Rapport d’avancement

Contexte du sujet :

Les interfaces graphiques traditionnelles sont construites sur la base de composants
graphiques agencés selon une disposition fixe, et répondant de maniere prédéterminée a chacun des
¢vénements qu’ils recoivent. De ce fait, les interfaces graphiques manquent de souplesse et
d’adaptativité par rapport a I’utilisateur qui les manipule. Pour contourner ces limitations, nous allons
concevoir un modele d’interface a base d’agents. Les agents présentent

L’avantage, par rapport aux composants graphiques classiques, d’étre autonomes et réactifs,
ce qui signifie qu’ils peuvent analyser dynamiquement le contexte d’utilisation de I’interface et y
réagir en se réorganisant suivant des critéres contrélés par I'utilisateur.

Obijectif du travail:

L’objectif principal de notre travail c’est de développer un générateur d’interface homme
machine a base de systéme multi-agents est qui est compatible avec la méthodologie TOOD (Task
Objectect Oriented Description).

Contribution attendue:

L’interface homme machine joue un rdle crucial dans le développement des applications
interactives, sa simplicité d’utilisation peut parfois €tre un critére important d’évaluation de
I’application par ailleurs une bonne application qui est représentée par une interface non adéquate peut
étre jugée comme une application non réussite, d’ou 1’utilit¢ des générateur d’interfaces homme
machine qui peuvent nous garantir une interface lisible, intuitive et facile a manipuler par n’importe
quel utilisateurs.

Aussi nous nous intéressons a résoudre le probléme du passage de la spécification des objets
IHM a la génération d’interfaces pour la méthodologie TOOD.

Etat de |'art :

Dans ce cadre de ce travail et en ce qui ce qui concerne la partie bibliographie et état de 1’art,il
existe trois grande partie a étudier :

*partie 1 : interface homme machine.

*partie 2 : agents et systéme multi-agents.

*partie 3 : générateur d’interfaces homme machine.

Pour la premiére partie les études faites concernent :

Etude de la méthodologie TOOD.

Etude de développement des interfaces homme machine, qui inclue les systémes homme machine
et le processus de développement des IHM : étapes, cycle, outils spécifique et les approches
existantes pour le développement des systémes interactifs.

Etude des méthodes usuelles de spécification de 1’interaction homme machine.

Etude des architectures logicielles existantes : modele de base et modele de référence.

Pour la deuxiéme partie concernant I’agent et les systémes multi-agents :

Etude des modéles multi-agents existants : PAC, MVC, LIM...et les mod¢les hybrides PAC-
AMODEUS.

Etude des avantages de I’utilisation des systémes multi-agents dans notre travail : flexibilité,
autonomie. ..

Etude bien détaillée des agents réactifs.

Etude des plates-formes multi-agents existantes.

Pour la derniére partie : étude des générateurs existants et leurs caractéristiques

Approche proposée:

L’approche suivie dans notre travail est le passage du modele de la tiche de la méthodologie

TOOD vers le modele multi-agents et de ce dernier vers la génération de I’interface ou bien la
génération du code de I’interface.

Autrement dit, dans un premier lieu nous nous intéressons au passage de 1’arborescence de la

tache spécifiant I’interface homme machine vers une arborescence d’agents et de cette derniére vers
I’interface homme machine.

Rapport d’avancement détaillé

Introduction générale :

La conception des interfaces homme machine (IHM) constitue un domaine de
recherche en pleine expansion. Cependant, malgré les différents travaux de recherche dans ce
domaine, nous remarquons toujours I’insuffisance des méthodes et d’outils couvrant les
différentes étapes de développement.

Si des solutions on été apporté, aujourd’hui, pour les phases de conception, de
spécification, pour les systémes interactifs, il reste encore des pistes a creuser notamment en
ce qui concerne la générations des IHM. Dans ce courant de recherche, notre travail dans ce
mémoire vise a générer 'IHM a partir de la méthodologie TOOD (Task Object Oriented
Design) en se basant sur les systémes multi-agents. TOOD étant une méthode de conception
et de développement des systémes interactifs.

J’ai décomposé ce rapport en trois grandes parties :
1) Interaction homme machine.

2) Agents et systemes multi-agents.

3) Génération des interfaces.

Partie |

Les interfaces homme machine :

1/ Développement des systemes interactifs :

Pour un bon développement d’une application interactive, il faut bien étudier les
phénoménes humains, logiciels et matériels qui sont mis en jeu dans cette application, aussi il
faut bien résoudre quelques autres problémes tel que :

a. Le cycle de développement a suivre ?
b. Les mod¢les a prendre en considération ?
c. L’architecture a suivre pour une implémentation facile et réutilisable ?

1-1/ cycle de développement :

Il existe plusieurs modeles a suivre pour développer un systéme interactif.
i. Lemodéle en cascade :

Son principe c¢’est que chaque phase se termine a une date précise et qu’on ne
passe a la phase suivante qu’apres sa validation.

+ Ce modgcle est utilisé pour les petites applications.

+ Il a comme avantage de stabiliser rapidement le produit.

- Mais il ne favorise pas les changements.

- Il ne prend pas en compte les exigences de I’utilisateur dans les différentes

phases de développement de I’application.
ii. LemodéleenV:

Dans ce modele 1’enchainement des phases prend la forme d’un V ;une phase
descendante pour la spécification, conception et codage et une phase ascendante pour les
validations et les tests.

+ Il a comme avantage de prévoir en amant I’évaluation du systéme et de
surmonter rapidement les erreurs commises.

+ 11 est congu pour les applications hautement interactives.

- L’analyse et la mod¢lisation des taches humaines ne sont pas positionnées lors

du développement de 1’application.
iii. Le modele spiral :
Contrairement au deux autres modeles, le modéle spiral constitue un processus

itératif.

+ Ce modele favorise I’expression de spécification pour le développement des
logiciels fortement interactifs.

