Extending MARTE to support the specification and
the generation of data-intensive applications for
Massively Parallel SoC

M.Ammar, M.Baklouti and M.Abid
CES, National Engineering School of Sfax, Sfax, Tunisia
manel.ammar@ieee.org, mouna.baklouti@ieee.org

Abstract—The presented work proposes a MARTE (Modeling
and Analysis of Real-Time and Embedded systems) extension for
the specification of data-parallel applications designed to be
executed on mppSoC, a massively parallel System-on-Chip. These
applications can be clearly specified and generated using our
transformation chain, which is automated and is a combination
of contributions in different domains such as Model-Driven
Engineering, MARTE modeling and automatic code generation.
The modeling methodology as well as the generation process are
validated by an image processing application example.

l. INTRODUCTION

Nowadays, there is a big development in the SoC domain.
Embedded systems, at the present time, are generally dedicated
to data-intensive processing applications where huge quantity
of data are handled in a regular way by means of repetitive
computations. Taking for granted that these applications are
going to lead the destiny of embedded systems industry, what
do we need to do to support them?

As embedded system design is progressing to adapt
software-rich solutions, the appeal of hardware-software co-
design for achieving the same design productivity gains that
logic synthesis brought to hardware was strong. From a high-
level functional model, the detailed and optimized software and
hardware implementation could be obtained thanks to the co-
design approach [1]. In fact, the incredible evolution in the
embedded systems domain could not be achieved by hiring an
exponentially growing number of design engineers. It is
therefore essential to offset the gradual complexity of SoC
design by making the productivity of SoC designers stronger.
Adopting new design methodologies and introducing new
levels of abstraction allows to strengthen the SoC designers’
efficiency. As equipment manufacturers were essential for
manufacturing, co-design methodologies are essential for
design. These methodologies generally applied notions that
raised design abstraction and maintained the modeling precise
enough at increasing levels of hierarchy.

When dealing with massive computation and data-intensive
processing, the use of massively parallel architectures is very
useful. An mppSoC (massively parallel processing SoC)
system is a generic massively parallel embedded architecture
designed for data-parallel applications [2]. mppSoC s
designed based on an assembly of different components and
may be implemented on a single chip. In addition,
mppSoC proves very fruitful in massively parallel applications

domain. However, the design and implementation of such
systems become critical due to their long design and
development cycles. In fact, the mppSoC design is facing today
a strong pressure on reducing time-to-market while the
complexity of this system has been increasing. Changing a
SoC configuration may also necessitate extensive redesign.
Design abstraction offers a possible solution to address the
above issues concerning the time-to-market and complexity
dilemma.

It is in the context of improving the primary productivity of
mppSoC, that our work finds its proper place. One of the
primary principles followed during this work is the use of
Model Driven Engineering (MDE) for SoC co-design
specification and development. MDE is able to benefit from a
platform based design approach, allowing abstracting and
simplifying the system specifications, at the same time as
integrating a compilation chain in order to obtain suitable code
from the high level models. The mppSoC co-specification is
managed using the MARTE profile that have been offered by
the Object Management Group (OMG) [3].

However, while MARTE allows abstract modeling of SoC,
in the particular case of mppSoC, the specifications lack
suitable semantics for expressing data-intensive computations
and parallelism at the high abstraction levels. Our work
addresses these limitations and introduces several contributions
which help to integrate mppSoC specific application concepts
in MARTE. Generating data-parallel application is enabled by
raising the abstraction level and providing system-level design
automation tools. The intensive parallel application is modeled
in an UML (Unified Modeling Language) design environment
specifying application and architecture modeling. The mppSoC
tool implements the entire system for FPGA (Field
Programmable Gate Arrays) prototyping board. It allows the
designer to automatically generate the parallel SoC
configuration and the data-parallel application, through an
exploration step, from high-level system specification models.
For this purpose, the mppSoC framework is based on an IP
(Intellectual Property) library.

The rest of this paper is organized as follows. An overview
of the related works is given in Section 2. Section 3 gives an
overview of the data-intensive applications and highlights their
specifications. A brief description of the mppSoC architecture
will be given in Section 4 focusing on the configurability of
this architecture. Section 5 denotes the mppSoC CAD tool that
facilitates the co-design of mppSoC through an exploration

step. Our extension for the specification of data-parallel
applications will be given in Section 6 and the code generation
flow will be well explained in Section 7. Finally, a case study
will be given in Section 8 to demonstrate the effectiveness of
our work.

