B. IP Deployment 

At this stage, the elementary components used in the 
system functionality are deployed on IPs. If the designer 
choose to fix the mppSoC architecture parameters, the 
deployment of the architecture elementary components 
becomes necessary. He must specify the mpNoC, the PE and 
the memories IPs. The deployment phase is ensured using the 
UML deployment diagram. 

C. Design space exploration 

 The design space exploration step relies on two model 
transformations. These two transformations allow the 
exploration of a large design space via a multi-objective 
algorithm. Reaching a satisfactory solution refers to the 
selection of the appropriate solution. This selection is driven by 
the constraints fixed by the designer using the user interface. 

D. Application and architecture code generation  

The final step in our co-design flow is the generation of the 
VHDL (VHSIC hardware description language) code of the 
mppSoC configuration and the C code of the data-parallel 
application. For this reason, two chains are defined. The first is 
the VHDL chain which includes a model-to-text 
transformation. And the second is the C chain which is based 
on two transformation types: a model-to-model and a model-to-
text transformation.  

VI. A MARTE EXTENSION FOR THE SPECIFICATION OF 

DATA-INTENSIVE APPLICATIONS 

To implement a data-parallel application, two main steps 
are identified: high-level model specification and low-level 
analysis. The high-level specification of the mppSoC data-
parallel application is based on the MARTE profile, the Array-
OL language [21] and an mppSoC application profile. The 
MARTE profile allows the modeling of data-parallel 
applications in an effective manner, but specific mppSoC 
details are needed to be represented at a high abstraction level. 
In fact, mppSoC specific instructions are used to manage 
communication and control in the architecture. These two 
mechanisms cannot be modeled based on the MARTE profile. 
To satisfy mppSoC application needs and to facilitate DSE 
(Design Space Exploration), we introduce new stereotypes that 
help the designer to model well structured data-parallel 
applications. 

In order to attempt low-level analysis, a number of 
transformations are needed. Those transformations generate 
low-level application code starting from UML input models. In 
this section, we will focus on the high-level modeling of data-
parallel applications that are generated to be implemented on 
mppSoC configurations. We first explain the capabilities of 
RSM (Repetitive Structure Modeling) to model the mppSoC 
repetitive data-parallel application structure. Our extensions for 
supporting specific characteristics of mppSoC applications are 
then denoted. These extensions enrich MARTE and allow to 
obtain well structured models.  

A. Capabilities of RSM for data-parallel application 

repetitive structure modeling 

Expressing repetitive structures in a clear manner is easy 
when using high-level abstraction models. In fact, mppSoC 
data-parallel applications are multidimensional intensive signal 
processing applications (they manipulate multidimensional data 
structures such as arrays). The mppSoC architecture is also 
massively parallel containing multidimensional parallel 
resources. So the need of a specification language which 
facilitates dealing with multidimensional structures is 
primordial. The MARTE RSM package describes the parallel 
computations in the application SW part and in the architecture 
HW part in a compact manner. RSM is based on a MoC 
(Model of Computation) inspired from Array-OL which is a 
formalism able to represent intensive multidimensional signal 
processing.  

Using the RSM package, an application can be formally 
specified as a set of tasks. These tasks are connected through 
their ports that represent information in the form of 



multidimensional arrays. These arrays are characterized by 
their shape, the number of elements on each of their 
dimensions and their direction. A task can be repeated and each 
instance of this repeated task operates with sub-arrays of the 
inputs and outputs of the repetition. The fact that the repetitions 
of a task are independent, regular and parallel allows 
expressing data parallelism.  

An important stereotype that is present in the RSM package 
helps to model regular structures. This stereotype, called 
Shaped allows to model the repetition of a given port or task.  
The Shaped stereotype allows to specify the shape of 
multidimensional collection of elements. It then enables to 
offer a multidimensional view of a collection of elements. Both 
data and parallel computations of multidimensional structures 
can be expressed using this stereotype. The shape attribute 
allows specifying the shape of a collection. The shape includes 
the number of dimensions and the size of these dimensions. 