- Par contre il néglige I’analyse et la modélisation des utilisateurs.

:> Ces trois modeles de base proposés en génie logiciel sont
trop génériques si le systéeme visé est hautement interactif. D’ou
I'utilité des modeles concue pour les systémes hautement
interactifs :

iv. Modéle Nabla:
C’est un double cycle en V, il différencie I’interface des modules d’aide et il se
base sur une confrontation progressive entre un modele réel et u modéle de référence.
v. ModeleenU:
Ce mode¢le est constituer de deux phases : une descendante pour la modélisation et
une ascendante pour 1’évolution du systéme globale. La méthodologie TOOD se base sur
ce mod¢le.

Les nouveaux mod¢les adaptés pour les systémes interactifs assurent une
meilleure prise en compte de 1’utilisateur, et ce ci dés les premicres étapes de spécification,
cependant le probléme induit, dans la majorité des cas, des problémes de coopération avec
I’utilisateur.

Une question trés importante est qui a elle seule constitue un domaine de
recherche en génie logiciel s’impose : comment doit — on combiner les différents modeles afin
de définir une démarche méthodologique qui regroupe les différents étapes de développement
d’une application interactive ? Une réponse a cette question est a I’origine des approches
orientées modeles.

2/ Les approches orientées modeles :

Les approches orientées modeles sont inspirées des systemes UIMS, qui se basent
sur des langages de spécification, le modele est le composant central des MBD. Ce mode¢le
lui-méme est constituer d’un ensemble de modeles (Tache, Utilisateur, Interface, Dialogue...).

Il existe de nombreuses approches orientées modeles :

a) MASTERMIND (Models Allowing Tools and Explicit Representation to Make
Interfaces Natural to Develop): il est base sur trios modéles : modele de la tache,
modele de 1’application et le modele de I’interface. Ces trois modeles sont stockés
puis compilés en C++, mais reste toujours consultable dynamiquement.

b) TRIDENT (Tools FoR an Interactive Developpment EnvironmeNT) c’est une
méthodologie qui fournit un environnement pour le développement des applications
interactives. Il se base sur un ensemble de mod¢les et suit un processus de cinq €tapes :
I’établissement d’un graphe d’enchainement de fonction, la conception de la
présentation, la dérivation de I’architecture, la spécification de dialogue et la
réalisation du prototype statique de ’application.

c) DIANE+: elle vise a résoudre I’absence de spécification et d’intégration de
’utilisateur dans le développement des systemes interactifs. Elle s’appuie sur trois
modeles pour assurer la génération : le modele de la tache, le modele des objets
naturels PAC, le modele de dialogue et d’aide. Dans DIANE+, la génération est
centrée sur deux axes : la génération ¢lémentaire qui assure la validation des choix de
conception ; et la génération complete destinée a étre utiliser pour 1’application finale.

d) FUSE (Formal User Interface Spécification Environment) : elle est a la fois une
méthodologie et un environnement pour la génération automatique d’interface
utilisateur. Dans FUSE, la génération s’appuie sur un mod¢le de la tache, un modé¢le
du domaine du probléme et un modele de I’utilisateur.

L’'inconvénient majeur des approches de types MBD est la
complexité des modéles et des notations qui sont généralement
difficiles a appréhender et a manipuler.

3/ Modeéle D’architecture :

Tous les modeles architecturaux de référence applicables aux systémes interactifs
répondent au requis de modifiabilité : en 1'état des connaissances et des pratiques, la mise au
point itérative d'une IHM est la seule stratégie effective. Mais le succeés de cette approche
repose soit sur l'existence de bons outils de construction de maquettes, soit sur la possibilité
de retoucher "a la main" une IHM sans mettre en cause la fiabilité, ni atteindre des coiits
prohibitifs de mise a jour. Tous les modeles de référence répondent a cette exigence de
modifiabilité avec le principe de séparation fonctionnelle. Un premier grain de séparation est
la distinction entre les services d'une application et les fonctions chargées d'assurer
l'interaction avec l'utilisateur. L'application, appelée aussi noyau fonctionnel, regroupe les
concepts du domaine et les opérations qui leur sont applicables. L'THM a la charge de
présenter a 1’utilisateur concepts et fonctions et de lui permettre de les manipuler selon un
enchainement, reflet logiciel du modele de tache. Les modéles de référence Seeheim et Arch
sont des affinements de cette décomposition bipartite. Nous présentons une variante du
Seeheim original puis sa version révisée : Arch.

3-1/ MODELE DE SEEHEIM

Le modéle de Seeheim, du nom de la ville dans laquelle il fat présenté pour la
premicre fois, raffine la structuration de l'interface en trois composantes:
"la présentation,
“le contréle de dialogue,
“I'interface avec l'application.

La présentation est responsable de I'image du systéme qui est présentée a 1'usager. Elle
est le réceptacle des interactions ¢lémentaires que peut effectuer l'usager.

Le controleur du dialogue assume le réle de serveur syntaxique du modele "langage".
Il est l'intermédiaire entre la présentation et l'interface de l'application. Il assemble les actions
¢lémentaires des présentations en phrases syntaxiques valides qu'il associe, via l'interface avec
l'application, a des concepts sémantiques de 'application. Inversement, il traduit les concepts
sémantiques de l'application en ensembles d'¢léments présentables a 1'usager.

Le contréleur du dialogue est par ailleurs en charge du suivi du dialogue qui s'instaure
entre 1'usager et l'application. L'application est dépositaire du modele interne du systéme. Elle
manipule la sémantique du domaine d'activité du systéme. L'interface de 'application définit
les capacités et les moyens d'échanges du contréleur de dialogue avec l'application. L'intérét
principal du modele langage est son aspect modulaire qui sépare clairement ’application et
I’interface et ainsi permet une mise au point par des ajustements itératifs. La maintenabilité et
I'évolutivité du code IHM en sont favorisés. De fait, et en théorie, la modification de la

présentation peut étre effectuée sans remettre en cause les fonctions de l'application et
réciproquement. Ce principe n'est pas nouveau en soi, mais faute d'outils forcant cette
séparation, ce principe n'est pas toujours respecté (ou s'il I'est au début du développement de
logiciel, il ne I'est plus au gré des modifications et évolutions qu'il subit).