Il. RELATED WORKS

The programming of data-intensive applications for SIMD
computers has been widely investigated through the last
decades. Research efforts were interested in finding a high
level description of the data-parallel applications. These efforts
specifically target different SIMD machines and have different
levels of abstraction. Two hardware-specific languages were
proposed in [4, 5]. CFD and Glypnir were defined to allow the
development of a wide range of applications that are designed
to be executed on the ILLIAC 1V, a SIMD computer for array
processing. With the emerging of ICL DAP (Distributed Array
Processor) by the start of the 80s, the DAP FORTRAN
language [6] was proposed. It basically adds features to the
CFD language to support the characteristics of the ICL DAP
architecture. Despite its popularity and ability to deal with
serious applications, the ICL DAP remains a hardware-specific
language. A more recent language that worth to be mention is
the *LISP [7] high-level language. It is mainly designed for the
Connection Machine CM-2 [8]. While the previously described
languages depend on the target hardware requiring the
knowledge of their special syntax, this language appeared as
compiler directives offering simplified annotations to manage
the parallel parts of the programs. Another language designed
for the CM-2 is C* [9]. It adds capabilities to the C language
aiming to support data-parallel applications. Similarly to the
CM-2 machine, the MasPar MP-1 computer was powerful
enough that programmers defined a specific data-parallel
language aiming to design high-performance programs for this
SIMD machine. The language is named MasPar Fortran [10]
and is based on Fortran 90. Another Fortran90-based language
is the HPF language (High Performance Fortran) [11]. This
language supports distributed memory parallel computers.

The previously described languages have shown their
ability to successfully design a wide range of data-parallel
applications. Thus, they are architecture-specific languages. In
fact, all these languages are defined to target one specific
SIMD machine. As a result, the grammar of each language
depends on the architecture characteristics. In addition, the
specification of a data-parallel application remains at an
intermediate abstraction level that depends on hand coding.
Our goal is to raise the abstraction level beyond these system-
level specification languages to be independent from any
implementation.

Recently, several design frameworks have been suggested
offering high-level system design. The GASPARD [12]
framework suggests an MDA-based approach for SoC co-
design. It exploits the MARTE profile to model high-
performance applications. In [13] a methodology was proposed
for the design space exploration of data-parallel applications. It
is based on a refactoring tool that manipulates the MARTE-
based models to adapt the application’s granularity to the
architectural and execution constraints. Comparing these
related works with our approach, we can observe that none of

them supports the complexity involved in the design of data-
parallel applications for mppSoC. In fact, this architecture is
specific, as a result, the applications designated to be executed
on it are also complex. This necessitates a specific tool which
takes into account all these characteristics.

I1l. DATA-INTENSIVE APPLICATIONS DOMAIN

Data-intensive processing is an expanded domain of
applications which denotes the manipulation of a considerable
amount of data and the accomplishment of numerous complex
computations [14]. A data-intensive application is then an
application that explores, inquires, examines, pictures and in
general deals with very large scale data streams.

Data-intensive applications share

characteristics which are mainly:

many common

. The high complexity of the data structures

The datasets are in general multi-dimensional. By
multidimensional, we mean that they operate multidimensional
data structures such as arrays.

. The intensive parallelism available in the application
functionalities

The core characteristics of multi-dimensional data
processing applications are multi-dimensional data structures
that most often express parallel computations. In fact, this data
structures are in general intensively repetitive which put on
view the native logical parallelism available within such
applications. An efficient exploration of the potential
parallelism available in the application functionalities is then
needed to cope with the applications complexity.

+ The high data storage and
requirements

the computational

Data volumes in data-intensive applications are predicted to
grow exponentially. Large data storage is so needed to deal
with this big amount of streams. This considerable data streams
are often combined with intensive computation to extract useful
details. A high performance computation is so required due to
the complexity of the data manipulation.

As we have mentioned before, data-intensive applications
deal with intensive or massive parallelism. Indeed, parallel
applications can implement two levels of parallelism: data
parallelism and task parallelism. The data parallelism is
performed when all the data are identical computations, in this
case data can be processed in parallel. The task parallelism is
usually reserved for the situation where we focus on executing
different tasks in parallel on different data sets. In our work we
are mainly interested by the data parallelism kind.

Data parallelism can be generally defined as a computation
applied independently to each of a collection of data, allowing
a degree of parallelism that can scale with the amount of data
[15]. In fact, data parallelism is commonly turned to account
when a computation incorporates some large data-structures
that are divided across nodes. Each node accomplishes the
same computations on a different part of the data structure.

