ENIS (CES LAB) & INSA (IETR)

Rapport d’avancement

Reconfiguration et implémentation optimisée du code
d'images fixes LAR par une approche méthodologRu€E
(Reconfigurable Video Coding)

Khaled Jerbi
05/05/2010

Encadré par :

Pr. Mohamed ABID (ENIS)
Pr. Olivier DEFORGES (INSA)
Mr. Mickaél RAULET (INSA)

Rapport d’avancement

Préface :

Dans ce document nous présentons en premier kedifférentes architectures développées
pour le codeur LAR ainsi que les tests effectuéasla transformée Hadamard. Nous
présentons aussi les résultats de synthése eaypiartia consommation des acteurs en termes
de coups d’horloge. Les constatations et les coagmars seront présentées au fur et a
mesure. Les travaux en cours feront la cloture.

N.B: Nous avons commencé par réaliser plusieusts tpour mieux comprendre le
comportement des acteurs générés par Cal2HDL pgoraaux machines d’état, gardes,
structures « if », les fonctions et I'acces simmdtaux tableaux en écriture et en lecture.

- La programmation en CAL

Le langage CAL1] et les outils associés nous permettent de rétluzemplexité en montant
en niveau d’abstraction. Comme nous I'avons co@statCAL lui-méme il peut s’écrire en
plusieurs niveaux (voir figure 1) : un haut niveaulti-token trés simple et facilement lisible,
un bas niveau nécessaire (pour le moment) pougriérgtion du code HDL avec Open Forge
[2], un code pipeliné dans lequel nous avons esdaymieux gérer les mémoires pour un
traitement plus rapide et finalement un code osEmén mémoires et en traitement qui
ressemble finalement a un code VHDL mais qui @stlong et par conséquent illisible.
L’'approche adoptée consiste a développer un codedplus haut niveau ensuite le valider
rapidement sur une plate forme logicielle avanpa&ser a un niveau inférieur.

L’'usage optimal du langage CAL pour un traitemehplexe est basé sur le développement
d’acteurs simples réalisant ce traitement en agissanvenablement sur les différents jetons

echangeés. Plus 'acteur est simple et réutilisénson consomme de logique derriére.

Il faut éviter les algorithmes qui utilisent plusis mémoires internes parce que ¢a crée une
dépendance des traitements par rapport aux vaeakees ce qui rameéene a un code réalisant
tout un traitement dans un seul acteur. Ce derpigr,conséquent, sera trés long et aura
plusieurs ports d’E/S. Un design en CAL doit altagoriser les acteurs qui échangent les

données au lieu de les enregistrer c’est d’aille@simportant pour I'aspect data-flow.

Il- Le Flat LAR

Dans cette partie du codeur LAR [3] nous nous sosningresseés a la partie quad-tree
puisqu’elle génere l'image des tailles qui est spensable pour avoir une transformée
Hadamard variable en fonction de I'activité damméige.

[I.1- L’architecture VHDL
C’est une architecture inspirée d’'un code VHDL déjgbli. Elle se base sur I'idée que nous
pouvons générer I'image des tailles avec un minindemmémoire interne en considérant
seulement les résultats des max et des min deseguedrants formant chaque block 8x8 de
image. L'image en input est consommeée pixel gaelet ligne par ligne.

Khaled JERBI 9¢année Thése

Elgo_maczxz

//—v PIx_CoUR D1 MaY))
- 32 Mak \ build_size_im f-fﬁk
e I3 MAY x |1 _MA SIZE —"
J4_May — ™, L _MIN SOMMET _OLT
M b i A : 0P _Ma —\\
\ algo_min2x2 !~<:: Qg—mi& ﬂ
T~ PL¥_COUR 1 _MIN — 3
22 MIM | 5 _MIN

23_MIN — Galils

S ||
Fig.1 Quad-tree (VHDL)

Cette architecture implique une latence considéragbisque dans chaque slice de 8*XSIZE
nous devons attendre (7*XSIZE+8) pour commencefo# s résultats en output. Toutefois,

il faut noter que des traitements partiels de coaipan sont réalisés en méme temps que les
jetons sont consommes.