3-2/ MODELE ARCH :

Comme le montre la figure au dessous, le modéle Arch s’appuie sur les composants
fonctionnels de Seeheim. On y retrouve le Noyau Fonctionnel (NF), le Controleur de dialogue
et la Présentation. Les pieds de I’arche constituent les composants imposés par la réalité : le
NF réalise les concepts du domaine ; le Composant d’Interaction, en contact direct avec
I’utilisateur, est mis en ceuvre au moyen des interacteurs (widgets) d’une boite a outils. En clé
de votte, le Controleur de Dialogue gére I’enchainement des taches ainsi que les liens entre
les objets regroupés dans ses deux composants voisins : 1’Adaptateur de Domaine et la
Présentation. L’Adaptateur de Domaine sert, pour 1’essentiel, a ajuster les différences de
modélisation des objets conceptuels entre le NF et le Contréleur de Dialogue. Le composant
de Présentation joue un role similaire : il permet au Contrdleur de Dialogue de s’affranchir du
fonctionnement de la boite a outils du niveau interaction. La Présentation peut se voir comme
une boite a outils virtuelle qui implémente des objets de présentation concrétisés en fin de
compte par les interacteurs d’une boite a outil réelle.

La figure doit se voir comme une représentation canonique. En réalité, 1’importance
relative des cinq composants de I'arche varie en fonction du cas a traiter. Cette migration des
fonctions entre les composants s’exprime métaphoriquement au moyen du métamodele slinky,
du nom de ce jouet qui, une fois mis en mouvement, voit sa masse se déplacer
dynamiquement. Le choix de la répartition des fonctions entre les composants reléve du
savoir-faire en ingénierie du logiciel. L’équilibre doit étre le résultat d’un dosage analytique
des facteurs qualit¢é comme D’efficacité et la portabilité. On appellera instance d'Arch, un
exemplaire de modele Arch produit en appliquant slinky a un systéme interactif particulier.

Seeheim et Arch fournissent des structures fonctionnelles canoniques a gros grain. Ces
modeles sont utiles comme cadres structurants pour une conception ou une analyse grossicre
de la décomposition fonctionnelle d'un systéme interactif. Les modeles de référence multi-
agent visent une décomposition fonctionnelle plus fine avec, en filigrane, le support du
parallélisme.

Composant contrdleur

de dialogue
Composant Composant
adaptateur de domaine présentation
Composant Composant
Noyau fonctionnel Interaction

Partie Il :
L’agent et le systéme multi-agents :

1/Qu’est ce qu’un agent?

Le concept d’agent a été 1’objet d’études pour plusieurs décennies dans différentes
disciplines. Il a ét¢ non seulement utilis¢ dans les systétmes a base de connaissances, la
robotique, le langage naturel et d’autres domaines de 1’intelligence artificielle, mais aussi dans
des disciplines comme la philosophie et la psychologie. Aujourd’hui, avec I’avénement de
nouvelles technologies et I’expansion de I’Internet, ce concept est encore associé¢ a plusieurs
nouvelles applications comme agent ressource, agent courtier, assistant personnel, agent
interface, agent ontologique, etc. Dans la littérature, nous trouvons une multitude de
définitions d’agents. Elles se ressemblent toutes, mais différent selon le type d’application
pour laquelle est congu I’agent. A titre d’exemple, voici I’une des premiéres définitions de
I’agent: « Un agent est une entité autonome, réelle ou abstraite, qui est capable d’agir sur elle-
méme et sur son environnement, qui, dans un univers multi agents, peut communiquer avec
d’autres agents, et dont le comportement est la conséquence de ses observations, de ses
connaissances et des interactions avec les autres agents ». Il ressort de cette définition des
propriétés clés comme |’autonomie, I’action, la perception et la communication. D’autres
propriétés peuvent étre attribuées aux agents. Nous citons en particulier la réactivité, la
rationalité, 1’engagement et 1’intention. Comme nous pouvons définir I’agent comme suit :
« Un agent est un systéme informatique, Situé dans un environnement, et qui agit d’une fagon
autonome et flexible pour atteindre les objectifs pour lesquels il a été congu ». Les notions
“situé”, “autonomie” et “flexible” sont définies comme suit:

— situé: I’agent est capable d’agir sur son environnement a partir des entrées sensorielles qu’il
recoit de ce méme environnement. Exemples: systémes de contrdle de processus, systémes
embarques.

— autonome: I’agent est capable d’agir sans I’intervention d’un tiers (humain ou agent) et
contrdle ses propres actions ainsi que son état interne;

— flexible: ’agent dans ce cas est capable de répondre a temps: I’agent doit étre capable de
percevoir son environnement et élaborer une réponse dans les temps requis.

— proactif: I’agent doit exhiber un comportement proactif et opportuniste, tout en étant
capable de prendre I’initiative au “bon” moment;

— social: I’agent doit étre capable d’interagir avec les autres agents (logiciels et humains)
quand la situation I’exige afin de compléter ses taches ou aider ces agents a accomplir les
leurs.

2/ Les systemes multi agents :

Un systeme multi agents est un systéme distribué composé d’un ensemble d’agents.
Contrairement aux systemes d’IA, qui simulent dans une certaine mesure les capacités du
raisonnement humain, les SMA sont congus et implantés idéalement comme un ensemble
d’agents interagissant, le plus souvent, selon des modes de coopération, de concurrence ou de
coexistence.

Un SMA est généralement caractérisé par:
— chaque agent a des informations ou des capacités de résolution de problémes limitées, ainsi
chaque agent a un point de vue partiel.
—il n’y a aucun controle global du systéeme multi agent.
— les donnés sont décentralisées.
— le calcul est asynchrone.