A data-parallel computation is characterized by a particular
data set whose elements have the same basic properties [16].
For the most part, the parallel work concentrates on
accomplishing operations on this data set that is normally
organized into a common structure, such as an array or cube. A
set of tasks cooperatively work on the same data structure, on
the other hand, each task manipulates a different partition of
the same data structure. These tasks do the same operation on
their portion of work. The data-parallel structure of the data-
intensive applications exposes the logical parallelism present in
the algorithm. An important part of handling the processing
needs of these modern applications refers to finding the best
execution platform which guarantees an intensive physical data
parallelism. The data-parallel behavior of such applications is
well realized on SIMD (Single Instruction Multiple Data)
architectures. In the next paragraph, we will describe these
kinds of architectures.

IV. ATYPICAL ARCHITECTURE FOR THE DATA-INTENSIVE
APPLICATIONS

A. mppSoC general overview

mppSoC is an IP-based massively parallel architecture [17].
As presented in the figure 1, it is composed of a number of
processing elements (the PEs) working in perfect
synchronization. A small amount of local and private memory
is attached to each PE. Every PE is potentially connected to its
neighbors via a regular network. The whole system is
controlled by an Array Controller Unit (ACU). Furthermore,
each PE is connected to an entry of mpNoC, a massively
parallel Network-on-Chip that potentially connects each PE
to one another, performing efficient irregular
communications.

B. A parametric architecture for data-parallel applications

The mppSoC system can be customized to target diverse
applications [18]. Our design approach aims to define an
mppSoC configuration adapted to a given application.
This customization is achieved with the parameterization as
well as the extensibility and the configurability of the
architecture. In fact, mppSoC is parametric in terms of:

e The number of PEs

e The memories’ Sizes

e The type of PE: miniMIPS, NIOS, OpenRISC...
It has three configurable aspects:

e The processor design methodology

The processor design methodology is the manner to
assemble processor IPs to build the SIMD system. We
distinguish two methodologies: processor reduction and
processor replication. The former consists on reducing an
available open-core processor in order to build a processing
element with a small reduced size. This methodology allows
putting a large number of PEs on a single chip. Whereas
the replication methodology consists on implementing the
ACU as well as the PE by the same processor IP so that the
designing process is faster.

e The integrated neighboring network’s topology

The configurable neighborhood interconnection network is
implemented to assure inter-PE communications depending
on its configurable topology that can be Mesh, Torus, Xnet,
Linear array or Ring.

e The mpNoC interconnection network’s type

The mpNoC is integrated to manage point-to-point
communications through different types of connections. In
fact, the mpNoC includes a configurable router which can
be of different types (Shared Bus, Crossbar, Delta MIN
(omega, baseline and butterfly)). Added to that, the mpNoC
can perform different communication modes (PE-PE, PE-ACU,
PE-Device).

Depending on the data-parallel application, we can choose
to integrate none, one or both mppSoC networks to build a
given mppSoC configuration. We can also vary the design
methodology and the values of PE number and memories’ sizes
to obtain good performances. We clearly notice that there is a
compromise between the mppSoC performances and the
chosen mppSoC configuration for a given data-parallel
application. So, it is important to propose a solution that can
select the suitable configuration according to the application
constraints.

Mem <«<—> ACU

1)
]
]
: Control

=_ Hinstructions =

Control

P gy pgp———

SAPNMS
]
Switches

Crossbar-based
mpNoC

Fig. 1. mppSoC architecture overview

V. THE MPPSOC CAD TOOL

The mppSoC tool is proposed as an Eclipse plugin (figure
2). This tool allows users to specify an mppSoC system, to
explore the design space based on high-level analysis, and
finally to automatically generate both the application and
architecture source code. The entry point corresponding to the
high-level specifications is a MARTE-compliant model. Such a
model is specified by a user with UML modeling tools such as
Papyrus [19]. A major goal of our tool is to rapidly design an
mppSoC system that meets the needed requirements, in
particular those related to performances. This goal is achieved
by considering high-level models and the different
configuration choices that are reached via the refinement chains
provided in our framework. For that purpose, some precise
ordered design steps should be respected. Based on these steps,
we define a methodology dedicated to the high-level design
space exploration for high performance mppSoC.

