Introduction hassairi walid

Table des matieres

TABLE DES MATIERES 1
INTRODUCTION GENERALE 5
CHAPITRE I: LANGAGE ET ENVIRONNEMENT DE SIMULATION : ETAT DE L’ART......cccccceeceetencene 10
L1 INTRODUCGTIONutitieieiiitttteeeeeeetttteeeeeeeeureeeeeeeesasssaseeasaasssssasesaaaasssssaesaassssseseeessssssssesesansssssseesesasssssseeesesnsnsees 10
1.2 LES SYSTEMES ENFOUIS (EMBARQUES)uvviiiiiieiitereeeeeeeiiueeeeeeeesissseeeeseeeassseeeseesissssseseseesssssssesssnssssesssesessssnrees 10
1.3 SIMULATEUR ANALOGIQUE........ceeeiiuiteiiiereaiteeesuteeeaseeeasseeeeassseesssseesssssessassseesssssesssssesssssssssnssssesssseesssssessnsses 12
1.4 SIMULATEUR MIXTE (ANALOGIQUES, NUMERIQUES)......uuvtiiieieiiitrreeeeeeeeiuseeeeeeeesissreeeseeeessseseseesensssseseesessnssenees 12
14.1 SABER ..ottt ettt ettt ettt et bttt e at e ebaeatbeeteeebeeetbeebaeetbaeetbeeaeeetbeesaeeenns 13

1.4.2 VIETTIOZ —AMS ...ttt ettt et b et b e et h ettt eat et s 14

14.3 VHDL-AMS ..ottt ettt e e b e et e e bt e b e e aa e e st e e tbeetaeesbeeesssensaeeaseeesseeasseenseans 14

1.5 LA SIMULATION MATERIELLE / LOGICIELLEcccvvtiieiteeeeetteeeeiteeeeeaeeeeiteeeeeueeeeeaseeeeesseeseseeeeesseeeesseeessseeennnes 16
1.5.1 La conception basée Sur le 1angage C.............cc.couceieeiiiiiiiiiiieiest ettt 16

15.2 LS OULTLS A@ NAUI-TUIVOAU.cccevvveeeeeeeciiieeeeeeeeieee e e eeeeitee e e e e eeearee e e e eeebaaeeeeeeetasaaeeeesesarssseeeesasrnees 20

1.6 LES METHODES POUR LA CONCEPTION LOGICIELLEcc..ieiuiiiuiieeuteeeteeeeteeeaeeeeeeeeaeeeeseeeaeeenaeeeaeeeaeeeseeeeaeeeaneans 21
16.1 SADT et SA/RT des méthodologies a l'origine de la réflexion SYStEme.............cccceeeeveescueesoeeiceeeneeane 22

1.6.2 UML : le langage unifié de MOACLISATIONcceveeiuiiiiiiieieeiest ettt 22

1.7 AUTRES APPROCHES METIERS ET MIXTESuuvtieiiuiieiiteeeeiteeeeeiteeeesseeeeiaseeaesseeeesssseeassesesssessenssesesssesesssessnsnes 24
1.8 APPROCHE CLASSIQUE DE LA VALIDATION LOGICIELLE.........cccttieiiieeiiieeeeieeeenireeesnseeesseeesssseeessseeessssessnsnes 26
1.9 OUTILS EXISTANTS ..eutieeeetteeeetteeeeiteeeeetteeeeeueeeeateeeaesseseaaseseeasssaeesssseeasssaeeassaeeassseeeassaeeanssseessssenssseeesnsseeansees 30
1.10 CONCLUSIONcutiiieitiieeeitteeeetteeeetteeeetseeeeateeeessaeeeasseessaseeesssesaesssseeassseeessssaessssaeeasssseeassseesnseeeasseeeassseeanns 31
CHAPITRE II: PLATEFORMES DE SIMULATION 34
II.1 INTRODUCGTIONcoeiitiiieiitiieeeiieeeetete et e e etteeeeetteeetaaeeesbeeeasseeeesssseeassseeessssaesnssaeeasssaesasssesanssaeessseesassseennes 34
1.2 SIMULATION VHDL (IMODELSIM)uviiiiiiieeiiie et eettee ettt e e ettt e e etae e e eaveeseaaeeeeaaseseenaaeeesseseenseeesanseeannes 34
1.3 SIMULATION MATLAB ...ttt ettt ettt e e etb e e e ta e e ssab e e e asaeeetaeeeesaseeessnseeennes 37
1.4 KILINX ISE 7. 1L ettt ettt ettt e et e e et e e e taae e eaaeeeeasaeeetteeeensseeeeaaeeeesseeens 39
1.5 CHIP SCOPE PRO 7. 11 ..ottt ettt ettt e et e e e e atae e e e ats e e eateeeetsaeeeasseeeensaeeansteeeensaeeenns 43
IL1.5.1 FILOt A€ COMCOPIION. ...ttt ettt ettt bt et e a ettt s bttt et e bt et enbeente e 46
T1.5.2 CONCIUSTON ...ttt e e e et e e e ettt e e e e e e et e e e e e e eeaaa e e e e e eeetateeeeesseaaaaaeeens 46

11.6 PLANAHEAD 7.1.10 ittt ettt e et e e e atae e e s aaaeessabaeeesssaeesssseeasnsaeesnsaeeeassneeanns 47
1.7 SYNPLIFY 7.3.4 oottt et e et e et e e e et e e e ettt e e e eate e e eetaeeeeaaeeeeataeeeetaeeeeaseeeeaneeesenees 48
I1.7.1 Entrer de cONCePtion VHDL...............cccoiiiiiiiiieiiie ettt ettt sttt et et e b e 49
11.7.2 Logique d’optimiSation (COMPILAION)c..cocueirueiiuiiiieisiie ettt ettt ettt ettt 50
I1.7.3 TeChNOIOGIE A tFACAGE ...ttt sttt 50
LL.7.4 PLACEIENT ... eeeeieeee e eeeta e e e e e et e e e e e et s e e e e e e etaa e e e e e eeeeasaaaeeeeesaaseseeseentssseeeeennnnsraaeeeas 50
TL.7.5 ROUIAGE ..ottt et e et e ettt e e e ettt e ettt e ettt e e e asbeeenbeeeensbeeannseeeeansaeesnnseeennnes 51
I1.7.6 COnfiguration FPGAccccccuiuiii ettt ettt ettt ettt et e et e e st e et e e st e e beeenseenaees 51

11.8 SYSTEM GENERATOR FOR DISP.....ooiiiiiiiiiiiiiie sttt et e et e e e snnneeennnes 51
Flot de conception dut SYSIEM GERETAIOTc...cccuuerieeieiiiieeieeett ettt ettt ettt st ettt st 51

11.9 SIMULATION FPGA ...ttt ettt ettt e e et e e e et e e estbaeessabeeensaaesnsseeeensseeesssseennnes 53
I1.9.1 Les MEthOAeS de CONCEPIIONeuveneieiiiiieieeeeeieeee ettt ettt sttt et sb ettt eaeenbeenee e 53
11.9.2 La méthode descendante « 1OP-AOWR »ccccccueioueeeieiieiesieeeie ettt saae et snee e seeenseenaeas 53
11.9.3 Les contraintes actuelles de CONCEPIIONc.ecuueveiuiiuieiiiiieieetest ettt sttt sttt 55

II.10 CONCLUSIONuutiiieittiieeetteeeeeteeeeetteeeetee e e etteeeestaeeeeasseeasseeeasseseassseeansseeeaassaesssaseanssaeeasssaeennsseeansseeeassseeenes 57
CHAPITRE III: CO-SIMULATION MATLAB / VHDL 59
III.1 INTRODUCGTION ...ooiitiiieiitiieeetteeeetteee ettt e e etteeeesbeeeetaseessaseeeassesaesssseeassseeessssaessssaeeassssesassseeansseeesnsseeeassseenes 59
[II.2 VUEDENSEMBLE DE BOITE A OUTILS DE CONVERSIONccoovviiiiieieieeeeeseeesesesesesenes 59

Introduction hassairi walid

II1.3 LINK FOR MODELSIM ...c.ctiutiiiiiiiiiiiiienit ettt ettt et sttt ettt et ettt st ettt e sa e s she b sae e sae e 61
1.4 ENVIRONNEMENT DE CO-SIMULATION ...ttt st sttt ee e et e e e e eaeeeeaene 62
1.5 CHOIS DU PORT TCP/IP ...t 65
1.6 EXEMPLE DE CO-SIMULATION MATLAB/ VHDLc.oooiiiiiiiiiiiiiiiiiieccecee e 65
1.7 CONCLUSION ...ttt bbb s et eae e 70
CHAPITRE IV: CO-SIMULATION MATLAB / FPGA 72
Iv.1 INTRODUCTION ...ttt et 72
v.2 INTERFACE MATLAB/FPGA ...ttt sttt sttt st bttt ettt 72
Iv.3 MODE DE COMMUNICATION DE LA PLATEFORMEcccccuuttiteeeeeitiiteteeeeeeuteeeseeasssssseeeesssnssssesssssssssssesesasnnns 74
1V.3.1 Model de CONCEPIION SYSIETNEcc..eeviieiiiiieeeiit ettt ettt ettt ettt ettt et st e sateeniee e 76
1V.3.2 Algorithme de déVelOPPEIMENLTc.oocueeieeeieeeeeee ettt ete et e e ettt estaeeseeenbeensaeenseens 77
1V.3.3 Simulation et ENEration VHDLccoooiiiiiiuieiie ettt ettt 77
V.34 VTTICATION ...ttt ettt et b ettt be st s h et est e bt entesbe et s 78

V.4 EXPERIMENTATIONS ET RESULTATSuuuttttteeeeiittteeeeeeniureeeeesasssssseeeesssssssseesesassssssssessessssssseessesssssesessssnnnns 79
V4.1 Différents types de compilation du SyStenm GeRerQIOTcccevuieveirieiniiiiiesieesieeeiee e esee e 83
V4.2 Résultats de SYStem GENETAIOTc.cocuuvueiueriiiiiiiiiie ettt ettt sttt 84
1vV.4.3 RESUILALS @XPETTIMEIIAUX ...ttt ettt ettt e st ettt et e st e e s steenbeesaneesaeeeane 86

Iv.s CONCLUSION ...ttt ettt sttt e he e s bt e s e e e e e e ae e e st sh e e b e e aeesaeeaaesae s 90
CONCLUSIONS ET PERSPECTIVES 92
BIBLIOGRAPHIE 94

Introduction hassairi walid

Table des figures

Figure 1 :
Figure 2 :
Figure 3 :
Figure 4 :
Figure 5 :
Figure 6 :

Quelques outils qui supportent System C.

Flow de conception classique.

Interface logiciel-matériel en simulation VHDL.

Etapes pour la validation du logiciel dans un flot classique.
Temps de conception et colit de débogage.

Le simulateur VHDL.

Figure7 : Utilisation du VHDL pour les niveaux de conception.

Figure 8 :
Figure 9 :

Figure 10 :

Figure 11

Figure 12 :

Figure 13

Figure 14 :
Figure 15 :
Figure 16 :
Figure 17 :
Figure 18 :
Figure 19 :
Figure 20 :

Figure 21

Figure 22 :
Figure 23 :
Figure 24 :

Figure 25

Figure 26 :
Figure 27 :

Figure 28

Figure 29 :
Figure 30 :

Figure 31

Figure 32 :

Figure 33

Figure 34 :

Figure 35

Figure 36 :

Figure 37
Figure 38

Figure 39 :
Figure 40 :

Figure 41

Figure 42 :

L’interface de MATLAB 7.

L’interface ISE 7.11 de XilinX.

ISE Foundation 7.11 de XilinX.

: ISE BaseX 7.11 de XilinX.

ISE WebPACK 7.1i de XilinX.

: Connections JTAG.

Flot de conception de Chip Scope.

Flot de conception de Plan Ahead pour les FPGAs.

Interface de Synplify 7.3.4.

Les différentes étapes de conception supporter par Synplify.
Communication de System Generator avec la plateforme.
Schéma hiérarchique de la méthode de conception descendante.
Routine de conversion dans le processus de conception.

: interface graphique

Le r6le de Link for ModelSim pour communiquer MathWorks et ModelSim.
Mode de communication entre MATLAB et ModelSim.
Principe de communication de MATLAB et ModelSim pour la phase de test.
: Multiple-client communique avec MATLAB simultanément.
ModelSim 6.0 de XilinX.

Bloc de Co-Simulation VHDL de MATLAB.

: Bloc de Co-Simulation.

Bloc de Configuration Parametres de Simulation.

Affichage des pots de 1’algorithme a simulé dans ModelSim.

: Affichage des résultats sur ModelSim.

ISE 7.1i de XilinX.

: Plateforme installé.

Installation de System Generator.

: Ajout des bibliotheques de XilinX dans le Simulink de MATLAB.
Exemple de Co-Simulation MATLAB/ FPGAs.

: Notre exemple pour tester la plateforme.

: Configuration du bloc de System Generator.

Présentation des différents champs du bloc Resource Estimator.
Lancement du System Generator.

: Fin de la génération.

Résultat de Co-Simulation.

Introduction hassairi walid

Liste des tableaux

Tableau 1 : Outils de Chip Scope.

Tableau 2 : principale information du projet.

Tableau 3 : Tableau d’estimation de ressources.

Tableau 4 : Plus d’informations sur le rapport produit par System Generator.