Les SMA sont des systémes idéaux pour représenter des problémes possédant de
multiples méthodes de résolution, de multiples perspectives et/ou de multiples résolveurs. Ces
systémes possedent les avantages traditionnels de la résolution distribuée et concurrente de
problémes comme la modularité, la vitesse (avec le parallélisme), et la fiabilité (due a la
redondance). Ils héritent aussi des bénéfices envisageable de I’Intelligence Artificielle comme
le traitement symbolique (au niveau des connaissances), la facilit¢ de maintenance, la
réutilisation et la portabilité mais surtout, ils ont I’avantage de faire intervenir des schémas
d’interaction sophistiqués. Les types courants d’interaction incluent la coopération (travailler
ensemble a la résolution d’un but commun) ; la coordination (organiser la résolution d’un
probléme de telle sorte que les interactions nuisibles soient évitées ou que les interactions
bénéfiques soient exploitées) ; et la négociation (parvenir a un accord acceptable pour toutes
les parties concernées).

Les SMA sont a l'intersection de plusieurs domaines scientifiques: informatique
répartie et génie logiciel, intelligence artificielle, vie artificielle. Ils s’inspirent également
d’études issues d’autres disciplines connexes notamment les sociologies, la psychologie
sociale, les sciences cognitives et bien d’autres. C’est ainsi qu’on les trouve parfois a la base
des:

— bases de données et bases de connaissances distribuées coopératives.
— systémes pour la compréhension du langage naturel.

— protocoles de communication et réseaux de télécommunications.

— programmation orientée agents et génie logiciel.

— robotique cognitive et coopération entre robots.

—systémes distribués.

—interface homme machines.

3/ MODELE Multi-Agents :

Un agent est un systéme de traitement de I’information : il se distingue par un jeu
d’opérations, des mécanismes d’entrée/sortie et une capacité a représenter un état que 1’on
appelle vecteur d’état. Un agent est un acteur communicant : il assume un rdle (c’est un
acteur) et se manifeste par un comportement observable via 1’acquisition et la production
d’informations (il communique). L’acquisition et la production d’information sont des actions
dont la réalisation se traduit par des événements. Les informations proviennent ou sont
destinées a d’autres agents : 1’agent vit en communauté. Il conduit ses activités en parallele
avec celles de ses confreres. Il faut ’opposer & milieu d’activités séquentielles et a entité
passive et isolée.

En Intelligence Artificielle Distribuée, on convient de distinguer les agents réactifs des
agents intelligents. Les premiers, du type stimuli-réponse, ont un comportement cablé. Les
seconds, dotés de mécanisme de planification, poursuivent des buts de maniére adaptative. En
Interface Homme-Machine, on parle implicitement d’agents réactifs.

3-1/ Modele PAC (Présentation, Abstraction, Contrdle) :

Un agent PAC est constitué de trois facettes : la facette Présentation, la facette
Abstraction et la facette Controle.

e La facette Présentation définit 1'image de I'agent, c'est-a-dire son comportement en
entrée comme en sortie vis-a-vis de l'utilisateur.

e La facette Abstraction regroupe les aspects conceptuels de 1'agent.

e La facette Controle maintient la cohérence entre les facettes Présentation et
Abstraction. Présentation et Abstraction ne sont jamais en contact direct. Par
ailleurs, cette facette prend en charge les échanges avec les autres agents.

Un systéme interactif modélis¢é par PAC est organisé¢ en agents PAC a différents
niveaux d'abstraction comme le montre la figure si dessous.

...

Contrdle
du niveau !
le plus haut !
Abstraction Présentation |
du niveauy du niveay i
Te plus haut le plus haut :

Le modele PAC est avant tout une structuration conceptuelle, non pas logicielle. PAC
n'est associé¢ a aucun environnement particulier. Dans un langage a objets, par exemple, un
agent pourrait étre constitué¢ d'un unique objet comme de trois objets différents, un par facette.
Ou encore, un agent pourrait correspondre a un module de code.

3-2/ Modéle MVC:(Modéle, Vue, Contréle) :

MVC est issu du langage objet Smalltalk. Un agent MVC est constitu¢ de trois
facettes : le Modele (Model), la Vue (View) et le Contréleur (Controller). Le Modéle est 1ié
au noyau fonctionnel de 1'application. Cette facette correspond a 1'Abstraction de 1'agent PAC.
La Vue est liée a la présentation de sortie, typiquement, ce que le systéme restitue a 1'écran.
Le Controleur est li¢ a l'interprétation des entrées en provenance de [l'utilisateur. En
environnement Smalltalk, un agent MV C est constitué de trois objets Smalltalk, un par facette.
Trois hiérarchies de classes cohabitent donc : les hiérarchies de Mode¢les, de Vues et de
Controleurs.

10

Les objets Modéle peuvent étre de toute classe s'avérant appropriée pour la
représentation des données manipulées. Les objets Vue et Controleur, au contraire, héritent
tous des racines uniques Vue et Controleur. Une Vue est constituée d'une vue principale a
laquelle peuvent €tre associées plusieurs sous-vues. Notons que les objets Vue possedent
l'information décrivant la facon dont les données doivent étre affichées. Par ailleurs, 1'une de
leur responsabilité est de maintenir la cohérence des informations dans la triade MVC. La Vue
et le Controleur d'un agent MVC posseédent tous les deux un lien vers le Mode¢le qui leur est
associé, mais aussi des liens de I'un vers l'autre.

3-3/ MODELE Hybride :

Modele PAC-Amodeus :

Comme le montre la figure si dessous, PAC-Amodeus reprend le découpage
fonctionnel de Arch et structure le contrdleur de dialogue en agents PAC. 1l allie les concepts

architecturaux en couche du modele Arch avec l'approche multi-agents de décomposition du
controle de dialogue de PAC.