Architecture
modeling
Application
modeling

Aset of
Optimal ({
solutions *

Deployment

Design
space

exploration

Application
generation

Architecture
generation

HW synthesis

Add code

SW simulation

Select one
solution °

Fig. 2. The mppSoC CAD tool

The designer should exploit the stereotypes provided by the
extended version of MARTE. So, he specifies the potential
parallelism available in the different system parts: data-parallel
application representing the software part and massively
parallel architecture characterizing the hardware part. We
distinguish four sub-steps that are combined in different ways:

A. Description of system functionality and architecture

Here the user defines the application algorithm on the one
hand, and the hardware architecture on the other hand. This
step depends on the designer choices. If he wants to go through
the design space exploration step, he must specify the data-
parallel application and model the necessary parts of the
architecture. But if he just wants to generate the application and
architecture code without exploring design alternatives, he has
to specify both the architecture by fixing all parameters related
to his configuration. Our tool includes two extensions to model
a complete mppSoC system. These extensions allow to model
the mppSoC configuration and the data-parallel application.
The second extension will be the focus of this paper. General
information about the first extension can be found in [20].

B. IP Deployment

At this stage, the elementary components used in the
system functionality are deployed on IPs. If the designer
choose to fix the mppSoC architecture parameters, the
deployment of the architecture elementary components
becomes necessary. He must specify the mpNoC, the PE and
the memories IPs. The deployment phase is ensured using the
UML deployment diagram.

C. Design space exploration

The design space exploration step relies on two model
transformations. These two transformations allow the
exploration of a large design space via a multi-objective
algorithm. Reaching a satisfactory solution refers to the
selection of the appropriate solution. This selection is driven by
the constraints fixed by the designer using the user interface.

D. Application and architecture code generation

The final step in our co-design flow is the generation of the
VHDL (VHSIC hardware description language) code of the
mppSoC configuration and the C code of the data-parallel
application. For this reason, two chains are defined. The first is
the VHDL chain which includes a model-to-text
transformation. And the second is the C chain which is based
on two transformation types: a model-to-model and a model-to-
text transformation.

VI. AMARTE EXTENSION FOR THE SPECIFICATION OF
DATA-INTENSIVE APPLICATIONS

To implement a data-parallel application, two main steps
are identified: high-level model specification and low-level
analysis. The high-level specification of the mppSoC data-
parallel application is based on the MARTE profile, the Array-
OL language [21] and an mppSoC application profile. The
MARTE profile allows the modeling of data-parallel
applications in an effective manner, but specific mppSoC
details are needed to be represented at a high abstraction level.
In fact, mppSoC specific instructions are used to manage
communication and control in the architecture. These two
mechanisms cannot be modeled based on the MARTE profile.
To satisfy mppSoC application needs and to facilitate DSE
(Design Space Exploration), we introduce new stereotypes that
help the designer to model well structured data-parallel
applications.

In order to attempt low-level analysis, a number of
transformations are needed. Those transformations generate
low-level application code starting from UML input models. In
this section, we will focus on the high-level modeling of data-
parallel applications that are generated to be implemented on
mppSoC configurations. We first explain the capabilities of
RSM (Repetitive Structure Modeling) to model the mppSoC
repetitive data-parallel application structure. Our extensions for
supporting specific characteristics of mppSoC applications are
then denoted. These extensions enrich MARTE and allow to
obtain well structured models.

A. Capabilities of RSM for data-parallel application
repetitive structure modeling

Expressing repetitive structures in a clear manner is easy
when using high-level abstraction models. In fact, mppSoC
data-parallel applications are multidimensional intensive signal
processing applications (they manipulate multidimensional data
structures such as arrays). The mppSoC architecture is also
massively parallel containing multidimensional parallel
resources. So the need of a specification language which
facilitates dealing with multidimensional structures is
primordial. The MARTE RSM package describes the parallel
computations in the application SW part and in the architecture
HW part in a compact manner. RSM is based on a MoC
(Model of Computation) inspired from Array-OL which is a
formalism able to represent intensive multidimensional signal
processing.

Using the RSM package, an application can be formally
specified as a set of tasks. These tasks are connected through
their ports that represent information in the form of

multidimensional arrays. These arrays are characterized by
their shape, the number of elements on each of their
dimensions and their direction. A task can be repeated and each
instance of this repeated task operates with sub-arrays of the
inputs and outputs of the repetition. The fact that the repetitions
of a task are independent, regular and parallel allows
expressing data parallelism.

An important stereotype that is present in the RSM package
helps to model regular structures. This stereotype, called
Shaped allows to model the repetition of a given port or task.
The Shaped stereotype allows to specify the shape of
multidimensional collection of elements. It then enables to
offer a multidimensional view of a collection of elements. Both
data and parallel computations of multidimensional structures
can be expressed using this stereotype. The shape attribute
allows specifying the shape of a collection. The shape includes
the number of dimensions and the size of these dimensions.