Introduction hassairi walid

INTRODUCTION GENERALE

Les concepteurs de systemes modernes doivent gérer des projets associant plusieurs
disciplines et plusieurs technologies. En particulier, depuis des années, les systemes électroniques
ne sont plus concus isolément : ils integrent des préoccupations de systémes et de microsystemes,
dans divers secteurs d’applications scientifiques et industrielles. En raison de la complexité et de
I’hétérogénéité de ces systemes, il est nécessaire de mettre en place des méthodes et des outils
facilitant l'intégration de solutions analogiques, numériques, mixtes, matérielles et logicielles. Ce
probleme et le besoin d’optimiser le processus de conception pour réduire le "time to market",
ont conduit au développement de techniques telles que la modélisation et la validation a haut-
niveau, la modélisation fonctionnelle, la réutilisation et la génération de modules de propriété
intellectuelle (IP)... Ces composantes doivent étre considérées des les premicres étapes de la
conception. Nos propositions auront a tenir compte de nombreuses exigences, et donc a s’appuyer
sur des langages et des procédures standardisés.

Les méthodes actuelles doivent aussi prendre en compte la conception coopérative et la
réutilisation des acquis. Elles doivent donc étre basées sur des procédures et des langages
normalisés ou standardisés facilitant les échanges. Le but est alors de proposer des outils
généraux et des méthodes capables de soutenir le travail coopératif entre divers participants d'un
projet de conception. Dans une premiere étape, les méthodes utilisées doivent s’appuyer sur des
modeles de haut-niveau, fonctionnels, exécutables, que nous appelons ici des Prototypes Virtuels.
Ces prototypes permettent de vérifier, par simulation, leur conformité fondamentale avec le
cahier des charges, avant d’entamer les démarches de matérialisation et de réalisation
technologique.

Les motivations techniques, commerciales et 1’influence de la concurrence créent des
intéréts forts chez les industriels, dans le développement, l'utilisation et l'optimisation de
technologies permettant d’arriver aussi loin que possible dans les extensions de la conception
systeme [HamO1]. Le développement des prototypes virtuels et la nécessité de valider leur
cohérence avec les spécifications, demande I’appui d’outils informatiques permettant de
modéliser, des les niveaux d’abstraction les plus élevés, les aspects suivants:

- Les interactions du systeme avec son environnement opérationnel.

Introduction hassairi walid

- L’évaluation et la définition des entrées / sorties.

- L’étude et le développement des modeles comportementaux des constituants.

- La représentation graphique des relations fonctionnelles proposées.

- L’exploration architecturale.

- L’estimation des performances et les états critiques de fonctionnement.

Les exigences générales se situent au niveau de la gestion de ces aspects et de la recherche
de techniques permettant de réduire le temps de développement des produits et d’accroitre les
performances de la conception sur des points essentiels comme la robustesse, la slireté de
fonctionnement et la vérification. Plusieurs axes de réflexion et de développement devront étre
explorés :

La réutilisation, autant que possible, des acquis et des modeles précédemment validés.

Dans ce contexte, I’extension de ’utilisation des outils de CAO pour 1’électronique vers
d’autres domaines peut représenter une source de progres important.

L’utilisation de techniques telles que le co-design, la Co-Simulation, la création et la
gestion de modules de propriété intellectuelle ont amené le monde de 1’électronique numérique
au sommet de ce qu’il est convenu d’appeler ’EDA (Electronic Design Automation) .

La partie analogique qui pourtant reste en retard par rapport a ces techniques a cause de la
complexité du probleme et de la difficulté a mettre en place une vraie politique de standardisation
des méthodes, et des langages : Il n’est pas facile d’y établir une base commune de ressources
informatiques et méthodologiques, a I'image de la modélisation VHDL ou de la gestion des IPs
dans le domaine de I’électronique numérique.

La plus grande difficulté de I’approche est de généraliser les méthodes et de considérer la
conception systeme comme un tout. De cette maniere, en partant des spécifications ou des cahiers
des charges, les concepteurs pourraient établir et valider des modeles fonctionnels et proposer des
solutions architecturales. Une étape essentielle de cette problématique est la traduction ou
I’interprétation des spécifications sous forme de modeles fonctionnels.

En plus, I’approche consiste a utiliser un seul langage pour la spécification complete du
fonctionnement du systeme. Cela suppose qu’il possede une sémantique consistante et assez
riche pour qu’il puisse supporter I’hétérogénéité des modules constituant le modele entier.

L’inconvénient majeur de cette approche réside dans la difficulté de trouver un langage

capable de couvrir la plupart des domaines impliqués dans les systeémes actuels. Cela amene a la

Introduction hassairi walid

définition de nouveaux langages et par suite a des temps d’apprentissage important et a la
construction de nouvelles bibliotheques.

Dans ce contexte, nous trouvons pas mal de langages et outils: pour la simulation
analogique, nous avons comme exemple PSPICE. Pour la simulation mixte analogique,
numérique nous trouvons principalement SABER, Verilog-AMS et VHDL-AMS. Une bonne
partie des outils destinés a la conception des systemes mixte comme Spec C et System C. Dans
une autre catégorie, nous citons des outils qui abordent le probleme de simulation a un niveau
plus élevé que la partition logicielle /matérielle. Parmi eux, nous trouvons POLIS qui permet de
créer une méthodologie formelle unifiée. Et nous terminons par des approches généralistes; il
s’agit des plus célebres outils de modélisation qui est MATLAB produit par The MathWorks. 11
permet de réaliser une modélisation détaillée des algorithmes de contrdle des systeémes dans des
domaines multiples.

Comme nous l'annoncions, le grand défit consiste maintenant a offrir un environnement
qui ne soit pas réservé exclusivement a des experts en un seul domaine. Les spécialistes du
traitement de données, habitués a manipuler le langage C/C++ ou Simulink trouveraient un
intérét certain a pouvoir accéder directement au matériel. Des bibliotheques de circuits logiques
dédies préts a étre utilisés existent déja. Des synthétiseurs de circuits logiques, sur base de
quelques parametres, existent également et sont développés par des firmes spécialisées.

Notre objectif consiste a identifier une méthode efficace de validation fonctionnelle de
systeme embarqué dans son environnement unifié. Il s’agit de mettre en place un environnement
de Co-Simulation hétérogéne. Nous présentons le travail en deux parties : la premiere présente la
simulation MATLAB/VHDL tandis que la deuxiéme consiste a envisager la simulation
MATLAB/FPGAs. Afin de tester les plateformes mises en place, nous avons considéré 1’exemple
LMS-based adaptive equalization (Synthesizable RTL implementation using M-code Block). Ce
modele montre qu’a T/2 I’adaptive FSE (Fractionally Spaced Equalizer) fonctionnant sur un
point d'émission 16-QAM avec le bruit et filtrer présenté dans le modele.

Dans le chapitre 1, nous commengons par présenter les systemes enfouis (embarqués),
nous réalisons un bilan des outils et des méthodes existantes pour la conception du systeme. Les
outils de CAO et les méthodes de conception sont en constante évolution et leur développement
reflete 1’état de ’art des pratiques. Au niveau de la conception des systemes électroniques, une

fois que les différentes approches et méthodes dépassent le niveau purement théorique, et que les

Introduction hassairi walid

langages sont adoptés, des processus de simulation et de Co-Simulation sont engagés. Au cours
de cette étude, nous sommes restés attentifs aux nouveautés provenant des fournisseurs
commerciaux, et aux innovations proposées par le monde académique et scientifique et nous
terminons par présenter I’ Approche classiques des validations logicielles.

Le chapitre 2 porte sur la mise en place des langages et des outils de notre plateforme de
conception systeme a haut niveau. Nous détaillons les apports de chacune d’elles pour assurer la
Co-Simulation.

Dans chapitre 3, nous abordons la Co-Simulation MATLAB/VHDL, nous expliquons les
différentes interactions entre les logiciels formant la plateforme et nous présentons un exemple
pour mieux éclaircir cette approche.

Le chapitre 4 est consacré a la Co-Simulation MATLAB/FPGAs. Nous expliquons les
différentes interactions entre les logiciels formant la plateforme. Le but de cette dernicre partie
est de traiter completement un cas d’application en utilisant cette approche afin d’illustrer, de la
meilleure fagon possible, son fonctionnement.

Enfin, nous terminons par une conclusion générale, dans laquelle nous présentons les

avantages des environnements proposés dans ce mémoire.

ironnement de simulation : état de 1’ art hassairi walid

6\

LANGAGE ET
ENVIRONNEMENT DE
SIMULATION : ETAT DE
L’ART

Langage et environnement de simulation : état de 1’art hassairi walid

Chapitre I: LANGAGE ET ENVIRONNEMENT DE
SIMULATION : ETAT DE L’ART

I.1 Introduction

Les outils de CAO sont devenus des appuis incontournables pour les ingénieurs et les
scientifiques, au moment d’exécuter tous types de projets, particulierement ceux dont la
complexité et le temps de développement sont importants. Nous avons conduit, pendant toute la
durée du mastere, une veille technologique des outils disponibles sur le marché et des techniques
émergentes des laboratoires de recherche et autres organismes universitaires. Malheureusement,
nous n’avons pas eu la possibilité de tout tester et nos analyses ne pourront qu’étre fortement
influencées par les standards et les tendances d’utilisation au niveau de l’industrie et de la
recherche.

Pour ce chapitre d’analyse, nous avons commencé par présenter les systemes enfouis.
Ensuite nous avons classé les outils selon trois champs d’application : la conception électronique
en général, la conception de haut-niveau des systemes a base d’électronique et la gestion de
I’information des projets de conception systeme. Cela permet de prévoir les langages et les outils
que nous allons utiliser pour attendre toujours notre objectif qui est en premier lieu réduire le

temps de conception et utiliser un seul langage pour toute la simulation.

I.2 Les systéemes enfouis (embarqués)

Afin de mieux situer le cadre des travaux présentés dans ce mémoire, il convient de définir
plus précisément ce que sont les systemes enfouis (également appelés systemes embarqués). S'il
n'existe pas de définition "officielle", il est communément admis que, d'une maniere tres
générale, un systeme enfoui peut étre vu comme un systeme électronique dont le fonctionnement
repose sur un microprocesseur (avec ou sans systeme d'exploitation), mais qui n'est pas un
ordinateur (au sens Personale Computer) [Aas 04]. Pour étre plus précis, nous pouvons dire qu'un
systtme enfoui est un systeme électronique dédi€é a une ou a un ensemble d'applications
prédéfinies et dont la mise a jour ne peut étre que tres limitée (par exemple chargement de
nouveaux logiciels ou reprogrammation de matériel reconfigurables). De plus, un systeme enfoui

peut étre éventuellement multi-domaines, c’est a dire analogique et numérique : le domaine

10

Langage et environnement de simulation : état de 1’art hassairi walid

analogique comprenant par exemple la partie RF d'un téléphone mobile alors que le domaine
numérique comprenant le traitement numérique du signal et l'interface utilisateur.

La partie numérique est souvent hétérogene, puisqu’elle fait appel a des composantes
logicielles et matérielles. Nous pouvons distinguer dans cette partie les systemes fixes et les
systemes mobiles. Pour ces derniers, la maitrise de la consommation est un facteur essentiel a
leur réussite commerciale ; c’est pour cela que la recherche sur cet aspect est tres dynamique.
Enfin, la puissance du calcul des systemes enfouis peut étre tres variable.

Les systetmes les moins complexes integrent de simples microprocesseurs et
microcontroleurs (de nombreux produits font appel aux 8051, 68HCOS, ou autres dérivés de
68000) alors que les systemes plus évolués font appel aux dernieres générations de
microprocesseurs et de DSP (Digital Signal Processor), avec aussi des accélérateurs matériels
dédiés.

Comme indiqué plus haut, les systemes enfouis sont généralement implantés sous la forme
de composantes logicielles et matérielles. Les composantes logicielles peuvent étre implantées
sur des processeurs a usage général (GPP) ainsi que sur des processeurs a usage spécifique (DSP,
ASIP). Les composantes matérielles sont implantées soit sur des composants dédiés (ASIC), soit
sur des composants reprogrammables (FPGA). Il est également important de souligner les cas des
systemes sur-une-puce (SoC), qui integrent sur une seule puce de silicium les composantes
logicielles et matérielles. En effet, bon nombre de processeurs (ou cceur de processeur) sont

N

disponibles sous la forme de "propriétés intellectuelles" (IP, spécification, a un niveau
d'abstraction donné, d'un composant matériel ou logiciel, et destinée a étre réutilisée par une
tierce partie) synthétisables, ce qui permet de les intégrer a coté des parties matérielles, soit sur
ASIC soit sur FPGA de derniere génération.

Ces derniers integrent un nombre considérable de portes (1,5 millions pour le modele
Altera EP20K1500E en technologie 0.13 uM), des blocs de traitement du signal numérique
(modules matériels de type multiplieur, additionneur, soustracteur, accumulateur, registres
pipelines) comme la famille Stratix chez Altera. On peut enfin citer les FPGA intégrant d'origines
des processeurs telle la famille VirteX-II Pro (pouvant disposer de 0 a 4 processeurs de type
PowerPc405).

D’ou la nécessité des langages et des outils pour assurer la simulation ou la Co-Simulation

des systemes hétérogenes.

11

Langage et environnement de simulation : état de 1’art hassairi walid

1.3 Simulateur analogique

Nous commencgons ce tour d’horizon des outils et langages d’aide a la conception des
systtmes a base d’électronique par 1'un des outils pionniers de la simulation purement
analogique, qui, au long des années, est devenu un standard industriel et académique : PSPICE.
Suite a I’apparition de Spice 1 en 1972 [Mal02] a I’Université de Berkeley, Pspice [Cds03a] est
devenu le standard de fait pour la simulation électronique analogique. Sa version, PSpice 9.2.3
est un des modules fonctionnels d'OrCad. Le premier simulateur de PSpice a été introduit en
1985. Depuis cette date, il a été constamment mis a jour en fonction de la technologie des
ressources informatiques et des systemes d'exploitation jusqu’au point de devenir un outil
universellement utilisé dans I’industrie, dans les universités et dans les laboratoires de recherche.
La plupart des fabricants de composants électroniques fournissent aujourd’hui des modeles écrits
en PSpice.