L’algorithme en question comporte plusieurs strrgguconditionnelles « if » pour avoir des
informations sur le quadrant courant, la max couetrcomment mettre a jour le x et le y
locaux et globaux (x et y en local sont les coors@ms dans un block 8x8 et x et y en global
c’est les coordonnées dans le slice 8x8). Noussadonc essayé de diminuer le nombre des
conditions en utilisant des « gardes ». Il estt@mgue les gardes en CAL ne consomment pas
de temps contrairement a un test de « if » quireadre un coup d’horloge ultérieurement.

[1.2- L’architecture CAL

Dans cette architecture nous avons essayé degrafit mieux des points forts du langage
CAL en visant un design data-flow dans lequel nausns séparé la partie gestion de
mémoire de la partie traitement tout en essayaritderiser 'utilisation d'un méme acteur
pour réaliser des fonctions semblables en agissandes parametres. L'astuce était donc de
changer l'ordre des données de facon & avoir, poague acteur, des sorties correspondant
exactement aux entrées souhaitées par I'acteuarslioomme présenté dans la figure 2.

2x2 Block
/

1

\
~N

o

|

Fig.2 Ordre des blocks 2x2

Ensuite nous avons développés seulement 3 actéarsimples (Max, Min et Gradstep) pour
réaliser tout le Quad-tree qui finalement va cortggoi8 acteurs qui représentent des
duplications des 3 acteurs de base comme le miarfigure 3.

Khaled JERBI 9¢année Thése

Algo_MaxExs
IM ouT

Algo_Maxdxd
IN ouT

Algo_Maxzxz

Fermer

Algo_gradstepdxa
BLK_SZ_IM BLK_52_oUT
Max
MIN

Algo_gradstepdxd
BLK_SZ_IM BLK_52_oUT
M
MIN

Algo_genZxz
ouT

Algo_MinZx2
IN ouT

Algo_Mind:xd
In out Algo_Ming:xd
1M ouT

Fig.3 Quad-tree (CAL)

Si nous considérons l'acteur max, ce dernier géenerenax pour quatre valeurs introduites
guelconques. En mettant les données comme prétemida fig2 dans « algo_max_2x2 », on
aura en sortie les valeurs des max_2x2 dans le dodre pour appliquer directement
«algo_max_4x4 » qui a exactement le méme code Gll'gcteur « algo_max_2x2 ». Idem
pour « algo_max_8x8 » et le méme principe s’apgliqussi sur les trois acteurs « min » et
les deux acteurs « Gradstep ».

Cette architecture implique elle aussi une latenoesidérable puisqu’il faut attendre
7T*XSIZE+7 pixels pour commencer a avoir des sorsia@ss avoir de résultats partiels durant
le stockage. Nous avons donc pensé a remédierpaobéame en utilisant une gestion de
mémoire en ping-pong. Avec cette architecture reMos doublé la taille de la mémoire de
stockage en 2* 8*XSIZE. Ensuite nous stockons 82€Valeurs dans la premiére moitié et
on commence a avoir des sorties dans le bon ardteeh remplissant en méme temps l'autre
moitié de la mémoire. Et ¢a continue ainsi en bastw’'une demi-mémoire a une autre.

Bien que cette architecture garde une importaméada initiale comme les deux précédentes,
elle nous permet d’éliminer les latences ultériswee passant d’'un slice 8*XSIZE a un autre
ce qui donne par la suite une régularité parfatesbrties.

Il- Le codage de fréquence (la transformée Hadamard)

Dans cette partie, nous avons déja développé 4ditecttres plus ou moins différentes
pendant le stage de master (janvier-mars 2009).

- Une architecture super rapide avec 4 blocks H2 aallple et des sorties a chaque
coup d’horloge (4 sorties pour la H2, 16 pour laéis4 pour la H8) en considérant
un papillon.