11

Contrdleur de Dialogue
CD

Objets Objets de
conceptuels Hiérarchie d'agents PAC Présentation
Adaptateur du) Composant
Noyau Fonctionnel Techniques de Présentation
ANF CTP
Objets du domaine Objets d'interaction
Noyau Fonctionnel Composant
Interaction de Bas Niveau
NF
CIBN

RV =L

De la méme maniére que le modéle Arch, le modéle PAC-AMODEUS décompose le systeme
interactif en cinq ¢léments:
e Le composant d'Interaction.
Le composant Présentation,
Le composant Noyau Fonctionnel,
Le composant Adaptateur de Domaine,
Le composant Contréleur de Dialogue.

Le composant d'Interaction :

Le composant d'Interaction et le composant présentation forment une chalne qui est
responsable de la mise en ceuvre de 1'image du systéme, au méme titre que la présentation du
modele de Seeheim. Le composant d'interaction est la boite a outils liée a la plate-forme et au
systéme d'exploitation sur lesquels se fera I'implémentation de 1'interface de I'application. Les
objets d'interaction sont les objets constituant cette boite a outils. La définition de ces objets
est orientée par leur représentation graphique.

Le composant présentation :

PAC-AMODEUS place au-dessus du composant d'interaction une boite a outils dont
les objets, toujours définis par leur représentation graphique, sont indépendants de la plate-
forme hote.

Le composant présentation est une boite a outils couvrant le composant d'interaction et
assurant ainsi l'indépendance de I'lHM vis-a-vis de la plate-forme sur laquelle se fera
l'implémentation.

Les objets de présentation sont les objets constituant cette boite a outils. Ils sont liés
directement a un ou plusieurs objets d'interaction qui les implémentent sur différentes plates-
formes. Ce raffinement de la partie présentation du systéme interactif apporte la portabilité et
la réutilisabilité que l'on peut attendre d'une indépendance vis-a-vis de la plate-forme hote.

Le composant Noyau Fonctionnel:

Il réunit les concepts et traitements propres a l'accomplissement des taches. Il forme un
serveur sémantique fournissant des informations au contréleur de dialogue, a son initiative ou
a celle de ce dernier.

12

Le composant Adaptateur de Domaine :

L'expérience montre la nécessité de la présence, entre le controleur de dialogue et le
noyau fonctionnel, d'un ensemble d'objets spécifiques assurant l'interface entre les objets
manipulés par le contrdleur de dialogue et le noyau fonctionnel, garantissant ainsi
l'indépendance du contréleur de dialogue vis-a-vis du noyau fonctionnel. PAC-AMODEUS
réunit ces objets au sein de l'adaptateur de domaine. Ce composant a un rdle symétrique a
celui du composant présentation.

Le composant Contréleur de Dialogue :

Le contrdleur de dialogue joue le role de médiateur entre la présentation et le noyau

fonctionnel. A ce réle de médiateur s'ajoute celui de gestionnaire de 1'état de l'interaction entre
l'usager et la machine, I'ensemble des états, leurs relations et leur dynamique définissant ainsi
la structure du dialogue entre I'usager et la machine.
PAC-AMODEUS tire profit de I'approche multi-agents en architecturant le composant
controleur de dialogue autour d'une hiérarchie d'agents PAC. Le controleur de dialogue assure
le séquencement des taches, la traduction du formalisme et l'adaptation des données. Ces
traitements sont effectués a différents niveaux d'abstraction et distribués entre de multiples
agents. Dans ce cadre, la facette présentation d'un agent PAC du contréleur de dialogue est en
relation avec des objets de présentation du composant présentation. De méme, la facette
abstraction de l'agent peut étre associé a certains objets du domaine du noyau fonctionnel.

4/Analyse critique de PAC :

PAC fournit un cadre de construction systématique applicable a tous les niveaux
d'abstraction d'un systéme interactif. Cette approche récursive permet de concevoir une
architecture progressivement de facon ascendante ou descendante. PAC permet de traduire a
la fois I’encapsulation/I’affinement et la dépendance fonctionnelle, deux activités de
conception logicielle intimement reliées. PAC permet de distinguer les services abstraits des
techniques d'interaction en introduisant un intermédiaire explicite : le contrdle. Cette propriété
d'indépendance présente plusieurs avantages :

— La satisfaction du critére qualité de réutilisabilité des constituants de l'interface et ceci de
manicre systématique a tous les niveaux d’abstraction.

— La modification de l'interface a moindre colit. PAC indique qu'il est possible de mettre au
point une interface de fagon itérative et de la faire évoluer facilement.

PAC encourage la répartition des traitements sémantiques et syntaxiques. Cette propriété
présente plusieurs retombées intéressantes :

— Les constituants de l'interface communiquent au niveau d'abstraction voulu. En
particulier, le noyau fonctionnel a la possibilité de s'exprimer dans son formalisme, a son

niveau d'abstraction, ce qui augmente son indépendance vis-a-vis des constituants
perceptibles de l'interface.

— Une part de la connaissance du noyau fonctionnel peut étre déportée dans l'interface.
Cette forme de délégation combine performance et qualité sémantique des retours
d'information sans mettre en cause la distinction entre le noyau fonctionnel et l'interface.

5/Modeles multi-agent et style architectural

Tous les modeles multi-agent pour systéme interactif répondent a des préoccupations
communes : modularité, distinction explicite entre présentation et abstraction, encapsulation,
parallélisme. Tous définissent un vocabulaire d'éléments conceptuels (par exemple, pour
PAC, le concept d'agent et ses facettes fonctionnelles P, A, C, et la communication par

13

événement) ; tous imposent des contraintes entre ces éléments conceptuels (dans PAC, les
agents ne communiquent que via leur facette C ; de méme, les facettes P et A d'un agent ne
communiquent que par la facette C de I'agent) ; tous ont une sémantique — certes plus ou
moins formelle : ce sont des styles. Ou, pour reprendre une expression courante, chaque
modele multi-agent a son style. Voyons comment.