In a data-parallel application designed to be executed on
mppSoC architecture, the shape of the repeated task
representing the data-parallel part of the application is related
to the PE number. In fact, good performances can be obtained
when finding a good mapping of the repeated task on the PE
grid. As a result, the shape of this task and the shape of its ports
can vary according to the application needs. As the mppSoC
architecture is parametric in term of elementary processor
number, the amount of PE will be concluded after the design
space exploration step. The value of the shape attribute will
then remain unspecified which is not a good methodology of
modeling. As a result we have chosen to add another attribute
to the Shaped stereotype in order to express parametric shapes.
This extension is depicted in figure 3. This attribute is called
isParametric. It can take two values: true or false, indicating if
the shape of the repeated task is parametric or not.

(uml)

MultiplicityElement

T

« stereotype»n

Shaped

4 Shape: ShapeSpecification [1]
= isParametric: Boolean]

Fig. 3. Extending the Shaped stereotype

B. Modeling of mppSoC specific instructions

We identify different instructions to program an mppSoC
system: processor instructions, micro-instructions and specific
instructions which are encoded from the processor instructions.
Examples of specific instructions are:

e Control instructions

These specific instructions control both the regular network
and the mpNoC allowing data transfer.

e Communication instructions

Communication instructions are mainly MODE, SEND and
RECEIVE instructions.

MODE instructions serve to establish the needed
communication mode in the case of mpNoC or the network
topology in the case of neighboring communication. After
setting the required interconnection, data transfers will occur
through SEND and RECEIVE instructions.

SEND instructions serve to send data from the sender to the
corresponding receiver.

RECEIVE instructions serve to obtain the transferred data.

To model these mppSoC specific instructions, two
stereotypes called CommunicationTask and ControlTask are
proposed. The CommunicationTask stereotype allows the
modeling of communication between the mppSoC components.
The tagged value Type can take two values Load or Store
indicating the sending or the reception of data flows
respectively. In order to specify the communication mode, a
tagged value named Mode is associated to the
CommunicationTask stereotype. It can take five values
according to the selected mode: 0 (PE-PE), 1 (ACU-PE), 2
(PE-ACU), 3 (PE-Device) or 4 (Device-PE).

C. Modeling of mppSoC data-parallel application structure

In a modeled data-parallel application, there are three kinds
of tasks: elementary, compound and repetition. An elementary
task is a black box. A compound task is a dependence graph,
whose nodes are tasks connected via their ports, allowing the
expression of task parallelism. Finally, a data-parallel repetition
is a repeated task which can be elementary or compound.

The Task stereotype is the main extension introduced in this
package. It provides a context for the definition of the basic
components of the application model. It extends the
SwSchedulableResouce from the MARTE Software Resource
Modeling sub-profile, which can describe threads, process, or
tasks, to make it more specific for the mppSoC data-parallel
applications. WorstExecutionTime and MemorySize tagged
values are associated with the Task stereotype to be used in the
DSE step. The first is used to specify the maximum time
needed for the task execution. And the second expresses the
needed instruction memory size occupied by this task.

Two stereotypes CompoundTask and ElementaryTask are
used to model elementary and compound tasks respectively. A
compound task contains elementary or other compound task(s).

The ElementaryTask stereotype extends the Task
stereotype. It is applied to a component which is seen as a
black box. It concretely means that this component does not
have an internal structure description, or at least that the
internal structure description will not be specified in the UML
model. During the deployment, an IP will have to be associated
with this component to be able to implement the model. The
CompoundTask stereotype also extends the Task stereotype. It
models a task which encloses elementary tasks and/or other
compound tasks.

To facilitate the DSE, it is recommended to model the data-
parallel application partiton using a specific
DataParallelPartition stereotype. This stereotype represents a
task or a number of tasks which will be repeated. The Priority
tagged value is associated with this stereotype. It is used to
indicate the order of the partition execution. It is needed when
the application is composed of many data-parallel
computations.

VII. A TRANSFORMATION CHAIN TOWARDS C LANGUAGE

In this section, we survey the refinement of the data-parallel
application models, via our transformation chain that allows to
obtain C code taking as input a model conform to the
MARTEDeployed meta-model. An additional intermediate
meta-model is used to generate C code, the C meta-model,
which is an abstraction of the C language. The transformation
chain will be described in the following paragraph.