PSpice est un simulateur complet pour la conception analogique. Avec ses modeles
internes et ses bibliotheques largement répandues et développées, dés les systemes a haute
fréquence jusqu'aux circuits intégrés de basse puissance, tout peut €tre simulé. Dans la
bibliotheque de PSpice, des modeles peuvent étre édités mais les utilisateurs peuvent également
créer des modeles pour de nouveaux dispositifs a partir des fiches techniques. « PSpice A/D
Basics » est un simulateur de signaux mixtes. C’est une version plus élaborée de PSpice qui peut
étre employée pour simuler des systemes mixtes sans limite théorique de taille, contenant des
parties analogiques et des éléments numériques.

Malheureusement, quand il s’agit de grands systemes, les simulations deviennent trop

lourdes et demandent un temps d’exécution prohibitif.

1.4 Simulateur mixte (analogiques, numériques)

Les exigences de la technologie et du marché ont imposé le développement d’outils plus
puissants capables de traiter simultanément les domaines analogiques et numériques. La plupart
des systemes électroniques actuels comportent des combinaisons de circuits analogiques et
numériques. Ce besoin a entrainé depuis la fin des années 90, ’apparition de langages de
description matérielle de systemes a signaux mixtes [Coo01] MSHDLs. Ces types de langages

offrent un grand intérét dans une approche de conception systeme.

12

Langage et environnement de simulation : état de 1’art hassairi walid

1.4.1 SABER

SABER [HamO1] est un outil tres utilisé, développé par la société Analogy (aujourd’hui
Synopsys) et orienté vers la conception systeme. Il offre la possibilité de faire des simulations de
signaux et technologies mixtes : analogiques et numériques, grace a 1’existence de passerelles
avec d’autres outils. Les algorithmes de simulation de SABER, fournissent une capacité de
convergence qui permet a l'utilisateur d'arréter et de relancer la simulation pour regarder les
résultats intermédiaires et/ou changer certains parametres des composants sans quitter
I'environnement de simulation. La liste d'analyses disponibles sur SABER inclut : 1'analyse de
Monte Carlo, I’analyse de sensibilité, ’analyse en fréquence, 1’analyse du bruit, I’analyse de
distorsion, le calcul de fonctions transfert, transformées de Fourier et simulation des tensions
d'alimentation. Tous les modeles (numériques, analogiques et mixtes) de la bibliotheque SABER
standard sont codés en langage MAST.

L'interface de Co-Simulation Saber/Verilog-XL [AnaOla] combine les capacités de SABER
avec le simulateur pour la conception numérique Verilog-XL de Cadence Systems. Cette
interface donne a SABER l'avantage de pouvoir co-simuler avec Verilog dans presque tous les
principaux environnements de conception, y compris SaberSketch, des environnements de
Mentor Graphics, de Cadence ou Viewlogic. La sortie de la simulation est combinée et
synchronisée en temps pour afficher et corréler les données analogiques et numériques.
L'interface de Co-Simulation de SABER/ModelSim [AnaOlb] incorpore les simulateurs
numériques VHDL de ModelSim.

L'interface Saber/Fusion [AnaOlc] (ancienne STI) fournit un service efficace pour la
simulation mixte analogique / numérique dans l'environnement de conception Powerview. Le STI
combine le simulateur AHDL de SABER avec de ViewSim structural, de VHDL Speedwave et
des simulateurs numériques de VCS Verilog. Le Saber/Fusion STI se combine également avec le
logiciel d'intégration Frameway. Le résultat est une interface graphique qui fournit la Co-
Simulation rapide de circuits congus avec de nombreux modeles composants de bibliotheque
disponibles dans les simulateurs de SABER et de FUSION.

L’inconvénient majeur de Saber, est son langage propriétaire, MAST, qui ralentit sa
diffusion. Dernierement, suite au rachat de 1’outil par la société Synopsys et grace a une réaction

commerciale naturelle face a la monter en puissance de VHDL-AMS, une nouvelle initiative a été

13

Langage et environnement de simulation : état de 1’art hassairi walid

lancée. 1l s’agit d’une proposition OpenMAST™ [Syn04] dont I’objectif est de faciliter 1’acces

au code des modeles écrits en MAST.

1.4.2 Verilog —~AMS

Verilog-AMS [Acc98] a été créé sous la tutelle d'Accellera (Organisation de standards
EDA) afin de mettre en place les extensions analogiques mixtes de Verilog (IEEE-1364). La
premiere version était Verilog-A LRM sortie en juin 1996 puis Verilog-AMS LRM en aofit 1998.
Le langage Verilog-AMS permet de faire la description comportementale des systemes
analogiques et mixtes.

Ainsi que VHDL-AMS (1.3.2.3), Verilog-AMS peut étre applicable aux systemes
électriques et non électriques. Le langage permet de faire des descriptions de systemes, en
utilisant des concepts comme des nceuds, des branches, et des ports. Les signaux de type
analogique et numérique peuvent étre présents dans le méme module. Au contraire de VHDL-

AMS, Verilog-AMS n’est pas un standard IEEE.

1.4.3 VHDL-AMS

VHDL-AMS est une norme IEEE [Ieee99] (1076,1 de 1999) qui élargit la définition du
VHDL pour inclure la description des systemes analogiques mixtes. Avec VHDL-AMS les
systemes qui étaient décrits en utilisant plusieurs outils tels que MATLAB, VHDL et SPICE
peuvent étre tous modélisés en utilisant un seul langage.

VHDL-AMS inclut toutes les propriétés du VHDL standard, avec en plus, la capacité de
décrire les systémes mixtes, analogiques et numériques par le biais de modeles multi abstractions,
multidisciplinaires, hiérarchiques a temps continu et a événements discrets [Her02]. Au niveau
conception systeme, VHDL-AMS peut étre utilis€ pour faire des descriptions de haut-niveau
comme la description comportementale, le RTL (Register transfert level), les fonctions de
transfert avec les transformées Z et de Laplace, des convertisseurs numérique/analogique,
analogique/numérique, « phase-lock-loops » comportementaux, et les filtres analogiques et
numériques. En revanche, VHDL-AMS ne permet pas de résoudre ni des systemes a équations

différentielles partielles ni des descriptions de caractéristiques géométriques des systemes.

14

Langage et environnement de simulation : état de 1’art hassairi walid

Pour la conception électronique détaillée, VHDL-AMS permet :

- Des simulations au niveau des portes logiques.

- Des modélisations de circuits analogiques et de modeles au niveau transistor SPICE /

VHDL-AMS.

- Des descriptions de systemes par des équations simultanées, non linéaires, différentielles
et algébriques.

De la modélisation et de la simulation des effets physiques liés au fonctionnement
numérique.

Dans notre démarche, VHDL-AMS présente I’avantage [Her02] de proposer un langage
commun indépendant des fournisseurs et de la technologie. Du point de vue technique, il permet
une haute modularité facilitant les descriptions hiérarchiques. Cependant, le langage est complexe
et les premicres impressions de l'utilisateur peuvent étre relativement décourageantes. Cette
sensation est accentuée par le fait de ne pas pouvoir compter sur le support total d’'une norme
récente. Actuellement, une nouvelle version est en cours de préparation. Par rapport a la synthese,
VHDL-AMS inclut tous les sous-ensembles synthétisables de VHDL pour la partie numérique.
Pour la partie analogique, des premiers travaux ont été réalisés [Dob03] [Dv03].

Quelques simulateurs sont déja disponibles sur le marché :

- AdvanceMS™ [Mg(O1la] ANACAD (Mentor Graphics).

- System Vision™ [Mg03] version 8.3.0 de Mentor Graphics.

- SIMPLORER® 7.0 [Ans03] développé par ANSOFT.

- SMASH™ 5.1.3 [Dg03] de DOLPHIN Integration.

- TheHDL d’AVANTI.

- Hamster [Sim03], un simulateur gratuit pour PC, de SIMEC. Cet outil a disparu mais il
s’utilise encore pour guider les « premiers pas » des utilisateurs de VHDL-AMS.

- SaberHDL™ [Syn03], de chez Synopsys propose I’option d’un simulateur intégré pour la
simulation mixte. Le fabricant offrira un outil capable de supporter les langages : VHDL-AMS,
MAST, HSPICE et Verilog AMS. SaberHDL pourra fonctionner sur Sun Solaris 2.6.8, Windows
2000 et RedHat Linux.

En conclusion, hormis les soucis d’implémentation de la part des fabricants d’outils.
L’intégration naturelle de modeles de plusieurs disciplines permet d’avoir une vraie approche

systeme en adéquation a notre problématique générale de conception.

15

Langage et environnement de simulation : état de 1’art hassairi walid

I.5 La simulation matérielle / logicielle

Le co-design est I’'une des techniques les plus intéressantes car elle s’efforce de mettre en
place une vraie méthode de conception simultanée du matériel (100% numérique) et du logiciel.
Son émergence est due a la grande et croissante ressemblance de la conception des systemes
numériques avec la conception du logiciel. L’objet du co-design [Dmg97] est de réaliser les
objectifs de la conception au niveau systéme en regroupant et exploitant la synergie du matériel et
du logiciel par le biais d’une conception concourante. Voici quelques exemples d’outils congus

pour le co-design.

I.5.1 La conception basée sur le langage C

Une bonne partie des outils destinés a la conception de systtmes mixtes numériques
utilisent I’approche « C-Based System design », c’est-a-dire, les systémes sont écrits sous la

forme du code C ou C++. Nous commencons notre analyse avec SpecC :

e SpecC : Créé a I’Université de Californie Irvine par I’équipe de travail du
professeur Daniel Gajski au CADLAB, SpecC [Dgg01] est plus une extension ou une adaptation
du C, il est un langage de co-design «hardware/software» basé sur le langage C et proposé par
UCI CADLAB. C'est une version élaborée d'ANSI-C dont le niveau d’abstraction le plus haut est
décrit a base de machines a états finis. SpecC propose des spécifications comme canaux de
communication, des représentations hiérarchiques, de la simultanéité et de 1’abstraction de la
synchronisation. Il est congu pour étre un langage unique qui peut étre utilisé dans toutes les
étapes du processus de co-design matérielle / logicielle. Un projet SpecC se compose d'un
ensemble de déclarations comportementales, déclarations de canaux et d'interfaces. Un
comportement est une classe avec un ensemble de ports : L’ensemble des comportements
secondaires, 1’ensemble des canaux, I’ensemble des variables et des fonctions « privées » et une
fonction principale« publique ». Par ses ports, un comportement peut étre relié a d'autres
comportements ou canaux afin de communiquer. La fonctionnalit¢ d'un comportement est
indiquée par ses déclarations de fonction. Un canal est une classe qui contient la transmission. Il
se compose d'un ensemble de variables et de fonctions appelées méthodes, qui définissent un

protocole de communication. La version SpecC 2.0 a été développée par 1’équipe du professeur

16

Langage et environnement de simulation : état de 1’art hassairi walid

Masahiro FUJITA, a I’Université de Tokyo. Elle integre des améliorations dans la gestion des
événements concurrents, des interruptions, et du parallélisme. Il est intéressant de noter que
récemment I’équipe du professeur FUJITA a été contactée par des concepteurs de satellites
japonais qui veulent aborder la conception des micro-systemes embarqués du point de vue
systeme. Pour I’instant, SpecC ne comporte pas d’options pour la conception analogique et mixte.
Le groupe du travail pour la version 3 a été lancé a Tokyo le 8 octobre 2002. Il étudie la
faisabilité d’une extension analogique du langage. A notre avis, il reste encore du travail pour
arriver a un langage systeme général. Le développement de 1’outil a été pénalisé par la grande
partie de marché couverte par son grand concurrent System C.

e System C : Peut étre le plus utilisé des approches « C based ». Les origines de
System C remontent au milieu des années 90, dans les travaux de 1’Université de California
Irvine et du groupe Synopsys. Le premier produit était appelé « Scenic » puis « Fridge ». La
premiere version System C 0.9 est sortie en 1999 avec I'incorporation des éléments récupérés de
N2C —Coware.

System C est un ensemble de bibliotheques crées en langage C++, permettant de faire la
description d’un systeme logicielle / matérielle par le biais de spécifications exécutables et de
plusieurs niveaux d’abstraction pour un méme systeme. System C fournit la possibilité de créer
des modules, processus fonctionnels et portes logiques. Le compilateur Co-Centric SystemC
synthétise la description « hardware » écrit en System C au niveau des portes logiques (gate-level
netlist) ou en Verilog ou VHDL pour faire de la synthese sur des FPGAs. Les modeles System C

sont écrits sur le formalisme des FSM « Finite State Machines ».

17

Langage et environnement de simulation : état de I’art

Fabriquant Outil
Axys Design MaxCore developer Suite
Axys Design MaxSim
Cadence SPW
CoFluent Studio Cofluent Design
CoWare CoWare N2C Design System

Forte Design System

Cynlib Tool Suite

Innoveda

Visual Elite-Architect

Mentor Graphics

Vstation TBX

hassairi walid

Synopsys CoCentrics System Studio

Synopsys SCC Synopsys Cocentric SystemC compiler
Veritools SuperC

Virtio Virtual Prototyping to SystemC

WHDL Language Rule Checker & Rule Generator

Figure 1 : Quelques outils qui supportent System C.