Dans MVC, les agents sont, comme dans PAC, structurés en facettes fonctionnelles.
Le "Model", qui définit la compétence de l'agent MVC, correspond a la composante
Abstraction de PAC. La "Vue" recouvre la fonction de restitution de 1'agent et le "Controle",
sa fonction d'acquisition des actions utilisateur. Le couple "Vue, Contrdle" est équivalent a la
facette Présentation de PAC.

Considérons en quelques lignes le niveau implémentationnel des modeles multi-agents :

— Les facettes fonctionnelles d'un agent ne sont pas nécessairement regroupées en un
composant. Par exemple, dans MVC, un agent est réalisé par une instance de Mod¢le, une
instance de Contrdle et une instance de Vue reliées par des appels de méthodes. Chaque
instance de Modele (Controle, Vue) est une classe d'une arborescence de classes de Mod¢le
(Controle, Vue). Inversement, I'implémentation d'un agent PAC en langage C peut se faire
sous forme d'un seul module

Les modeles multi-agent relevent de styles homogénes. Un style homogene convient si
aucun composant logiciel n'est réutilisé comme c'était le cas avant l'apparition des boites a
outils et des générateurs d'interfaces. A contraire, si des composants logiciels sont réutilisés
dans le systéme, que ce soit des outils de développement d'THM ou un noyau fonctionnel a
rendre interactif, il convient alors de transformer ces composants afin de respecter le style
adopté. Cette transformation ne se fait pas a moindre cotit. Les modéles hybrides répondent a
la contrainte d'hétérogénéité.

6/ Les plates-formes multi-agents :

Nous donnons ici une bréve description des outils et de leurs caractéristiques.

AgentTool : Cet outil se base sur une méthodologie qui se veut une extension au modele OO : la
méthodologie MaSE. Celle-ci comporte sept phases : trouver les buts, appliquer les cas
d’utilisation, raffiner les buts, créer les classes d’agents, construire les conversations,
assembler les classes d’agents et I’implémentation. Cette méthode met 1’accent sur 1’analyse
et le développement. L’outil permet la vérification et la validation des conversations. Le
déploiement (partiel) se fait directement a l’intérieur de 1’environnement. La génération
automatique du code (en Java) des conversations est disponible. Cet outil est intéressant pour
effectuer les premiéres étapes du développement d’'un SMA.

AgentBuilder : AgentBuilder est un environnement de développement complet. Une
modélisation orientée-objet avec OMT constitue la base de la conception des systémes a
laquelle on ajoute une partie « ontologie ». L’¢laboration du comportement des agents se fait
a partir du modele BDI et du langage AGENT-0. KQML est utilis¢é comme langage de
communication entre les agents. L’exécution du systéme se fait a partir de I’engin d’exécution
d’AgentBuilder. Par contre, on peut créer des fichiers « .class » et les exécuter sur une JVM
standard. AgentBuilder est un outil complexe qui demande des efforts d’apprentissage
importants et de bonnes connaissances dans le domaine des systémes multiagents pour étre
utilis¢ de facon performante. Il est limité au niveau de I’extensibilité, du déploiement et de la
réutilisabilité.

DECAF : DECAF est un environnement de développement de plans. L’outil fourni quelques
utilitaires pour 1’¢élaboration de plans et pour la coordination des tadches. Un planificateur

14

applique des heuristiques pour trouver un ordonnancement aux taches. Une interface permet
la construction de celles-ci. DECAF fourni aussi un éditeur d’agent qui est utile pour le «
débuggage ». Aucune méthodologie n’est spécifiée pour la conception.

Jack : L’environnement Jack est constitué¢ d’un éditeur gestionnaire de projet, d’un langage
de programmation JAL (Jack Agent Language) et d’un compilateur. Le gestionnaire de projet
est une interface qui posséde un éditeur de textes ou se fait I’implémentation du systeéme. La
compilation (passage de JAL a Java) et I’exécution du systeme se font aussi a I’intérieur de
cette interface. Le langage JAL est une extension a Java. Aucune méthodologie n’est proposée.
Les agents sont basés sur un modéle BDI. Aucun éditeur n’est disponible pour le
développement ou le déploiement des systemes. Jack est trés long a maitriser, il faut
apprendre le langage JAL et connaitre le modéele BDI de dMars (d’Iverno, 1997). De plus, le
manque de support graphique complique I’implémentation et le déploiement des systémes.
Jade : Jade est un outil qui répond aux normes FIPA97. Aucune méthodologie n’est spécifiée
pour le développement. Jade fourni des classes qui implémentent

8 JFIADSMA 2002, 28-30 octobre, Lille, France « JESS » pour la définition du
comportement des agents. L’outil posséde trois modules principaux (nécessaire aux normes
FIPA). Le DF « director facilitor » fourni un service de pages jaunes a la plateforme. Le ACC
« agent communication chanel » gére la communication entre les agents. Le AMS « agent
management system » supervise 1’enregistrement des agents, leur authentification, leur acces
et utilisation du systéme. Les agents communiquent par le langage FIPA ACL. Un éditeur est
disponible pour DI’enregistrement et la gestion des agents. Aucune autre interface n’est
disponible pour le développement ou I’implémentation. A cause de cette lacune,
I’implémentation demande beaucoup d’efforts. Elle nécessite une bonne connaissance des
classes et des différents services offerts.

JAFMAS et JIVE : JAFMAS met I’emphase sur les protocoles de communications, I’interaction
entre les agents, la coordination et la cohérence a I’intérieur du systéme. Il propose une
méthodologie en cing phases : identifier les agents, identifier les conversations, identifier les
régles de conversation, analyser le modele des conversations et I’implémentation. L’éditeur
graphique (JiVE) est un outil de support pour le développement qui propose une interface qui
aide I’utilisateur dans sa démarche. Une particularité de JiVE est la possibilité de travailler en
groupe sur un projet. Les réseaux de Pétri et 1’utilisation de COOL rendent la création de
conversations et la coordination trés complexe. Aucun support pour le déploiement n’est
disponible.