- Une architecture semblable en considérant un $eck 2.

- Une architecture avec transfert des tailles poerttemsformée conditionnelle.

- Une architecture sans transfert de données avetahsformées s’appliquant sur tous
les blocks de l'image et a la fin une unité deptyur prendre seulement les résultats
utiles.

I1l.1- Architecture basée sur les H2

En essayant de développer 'Hadamard en haut nifgtaale EMC’10), nous avons vu qu’on
peut ramener les transformés H4 et H8 en H2 erntaajbules unités de gestion mémoire ce

Khaled JERBI 9¢année Thése

qui correspond parfaitement avec I'approche CALtead a unifier les acteurs. Nous avons
donc eu une nouvelle architecture. La figure 4 gmés|’Hadamard H4 réalisée avec une H2
et deux unités de gestion mémoire.

|2

Mgnt_input_hsxs
BLK_SZ ouTt
IM

Algo_hzxz
I ouT

Mgnt_output_hdxed
BLk_52 ouT

Fig.4 H4 réalisée avec une H2

Au début, la H2 n’était pas pipelinée. Elle sauvdgal jetons un par un dans un tableau de 4
cases. Ensuite réalise le traitement tout en sawmslagt les 4 résultats dans un autre tableau
de 4 cases et fini par sortir ces résultats uncpagui donne un temps de traitement de 17
coups d’horloge (4 pour lire, 4 pour écrire et Qple traitement puisqu’il ya plusieurs acces
dans la méme mémoire et 4*3 opérations d’additipdees soustraction qui, forcément, ne
s’effectuent pas au méme instant. Voir simulatiemssa figure 5.

] 5

Fig.5 Simulation H2 sans pipeline

En ajoutant le ping-pong avec une mémoire de 8scdes résultats ont commencé a
s’améliorer. Ainsi, nous avons 4 coups d’horlogeirplire les 4 premiéeres valeurs ensuite
arrive le traitement qui prend 14 coups d’horlogempchaque ensemble de 4 valeurs sorties.
Le retard est causé par le faite que nous conéiruidiser le méme tableau pour lire et écrire
et aussi puisque une opération x1+x2-x3-x4 par @kesieffectue en deux coups d’horloge.
La solution était donc d’appliquer le ping-pong sleux tableaux distincts au lieu de deux
moitiés d’'un méme tableau. Avec cette méthode ramsns obtenu un traitement des 4
valeurs en 7 coups d’horloge ce qui est tres prdcheas optimal (4 coups d’horloge).

Dans une troisieme architecture, nous avons comsRiéegistres et nous avons optimisé les
calculs de facon a obtenir le cas idéal (4 coupertbge pour traiter et sortir 4 jetons !).

Ces résultats, bien que parfaits n’étaient pashusteour le design final de 'Hadamard
complete puisque nous avons développé du CAL tmg &t en tres bas niveau ce qui ne

Khaled JERBI 9¢année Thése

correspond pas a notre objectif derriere I'utiimatdu CAL. Toutefois, nous gardons l'idée
gu’'avec le CAL on peut toujours optimiser si noesa@endons en niveaux.

I11.2- Architecture avec sorties concaténées suseu bus

Dans cette architecture, nous avons visé un traiémnes rapide semblable a I'utilisation de
plusieurs FIFOs pour un échange simultané des @gnada différence de concaténer ces
sorties dans un seul bus. L’idée était, pour lapeRexemple, d’envoyer 4 données de 9 bits
concaténées dans un bus de 36 bits pour chaquerggxede I'image initiale. Des unités de

gestion de mémoire ont été prévues pour envoyeddemées dans le bon ordre vers les
Hadamards suivantes et en méme temps réaliseraunegarde conditionnelle des sorties de
I’'Hadamard précédente en fonction de des coordanpéstion X et position Y (voir fig8).