Cette approche tres intéressante est devenue 1’une des standards du fait pour la conception
et la synthese de systemes numériques mixtes matériels et logiciels. Tel que I’illustre la Figure 1,
la plupart des fabricants d’outils CAO proposent System C parmi leurs produits. Une initiative
commence a prendre de I’ampleur ; il s’agit d’étendre I'utilisation du System C aux systemes
électroniques mixtes matériels et logiciels. Des travaux de mise en forme d’une proposition
System C-AMS a été proposés par [Gev04]. L’approche systeme préconisée est intéressante car
elle peut représenter une alternative pour le traitement des systemes avec tout type de
composantes : Analogiques, numériques et logicielles.

e Handel-C [Cel02] est un langage écrit sur la base d’ISO/ANSI-C destiné a
I’implémentation d’algorithmes sur « hardware », a I’exploration architecturale et au co-design.
Handel-C permet la conception de matériel en utilisant des méthodes de conception de logiciel élargies
avec des particularités pour le développement de matériel. Elles incluent des largeurs variables des
structures (vecteurs) de données, le traitement parallele des communications et des événements.
Handel-C n’utilise pas de machines a états finis, grace a une méthode propriétaire de description des

écoulements périodiques et paralleles.

18

Langage et environnement de simulation : état de 1’art hassairi walid

Les modeles Handel-C peuvent étre insérés dans une méthodologie de réutilisation car des
fonctions peuvent étre compilées dans des bibliotheques et étre employées dans d'autres projets.
Des noyaux écrits sous Handel-C peuvent étre exportés comme boites noires d'EDIF, de VHDL
ou de Verilog pour leur réutilisation.

D’apres le fabricant, Celoxica, les points forts de Handel-C sont :

- Un langage de haut-niveau basé sur ISO/ANSI-C pour I'exécution des algorithmes sur
« hardware ».

- Le langage ne demande pas de grands investissements en temps de formation des
utilisateurs.

- Handel-C permet de faire des appels directs sur des fonctions externes €crits sous C/C++
et vice-versa.

Des extensions spécifiques pour le matériel incluant la gestion du parallélisme et des
communications.

- Construction des noyaux spécifiques pour la suite Celoxica DX.

Nous trouvons intéressante la compatibilité de 1’outil et I'utilisation de leur propre modele
de représentation des états des systemes ; mais il est trop focalisé sur la réalisation matérielle. Il

manque la généralité requise par notre approche.

e N2C [Cow01] a été développé par la société CoWare. Cet outil permet de capturer les
spécifications d’un systeme numérique dans un modele exécutable et implantable a partir de langage
C/C++. Avec N2C, I'utilisateur peut faire une spécification concourante, visant deux objectifs :

Une implémentation et vérification de matériel et logiciel embarqué spécifique a

I'application.
L’évaluation et I'intégration de la propriété intellectuelle (IP) de matériel et de logiciel
vers des nouveaux produits ou dérivés.

CoWare N2C est congu pour co-exister avec la plupart des outils commerciaux :
Simulateurs de HDL, simulateurs de positionnement d'instruction (ISS), outils intégrés de
I'environnement de développement de logiciel (IDE), et des systemes d'exploitation temps réel.
Les outils de syntheése recoivent la sortie de N2C pour démarrer la déclinaison et synthese du
systeme. Une version universitaire de N2C est disponible pour les membres d’Europractice

Software Service [Eur04].

19

Langage et environnement de simulation : état de 1’art hassairi walid

I.5.2 Les outils de haut-niveau

Dans une autre catégorie, nous citons des outils qui abordent le probleme du co-design a un
niveau plus élevé que la partition logicielle/matérielle. Parmi eux, le projet POLIS [CloO1] de
I’Université de Californie Berkeley qui a été développé afin de créer une méthodologie formelle
unifiée pour la modélisation complete des systemes embarqués. Cette méthodologie inclue la
partition matérielle/logicielle, la synthese automatique et la vérification. POLIS a été développé
sur le modele de calcul formel CFSM ou « Co-design Finite State Machine ». Il est un logiciel
expérimental.

Bien qu'il ait été testé sur plusieurs exemples de dimension industrielle [F11+98] [San96], il
ne peut étre applicable qu’a certains domaines spécifiques. Eaglei [Syn00] est un outil pour la co-
vérification Logicielle/Matérielle depuis la post-partition jusqu’au prototype physique. Eaglei
supporte des outils EDA de haut rendement, la simulation cycle a cycle, les accélérateurs de
matériel et 1'émulation de matériel pour la conception multiprocesseur. Avec Eaglei, il est
possible de distribuer la simulation a travers un réseau pour améliorer la vitesse de simulation. Il
fournit une plate-forme d'interopérabilité UNIX/PC. Cette caractéristique peut le rendre
intéressant pour son intégration dans des plates-formes de conception.

Seamless CVE [MGO00a] est un outil de Mentor Graphics pour la conception électronique.
Grace a son interface « Plug-In » (SPI), il est capable de réaliser la simulation multiprocesseur.
Seamless CVE est compatible avec plusieurs outils de vérification et description [Mg00b] comme
ModelSim VHDL, Verilog XL, VSC et avec plus de 70 microprocesseurs des différents
fournisseurs.

A cause de I’exécution du modele complet d’un microprocesseur, la vitesse du simulateur
peut étre six ou sept fois plus lente que 1’exécution temps réel. Seamless CVE accélere la Co-
Simulation grice a la séparation fonctionnelle du microprocesseur de son interface €électronique.
La suppression sélective de certains cycles dans la simulation matérielle est facultative. Les
simulations matérielles et logicielles sont divisées en un simulateur d’instructions ou
«Instructions Set Simulator » et un modele d’interface ou « Bus Interface Model » pour le
comportement électronique des entrées/sorties du processeur. L’arbitrage entre 1’exécution des
simulations est réalisé par le « Co-Simulation Kernel ».

Nous trouvons que cet outil demande de connaitre préalablement I’architecture du systeme

et donc il est utile seulement lorsque les choix de conception ont été réalisés. Nous le classons

20

Langage et environnement de simulation : état de 1’art hassairi walid

dans la catégorie d’outils systeme car il permet de vérifier le fonctionnement complet de
I’application.

L’outil Co-Fluent Studio SDE, proposé récemment par la société Co-Fluent Design. Il est
orienté vers la conception de systemes électroniques numériques comportant des implémentations
matérielles et logicielles. Les origines de ce logiciel se trouvent a 1’Ecole Polytechnique de
Nantes sous la direction de Jean-Paul CALVEZ. Le principe d’utilisation [Per04] est de
distinguer clairement les représentations fonctionnelles et architecturales du systéme a concevoir.
En effet, I’outil permet de réaliser ces descriptions indépendamment. Trois niveaux d’abstraction
ont été identifiés pour 1’analyse des performances :

e [e niveau Systeme.
¢ Le niveau composant.
¢ Le niveau des communications entre composants.

La Méthodologie de Conception de Systemes Electroniques [Cof03] (MCSE ou CoMES en
anglais) est utilisée avec I’outil afin de gérer les différents niveaux de complexité d’un projet de
conception.

La description finale du comportement des systemes est générée sous deux formes
automatiques de code. La premiere, destinée a la modélisation Systeme en C/C++, la deuxieme
en VHDL synthétisable orientée a I'implémentation des systeémes sous la forme de circuits
intégrés. Nous trouvons cet outil particulierement intéressant car il propose une approche
générale pour la conception de haut niveau du domaine électronique, en considérant la
modélisation du comportement des systemes avec des modeles formels de calcul, de plus une
issue vers la matérialisation est proposée. Dans de futurs travaux, il sera convenable
d’approfondir cette démarche afin d’envisager des ouvertures vers une généralisation orientée

VHDL-AMS donnant la possibilité de gérer des projets pluridisciplinaires.

1.6 Les méthodes pour la conception logicielle

Nous continuons maintenant avec les méthodes pour la conception logicielle. Ces méthodes
ont été pionnieres dont la facon d’aborder le probleme de la conception. En effet, les approches
de la conception logicielle ont fait émerger des nombreux concepts également intéressants pour la

conception amont.

21

Langage et environnement de simulation : état de 1’art hassairi walid

1.6.1 SADT et SA/RT des méthodologies a I’origine de la réflexion systéme

Nous trouvons dans la seconde moitié du siecle dernier ou la complexité croissante des
systemes avait déja demandé des efforts des scientifiques et des ingénieurs pour 1’établissement
d’outils et/ou des méthodes permettant d’alléger la taiche de spécification et de conception de ces
systeémes. Parmi ces premiers travaux, ROSS avec SADT [Ros72] est une des pionniers dans la
recherche d’une solution au probleme de la spécification et de la conception des systemes a haut-
niveau. Développée a partir de 1972, cette approche avait pour objectifs de couvrir I’analyse de
besoins, la spécification, la conception et la documentation en facilitant le partage de
I’information entre les utilisateurs. Le modele utilisé propose une description en blocs (d’activités
ou de données) relié par quatre types de liens : Entrée, sortie, controle et mécanisme. Les blocs
SADT peuvent étre décomposés en niveaux hiérarchiques. L’approche propose deux formes
possibles de diagrammes : Les « actigrams » et les « datagrams » qui représentent deux vues
différentes d’un méme systeme. L’utilisation de SADT été basée sur des principes de délimitation
du contexte du systeme et de la limitation de taille de I’information. Les décompositions étaient
limitées a sept blocs +2 (plus ou mois deux) par feuille. Cette approche simple et compréhensible
n’est pas exclusive a un métier spécifique. Un banquier, un fonctionnaire,... peuvent lire un
diagramme de leur domaine sans connaitre la méthode. Efficace en spécification des exigences,
elle présente un certain nombre d’inconvénients des que des phases de conception sont abordées
notamment ses insuffisances pour 1I’expression des algorithmes de contrdle.

D’un autre c6té, SA/RT (Structured Analysis with Real-time-Extensions) [Wm85] propose,
a partir d’une analyse établie sur une représentation graphique, une modélisation systeéme dans
laquelle deux facettes sont clairement différentiables : un modele du processus statique qui lui est
attaché, et un modele de contrdle dynamique qui en permettra I'utilisation. L’originalité de cette
méthode est la prise en compte de I’aspect dynamique du systeme. SA/RT est donc bien adapté

aux applications temps réel a fort comportement dynamique.

1.6.2 UML : le langage unifié¢ de modélisation

UML est un langage qui émerge comme un standard de fait pour la conception de systémes
logiciels a haut-niveau, il a été proposé par 'OMG [Omg03] en 1997, avec comme objectif

quatre activités principales [Bro0O3] du processus de conception :

22

Langage et environnement de simulation : état de 1’art hassairi walid

e Une description du systeme selon plusieurs points de vue.
e La spécification des besoins et de la mise en ceuvre.

e La visualisation pour faciliter la compréhension et la communication parmi les

partenaires de la conception avant la réalisation du systeme.

e Lareprésentation de systemes complexes.

¢ La documentation de la totalit€ du projet, des les spécifications jusqu’aux tests de

fonctionnement.

L’application d’UML exige I’adoption d’une méthodologie claire et 1’utilisation d’un bon
outil logiciel mettant en ceuvre le langage. Malgré cette volonté d’unification, UML n’est pas une
solution totale pour la conception systeme, car elle n’établie pas la facon dont les diagrammes
doivent étre employés et moins encore un principe d’intégration ou d’interopérabilité entre eux.
L’utilisation du langage perd beaucoup d’efficacité sans une méthodologie et sans le support d’un
outil.

Dans le langage UML, plusieurs types de représentations graphiques [Mil03] sont
possibles. Cinq modeles de représentation (chacun avec un ou plusieurs types de diagrammes)
conforment la sémantique UML 1.5, a savoir :

Modele d’utilisateur :

® « Use case diagrams » : ces diagrammes représentent le fonctionnement du
systeme du point de vue d’un observateur externe. Leur but est de montrer ce que le systeme fait
sans détailler le « comment ».

Modeéle structurel :

e Diagrammes de classes : ces diagrammes décrivent les états statiques du
systeéme et leurs connexions.
¢ Diagrammes a objets : il s’agit d’une simplification des diagrammes de classes.

Ces diagrammes décrivent les objets avec leurs interactions.

Modele comportemental :

¢ Diagrammes de séquence : il s’agit de diagrammes d’interaction qui montrent

le séquencerent des opérations du systeme. C’est une vue temporelle.

23

Langage et environnement de simulation : état de 1’art hassairi walid

e Diagrammes de collaboration : Ces diagrammes d’interaction comportent la
méme information que les diagrammes de séquence mais se focalisent sur les roles au lieu des
temps.

e Diagrammes a états et leurs extensions les « Statechart diagrams » : ils
illustrent les états possibles du systeme et les transitions qui provoquent les changements des
états.

e Diagrammes d’activités : Il s’agit essentiellement de « flowcharts ».

Modele d’implémentation :

e Diagrammes de composants : ces diagrammes représentent 1’équivalent
matériel et ou logiciel des diagrammes de classes.

Modele d’environnement :

e Diagrammes de déploiement : Ce dernier type de diagramme illustre les

configurations physiques du matériel et du logiciel.
D’une fagon générale, ces outils permettent de décrire les nceuds de distribution et leurs
interactions dans le cas de systemes distribués. Hormis 1’approche objet, I’avantage majeur du
langage UML est la multiplicité de diagrammes qu’il offre. Il permet au concepteur de créer

différentes représentations du fonctionnement du systeme.

I.7 Autres approches métiers et mixtes

D’autres approches ont essayé de se hisser a un niveau plus amont pour aborder le
probleme de la conception systéeme. Ici, nous avons identifié deux volets : d’un part, les outils
issus des initiatives des communautés indépendantes d’aborder le « haut-niveau » relatif a leur
domaine, tels que 1’automatique, le logiciel et I’électronique. D’autre part, les initiatives récentes
qui « joignent » la conception systeme avec des approches généralistes et hétérogenes.