MadKit : Madkit est un environnement bas¢ sur la méthodologie Aalaadin ou AGR (agent /
groupe / role). L outil fourni un éditeur permettant le déploiement et la gestion des SMA (G-
box). La gestion faite via cet éditeur offre plusieurs possibilités intéressantes. L’outil offre
aussi un utilitaire pour effectuer des simulations.

Zeus . Zeus est un environnement complet qui utilise une méthodologie appelée « role
modeling » pour le développement de systémes collaboratifs. Les agents possédent trois
couches. La premiere couche est celle de la définition ou 1’agent est vu comme une entité
autonome capable de raisonner en termes de ses croyances, ses ressources et de ses
préférences. La seconde couche est celle de 1’organisation. Dans celle-ci, il faut déterminer les
relations entre les agents. La derni¢re couche est celle de la coordination. Dans celle-ci, on
décide des modes de communication entre les agents, protocoles, coordination et autres
mécanismes d’interactions. L’outil est un des plus complets. Les différentes étapes du
développement se font a I’intérieur de plusieurs éditeurs : ontologie, description des taches,
organisation, définition des agents, coordination, faits et variables ainsi que les contraintes. Le
développement de SMA avec Zeus est cependant conditionnel a 1’utilisation de I’approche «
role modeling ». L’outil est assez complexe et sa maitrise nécessite beaucoup de temps.

15

Partie |11

Génération des interfaces

L’interface homme machine joue un réle crucial dans le développement des
applications interactives, sa simplicité d’utilisation peut parfois étre un critére d’évaluation de
I’application, par ailleurs une bonne application qui est représentée par une interface non
adéquate peut étre jugée comme une application non réussite.

L’une des solutions pour résoudre cette problématique peut étre la génération
automatique de 1’interface homme machine.

1/caractéristiques des générateurs d’interface :

Les générateurs de I’interface ont pour but d’automatiser la conception de I’interface
(la parie graphique); ils se basent essentiellement sur un ensemble de régles issues du
domaine de I’ergonomie, plusieurs générateurs d’interface sont proposés, mais ils ne générent
qu’une partie de l’interface, et méme si dans certains cas la génération est totale, des
retouches liées au bon sens de concepteur sont nécessaires.

4/ Le concept de générateur orienté modele (GOM)

Le concept de générateur orienté modele (GOM) s’appuie sur I’expression déclarative
de la sémantique de I’application et des connaissances nécessaires a la spécification de
I’apparence et du comportement d’un systéme interactif. Le but d’un GOM est de faciliter le
développement, d’identifier les éléments réutilisables de I’interface et d’encapsuler le plus
d’informations possibles dans des mode¢les. Cette approche est assez sophistiquée puisqu’elle
a la prétention de couvrir non seulement tous les composants du modele Arch mais aussi
d’injecter d’autres connaissances spécifiées dans les modéles suivants :

* Le modéle de l'utilisateur : recouvre les caractéristiques des utilisateurs visés (age,
profession, expérience ...). C’est un modele important puisqu’il permet de créer des interfaces
adaptées ou adaptables aux futurs utilisateurs ;

* Le modele d’environnement : définit le contexte d’utilisation du logiciel (par exemple, au
bureau, chez soi ou sur le terrain) ;

* Le mod¢le de taches : ce terme est utilisé différemment selon les sensibilités scientifiques.
Ici, il s’agit de la spécification des taches que 1’utilisateur désire accomplir. Ce modele se
déduit de I’analyse de 1’activité ;

* Le modele du domaine : spécifie les fonctions et les objets réalisés dans le noyau fonctionnel
* Le modéle de dialogue : définit la structure du dialogue entre I’utilisateur et la machine. Il
est directement dérivé du modele de taches et du modele du domaine. Ce modele définit la
structure opératoire de réalisation des taches avec le systéme informatique ;

* Le modele de ’application : décrit la sémantique du noyau fonctionnel et les services qu’il
assure ;

* Le modele d’ergonomie : définit les régles d’ergonomie pour la construction d’interface.

Ces regles peuvent étre utilisées au cours de la génération ou lors d’une évaluation apres la
génération ;

16

* Le modéle de présentation : représente le composant d’Interaction du modéle Arch. Il peut
étre écrit avec un langage de haut niveau ou en TK par exemple ;

* Le modele de comportement : décrit le comportement des entrées. Il se situe a différents
niveaux. Il peut décrire de maniére trés formelle le comportement des objets d’interaction ou
spécifier le positionnement relatif des fenétres ;

* Le modele de plate-forme : définit les caractéristiques du systéme ou des systeémes visés
(spécification des dispositifs d’entrées et de sorties).

La liste ci-dessus se veut exhaustive et idéale. En pratique, aucun GOM n’inclut tous les
modeles de la liste. Chaque GOM pioche dans cette liste, ceux qui correspondent aux
objectifs visés.

3/ Gestion de placement :

Il existe trois mécanismes de placement des composants d’une interface :

e Le placement statique : consiste a positionner les différents composants de I’interface
manuellement a 1’aide d’outil de développement

e Le placement implicite : encapsule les différents composants dans des conteneurs, qui
sont ensuite positionnées dans 1’interface finale.

e Le placement sous contrainte qui sont ensuite positionnés les différents composants les
uns par rapport aux autres, comme par exemple : le haut de la barre de menu est égale
au haut de la fenétre.