In a data-parallel application designed to be executed on 
mppSoC architecture, the shape of the repeated task 
representing the data-parallel part of the application is related 
to the PE number. In fact, good performances can be obtained 
when finding a good mapping of the repeated task on the PE 
grid. As a result, the shape of this task and the shape of its ports 
can vary according to the application needs. As the mppSoC 
architecture is parametric in term of elementary processor 
number, the amount of PE will be concluded after the design 
space exploration step.  The value of the shape attribute will 
then remain unspecified which is not a good methodology of 
modeling. As a result we have chosen to add another attribute 
to the Shaped stereotype in order to express parametric shapes. 
This extension is depicted in figure 3. This attribute is called 
isParametric. It can take two values: true or false, indicating if 
the shape of the repeated task is parametric or not.  

 

Fig. 3. Extending the Shaped stereotype 

B. Modeling of mppSoC specific instructions 

We identify different instructions to program an mppSoC 
system: processor instructions, micro-instructions and specific 
instructions which are encoded from the processor instructions. 
Examples of specific instructions are: 

 Control instructions 

These specific instructions control both the regular network 
and the mpNoC allowing data transfer. 

 Communication instructions 

Communication instructions are mainly MODE, SEND and 
RECEIVE instructions. 

MODE instructions serve to establish the needed 
communication mode in the case of mpNoC or the network 
topology in the case of neighboring communication. After 
setting the required interconnection, data transfers will occur 
through SEND and RECEIVE instructions.  

SEND instructions serve to send data from the sender to the 
corresponding receiver. 

RECEIVE instructions serve to obtain the transferred data.  

To model these mppSoC specific instructions, two 
stereotypes called CommunicationTask and ControlTask are 
proposed. The CommunicationTask stereotype allows the 
modeling of communication between the mppSoC components. 
The tagged value Type can take two values Load or Store 
indicating the sending or the reception of data flows 
respectively. In order to specify the communication mode, a 
tagged value named Mode is associated to the 
CommunicationTask stereotype. It can take five values 
according to the selected mode: 0 (PE-PE), 1 (ACU-PE), 2 
(PE-ACU), 3 (PE-Device) or 4 (Device-PE). 

C. Modeling of mppSoC data-parallel application structure 

In a modeled data-parallel application, there are three kinds 
of tasks: elementary, compound and repetition. An elementary 
task is a black box. A compound task is a dependence graph, 
whose nodes are tasks connected via their ports, allowing the 
expression of task parallelism. Finally, a data-parallel repetition 
is a repeated task which can be elementary or compound.  

The Task stereotype is the main extension introduced in this 
package. It provides a context for the definition of the basic 
components of the application model. It extends the 
SwSchedulableResouce from the MARTE Software Resource 
Modeling sub-profile, which can describe threads, process, or 
tasks, to make it more specific for the mppSoC data-parallel 
applications. WorstExecutionTime and MemorySize tagged 
values are associated with the Task stereotype to be used in the 
DSE step. The first is used to specify the maximum time 
needed for the task execution. And the second expresses the 
needed instruction memory size occupied by this task. 

Two stereotypes CompoundTask and ElementaryTask are 
used to model elementary and compound tasks respectively. A 
compound task contains elementary or other compound task(s). 

The ElementaryTask stereotype extends the Task 
stereotype. It is applied to a component which is seen as a 
black box. It concretely means that this component does not 
have an internal structure description, or at least that the 
internal structure description will not be specified in the UML 
model. During the deployment, an IP will have to be associated 
with this component to be able to implement the model. The 
CompoundTask stereotype also extends the Task stereotype. It 
models a task which encloses elementary tasks and/or other 
compound tasks.  



To facilitate the DSE, it is recommended to model the data-
parallel application partition using a specific 
DataParallelPartition stereotype. This stereotype represents a 
task or a number of tasks which will be repeated. The Priority 
tagged value is associated with this stereotype. It is used to 
indicate the order of the partition execution. It is needed when 
the application is composed of many data-parallel 
computations. 

VII. A TRANSFORMATION CHAIN TOWARDS C LANGUAGE 

In this section, we survey the refinement of the data-parallel 
application models, via our transformation chain that allows to 
obtain C code taking as input a model conform to the 
MARTEDeployed meta-model. An additional intermediate 
meta-model is used to generate C code, the C meta-model, 
which is an abstraction of the C language. The transformation 
chain will be described in the following paragraph. 

A. The C meta-model      

 The C meta-model is inspired from the C grammar and 
extended by mppSoC specific statements. It gathers the 
necessary concepts to describe a data-parallel application 
dedicated to the mppSoC system. The developed C meta-model 
allows generating the global structure of the application and the 
designer has to complete the missing code.  