La communauté des automaticiens utilise depuis des années Matlab® et Simulink®
comme leurs outils de base pour le calcul scientifique. Il s’agit, peut-&tre des plus célebres outils
de modélisation mathématique globale, Matlab® et Simulink® de chez MathWorks. 1l dispose
en 2004 des versions 7 et 6 respectivement. Traditionnellement, ils sont utilisés pour faire de la
modélisation générale de systemes par des fonctions de transfert, avec une forte orientation vers

les systemes de contrdle et commande. Ils permettent de réaliser une modélisation détaillée des

24

Langage et environnement de simulation : état de 1’art hassairi walid

algorithmes de controle des systeémes dans des domaines multiples. Les versions actuelles
comportent plusieurs « toolboxes » permettant de participer a la conception systeme a différents
niveaux. Parmi les applications les plus intéressantes, nous trouvons [’utilisation de
Matlab®/Simulink® en combinaison avec des outils VHDL pour réaliser le test de modeles pour
leur implémentation matérielle. Le lien de Co-Simulation avec ModelSim®1.1 [Tmw03] permet
de co-simuler et de vérifier du VHDL et du Verilog.

Cet outil permet de réaliser des vecteurs de test « logiciels » en intégrant les solutions HDL
avec les algorithmes, ceci permet de vérifier le fonctionnement du HDL par rapport au modele
original ainsi que de donner des caractéristiques comportementales aux « testbench ». Ce principe
est aussi répandu pour réaliser des essais de type « harwdare in the loop », décrits de facon plus
détaillée par [GomO1].

Parmi les offres de MathWorks nous trouvons des applications pour la spécification et la
modélisation des systemes automobiles [TmwO04a], la conception électronique mixte et la
modélisation des composants. Ils proposent aussi des solutions pour la conception des systemes
embarqués [Tmw04b] et de certaines applications aérospatiales, notamment [TmwO04c] pour la
conception des systemes de commande et la validation de leurs interfaces homme/machine, la
modélisation des systemes mécaniques, des sources d’énergie et pour la modélisation détaillée de
I’environnement de I’appareil en considérant des aspects tels que le vent et la gravité.

Dans la mesure ou les outils de simulation progressent, nous pourrons envisager des
modélisations couplées VHDL/MATLAB dans les quelles les équipes de conception pourront
combiner leurs « savoir-faire » en matiere de systemes de commande sous MATLAB, pour
élaborer des « testbenchs », pour vérifier les modeles écrits en VHDL-AMS ou bien pour
modéliser et synthétiser des lois de commande incluses dans ces systemes.

Du c6té informatique, de nombreux outils ont été proposés : Esterel Technologies a créé
Esterel Studio [Dd00], pour la spécification et le développement des systemes numériques et
logiciels temps réel en utilisant la représentation hiérarchique graphique SyncCharts, donc, une
notation graphique concue par Charles ANDRE [And96] a I’Université de Nice Sophia-Antipolis.
Le langage de programmation synchrone et son compilateur ont été congus a Ecole des Mines de
Paris et a I'INRIAI. Les travaux de recherche [Cla0O1] sur le langage, pour la plupart d’origine

francaise, sont a la base de la création, en avril 2000, de la société d'Esterel Technologies SA.

25

Langage et environnement de simulation : état de 1’art hassairi walid

L'approche synchrone d'Esterel studio pour la modélisation et la programmation a été
retenue afin d’éviter les erreurs et les difficultés propres de la conception de ce type de systemes,
par le biais de méthodes traditionnelles. Esterel Studio utilise une sémantique de type FSM
(Finite State Machine) tres pure, idéale pour concevoir des systemes indépendants de

I'implémentation et dominés par des commandes.

1.8 Approche classique de la validation logicielle

Le flot de conception classique de circuits intégré propose une étape de validation complete
du logiciel embarqué, apparaissant relativement tard dans le processus du développement.
Notamment, un modele matériel du processeur dédié doit étre développé et validé. Cette section
présente successivement le flot de conception classique dans lequel s'insere la validation
logicielle, puis décrit 1'interfacage entre le matériel et le logiciel, et enfin identifie les limites de
son utilisation dans le cas de systeémes complexes.

La figure 2 représente le flot de conception classique d'un systéme contenant un processeur
et son logiciel embarqué. A partir des spécifications completes du systeme, les descriptions de
haut niveau des parties matérielles et logicielles sont produites (manuellement dans le cas
général). Pour la partie matérielle, un langage tel que VHDL ou VERILOG est le plus souvent
utilisé. Nous nous restreignons ici au langage VHDL, couramment utilisé en Europe. La partie

logicielle utilise un flot de compilation C, relativement classique.

26

Langage et environnement de simulation : état de I’art hassairi walid

¢ spécification du systéme
R ystéme _p

synthése synthése

compilation
VHDL VHDL

(=

(_VHDL RTL (_VHDLRTL) <
reste du
systeme

processeur

MATERIEL LOGICIEL

Figure 2 : Flow de conception classique.

La partie matérielle (2 gauche) est constituée de deux parties : un processeur embarqué
pour simplifier, nous ne considérons qu'un seul processeur et le reste du systeme constituer d’un
ensemble de blocs matériels divers. Nous représentons ici un flot de synthése comportementale
du matériel, générant des modeles VHDL-RTL a partir de modeles comportementaux VHDL.

Le logiciel écrit en C (a droite) est compilé en code assembleur (ASM), par un compilateur
développé spécialement pour ce processeur. Ce code assembleur, sous sa forme binaire, est
ensuite chargé dans la mémoire programme du modele VHDL du processeur (comportemental ou
RTL), lequel est simulé conjointement avec le reste du systeme par un unique simulateur VHDL.
Cette simulation est appelée simulation au niveau assembleur. Grace a l'exactitude temporelle des
simulations VHDL, la validation du logiciel embarqué atteint un niveau de précision au cycle
pres [Hag 93]. Le prix a payer est une vitesse de simulation relativement faible, puisqu’elle ne
dépasse pas quelques instructions par seconde pour un seul processeur [Mei 97].

L'interface entre le logiciel et le matériel se situe entre le logiciel applicatif et le processeur,

et plus précisément entre les instructions en code machine et le décodeur d'instructions figure 3.

Langage et environnement de simulation : état de I’art

hassairi walid

Le code assembleur (ou code machine) de l'application, comprenant €galement les

entrées/sorties avec le reste du systeme, est directement traité par le décodeur du processeur. Les

opérations d'entrée/sortie destinées au reste du systeme sont transmises a l'interface bus, via le

bloc d'entrée/sortie du processeur. L'interface bus gere la transmission des données et signaux de

contrdle sur le bus physique, partagé avec les autres opérateurs du systeme. L'interface matérielle

-logicielle est donc entierement définie par le jeu d'instructions du processeur.

Nous distinguons deux types de validations : la validation fonctionnelle et la validation

temporelle. La premiere vise simplement a valider le comportement du logiciel, communiquant

éventuellement avec le reste du systeme. La seconde s'attache a vérifier que les différents signaux

de controle et données sont traités dans un intervalle de temps compatible avec les exigences de

performances, et qu'ils sont disponibles a la date prévue.

JEU
DINETRUCTIONS

PORT2
D'INTERFACE

EUL PHYSIGUE t

e

COPERATEUR

Figure 3 : Interface logiciel-matériel en simulation VHDL.

Cette approche de validation présente un inconvénient majeur : la simulation du logiciel

avec le matériel intervient tard dans le flot de développement. La figure 4 représente les étapes

nécessaires pour aboutir a la validation du logiciel embarqué.

28

Langage et environnement de simulation : état de I’art

hassairi walid

Diveioppemant
i eomadateur
i TN
spécification | Développement Vi I;:
| del'appleation | a logicel T
T /"' ..\"'-.E infegra lﬂﬂ_’/ -
¢y processolr i
]
—
Simutsiion
WHIL

Figure 4 : Etapes pour la validation du logiciel dans un flot classique.

Le logiciel doit évidemment étre développé (en C), de méme que le compilateur complet

(comprenant au minimum le générateur de code, 1'assembleur et I'éditeur de liens) doit étre

développé et validé. De plus, le processeur lui-méme doit étre disponible, et donc ses

spécifications figées (interface et jeu d'instructions). Il est remarquable que plus la validation

intervient tot dans la conception d'un systeme, plus une erreur est corrigée rapidement (voir

figure 5) [Cal 95].

Coit de résalution
i 2'un probléme

Speciication Conception

<
et concaption et debogage Dim?;?;;u s;:tlg:e
du sysiems HWISW
.--o——''_-'_'-'-#f
i
TR E

Temps de développement

Figure 5 : Temps de conception et cofit de débogage.

Dans ce contexte, la moindre modification des spécifications (processeur, interface, jeu

d'instructions) implique la régénération du modele du processeur ainsi que le compilateur. Le

temps du cycle est alors trop long pour espérer explorer plusieurs solutions [Ver 94] [Bol 97].

29

Langage et environnement de simulation : état de 1’art hassairi walid

1.9 Outils existants

Comme nous venons de le voir, les systemes enfouis font appel a des architectures
hétérogenes logicielles/matérielles [Aas 04]. Afin de concevoir de tels systemes, les méthodes de
conception conjointe logicielle/matérielle sont utilisées. Elles permettent de définir les sous-
ensembles du systeme a intégrer et d'effectuer leur partitionnement sur les cibles logicielles et
matérielles. Cependant, la complexité sans cesse grandissante de ces systemes et les diverses
contraintes auxquelles doivent faire face les concepteurs, font qu'il est nécessaire de faire appel a
des nouvelles langages et outils, ce que nous allons montrer maintenant. Afin d'assurer le succes
commercial de tels systemes il est primordial que ceux-ci répondent aux attentes des
consommateurs parmi les quelles nous pouvons citer : le délai de mise sur le marché (time-to-
market) des nouvelles générations de produits, nouvelles fonctionnalités, petite taille, poids 1éger,
faible consommation en énergie, simplicité d'utilisation et bien siir colit acceptable. Les outils
sont arrivés a un degré de maturité assez important restent cependant trop lents et ne permettent
donc pas d'explorer, dans des délais raisonnables, les gigantesques espaces de conception
inhérents aux systeémes actuels. Nous allons citer ainsi I'outil Design Trotter et plus
particulierement le module d’estimation systeme qui permet l'exploration rapide des fonctions
completes décrites en langage de haut de niveau (actuellement le langage C). Le résultat obtenu
grace a la méthode proposée, est aidé le concepteur lors de la phase initiale de la conception d’un
systtme mais il reste limiter sur un nombre d’application et peut contenir des fautes. Le
concepteur peut avoir une approche plutdt logicielle (approche "informatique", exemple : C) ou
plutdt matérielle (approche "électronique”, exemple : VHDL). Le choix du langage de
spécification qu'il utilise est d'ailleurs souvent guidé par le type d'approche auquel il est habitué.
Ensuite, il existe plusieurs algorithmes pour décrire un méme traitement, quelque soit le langage
choisi. C'est surtout ce deuxieéme point qu'il serait intéressant d'intégrer a cette méthodologie et a
I'outil Design Trotter.

Et pour le plus récent, nous trouvons I’outil proposé par M. Juan-Carlos Hamon qui est
HileS .I’outil HiLeS Designer O est arrivé au stade opérationnel [Moc05]: il est en version OV6. 11
s’agit d’un outil de conception amont permettant de représenter les spécifications d’un produit en
un modele formel basé sur les Réseaux de Pétri et le langage VHDL-AMS. Ce modele permet par

une relation a ’outil TINA une certaine vérification des spécifications et la validation d’une

30

Langage et environnement de simulation : état de 1’art hassairi walid

architecture temporisée du systeme sous la forme de blocs fonctionnels interconnectés. L’ outil est
encore faible en maticre de vérification. Le premier exemple, le calculateur ECP, a permis de
tester la premiere version de cet outil dans un environnement industriel. Un certain nombre de

limites sont apparues pour les quelles ils ont fait des propositions de nouveaux développements :

o Lecture de spécifications avec un guide d’interprétation. Ce dernier projet nous a
permis d’envisager le role de UML dans notre démarche ainsi que de profiter de I’importante avis
de I’expert sur la construction de la modélisation Hil.eS.

o La mise en place des observateurs définis par I'utilisateur.

o L’amélioration des interfaces avec des outils de simulation VHDL-AMS. Pour
incrémenter la flexibilité de HiLeS Designer.

o L’utilisation ou la proposition d’une méthode facilitant 1’écriture du code VHDL-

AMS associé aux blocs fonctionnels HileS.

I.10 Conclusion

Ce premier chapitre définit tout d’abord le domaine de la conception dans un contexte ou
I’innovation ne provient plus seulement des nouveautés en termes de matériaux ou de
technologies :

La conception et la simulation des systemes électroniques ont été un argument fort de
motivation pour le développement d’outils, de méthodes et langages permettant de gérer la
complexité croissante des circuits et des systemes. La CAO électronique, prise en compte a tous
ses niveaux, industriel, académique et recherche, est devenue un moteur incontournable
d’innovation et de développement d’outils dédiés a la conception. Les objectifs sont toujours les
mémes, réduire le temps de production« time to market », anticiper les possibles sources d’erreur,
réduire les cofits de fabrication, réaliser des prototypes virtuels les plus représentatifs de la réalité
et en général, réaliser la conception sans faute.