A. The C meta-model

The C meta-model is inspired from the C grammar and
extended by mppSoC specific statements. It gathers the
necessary concepts to describe a data-parallel application
dedicated to the mppSoC system. The developed C meta-model
allows generating the global structure of the application and the
designer has to complete the missing code.

The C meta-model is explained based on the ECore
diagram of the meta-model. We do not express every times
detail related to the meta-model, but instead choose to focus
only on significant key points. We now describe the necessary
details required for expressing a C program.

The main file encapsulates the main function where the
program starts execution. Source files contain a number of
routines. Header files commonly contain declaration of
subroutines, variables, and other identifiers. A C application is
mainly composed of three basic components which are the
main file, zero or more source files and zero or more header
files. These basic components are present in the meta-model by
means of Main_File, Header_File and Source_File EClasses.

The statements of a C program control the flow of program
execution. In C, as in other programming languages, several
kinds of statements are available to perform loops, to select
other statements to be executed, and to transfer control. At the
present, we only use two statements which are the “for
statement” and the “call statement”. Other statements that don’t
belong to the C language are added to express specific mppSoC
instructions which are the ControlStatement and the
CommunicationStatement.

B. The MARTE2C transformation

The first step is the same in each transformation chain. It is
based on the UML2MARTE transformation that enables both
the design space exploration and the application and
architecture code generation. Once the MARTE model has
been created from this transformation, we move into the second
model transformation in our design flow. The MARTE2C
transformation takes the MARTE model as input and generates
the C model.

With regards to the C model, we are going to present some
significant rules: A CompounTask is transformed into a
Source_File. The same CompounTask is converted into a
Header_File component. An ElementaryTask must be deployed
on a source file that contains a procedure having the same
name of the file and describing this elementary task. We
suppose that for each ElementaryTask we have to associate
both a source file and a header file. The source file contains a
procedure that has the same name as the StructuredComponent.
The header file should contain as a result the declaration of this
procedure. Each CompoundTask contains a number of
properties which are instances of other CompoundTask or
ElementaryTask. As a result, each property is switched into
CallStatement if the shape of the property is 1, or into
ForStatement if the shape of the property is more than 1. In this
case the attribute bound of the ForStatement will take as value
the shape of the property.

C. The C code generation

The MARTE2C model transformation presented earlier,
converts all the modeled concepts present in the high-level
models into their near equivalent concepts in the C model. For
code generation, acceleo based templates are written to parse
through these concepts, in order to get the required information
for the generation of the application code.

Initially the main template deals with the Application
component of the C model. It calls three other templates that
allow to generate code for the Source File, the Header File
and the Main_File components using the following code:

[template public c¢_code(source : Application)]

[for (sc : Source_File | source.applicationElement
->select(oclIsKindOf(Source_File)))]
[sc.generatesourcefile()/]

[/for]

[for (h : Header_File | source.applicationElement
->select(oclIsKindOf(Header_File)))]
[h.generateheaderfile()/]

[/for]

[for (m : Main_File | source.applicationElement
->select(oclIsKindOf(Main_File)))]
[m.generatemainfile()/]

[/for]

[/template]

For each component of type Source_File, a source file will
be generated. It contains global variables, headers, and a
procedure that calls other procedures. Components of type
Header_file will be converted into header files which contain
procedure declarations. One Main_File component exists in the
C model. It is transformed into a main file and global variables
are generated, call statements are also treated in order to
generate the appropriate code. Special instructions are also
generated in the main file and the source files. Headers
necessary to be enclosed with this file are also added.

VIIl. CASE STuDY

A simple RGB to CMYK color conversion application is
chosen to illustrate the design process with the presented
mppSoC design flow. This application, extracted from the

EEMBC (Embedded Microprocessor Benchmark Consortium)
benchmark [22], is widely used in color printers. It has been
generated and executed on mppSoC configurations using the
proposed model-driven based framework.

A. Modeling the data-parallel application

The RGB to CMYK conversion application is composed of
two communication tasks to respectively read and write pixels
from devices, and one repetitive computation task to perform
color conversion. To model the whole application, we have
firstly defined the elementary components: the computation
task that performs the conversion function: Conversion, and the
two communication tasks: Read_pixel, and Write_pixel, and
associated to each component a number of ports. Then, two
main components are modeled:

. The Elementary_Conversion component (Figure 4):
denotes the three steps of the RGB to CMYK color conversion
application.

