SENDA’18 Monastir, Tunisia, May 08-10 2018

APPROCHE DE CONCEPTION D’UNE ARCHITECTURE
MULTIPROCESSEUR RECONFIGURABLE

Kais LOUKIL
Kais_loukil@ieee.org
Ecole Nationale d’Ingénieur de Sfax,

Actuellement on assiste a une large diffusion des produits électroniques embarqués chez une
large gamme d’utilisateurs. Ces systemes permettent d’exécuter divers types d’applications de
plus en plus complexes. Par conséquent, 1’architecture multiprocesseur est 1’une des solutions
pour répondre aux exigences des nouvelles applications. Nous proposons dans ce papier une
approche de conception de systeme d’exploitation temps réel pour les architectures
multiprocesseur. Il s’agit d’une couche générique de communications inter-processeur qui
permet d’adapter les systemes d’exploitation monoprocesseur aux architectures
multiprocesseur. Nous présentons également les étapes qui ont conduit a la mise en place d’une
plateforme de prototypage multiprocesseur reconfigurable. Cette couche a été validée a travers
I’application de synthese d’images 3D.

Mots clefs
MPSoC, RTOS, couche de communication inter-processeur.

1 INTRODUCTION

Avec le progres de la capacité d’intégration de centaines de millions de transistors sur
une seule puce et I’avancement au niveau de la conception des cceurs de processeurs embarqués.
Les nouvelles technologies s’orientent vers 1’intégration sur une méme puce de plusieurs
processeurs, DSP, IP matériels et logiciels, mémoires, bus partages, etc. Nous parlons ainsi de
systemes multiprocesseurs mono puce (MPSoC) [1, 11, 12]. En fait, les systemes
multiprocesseurs sont 1’une des solutions pour répondre a la complexité croissante des systemes
intégrés utilises pour des applications telles que les applications multimedia.

En plus, et du fait de la complexité croissante de ces systémes, de la présence de fortes
contraintes temps réel, de la limitation des ressources disponibles, tant en mémoire qu’en
énergie disponible et donc en puissance de calcul, mais également de la pression exercée par le
marché sur ces produits, ['usage de systemes d’exploitation temps réel (RTOS) est devenu
indispensable dans les systéemes embarqués [2, 13, 14]. Par ailleurs actuellement, la plupart des
RTOS existants ne supportent pas les architectures multiprocesseur d’ou la nécessité de trouver
des méthodes pour répondre aux exigences de tel systemes. Deux solutions peuvent étre
distinguées la premiere consiste a développer de nouveaux systeémes d’exploitation qui
supportent des architectures multiprocesseurs. La deuxiéme solution consiste a étendre les
systémes existants par d'autres fonctionnalités pour qu’ils puissent supporter ces architectures.
Dans ce cadre se situe notre travail qui consiste a étendre un RTOS existant par une couche de
communication inter processeur pour gérer la communication entre les processeurs de notre
systeme.

Ce papier est organisé de la fagcon suivante. La premiére section, est consacrée pour la
présentation des différents modeles de communication inter-processeur. La deuxiéme section
présente les caractéristiques de 1’environnement utilisé ainsi que la topologie de 1’architecture

multiprocesseur adopté. La troisieme section illustre la couche de communication
interprocesseur implémentée ainsi que sa validation. On terminera par quelques conclusions.

2 Couche générique de communication inter-processeur

Dans le cadre d’un systéme multiprocesseur, il est nécessaire que les processeurs se
communiquent. Cette communication est accomplie par envoi de messages (Message Passing)
[9].

2.1 Modele de communication inter-processeur
Généralement, les communications peuvent étre synchrones ou asynchrones, bloquantes ou
non bloquantes. Les communications synchrones sont plus lentes et généralement bloquantes,
c'est a dire que les deux processeurs engagés dans la communication doivent attendre la fin de
la communication pour continuer.
Par contre les communications asynchrones sont la plupart du temps non bloquantes. En
fait, quand un processeur veut envoyer un message a un autre, il envoie le message, et il peut
immédiatement reprendre son exécution sans se soucier de l'autre processeur quand il recevra
le message. C'est le principal avantage des communications asynchrones.
Dans le modéle de la couche de communications inter processeur implémentée, nous avons
considéré une mémoire partagée dont I’acces est protégé par le mutex hardware et une file de
messages (Message Queuing) a travers laquelle les processus des nceuds envoient et recoivent
des messages. Ainsi, la couche de communications développée est un ensemble de routines
permettant d’envoyer et de recevoir des messages de différentes fagons en combinant les
parametres suivants :
. Envoi/Réception blogquant et non bloquant ;
. Envoi/Réception de messages uniques ou composes ; « Envoi de
messages synchrone ou asynchrone.