Malgré, le haut degré de spécialisation de la plupart des outils, le besoin de réduire le colit
et le temps de fabrication a imposé la nécessité de trouver des solutions permettant d’avoir une
vision globale des systémes en prenant compte de leur complexité et de leur pluridisciplinarité.

L’objectif est d’assurer la cohérence du systeme des les étapes les plus en amont du processus de

31

Langage et environnement de simulation : état de I’art hassairi walid

conception. Dans ce contexte, I'utilisation de langages standardisés et des outils de simulation

s’imposent comme une pratique incontournable qui sera expliqué dans le chapitre suivant.

32

Plateforme de simulation hassairi wali

6\

PLATEFORMES DE
SIMULATION

33

Plateforme de simulation hassairi walid

Chapitre II: Plateformes de simulation

II.1 Introduction

La conception et la simulation des systemes électroniques ont ét€ un argument fort de
motivation pour le développement d’outils, de méthodes et langages permettant de gérer la
complexité croissante des circuits et des systemes.

Pour cela, nous avons mis en place des plateformes de simulation qui sont composées
principalement de MATLAB, ModelSim 6.0 et FPGA. Pour le kit de la carte FPGA, nous
trouvons principalement : ISE 7.1i, Chip Scope pro, PlanAhead, Synplify 7.3.4 et System
Generator qui permettent d’assure ’interfacage entres plateformes. En plus, nous présentons les
nouveautés de chaque outil et les résultats qu’il produit pour la Co-Simulation des systemes
hétérogenes tous en conservant le méme objectif qui est en premier lieu la réduction du temps de

conception.

I1.2 Simulation VHDL (ModelSim)

Le VHDL est un langage général de description de matériel permettant un grand niveau
d“abstraction. Un systeme aussi complexe peut étre décrit sous forme d'un ensemble de blocs

interconnectés [Pn 03].

34

Plateforme de simulation hassairi walid

ModelSim SE PLUS 6.0
File Edit View Format Compile Simulate Add Tools ‘Window Help

‘Warkspace e

7| Name [Type [Path 2
] work Library wiork,

vital2000 Library $MODEL_TEL ~
ieee Library $MODEL_TEC
MWl modelsim_lib Library $MODEL_TEL ;[
A | =0

. MLibrar}l ﬁﬁl .

I Tr: =
Feading E: Modeltech_E.0/tcl/veim/pref tol ___'_|
reading E:\Modeltech_B.0Wwin32/.. smodelzim.ini

reading maodelzim. ini

¢/ ModelSim SE 6.0 4ug 192004

#44

/¢ Copyright Mentor Graphics Corporation 2004

#4 All Rights Reserved.

4/ THIS WORK COMTAINS TRADE SECRET AMD

/¢ PROPRIETARY INFORMATION WHICH 1S THE PROPERTY
#/#/ OF MENTOR GRAPHICS CORPORATION OR (TS LICEMSORS
#/¢4 AND |5 SUBJECT TO LICENSE TERMS.

#2

ModelSime it work

Waming: [viib-34) Library already exists at “work"

ModelSim: vmap work work

Modifying maodelzim.ini

ModelSim: |

Figure 6 : Le simulateur VHDL.

Lorsque nous désirons réaliser un circuit de type programmable, ASIC, ou bien de type
circuit imprimé, nous sommes soumis a une double contrainte technologique. Il faut savoir
représenter un certain nombre de primitives [Sdc03] : nous parlons alors de niveau portes avec
des fonctions logiques de base (ET, OU etc...), des fonctions combinatoires MSI (addition,
multiplexeur etc...), des fonctions séquentielles simples (bascules et registres), (mémoire et latch).
Le synthétiseur est 1 outil capable d interpréter une certaine description VHDL et d“en déduire le
schéma niveau porte correspondant. La description acceptable par le synthétiseur sera dite niveau
RTL (Register Transfer Logic). Le synthétiseur est trés efficace au niveau porte pour des taches
telles que I’implantation des fonctions combinatoires, le calcul, le codage du compteur, le
séquenceur, I'implantation des échanges par bus etc...Par contre, les choix d’architecture, la
structuration d'un systeéme sont des tiches de trop haut niveau et restent a la charge du
concepteur.

Le VHDL synthétisable est soumis a des limitations propres au synthétiseur (ceux-ci évoluent
sans-cesse et essaient dintégrer des fonctions de plus en plus complexes). Au moment de la

description VHDL, nous devons avoir une idée de ce qui va étre généré :

35

Plateforme de simulation hassairi walid

e]I faut que la table de vérité d “un circuit combinatoire soit completement définie.

e Dans un systeme synchrone, les fronts d ‘horloge doivent étre parfaitement identifiés.

e Le nombre de bits d 'un mot soit optimisé etc.
Donc, nous pouvons dire que le VHDL est un outil incontournable lors d'un cycle de conception.
Il permet de passer d “un niveau tres abstrait a un niveau circuit comme I’ullistre la Figure 7. Tout
le long du cycle, certaines parties resteront inchangées car non synthétisables, ce sont les
dispositifs de test du circuit. Le circuit en cours de conception passera de 1°état de modele abstrait

a celui de description synthétisable.

v

- Niveau comportementall |

| g structuration

Flot de données Contréle

Y

Test en VHDL —®= VHDL synthétisable

i

Syvnthése VHDL

et optumisation

v

Niveau portes

A

Extraction de paramétres

Blocs au mveau portes . prumitrves

technologique niveau technologique

Figure7 : Utilisation du VHDL pour les niveaux de conception.

36

Plateforme de simulation hassairi walid

II.3 Simulation MATLAB

The MathWorks Release 14 inclut tous les produits de 1'environnement MATLAB® et
Simulink® [TmwO04c].

<5 MATLAB
File Edit Debug Deskiop Window Help
0 E'“v| % Bz B v oo ‘ﬁ ﬂ‘;‘ 7 | Currert Directory: | COMATLABTOTwvork LlJ
Shortcuts [#] Howto Add (2] 1What's bew
Current Directary - C;:UMATLABTO1 work 2 x| |Command Window T
ot eS| B
INlFi\ES i IFi\ETYpB To get started, select MATLAE Help or Demos from the Help menu.
(0 netlist Falder s
3 slpy Falder
([synp Fulder
[sysqenADCDACYsgen Falder
Ctermp Falder
(e matlab. mat MAT-file
[] postnetlist.log LOG File 27
[sysgenlog LOG File
Cutrert Directary | wiorkspace
Command History
—%-- 18/02/06 11:27 --% ;_
Setupmodelsim
i

1
—%-- 18/02/06 13:21 --%
—%-- 21/02/06 12:49 --%
—5—= g8/0gynE 13408 =%
—E-= Z40RY 08 T03IL13 =%
== 294024086 1l:l6 -=%

open('C:\MATLAE?OD 1 workh walid.mdl')
—%-—- 27/02/06 14:43 —-%
—3-- 28/02/06 09:44 —-3%
== 20402408 15:29 ==%
—%-- 01/03/06 12:04 --3%
—%-- 06/03/06 12:12 --%

| | Search Deskicn WJ ¢ B, 23:07.l
Figure 8 : L’interface de MATLAB 7.

Nouveautés pour le calcul scientifique avec MATLAB 7 :

Cette version inclut de nouveaux outils de programmation, la prise en charge des calculs
entiers et simple précision, la possibilité de manipuler des ensembles de données plus importants
et apporte des améliorations au niveau des performances. De plus, MATLAB Compiler 4 prend
en charge la totalit¢é du langage MATLAB, permettant ainsi le déploiement d'un plus grand

nombre d'applications.

37

Plateforme de simulation hassairi walid

MATLAB est un langage de calcul scientifique de haut niveau et un environnement
interactif pour l'analyse de données et le développement d'algorithmes et d'applications. Elle
inclut aussi de nouvelles fonctionnalités majeures dans les domaines de la programmation et de la
génération automatique du code, du graphe et de la visualisation, des mathématiques, de I'acces

aux données. Les nouvelles fonctionnalités sont les suivantes :

Nouveautés pour la conception basée sur des modeles avec Simulink 6 :

Cette version prend en charge les projets de développement de trés grande largeur et la
conception d'applications dont la performance est un point critique. Simulink 6 inclut de
nouvelles fonctionnalités pour gérer les modeles de grande taille et augmenter I'efficacité des flux

de travail pour les systemes de controle, de traitement du signal et de communication.

Simulink est une plate-forme pour la simulation multi domaine et la conception basée sur
des modeles de systemes dynamiques. Il fournit un environnement graphique interactif et un
ensemble de bibliotheques de blocs personnalisables qui nous permettent de concevoir, de
simuler, de mettre en ceuvre et de tester de fagon précise des systemes de controle, de traitement
de signal, de communication et d'autres systémes qui varient dans le temps. Simulink 6 améliore
les performances, la réactivité, la fidélité de la modélisation et 1'efficacité des flux de travaux lors

de la modélisation de grands systemes. Les nouvelles fonctionnalités sont les suivantes :

Modélisation basée sur des composants pour les grands systemes :

° Possibilité de segmenter un modele en plusieurs fichiers, ot chaque fichier est un
modele séparé.

° Possibilit€é de modéliser, de simuler, de tester et de mettre en ocuvre
individuellement chaque composant de la conception avant de I'incorporer dans un modele de
systeme.

o Meilleure intégration de nous modeles dans un logiciel existant de gestion de
configuration et de contrdle de version basé sur des fichiers.

o Chargement et génération de code incrémentiels.

° Meilleurs diagrammes de mise a jour et simulations plus rapides pour les modeles

de grande taille.

38

Plateforme de simulation hassairi walid

o Fonction Model Workspaces fournit des espaces de travail séparés pour le
stockage et la gestion des parametres et des variables de chaque modele.

° Meilleure prise en charge des bus pour la définition des interfaces, la prise en
charge des opérations sur les signaux de bus et la spécification des bus comme structures pour

la génération de code.

I1.4 XilinX ISE 7.1i

La nouvelle version d’ISE [XilinX05], la version 7.1, ajoute une technologie plus
innovatrice pour aider & minimiser la logique de développement et le cofit de production. ISE 7.1i
fournit une exécution plus rapide que n'importe quel autre PLD, il permet une conception a
grande vitesse, et plus facile & employer par rapport au logiciel de conception disponible. Elle

permet au client de lancer leurs produits sur le marché avant leurs concurrents.

& ziling - Project Navigator - C:\ MATLAB701" koolbox!, xiling', sysgen' examples', demos'ngc_netlist| sysgensynthfsa_clk_wrapperise - [sysgensynthf... &8 &8 &
: = = = — ...E - : i E... - E : - —— -

r Fle Edit Yiew Project Source Process Simulation Window Help — PrEr
DlelRl@ @ HP|E BleEE [E 0] L] o] al] - ol
gz 5= » |»zf EIEkE =R AI%I%I%I@MH
e i ntity sysgensynthfse clk_vrapper is -
— port |

B svsoensynthise_ck_wrapper.ise
El-£d #c3s200-41255
[F] clock_pkg [conv_pkg.vhd)

- [B] conv_pkg [conv_pkg.vhd)
ol somameiabhiea ol viral fsnemansimbhbas Al T
[>

1 B Module Viewl [] SnapshotViewI E Library Viewl

ce: in st,d_logic = '1';

ce_clr: in std logic := '0';

clk: in std_logic:

i in: in std logie wvector (11 downto 0):
dq_in: in std logic vector (11 downto 0);
dh i: out std logic wvector (17 downto 0):
dh_g: out std logic vector (17 downto 0):
i _out: out std logic wvector (9 downto O);

= |5
£l g_out: out std logic wvector (3 downto 0)
Processes for Source; "sysgensynthfse_clk_wrapper-structural”! I;| 1:
------- O View Technology Schematic nd sysgensynthfse clk wrapper:
I e - -]
....... S
[O enerate Post-Synthesis Simulation Mode| rechitecture structural of sysgensynthfse clk w
I'—_'IO Implement Degign Ccomponent sysgensynthfse L
F- XY T Translate d ‘ 3
« I ;IJ = :
B Process View I [V} spsgensynth..
FJ Loading device for application Rf_Device from file °3s28@8.nph' in environment C:/¥ilinx.

& Cansale l % Find in Filesl b 4 Enors] i Warningsl

Figure 9 : L’interface ISE 7.1i de XilinX.

39

Plateforme de simulation hassairi walid

La facilité d'utilisation est un grand objectif de XilinX. Avec le dégagement d'ISE 7.1i,
XilinX peut maintenant offrir aux clients une solution intégrée de simulation avec le nouveau
simulateur d'ISE. Le client de chaque base d'ISE BaseX et d'ISE accede a une version limitée
appelée le simulateur « Lite d'ISE ». Les clients de base d'ISE peuvent améliorer le simulateur

d'ISE.

ISE 7.1 fournit I'appui pour la nouvelle famille de Spartan-3[Xap 05]. Ce dernier fixe une
nouvelle norme pour réduire le prix de FPGA. Cette famille d'industrie, présente les dispositifs

les moins chers de la deuxieéme génération sur les technologies de 90nm.

La nouveauté se prolongeant aux FPGAs VirteX-4, ISE 7.11 offre plus de dispositif d'appui
additionnel dans ISE BaseX et ISE. Ce nouvel appui lui facilite plus encore pour les clients de
commencer des conceptions visant FPGAs par des logiques avancées, rendement plus élevé,

densité la plus élevée, et une grande capacité de mémoire.

Configurations

Le logiciel XilinX ISE 7.1i offres trois configurations de conception, tous fournies sous le

logiciel intégré de I'environnement (ISE) de conception:

sE

10O

Figure 10 : ISE Foundation 7.1i de XilinX.