« compoundTask »
Elementary_Converison

:Read_pixel :Conversion “Write_pixel
R R [+ c
«flowPort ppixel o . " " «fowfort »pxel
I: pixel pixel
B B Y ¥

Fig. 4. The MacroBlock component
. The RGB_to_CMYK_color_conversion component
(Figure 5): represents the main application and aims to separate
the input video frame to blocks. These blocks are read from the
SDRAM and sent to all PEs. Then, every block is allocated to
one PE and finally the parallel computed blocks are written in
an SRAM memory.

B. Modeling the mppSoC configuration

For the tested application, our mppSoC configuration is
composed of the ACU, a set of parametric PEs and two 1/O
devices. The presence of devices necessitates the modeling of
the mpNoC. The mppSoC model is described in a composite
structure diagram as illustrated in Figure 6.

« dataParallelPartitions
RGB_to_CMYK_color_conversion

u shaped »
MacroBlock: Elementary_Conversion

wtiler » u tiler

uflowPort, shaped » Image I: pixel piel]ﬂowPom shaped slmage

Fig. 5. The RGB_to_CMYK_color_conversion component

This diagram models necessary HW components integrated
in the system as well as their connections. The memory sizes
are not specified. Only three elementary components are
modeled: the SDRAM device, the SRAM device and the
FPGA.

Main_architecture

:Processing_grid

AACU[1]
:ACTU_memory [1]

ACU

; []
SDRAM [1] SDRAMI
mpNoC_in .

mpNoC_out .

Iy I oy S
:SRAM [1]
[JmpNoC_in

[] mpNoC_out

Fig. 6. The main mppSoC architecture

C. P deployment

To generate the complete hardware implementation, we can
choose the devices IPs to be integrated in the final system. The
other parameters will be automatically deduced from the design
space exploration step. Elementary components of the
application must be linked to their implementations. The
application elementary components deployment is necessary to
elaborate a precise design space exploration.

D. Design space exploration

Given the architecture, application, and deployment
models, the design space exploration process takes design
decisions about the architecture components parameters. Our
tool selects the number of PEs and maps tasks to them in order
to minimize the execution time. Repetitive parallel tasks are
mapped to a number of PEs and sequential tasks are mapped to
the ACU. Tasks execution times are calculated using the
specified software IPs from the deployment step. The total
execution time is calculated varying the number of PEs for the
three processor types available in the mppSoC exploration
library. Our tool simultaneously maps processors to a
communication structure, such that the overall communication
cost is again minimized. A communication structure is needed
if there are communications between the architecture
components as it is the case of our application.

The exploration tool will decide if the application needs an
mpNoC or a regular network to manage the transfers of data
flows. This decision is taken after calculating the total
communication time needed using different communication
structures. A minimal communication time and optimal
communication structure surface is needed. Varying the
number of PEs allows changing the data memory size needed
for each task. This leads to different measurements of the
memory size depending on the number and the type of
processor. Estimated performance, surface and memory costs

for hardware and software components, provided in the
mppSoC exploration library, have been used to guide the
exploration. The number of design alternatives in this design
space exploration scenario is huge, so that the utilization of an
automated design space exploration approach at a very high
abstraction level is fully justified. The Pareto-set is finally
given resulting from a number of model transformations. The
selection of the right solution is driven by the constraints
expressed in the user interface (execution time, FPGA area,
energy consumption...).

E. Code generation

The low-level synthesizable models from the hardware and
software mppSoCLib are used for the final implementation.
The right solution is generated, via the exploration step, using
the mppSoC flow transformation chains. This solution includes
parallel architecture configuration codes and data-parallel
application codes.

Our tool enables us to design an mppSoC system for an
efficient execution of the RGB to CMYK color conversion
application. Following our methodology, we explored the
design space at a high abstraction level using information
resulting from the models generated by the transformation
chains. The ease of modifications at a high abstraction level
coupled with the fast evaluations leads to a powerful design
space exploration framework.

IX. CONCLUSION AND FUTURE WORK

Through the Model Driven Engineering approach presented
in this work, a designer can specify his data-parallel application
to generate the executable binary code. At the same time, he
can describe his needed mppSoC configuration using UML
models and the MARTE profile at a high abstraction level and
automatically generate its implementation at RT level. The
designer can easily and automatically generate the optimal
solution satisfying his needs through a high level DSE tool.
Future works aim to generate data-parallel application source
code from both structure diagrams and behavior diagrams.
While structure diagrams were of our primary interest,
behavior diagrams allow the generation of the whole
application as the behavior of each task can be modeled in a
detailed manner. As a result new transformation rules need to
be defined and new meta-models need to be developed.