4/ Cycle de construction d’une interface :
Le cycle de construction d'une interface comprend trois phases :

4.1/ La phase de conception :

La phase de conception repose en général sur l'analyse des taches effectuées par
l'utilisateur (ou qu'il aura a effectuer), sur l'identification de ses besoins et sur une bonne
connaissance des contraintes éventuelles humaines, matérielles ou autres (environnement de
travail par exemple). Elle consiste a rationaliser et a organiser les résultats ainsi obtenus pour
décrire la facon dont un utilisateur du systéme final pourrait se représenter son
fonctionnement. Une bonne conception repose d'une part sur une bonne conduite des analyses
précédentes (ce qui nécessite obligatoirement I'implication de I'utilisateur dans ces analyses)
et d'autre part sur un bon modele d'interaction qui doit comporter des principes d'interaction
simples et peu nombreux et qui doit étre cohérent.

4.2/ La phase d'implémentation :

Elle consiste a mettre en oeuvre sur machine les idées dégagées de la phase précédente.
L'utilisation d'outils d'interfaces est recommandée et méme nécessaire, car ceux-ci allégent la
tache de programmation, réduisent le nombre de "bugs", assurent une certaine cohérence a
l'interface en imposant de respecter des guides de style et facilitent la maintenance.

4.3/ La phase d'évaluation :

Elle consiste a demander a des sujets représentatifs des futurs utilisateurs, d'effectuer
un certain nombre de taches en utilisant le systeme interactif développé. Il s'agira ensuite
d'enregistrer, de classer et d'analyser toutes les données ainsi recueillies afin de tirer des
conclusions quant aux imperfections et défauts du systéme et les améliorations qui devront y
étre apportées. Il est également primordial de prendre en considération les remarques et les
suggestions formulées par les sujets. Cette méthode d'évaluation est en général trés cotiteuse.

17

5/ Les générateurs existants :

Il existe deux familles de générateurs d’interface : les générateurs ascendants et les
générateurs descendants.

5-1/ Les générateurs descendants :

Les générateurs descendants tels UIDE, SIROCO et ADEPT, sont des outils de
spécification de haut niveau d’abstraction. Ils produisent automatiquement le code exécutable
de I'IHM a partir d’une description formelle des concepts et des taches du domaine : ils
procédent de maniére descendante depuis les concepts jusqu’aux objets de présentation. Ces
générateurs masquent les étapes de conception ergonomiques et logicielles. Ce faisant, ils
augmentent les chances de conformité du code exécutable a la spécification des besoins et
sont tres efficaces pour la production de prototypes.

UIDE propose un langage de spécification des informations relatives au noyau
fonctionnel sans considération pour leurs présentations. Le langage est donc fonctionnel. Par
exemple, la d”finition d'une fonction du noyau fonctionnel se décrit par :

e Ses conditions d'activation et de terminaison,

e Ses parametres décorés d’attributs tels que optionnel, par défaut,
e Sa fonction inverse,

e Les fonctions non disponibles au méme instant.

Dans SIROCO, la spécification conceptuelle d’un systéeme comprend deux volets : le
premier consiste a décrire le fonctionnement du systéme en termes d’objets conceptuels et de
fonctions. Le second définit l'utilisation du systeme sous forme d’espaces de travail et de
perspectives. Un espace de travail regroupe des taches et des concepts logiquement connectés.
Une perspective sur un concept définit les constituants pertinents du concept qu’il convient de
présenter a 1’utilisateur.

5-2/ Les générateurs ascendants :

Les générateurs d’interfaces ascendants produisent automatiquement le code d’une
interface a partir d’une spécification externe de I’interface. Alors que les générateurs
descendants partent d’une description abstraite des concepts, les générateurs ascendants
reposent sur une description concréte des objets de présentation. Les premiers couvrent toute
la branche descendante du cycle en V, les seconds viennent en prolongement de 1’analyse des
besoins mais vont plus loin que les outils de spécifications externes présentés au paragraphe
précédent.

Les générateurs d'interface ascendants sont, en général, fondés sur un modéele
d'architecture qui d”finit les points d’ancrage du code g”’n’r” entre le noyau fonctionnel et les
objets de présentation d’une boite a outils. Pour certains générateurs les protocoles d’acces au
noyau fonctionnel et aux boites a outils sont clairement définis. C’est le cas de SERPENT qui
satisfait au modele d’architecture ARCH.

Les générateurs ascendants interactifs semblent trés séduisants car ils réduisent la
phase d'apprentissage. Cependant il est souvent nécessaire de revenir au niveau de la boite a
outils pour des besoins spécifiques de l'interface. De plus, il est rare que la spécification
entiere puisse se faire par manipulation directe. Généralement la partie statique de l'interface
graphique est spécifiée par manipulation directe comme les fenétres, leurs tailles, leurs
positions etc. Au contraire la partie dynamique de l'interface, comme les liens d'ouverture
entre deux composants graphiques, nécessite souvent de programmer. C'est le cas du
générateur Egéria et de bien d’autres. Interface Builder, qui permet une spécification
interactive des liens dynamiques est une exception.

18

6/ Outils de développement :

Il existe deux types d’outil de développement : les boites a outils et les squelettes
d’application.

6-1/ Les boites a outils :

Une boite a outils est une bibliotheque de composants logiciels accessibles au
programme client via des appels procéduraux. Ces composants prennent généralement la
forme d’objets graphiques organisés en hiérarchies de niveaux d’abstraction extensibles.

De maniere générale, le niveau d'abstraction offert par une boite a outils conditionne
L’effort de développement d’une interface utilisateur et fixe les styles d'interface et
d'interaction. Plus il est ¢levé, plus le temps d’implémentation est réduit et plus I’interface
produite est normalisée. Il n’en reste pas moins vrai que I’apprentissage de la programmation
pour une boite a outils donnée reste élevé. Les squelettes d’application visent a réduire ce
temps de formation.

6-2/ Les squelettes d’application :

Au contraire des boites a outils, les squelettes d'application réalisent les fonctions
générales d'une interface sous forme d'un logiciel réutilisable et extensible. L'utilisation d'un
squelette consiste « greffer des composants spécifiques au systéme a implémenter. En général,
un squelette est construit en corrélation avec une boite a outils.

19