ISE Foundation 7.1i : La base d'ISE est l'exécution de conception de la logique
programmable la plus complete de l'industrie. Cette configuration d'ISE soutient toutes les
familles de logique de « fil » de XilinX et fournit tout requis pour remplir n'importe quelle

conception de XilinX, intégrant « seamlessly » avec les produits de la vérification les plus

40

Plateforme de simulation hassairi walid

avancés de l'industrie. XilinX offre également les outils facultatifs de productivité congus pour

collaborer avec la base d'ISE.

Figure 11 : ISE BaseX 7.11 de XilinX.

ISE BaseX 7.1i : ISE BaseX est 1'environnement programmable de conception de logique le
plus rentable, le plus complet. La configuration d'ISE BaseX fournit toutes les possibilités
contenues dans ISE WebPACK en plus des outils additionnels. IIs aident les concepteurs a rendre

leur conception logique programmable, plus rapidement et minimiser le colit de conception.

- WebPACK

i

Figure 12: ISE WebPACK 7.11 de XilinX.

ISE WebPACK 7.1i : la configuration d'ISE la plus facile a obtenir, il est sur le Web et libre !
ISE WebPACK fournit tout requis pour remplir des conceptions logiques programmables visant
tout le principal XilinX CPLDs et FPGAs a basse densité. ISE WebPACK combine 1'entrée de
HDL, la synthese et les possibilités de vérification avec les outils de I'exécution les plus puissants

de l'industrie. ISE WebPACK est disponible pour le Microsoft Windows XP, le Windows 2000, et

maintenant Linux 3.

41

Plateforme de simulation hassairi walid

Pour augmenter la productivité nous devons aussi avoir les Logiciels facultatifs qui sont :

e Chip Scope Pro On-chip Debugging Tools: les conditions de taille
[XilinX05], de vitesse et de conseil de la situation actuelle d'aujourd’hui FPGAs le rendent
difficile de corriger des conceptions en utilisant des méthodes traditionnelles d'analyse de
logique. Les outils de Chip Scope fournissent un outil puissant et précis pour aider a vérifier et
corriger des conceptions de FPGAs, en temps réel et sur option des travaux directement avec des
analyseurs de logique d'Agilent pour encore une analyse plus profonde de signal de FPGA. Chip
Scope pro permet l'insertion des noyaux low-profile d'analyseur de logique et d'autobus dans des
conceptions. Ces noyaux logiques permettent a 1'utilisateur de regarder tous signaux et nceuds
internes dans un FPGA. Déclencher les conditions et l'installation en temps réel par
I'intermédiaire du port de JTAG sans affecter la logique d'utilisateur ou exiger la recompilation
de la conception.

e PlanAhead Hierarchical Floorplanner: PlanAhead fournit une
conception hiérarchique, bloque basée et accroissement méthodologie, permettant a des
concepteurs de changer seulement une partie de la conception et de laisser la conception intacte.
Les possibilités hiérarchiques de planification de conception de PlanAhead incluent une interface
utilisateur graphique avancée (GUI) qui le rend facile a utiliser pour méme les concepteurs
inexpérimentés. L'affichage intuitif des ressources de dispositif, la hiérarchie de connectivité,
logique et physique laisse des concepteurs visualiser et fixer rapidement les problématiques. Les
concepteurs peuvent créer et mettre en ceuvre ['hiérarchie physique indépendamment de
I’hiérarchie logique, et simultanément projeter et analyser les réalisations physiques multiples,
maximisant l'exploration de l'espace de conception en identifiant plus rapidement la réalisation
optimal.

¢ ModelSim XilinX : ModelSim XE est un environnement complet de
simulation du PC HDL qui permet aux concepteurs de vérifier le code source de HDL , les
modeles fonctionnels et de synchronisation de leurs conceptions. MXE réalise la simulation de
HDL et I’environnement de correction fournissant I'assurance de 100% VHDL et de langue de
Verilog.

e System Generator for DSP : est I'outil logiciel du ministre de I'industrie

pour concevoir, simuler, et mettre en application les systemes a base FPGA de rendement élevé

42

Plateforme de simulation hassairi walid

de DSP. L’utilisant du System Generator raccourcit considérablement le chemin du concept de
construction du matériel en fonction de la simplicité, la flexibilité, la vitesse, la puissance, et la

ponctualité.

II.S Chip Scope Pro 7.1i

Suite a I’augmentation de densité des dispositifs de L” FPGA [Csp05], nous aurons des
problemes pour tester ces dispositifs. Les outils de Chip Scope™ integrent la clef logique des
composants matériel d'analyseur avec la cible XilinX : Virtex™, Virtex-E,Virtex-1I, Virtex-II
pro, Virtex-4, Spartan™-II, Spartiate-IIE, Spartan-3 et Spartan-3" dispositifs (including the QPro
™ variants of these families). Les outils de Chip Scope™ communiquent avec ces composants et

fournissent au concepteur une logique complete d’analyse.

43

Plateforme de simulation

hassairi walid

Nous allons présenter les outils de Chip Scope dans un tableau :

L’OUTIL

Description

ChipScope Pro Core Generator.

Fournit des Netlists et des calibres d'instantiation pour :
* Pro (ICONE) noyau intégré de contrdleur.

* Noyaux intégrés d'analyseur de logique pro (ILA).

* Noyau de trace d'Agilent (ILA/ATC).

* Analyseur intégré d'autobus pour IBM CoreConnect
Noyau périphérique de 1'autobus de Sur-Morceau

(IBA/OPB).

* Analyseur intégré d'autobus pour des gens du pays de
processeur de CoreConnect.

Noyau de I'autobus (IBA/PLB).
* Noyau virtuel de I'entrée-sortie (VIO).

e trace d'Agilent de Noyau 2 (ATC2).

ChipScope Pro Core Inserter

Insére automatiquement l'ICONE, les noyaux ILA,
ILA/ATC, et ATC2 dans la conception synthétisée de
'utilisateur.

ChipScope Pro Analyzer

Fournit la configuration de dispositif, l'installation de
déclenchement, et la trace affichage pour I'lLA, ILA/ATC,
IBA/OPB, IBA/PLB, et VIO noyaux. Les divers noyaux
fournissent le déclenchement, commande, et possibilités de
capture de trace. Le noyau ICON communique au pins.

Tcl/JTAG Scripting

Le TCL/ JTAG l'interface scriptable de commande permet
d’agir 'un sur l'autre avec des dispositifs dans
lachaineJTAG et un TCL shell.

Tableau 1 : Outils de Chip Scope.

44

Plateforme de simulation hassairi walid

L’outil d'analyse Chip Scope soutient les cables suivants de téléchargement pour la

communication entre le PC et les dispositifs de JTAG [Csp05] Figure 13:
* USB de cable de plateforme.
 Cable parallele IV.
 Cable parallele II1.
e MultiPRO (mode de JTAG seulement)
e MultiLINX™ (mode de JTAG seulement)

* Agilent E5S904B Option 500, analyseur de port de trace de FPGA (Agilent ES904B TPA)

Target Device Under Test
Uzar User
Function Function
Host Computer with
ChipScopa Pro Software
— — '-____H
Cmﬁ:‘:ﬁ l“_‘___ - 4T\ __,,..-"
' Function
il 1con Pro By
L3

JTAG /
el _._L Connections
Cabls E-_ﬁ\\x -~)

Board-Under-Tast

Figure 13 : Connections JTAG.

45

Plateforme de simulation hassairi walid

I1.5.1 Flot de conception

Les outils de Chip Scope congoivent des fusions figure 14 d’écoulement facilement avec
n'importe quel FPGA standard. Ils congoivent aussi I'écoulement qui emploie un outil standard de

syntheése de HDL et I’outil d'exécution XilinX ISE 7.1i [Csp05].

ChipScope Pro
Core Generator
Genarate... Instantiate... Synthesiza..
IGO0, LA,
ILASATE, cones into HOL chesign without
IBAOPE, = soumce instantisating —
IBAPLE, ChipSoope coms
VI, or
ATCZ cores
or.. ChipScope Pro
Core Ingerter
Synthasize... Connact.. Insert...
s with o] oty i PCOM, ILA, ILAVATC,
cores in it indmal sgnals andior ATC2 cores into
10 COnes synihagized dasign
(s o EDIF natiat)
ISE
Implement...
design
[EUERE
Seat...
wigged
View..
wanvelom

cpra_tocls_dasiqn _fow 0E1I04

Figure 14 : Flot de conception de Chip Scope.

I1.5.2 Conclusion

Cette interface simple fournit I'acces Scripting de TCL aux cables de téléchargement de
XilinX JTAG par l'intermédiaire du Bibliotheque de communication de Chip Scope JTAG. Le
but du TCL du JTAG est de fournir un simple systeme Scripting pour accéder a des fonctions de
base de JTAG. Dans quelques lignes de manuscrit de TCL, nous pouvons balayer et manceuvrer

la chaine de JTAG par les cables standards de XilinX.

46

Plateforme de simulation hassairi walid

II.6 PlanAhead 7.1.10

Les concepteurs de FPGA peuvent relever différents défits d'exécution de multiple selon
leur application cible, les buts de projet et ces priorités. La fonctionnalit¢ de PlanAhead peut
soutenir des écoulements multiples efficaces pour différents aspects d'exécution de FPGA [Pa05].
PlanAhead emploie les dossiers synthétisés de contrainte de Netlist et de conception pour ses
possibilités d'analyse puissantes. De PlanAhead, les utilisateurs peuvent exporter un Netlist
d'extension EDIF et concevoir le dossier de la contrainte UCF pour conduire les outils de XilinX
P&R. PlanAhead soutient des Netlists supérieurs dans le format d'EDIF ou de NGC. Les Netlists
plus bas peuvent étre dans le format d'EDIF, de NGC ou de NGO. Si des dossiers de NGC ou de
NGO sont employés, I'environnement de placement et routage doit étre établi pour que

PlanAhead appelle NCG2EDIF d'ISE.

PlanAhead permet de lire les noyaux de conception. L'outil pourra analyser les noms d'UCF
qui se dirigent dans les noyaux et fournissent une synchronisation et une utilisation plus précises
de ressource. Des contraintes de conception peuvent étre incorporées a partir du dossier d'un ou
plusieurs UCF ou de NCF (s). Quand des noyaux de format de NGC ou d'O.N.G. sont importés
dans PlanAhead, ils sont employés pour la planification seulement. Pour 1'exécution, les modules
de NGC et d'O.N.G. sont filtrés créant dehors les boites noires pour les noyaux. Ceci permet

d’employer les dossiers originaux de NGC et d'O.N.G. pendant I'exécution.

RTL

.

Svnthesis

L
PA Floorplan and
Timing Analysis

v

P&R

Figure 15 : Flot de conception de Plan Ahead pour les FPGAs.

47

Plateforme de simulation hassairi walid

I1.7 Synplify 7.3.4

- __ Synplify - [C:\ Program Files', Synplicity’, Synplify_ 734" examples’, vhdl' zilinx, proj_1.pril | - e e

—~

E.Eile Edit “iew Project Bun HDL Snalvst Options Window S'sb Help

PEOSEHOES ¢+ aB<)(| a8 5=|s

S 1 1 f i T >

Source Files SynphCZty
et | E [j-\F'n:\gran? F|Ies\synpllc:lty'\S_l,lnpI|fy_?34\ekamples\vhdl\xlllnx g I rev_‘l] Simply Better Results
= 1§ proi_1 [project] prepZ_Z2 e

@ D whdl -IF prep? 2 am
LopillE rev_ 1 (prep2_2)

-8 prepz_z.edn Freguency (MHz) 200
- [3] prep2 2 sdf
-] prep2_2.fze —| Swmbolic FSk Compiler
_ £ E-j traplog.tig
LR orenz Zta x| Resource Sharing
Al >

REesultFile
Chsnge prep?_2 edn

Target
Sz Actel S00K : ASO0KOSD, maxfan: 12, report_path: 4000

Ready ...

B poiipi

Figure 16 : Interface de Synplify 7.3.4.

B = b

L

Synplify® est un logique synthesistool pour les FPGAs (Field Programmable Gate Arrays),

développé par Synplicity ® de Sunnyvale, Californie [Sug 03].

Il a comme entré des conceptions a niveau élevé écrites dans des langages de description de

matériel de Verilog et de VHDL (HDLs). Il emplois aussi la classe des propriétaires B.E.S. T

(Behavior Extracting Synthesis Technology®), 1'outil optimise le code HDL, il a un rendement

élevé. Le logiciel peut écrire post-synthesis VHDL de Verilog que nous pouvons employer pour

vérifier la fonctionnalité par la simulation.

Le logiciel integre les dispositifs suivants :

* L'outil de HDL Analyst®, une interface graphique pour l'analyse et crossprobing.

e La fenétre d'éditeur de texte de Synplify pour écrire et éditer le code de HDL.

48

Plateforme de simulation hassairi walid

e L'interface de SCOPE® (Synthesis Constraint Optimization Environment®), que nous
utilisations dans la conception comme le bilan de contréler pour les contraintes de

synchronisation et d’attribut.
* Un compilateur de FSM symbolique, qui exécute la machine avancée d’optimisations.

La figure suivante 17 contient un écoulement générique de conception montrant les étapes
typiques du concepteur en prenons comme une application FPGA. La partie ombre montre les
étapes que nous pouvons accomplir avec la synthese de Synplify. Cet écoulement générique de

conception complete 1'écoulement spécifique de conception utilisé pour le cours d'instruction.

HDOL Design Entry

I
Logic Optimization Synplify Synthesis

I
Technology Mapping

Flacement

I
Routing

1r
FPGA Configuration

Figure 17 : Les différentes étapes de conception supporter par Synplify.