2.2 Différents modeles de communication

Il existe deux modéles principaux de communications pour 1’échange d’information,

appelés aussi modeles de synchronisation, le modéle synchrone et le modéle asynchrone [10].
2.2.1. Modele synchrone : Dans le cadre d’une communication synchrone (Synchronous
Message Passing), I’expéditeur est sir que le destinataire a recu le message. D’autre
part, I’expéditeur d’une demande doit attendre une réponse du récepteur prévu avant
de pouvoir effectuer le traitement restant. Le délai d’attente de I’émetteur dépend
entierement du temps nécessaire au récepteur pour traiter la demande et envoyer une
réponse. Typiquement, le temps d’attente de la réponse a la demande est assez long.

2.2.2. Modéle asynchrone : Dans le cadre d’une communication asynchrone
(Asynchronous Message Passing), I’expéditeur envoie son message dés qu’il soit prét,
et le récepteur peut éventuellement attendre si le message n’est pas encore arrivé.
Avec ce modele, I’émetteur n’attend jamais, mais aussi avec moins de contrdle sur la
réception. La communication asynchrone peut étre soit bloquante, soit non bloquante, ou bien
par interruptions.
2 .2.2.1. Mode bloguant : Pour I’envoi de message, 1’appel a la primitive d’envoi se termine
lorsque le message a quitté 1’expéditeur. Toutefois, cela ne signifie pas que le destinataire I’a
bien regu. Pour la réception, I’appel a la primitive de réception se termine quand le message est
arrivé et qu’il est copié dans le buffer de réception.
2.2.2.2. Mode non bloquant : Le but de ce mode est de diminuer le temps d’attente. En fait, La
couche logicielle expédie ou regoit dés que c’est possible. L’exécution d’une telle
communication asynchrone non bloquante s’effectue aussi sans attendre qu’elle soit finie. Il
s’agit donc de masquer le temps des communications.

2.2.2.3. Mode par interruptions : Ce mode est défini pour les communications asynchrones, et il
est rarement disponible. Dans le cadre de ce mode, I’arrivée d’un message génére une

interruption au niveau de ’application.
2.3 Choix conceptuelle:

Partant des deux modeéles de communication présentes, nous avons été amenés a adopter le
modele asynchrone comme modele de communication (Asynchronous Message Passing). En
fait, la communication a travers des files d’attente est, par nature, asynchrone dans la mesure
ou les messages sont envoyés a une file d’attente et recus d’une file d’attentes dans des
processus différents.

2.3.1. Gestionnaire de messages : La gestion des messages de communication est tributaire d’une
part a la gestion de la file de communication et ses buffers de messages, et d’autre part a la
gestion du support de communication (mémoire partagée).

2. 3.1.1. Gestion de la file de communication : La file d’attente est un objet permettant la
communication asynchrone de messages entre des taches. Les principales propriétés mises en
jeu pour la gestion de cette file de communications sont les suivantes :

» Capacité maximale de la file : En fait, la file d’attente (pending-message-queue) définit
un nombre maximal et bien déterminé de messages en attente. Cette propriété est
indispensable pour éviter I’échec de I’envoi de messages.

» Propriété d’expiration : Cette notion de « timeout », liée au temps, dispose d'un meilleur
contrble & nos messages. Elle détermine la durée maximale d'existence d'un message
dans le systeme avant son élimination. Cette propriété est utilisée en cas d’une
communication asynchrone bloquante.