The C meta-model is explained based on the ECore 
diagram of the meta-model. We do not express every times 
detail related to the meta-model, but instead choose to focus 
only on significant key points. We now describe the necessary 
details required for expressing a C program.  

The main file encapsulates the main function where the 
program starts execution. Source files contain a number of 
routines. Header files commonly contain declaration of 
subroutines, variables, and other identifiers. A C application is 
mainly composed of three basic components which are the 
main file, zero or more source files and zero or more header 
files. These basic components are present in the meta-model by 
means of Main_File, Header_File and Source_File EClasses. 

The statements of a C program control the flow of program 
execution. In C, as in other programming languages, several 
kinds of statements are available to perform loops, to select 
other statements to be executed, and to transfer control. At the 
present, we only use two statements which are the “for 
statement” and the “call statement”. Other statements that don’t 
belong to the C language are added to express specific mppSoC 
instructions which are the ControlStatement and the 
CommunicationStatement.  

B. The MARTE2C transformation 

The first step is the same in each transformation chain. It is 
based on the UML2MARTE transformation that enables both 
the design space exploration and the application and 
architecture code generation. Once the MARTE model has 
been created from this transformation, we move into the second 
model transformation in our design flow. The MARTE2C 
transformation takes the MARTE model as input and generates 
the C model.   

With regards to the C model, we are going to present some 
significant rules: A CompounTask is transformed into a 
Source_File. The same CompounTask is converted into a 
Header_File component. An ElementaryTask must be deployed 
on a source file that contains a procedure having the same 
name of the file and describing this elementary task. We 
suppose that for each ElementaryTask we have to associate 
both a source file and a header file. The source file contains a 
procedure that has the same name as the StructuredComponent. 
The header file should contain as a result the declaration of this 
procedure. Each CompoundTask contains a number of 
properties which are instances of other CompoundTask or 
ElementaryTask. As a result, each property is switched into 
CallStatement if the shape of the property is 1, or into 
ForStatement if the shape of the property is more than 1. In this 
case the attribute bound of the ForStatement will take as value 
the shape of the property.    

C. The C code generation 

The MARTE2C model transformation presented earlier, 
converts all the modeled concepts present in the high-level 
models into their near equivalent concepts in the C model. For 
code generation, acceleo based templates are written to parse 
through these concepts, in order to get the required information 
for the generation of the application code. 

Initially the main template deals with the Application 
component of the C model. It calls three other templates that 
allow to generate code for the Source_File, the Header_File 
and the Main_File components using the following code: 

  

  

 

 

 

 

 

 

 

For each component of type Source_File, a source file will 
be generated. It contains global variables, headers, and a 
procedure that calls other procedures. Components of type 
Header_file will be converted into header files which contain 
procedure declarations. One Main_File component exists in the 
C model. It is transformed into a main file and global variables 
are generated, call statements are also treated in order to 
generate the appropriate code. Special instructions are also 
generated in the main file and the source files. Headers 
necessary to be enclosed with this file are also added. 

VIII. CASE STUDY 

 A simple RGB to CMYK color conversion application is 
chosen to illustrate the design process with the presented 
mppSoC design flow. This application, extracted from the 

[template public c_code(source : Application)] 
 

[for (sc : Source_File | source.applicationElement 

->select(oclIsKindOf(Source_File)))]  

[sc.generatesourcefile()/] 

[/for] 
[for (h : Header_File | source.applicationElement 
->select(oclIsKindOf(Header_File)))]  

[h.generateheaderfile()/] 

[/for] 
[for (m : Main_File | source.applicationElement 

->select(oclIsKindOf(Main_File)))]  

[m.generatemainfile()/] 

[/for] 

[/template] 



EEMBC (Embedded Microprocessor Benchmark Consortium) 
benchmark [22], is widely used in color printers. It has been 
generated and executed on mppSoC configurations using the 
proposed model-driven based framework.  

A. Modeling the data-parallel application 

The RGB to CMYK conversion application is composed of 
two communication tasks to respectively read and write pixels 
from devices, and one repetitive computation task to perform 
color conversion. To model the whole application, we have 
firstly defined the elementary components: the computation 
task that performs the conversion function: Conversion, and the 
two communication tasks: Read_pixel, and Write_pixel, and 
associated to each component a number of ports. Then, two 
main components are modeled: 

• The Elementary_Conversion component (Figure 4): 
denotes the three steps of the RGB to CMYK color conversion 
application. 