REFERENCES
[1] F.Hannig, H.Dutta, A.Kupriyanov, J. Teich, R.Schaer, S. Siegel,
R. Merker, R. Keryell, B. Pottier and O. Sentieys, “Co-

Design of Massively Parallel Embedded Processor Architectures,”
in Proc. of the 1% Reconfigurable Communication-centric Systems on
Chip workshop, ReCoSoC'05, Montpellier, France, June 2005.

[2] M. Baklouti, “A rapid design method of a massively parallel System on
Chip: from modeling to FPGA implementation”. Available:
http://tel.archives-ouvertes.fr/tel-00527894/en/.

[3] Object Management Group. UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems, version 1.0. Available:
http://www.omg.org/ spec/ MARTE/ 1.0/PDF/.

[4] K.G. Stevens, Jr., “CFD -- A FORTRAN-like Language for the ILLIAC
IV,” ACM SIGPLAN Notices, vol. 10, no. 3, March 1975, pp. 72-76.

[5] D.H. Lawrie, T. Layman, D. Baer, and J.M. Randal, “Glypnir-A
Programming Language for llliac IV,” presented at Commun. ACM,
1975, pp.157-164.

[6] P.M. Flanders, R.L. Hellier, H.D. Jenkins, C.J. Pavelin, S. van den
Berghe, “Efficient high-level programming on the AMT DAP,”
Proceedings of the IEEE , vol.79, no.4, pp.524-536, Apr 1991.

[7] C. Lasser, J. Mincy, J.P. Massar, Thinking Machines Corporation, “The
Essential *LISP Manual,” TM Corp 1986.

[8] L.W. Tucker, G.G. Robertson, “Architecture and applications of the
Connection Machine,” Computer , vol.21, no.8, pp.26-38, Aug 1988.

[9] J. R. Rose et al., “C*: An Extended C Language for Data Parallel
Programming,” in Proceedings of the Second International Conference
on Supercomputing, L. P. Kartashev et al. eds, May 1987, pp 2-16..

[10] MasPar Computer Corporation, MasPar Fortran User Guide, Software
Version 1.1, 1991.

[11] H.P. Zima, “High Performance Fortran - History, Status and Future, ” in
Proc. ISHPC, 2002.

[12] L. Bondé, C. Dumoulin, and J.-L Dekeyser, “Meta-models and MDA
Transformations for Embedded Systems,” in Forum on Design
Languages, FDL’04, Lille, 2004.

[13] C. Glitia et al., “Repetitive model refactoring strategy for the design
space exploration of intensive signal processing appli-cations,” J. Syst.
Architect, 2011.

[14] R.T. Kouzes, G.A. Anderson, S.T. Elbert, I. Gorton, and D.K. Gracio,
“The Changing Paradigm of Data-Intensive Computing,” in |EEE
Computer , vol.42, no.1, pp.26-34, January 2009.

[15] L.S. Nyland, J.F. Prins, A. Goldberg, and P.H. Mills, “A design
methodology for data-parallel applications,” in the IEEE Transactions
on Software Engineering, Vol.26, pp.293 — 314, 2000.

[16] E.A. West, and A.S. Grimshaw, “Braid: integrating task
and data parallelism,” in the 5" Symposium on the Frontiers of
Massively Parallel Computation, pp.211-219, 1995.

[17] M. Baklouti, Ph. Marquet, M. Abid and J.-L. Dekeyser, “A design and
an implementation of a parallel based SIMD architecture for SoC
on FPGA,” in DASIP, Bruxelles, Belgium,2008.

[18] M. Baklouti, Ph. Marquet, M. Abid, and J.-L. Dekeyser, “IP based
configurable SIMD massively parallel SoC,” in the PhD Forum of
20th international conference on Field Programmable Logic and
Applications, FPL, August 2010.

[19] Papyrus, http://www.papyrusuml.org, 2012.

[20] M.Ammar, M.Baklouti and M.Abid, “A model driven based CAD tool
for mppSoC design,” in the 23rd International Conference on
Microelectronics, ICM' 2011, Winner of the CEDA's ENG-
OPTIM'Contest, Hammamet, Tunisia, December 2011..

[21] P. Boulet, “Array-OL revisited, multidimensional intensive signal
processing specification,” Technical Report RR-6113, INRIA, Paris,
France, February 2007.

[22] EEMBC. The Embedded Microprocessor Benchmark Consortium.
Auvailable: http://www.eembc.org/home.php, 2012.

http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=380446&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DData+Parallelism
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=380446&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DData+Parallelism
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=380446&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DData+Parallelism
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3042
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3042