* Propriété d’optimisation : 11 s’agit, en fait, d’employer la notion d’ « importance » (ou
d’” « urgence ») qui affecte I’ordre dans lequel les messages sont envoyés vers la file de
communications. Le parametre de I’importance d'un message détermine 1'emplacement
du message dans la file d'attente. Les messages envoyés avec un degré d’urgence élevé
sont placés plus haut dans la file d'attente, tandis que ceux affectés d'une importance
faible sont placés plus bas dans la file. Cette propriété est utilisée dans les deux cas de
communications étudiés : bloquante et non bloquante.

un premier temps, nous avons opté a des tests pour chaque routine a part. Dans nos tests on
a utilisé le systéme d’exploitation temps réel monoprocesseur MicroC_OS-I1 fournit avec le kit
excalibur d’altera. Il est a signaler que le code source est ouvert et il écrit en langage C, ce qui
a facilité I’intégration de la couche de communications inter-processeur implémentée dans ce
systeme d’exploitation. Le portage de notre nouveau systeme d’exploitation « multiprocesseur
» a été fait en utilisant I’environnement IDE fourni avec notre kit de conception.

Dans un second temps, et apres avoir validé toutes les fonctions implémentées nous avons
optés a la validation de cette couche a travers 1’application de synthése d’images 3D sur la
plateforme multiprocesseur mise en place. Pour ce faire en premier lieu on a extrait le graphe
de tache de cette application qui représente les différentes taches de ’application ainsi que les
données échangées entre eux. En suite, et d’'une facon manuelle on est passés a 1’étape de
partitionnement de I’application sur les différents processeurs.

5 Conclusion

Le travail entrepris a permis d’étudier de pres les contraintes et les problémes engendrés par
le prototypage des systéemes multiprocesseurs temps réel sur des architectures reconfigurables.
En premier lieu, des études bibliographiques sur les architectures des systemes multiprocesseur,
a été faite pour explorer le domaine et avoir une idée sur leurs caractéristiques. En second lieu
on a visé la mise en place d’une plateforme multiprocesseur ainsi que la proposition d’une

couche geénérique de communication inter-processeur qui permet d’adapter les systémes

d’exploitation monoprocesseur pour des architectures multiprocesseur. On a terminé par la

validation de la couche implémentée sur le systéme d’exploitation temps réel MicroC_OS-II.

Notre objectif a court terme consiste a valider la couche de communication proposé sur d’autres

systemes d’exploitation.

Les résultats obtenus durant ce travail ont permis d’ouvrir divers axes de recherche. Le
premier axe vise I’exploration de 1’espace des solutions architecturales. Le concepteur se trouve
devant divers types d’architectures d’ou la nécessité¢ de mettre en place des outils qui aident le
concepteur a choisir ’architecture adéquate a son systemes et surtout dans le domaine des
systémes sur puce puisqu’ils sont mobiles avec des ressources limitées et évoluant dans des
environnements variables. Le deuxiéme axe concerne le partitionnement automatique de
I’application sur une architecture multiprocesseur. 6 References
[1] N. Manjikian. Multiprocessor enhancements of the SimpleScalar tool set. ACM Computer

architecture News, 29(1):8-15, March 2001.

[21 Dongkun Shin and Jihong Kim. Power-Aware Scheduling of Conditional Task Graphs in
Real-Time Multiprocessor Systems. In Proc. International Symposium on Low Power
Electronics and Design (ISLPED), August 2003.

[3] Victor B. Lortz, Kang G. Shin, Fellow, IEEE, and Jinho Kim [14]MDARTS: A
Multiprocessor Database Architecture for Hard Real-Time Systems IEEE transactions on
knowledge and data engineering, VOL. 12, NO. 4, JULY/AUGUST 2000

[4] M. Ben Said, K. Loukil, N. Ben Amor, M. Abid, Jean Philippe Diguet «A timing constraints
control technique for embedded real time systems» Design and technology of integrated
Systems (DTIS 2010) March 2010

[5] Hanen Abbes, Kais Loukil, Hafedh Abid, Mohamed Abid, Ahmad Toumi «
Implementation of Photovoltaic Maximum Power Point Tracking Fuzzy Logic Controller
on FPGA » Journal of Information Assurance and Security, pp. 097 — 106, Vol. 11, Issue
2,2016