algo_hdxa
M QT

algo_haddx4

algo_hadzxz I ouT

I ouT

mgnt_blockz:xz
IM QuT
% POS
¥_POS

mgnt_block_hdxa
M ouT
% PoS TN
Y¥_POS_IN

rngnt_blocks:x4

M ouT
%_PoS_IN ¥ POS_OUT
LV_F‘OS_IN ¥ _POS_OUT

L S
¥y

Fig.8 Architecture avec concaténation des données

Nous avons commenceé par la H2 et nous avons olstertués bons résultats surtout que
Cal2HDL arrive a pipeliner le traitement une foadtion est unique et répétitive. Par
conséquent, nous avons obtenu une fréquence desssbifois plus rapide que la fréquence
max du circuit !

L’inconvénient est que cette architecture ne pénat €&endue pour les Hadamards H4 et H8
puisque ces dernieres demandent des bus de langeune arrivant jusqu’a 945 bits pour la
H8 ce qui n’est pas supportable ni par les outlgénération de code VHDL (Cal2HDL ou le
back-end VHDL de Orcc) ni par les outils de synéhiet que ISE de Xilinx qui ne peut gérer
des données de tailles supérieures a 32 bits.

IV- Reécapitulation et résultats de synthése
IV.1- L’'Hadamard H2
Dans le tableau 1 nous présentons les résultatyrdbése des différentes architectures de
I’'Hadamard 2 en fonction des caractéristiques élguences et de consommation de surface :

Archi H2 | Sans pipeline Pipeline 2 tabs Pipeline 8 buff Pngetoncat
Cm
Fréquence max | 149. 157.5 214.4 154.1
(MH2z)
Fréquence des8.8 22.5 214.4 154.1
sortie MHz)
Number of 4] 234 (1%) 269 (1%) 614 (1%) 147 (1%)
input LUTs
Number of| 160 (1%) 169 (1%) 369 (2%) 103 (1%)

Khaled JERBI 9¢année Thése

| occupied Slices | | |
TAB.1 Récap H2

Interpretation:

Le design sans pipeline représente les moins b@mdtats. L'absence de pipeline diminue
considérablement la fréquence et les tableaux lgostockage des données en entrée et pour
le stockage des résultats augmentent le nb des L@Vantage de cette architecture est le
temps de développement qui est tres rapide puisou utilisons séparément une action pour
la lecture, une action pour le traitement et urteeguour I'écriture des données.

L’architecture de la H2 pipelinée avec deux tabteam entrée garde I'espect haut niveau du
développement CAL. La frequence de 22.5 MHz esttik@ment élevée pour un traitement
de I'image en hardware. La consommation en surdat@ratiquement dans la moyenne des
guatre architectures.

L’architecture avec 8 buffers est la plus gourmaadeconsommation de surface mais en
méme la plus rapide. Le seul inconvénient est que pe développement nous avons di
écrire du CAL en bas niveau.

Du faite qu’il contient une seule action, le desdm I'Hadamard avec concaténation des
données consomme le moins de surface. La fréqudesesortie est trés élevée (fréquence
max du circuit).

Entre 22.5, 154 et 214 MHz, nous nous demandogsd#e est la plus adéquate au reste du
design du LAR ? Est-t-il vraiment nécessaire dralkussi vite que 200MHz dans
’'Hadamard alors que 22 MHz sont suffisants poaitdr des images de tailles usuelles en
temps réel ?

IV.2- Le Quad-tree
Pour le Flat LAR nous avons considéré le Quad-ttaquel nous avons développé 3
architectures différentes : une architecture éentéd/HDL, une autre écrite en CAL réalisant
le méme algorithme que le code développé en VHDIEinelement une architecture haut
niveau développée en CAL et pipelinée avec un pong. Le tableau 2 récapitule les
résultats de synthese des différents designs.