 

Fig. 4. The MacroBlock component  

• The RGB_to_CMYK_color_conversion component 
(Figure 5): represents the main application and aims to separate 
the input video frame to blocks. These blocks are read from the 
SDRAM and sent to all PEs. Then, every block is allocated to 
one PE and finally the parallel computed blocks are written in 
an SRAM memory. 

B. Modeling the mppSoC configuration 

For the tested application, our mppSoC configuration is 
composed of the ACU, a set of parametric PEs and two I/O 
devices. The presence of devices necessitates the modeling of 
the mpNoC. The mppSoC model is described in a composite 
structure diagram as illustrated in Figure 6. 

 

Fig. 5. The RGB_to_CMYK_color_conversion component 

 

This diagram models necessary HW components integrated 
in the system as well as their connections. The memory sizes 
are not specified. Only three elementary components are 
modeled: the SDRAM device, the SRAM device and the 
FPGA. 

 

Fig. 6. The main mppSoC architecture 

C. IP deployment  

To generate the complete hardware implementation, we can 
choose the devices IPs to be integrated in the final system. The 
other parameters will be automatically deduced from the design 
space exploration step. Elementary components of the 
application must be linked to their implementations. The 
application elementary components deployment is necessary to 
elaborate a precise design space exploration.  

D. Design space exploration 

Given the architecture, application, and deployment 
models, the design space exploration process takes design 
decisions about the architecture components parameters. Our 
tool selects the number of PEs and maps tasks to them in order 
to minimize the execution time. Repetitive parallel tasks are 
mapped to a number of PEs and sequential tasks are mapped to 
the ACU. Tasks execution times are calculated using the 
specified software IPs from the deployment step. The total 
execution time is calculated varying the number of PEs for the 
three processor types available in the mppSoC exploration 
library. Our tool simultaneously maps processors to a 
communication structure, such that the overall communication 
cost is again minimized. A communication structure is needed 
if there are communications between the architecture 
components as it is the case of our application. 

The exploration tool will decide if the application needs an 
mpNoC or a regular network to manage the transfers of data 
flows. This decision is taken after calculating the total 
communication time needed using different communication 
structures. A minimal communication time and optimal 
communication structure surface is needed. Varying the 
number of PEs allows changing the data memory size needed 
for each task. This leads to different measurements of the 
memory size depending on the number and the type of 
processor. Estimated performance, surface and memory costs 



for hardware and software components, provided in the 
mppSoC exploration library, have been used to guide the 
exploration. The number of design alternatives in this design 
space exploration scenario is huge, so that the utilization of an 
automated design space exploration approach at a very high 
abstraction level is fully justified. The Pareto-set is finally 
given resulting from a number of model transformations. The 
selection of the right solution is driven by the constraints 
expressed in the user interface (execution time, FPGA area, 
energy consumption...). 

E. Code generation 

The low-level synthesizable models from the hardware and 
software mppSoCLib are used for the final implementation. 
The right solution is generated, via the exploration step, using 
the mppSoC flow transformation chains. This solution includes 
parallel architecture configuration codes and data-parallel 
application codes.  

Our tool enables us to design an mppSoC system for an 
efficient execution of the RGB to CMYK color conversion 
application. Following our methodology, we explored the 
design space at a high abstraction level using information 
resulting from the models generated by the transformation 
chains. The ease of modifications at a high abstraction level 
coupled with the fast evaluations leads to a powerful design 
space exploration framework. 

IX. CONCLUSION AND FUTURE WORK 

Through the Model Driven Engineering approach presented 
in this work, a designer can specify his data-parallel application 
to generate the executable binary code. At the same time, he 
can describe his needed mppSoC configuration using UML 
models and the MARTE profile at a high abstraction level and 
automatically generate its implementation at RT level. The 
designer can easily and automatically generate the optimal 
solution satisfying his needs through a high level DSE tool. 
Future works aim to generate data-parallel application source 
code from both structure diagrams and behavior diagrams. 
While structure diagrams were of our primary interest, 
behavior diagrams allow the generation of the whole 
application as the behavior of each task can be modeled in a 
detailed manner. As a result new transformation rules need to 
be defined and new meta-models need to be developed. 
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