Quad VHDL VHDL_to_CAL | CAL
Carac——
Fréquence max| 149.8 125.6 249.8
(MH2z)
Fréquence desl149.8 62.8 24
sortie MHz)
Number of 4| 750 (2%) 912 (2%) 680 (2%)
input LUTs
Number of| 692 (4%) 594 (3%) 457 (2%)
occupied Slices

Tab.2 Récap Quad-tree

Interprétation :

Du faite qu'il soit développé directement en baseau en utilisant VHDL, le premier design
est forcément le plus rapide avec un pipeline pgamed’avoir une sortie tout les coups
d’horloge du systéme.

Khaled JERBI 9¢année Thése

Le deuxiéme design écrit en CAL et inspiré de baipme VHDL garde une fréquence tres
élevée de 62 MHz mais consomme plus de logiquegpaise design geénéré par Cal2HDL
comporte plusieurs signaux de synchronisation etosudes FIFOs pour I'échange des
données ce qui peut étre optimisé en développeattdment en VHDL.

La derniere architecture développée en utilisarg deteurs CAL dupliqués présente la
frequence maximale de circuit la plus élevée. Marec une sortie tous les 10 coups
d’horloge la fréquence des outputs est de 24 MHmm@e pour la Hadamard H2, cette
fréequence peut étre encore améliorée en utilisai@AL de plus bas niveau pouvant arriver a
une sortie par deux coups d’horloge et ainsi uéguence de sortie de 125 MHz !

V- Conclusion et perspectives

Les différentes architectures développées que itpaor le Flat LAR ou pour le codeur de
fréequence nous ont permis d’explorer au mieux &fopmances du générateur de code HDL
(Cal2HDL). Les codes CAL inspirés du code VHDL donné de trés bons résultats mais ils
sont trés bas niveau ce qui a engendré des codapleoas, difficiles a lire et non-
réutilisables. L'architecture CAL est devenue thét®ressante quand nous avons ajouté le
pipeline avec ping-pong et elle garde encore ungend'optimisation. Ce design est en plus
validé sur une plateforme logicielle avec Orcc edant et décodant parfaitement des images
et des vidéos.

Suite aux travaux réalisés, nous avons ajoute cesra de normalisation et de quantification
pour achever la partie Hadamard. Actuellement, ressayons d’utiliser les codes *.xlim
géneérés pas Orcc pour en générer du Verilog avearigware compiler d'Open Forge. Ce
compilateur supporte la majorité des codes xlinOdec. Les codes non supportés sont en
cours d’étude.

Nous notons aussi que le hardware compiler d’Omegd-peut fournir des informations trés
importantes sur le fonctionnement de chaque aattode chaque acteur. Ces informations
sont retrouvées ultérieurement dans la simulatlmus envisageons alors de changer le code
source de facon a visualiser ces résultats dasmnksole de Cal2HDL.

References

[1] J. Eker and J. Janneck, “CAL Language Report,” University of California
at Berkeley, Tech. Rep. ERL Technical Memo UCB/ERL M03/48, Dec.
2003.

[2] R. Gu, J. W. Janneck, S. S. Bhattacharyya, M. Raulet, M. Wipliez,
and W. Plishker, “Exploring the concurrency of an MPEG RVC
decoder based on dataflow program analysis,” Circuits and Systems
for Video Technology, IEEE Transactions on, vol. 19, no. 11, pp.
1646-1657, 11 2009. [Online]. Available: dx.doi.org/10.1109/fTCSVTg
.2009.2031517http://hal.archives-ouvertes.fr/hal-00440492/en/

[3] O. D’eforges, M. Babel, L. B"edat, and J. Ronsin, “Color LAR Codec: A
Color Image Representation and Compression Scheme Based on Local
Resolution Adjustment and Self-Extracting Region Representation,” IEEE
Trans. Circuits Syst. Video Techn., vol. 17, no. 8, pp. 974-987, 2007.

Publications
“Fast Hardware implementation of an Hadamard Transform Using RVC-CAL Dataflow Programming”
Khaled Jerbi, Matthieu Wipliez, Micka el Raulet, Olivier Déforges, Marie Babel and Mohamed Abid

Lu et approuvé par Mr. Mohamed ABID

Khaled JERBI 9¢année Thése