I1.7.1 Entrer de conception VHDL

La logique du circuit de FPGA a mise en application est le point de départ pour la
conception de I’FPGAs. Nous pouvons faire ceci en dessinant un schéma, écrivant une
description HDL, ou indiquant des expressions booléennes. Pour 1'écoulement de Synplify,
l'entrée de conception est 1'étape o nous produisons de l'entrée pour l'outil. L'entrée doit étre des
descriptions de Verilog ou de VHDL. Le logiciel nous fournit un environnement ol nous

pouvons écrire ou éditer des descriptions de HDL.

49

Plateforme de simulation hassairi walid

I1.7.2 Logique d’optimisation (Compilation)

C'est le premier étage de la synthese, dans laquelle le logiciel réorganise le travail original
dans un ensemble de fonctions combinatoires [Sug 03]. Dans l'écoulement de Synplify, les
fonctions combinatoires sont représentées comme un travail booléen. Ceci nous permet de
spécifier dans le processus de conception et de modifier la conception initiale de logique pour
optimiser les secteurs ou accélérer la vitesse du circuit final, ou toutes les deux. L'optimisation est
calculée a partir du Netlist et est indépendante de la technologie cible. Il inclut des opérations

comme le déplacement, la redondance et I'élimination commune des expressions secondaires.

I1.7.3 Technologie de tracage

La technologie de tracage est la deuxieme phase d’optimisation, ou la logique est optimisée
a une technologie spécifique. Pendant cette phase, la conception compilée se transforme en
circuit des blocs optimisés en tenant compte de la logique de L’ FPGA. Selon notre chois de
priorités, nous pouvons se concentrer sur l'optimisation de secteur (minimizing the total number
of blocks), retarder l'optimisation (minimizing the number of logic block stages in time-critical

paths), ou toutes les deux.

L'outil de Synplify emploie des techniques de tragage spécifiques a 1’architecture pour
tracer les conceptions logiques. Elle a les outils intégrés pour analyser les chemins critiques,
« crossprobe » et la vérification au niveau RTL. Le logiciel produit des Netlists dans les formats

appropriés, placement et routage, pour les outils qui suivent.

I1.7.4 Placement

Le placement est la premiere étape du processus physique de conception. Pendant cette
étape, les blocs logiques sont placés dans une rangée de L’FPGA [Sug 03]. En ce moment, la

densité d’interconnexion devient importante.

C'est le point auquel le logiciel de Synplify remet la commande de conception a un autre
outil. Cependant si nous avons l'optimisation physique d'amplification, nous pouvons employer
les résultats d'un premier passage de placement pour optimiser plus loin notre logique de

conception.

50

Plateforme de simulation hassairi walid

I1.7.5 Routage

Le routage est 1'étape finale du processus physique de conception. A ce stade, nous
employons l'outil placement et routage pour relier les blocs placés en tenant conte de la logique

de notre carte FPGA et pour le choix des commutateurs programmables.

I1.7.6 Configuration FPGA

Dans cette phase de conception, nous configurons le morceau final de FPGA et le mette en

application.

II.8 System Generator for DSP

Concernant System Generator, nous devons installer les logiciels que nous avons cites
précédemment. Il est mis en place a partir de la commande « run »de MATLAB [Xsg05]. 1

permet comme présenter dans la figure 18 de communiquer les différents logiciels constituant la

plateforme.
/\ DSP System Simulation
/ '.: MATLAB/Simulink
HDL SvaTen
Co-Simulation g GENERATOR’
- For DEE
Simulate
HDL Modules

Figure 18 : communication de System Generator avec la plateforme.

Flot de conception du System Generator

System Generator peut €tre utile dans beaucoup d'arrangements [Xsg05]. Parfois nous
voulons explorer un algorithme sans traduire la conception dans le matériel. D'autres fois nous

voulons employer une conception de System Generator en tant qu'élément de quelque chose de

51

Plateforme de simulation hassairi walid

plus grand. Une troisieme possibilité est qu'une conception de System Generator doit étre
employée dans le matériel de FPGA. Dans cette section, nous expliquons d’avantages chacune

des trois possibilités :

® Exploration d'algorithme : System Generator est particulierement utile pour

I'exploration d'algorithme, le prototypage de conception et l'analyse modele.
L'outil est utilisé en dehors d’un algorithme afin d’observer les problemes de
conception qui sont susceptibles d'étre faits face et peut estimer le cofit et
I'exécution dans le matériel. Un concepteur peut assembler les parties principales
de la conception sans s'inquiéter des points fins ou de l'exécution détaillée. Les
blocs de Simulink et le code de MATLAB .m fournissent des stimuli pour des
simulations et pour des résultats d’analyse.

e Mettre en application une partie d'une plus grande conception : System Generator

est souvent utilis€é pour mettre en application une partie d'une conception plus
grande. Par exemple, le System Generator est un bon arrangement dans lequel
nous pouvons mettre en application des circulations et les commandes de données,
mais il est bien moins adapté pour les interfaces externes sophistiquées qui ont des
conditions strictes de synchronisation. Dans ce cas, il peut étre utile de mettre en
application des parties de la conception a l'aide du System Generator, met en
application d'autres picces dehors, et les combine alors dans un fonctionnement
entier.

e Mettre en application une conception complete : Pour une telle conception, nous

appuyons sur le bouton génerate de system Generator il permet la traduction de
toute la conception en HDL, d'écrire les dossiers requis pour traiter le HDL a
l'aide des outils. Les dossiers écrits incluent ce qui suit : HDL qui met en
application la conception elle-méme ; Un wrapper d’horloge qui joint la
conception. FElle utilise les signaux dont la conception a besoin.

Un test bench HDL qui enferme 1'emballage d'horloge. il permet a des résultats

des simulations de Simulink d'étre comparés contre ceux produites par ModelSim.

52

Plateforme de simulation hassairi walid

I1.9 Simulation FPGA

I1.9.1 Les méthodes de conception

Afin de satisfaire les avancées technologiques actuelles : densité d’intégration de plus en
plus élevée et conception de circuits toujours plus complexes, les concepteurs proposent d’utiliser
des approches méthodiques pour maitriser le flot de développement. Une méthodologie peut se
considérer comme une « boite a outils » dans laquelle le concepteur trouve une variété d’outils :
modeles, solutions, méthodes. Reste au concepteur a trouver pour chaque situation 1’outil
approprié pour une résolution efficace de son probleme.

Nous nous focaliserons sur la présentation de la méthode descendante top down. En effet,
cette approche est la méthode la plus populaire parmi les concepteurs de circuits intégrés ASICs
et FPGAs. Par ailleurs, c’est une méthode « générique » ou les approches de conception viennent

s’imbriquer. Par exemple, la synthése comportementale permet dans le flot fop down de générer

automatiquement une architecture.

I1.9.2 La méthode descendante « top-down »

Comme nous 1’avons vu précédemment, les méthodes de développement des circuits
FPGAs et ASICs ont beaucoup profité des récentes avancées de la microélectronique. Ainsi lors
de la phase de conception, I’utilisation de langages de description HDL se généralise [Jerr97].
Ces langages présentent un aspect convivial ; ils aident au développement d’un ensemble de
couches d’abstraction du circuit et a la division du flot de conception en sous problemes
simplifiés.

Ce type d’approche de conception, qui s’applique aussi bien aux circuits ASICs qu’aux
circuits FPGAs, s’effectue selon une méthode hiérarchique descendante, appelée aussi conception
top-down [Ries99]. L’approche descendante part du systeme en circuits puis sous circuits et
évolue ainsi jusqu’au schéma composé de transistors. La figure 19 représente le flot hiérarchique
de cette méthode de conception avec les actions et les modeles associés a chaque niveau
d’abstraction.

Les quatre niveaux d’abstraction de la méthode de conception descendante sont présentés

dans la figure 19 peuvent étre définis comme suit :

53

Plateforme de simulation hassairi walid

Specification du Syitéme
Nivean
Systéme
S .

Synthéze Comportementale

Nivean
Compertemental | | Simulation
o Algorithmigue
L

Nivean
Transfert de Simularon Test Bemoh
Registre (RTL)

yi s
Nivean Physique
S {Suppait

FPGA on ASIC)

Synthéze RTL

Syuthéeze Logigue

£ N T T T

Figure 19 : Schéma hiérarchique de la méthode de conception descendante.

Le niveau systeme ou spécification systeme (system level en anglais) : est le niveau d’abstraction

le plus élevé. A ce niveau, aucune architecture et aucun séquencerent des opérations sont définis.

Le niveau comportemental et algorithmique : A ce niveau d’abstraction, le circuit est spécifié en

terme de pas de calcul, séparés par des points de synchronisation ou des lectures/écritures des
entrées/sorties. Nous parlerons de syntheése comportementale dont I’objectif est de découper ces
pas en ensembles de cycles d horloge pour fournir une architecture synchrone.

Le niveau transfert de registre, ou bien RTL : A ce niveau, les opérateurs sont associés aux

composants de librairie, les variables aux points mémoires pour obtenir une représentation en
transfert de registre. Nous étudierons a ce niveau I’architecture de la fonctionnalité et la synthese
RTL, cette synthese transforme un circuit spécifié pour chaque cycle d’horloge en un ensemble
d’équations booléennes.

Le niveau physique: est le niveau le plus bas, il prend en considération les informations

électriques du systeme, il possede le plus haut degré de précision dans le modele. Nous parlerons
de synthese logique, qui permettra la configuration du circuit.
Par ailleurs pour compléter le flot de la méthode descendante, il faut ajouter des étapes de

validation. Comme nous 1’avons présenté sur la Figure 19 précédente le circuit modélisé peut Etre

54

Plateforme de simulation hassairi walid

validé par mode de simulation a tous les niveaux de description. Cette opération est possible a
partir d’un fichier de test que I’on nommera testbench dans le cas de 'utilisation du langage
VHDL.

. La syntheése comportementale : La synthése comportementale est un processus qui transforme

un algorithme en une architecture tout en préservant la méme fonctionnalité. L’architecture
obtenue est donnée sous forme d’une description au niveau transfert de registre RTL et se
compose généralement d’un contrdleur et d’un chemin de données [Jerr97] [Cesa99].

. La méthode de conception modulaire : Dans le contexte de développement actuel, ol les criteres

prédominants sont la rapidité de développement et la maitrise des cofits. La modularité est la
méthode la plus fiable a long terme .Elle consiste a dégrossir un probleme de conception en le
décomposant en une somme de problemes simples correspondant a des cas plus rudimentaires
déja connus.

La méthode d’adéquation algorithme architecture : L’adéquation algorithme architecture

consiste a étudier simultanément les aspects algorithmiques et architecturaux en prenant en
compte leurs interactions, en vue d’effectuer une implantation optimisée de 1’algorithme tout en
réduisant les temps de développement et les coflits de I’application étudiée Cette méthode est
basée sur I’optimisation des graphes flots de données afin d’aboutir a une architecture respectant

les contraintes de conception : temps de calcul, surface du circuit, ...etc.[Sore01].

I1.9.3 Les contraintes actuelles de conception

Bien que la méthode de conception descendante, dite top-down, offre une approche de
conception générique, elle présente néanmoins certaines limites. En effet, bien que la division du
flot de conception en couches d’abstraction ait permis de simplifier I’implantation sur cibles
matériel ASICs et FPGAs, la méthode top-down est trées peu adaptée a I’implantation
d’algorithmes complexes comme ceux des commandes des systemes électriques. Dans ce cas, le
passage du niveau comportemental au niveau RTL est tres critique puisque, 1’architecture, qui
détermine les performances du circuit et de la commande, est définie lors de cette transition. Par
ailleurs, cette méthode de conception ne prend pas en considération les contraintes inhérentes aux
systemes électriques telles que : I'intégration mixte, I’optimisation de 1’architecture (temps de

calcul, surface utile du circuit, ...), 'intégration conjointe, ...etc.

55

Plateforme de simulation hassairi walid

De plus, face a la complexité croissante des systeémes et aux exigences techniques,
budgétaires et temporelles toujours plus contraignantes, de nouveaux enjeux apparaissent.

Actuellement, le concepteur se retrouve face a des spécifications qui ne sont pas
parfaitement définies au début du cycle de conception (étape de spécification du systeéme) et dont
la définition va dépendre des résultats intermédiaires de 1’intégration. Ce cas se présente souvent,
et en particulier pour les spécifications non techniques : colit global du systeme, disponibilité des
composants, dépendance vis a vis d’un fondeur ou d’un fabricant, durée de vie et évolution du
produit, délai de conception, etc.

Aussi, ayant a traiter a la fois des contraintes mal définies ou ayant changé un éventail de
solutions techniques tres vastes en constante évolution, le concepteur peut étre amené a vouloir
tester plusieurs stratégies d’intégration apres avoir défini un modele fonctionnel unique du
systeme. Sans outils appropriés, une telle technique n’est pas envisageable. Ainsi, une forme
d’automatisation de la conception permettrait d’une part de réduire les délais de conception, mais
aussi de traiter des complexités que 1’approche manuelle interdit et de diminuer un taux d’erreur
d@ au facteur humain.

Enfin, il faut ajouter aux contraintes précédemment citées, la problématique de la validation
du circuit. Valider le bon fonctionnement d’un circuit est impératif durant tout le long du
processus de conception, surtout avant I’envoi en fabrication. Pour s’en convaincre, il suffit de se
rappeler le dysfonctionnement du processeur Pentium. Cependant, la simulation n’étant pas en
mesure de traiter les fortes complexités, il faut trouver des techniques permettant soit d’apporter
la preuve mathématique du bon fonctionnement du circuit, soit d’en émuler le fonctionnement.

Par ailleurs, face a des domaines tres contraignants comme celui des systemes é€lectriques,
la validation numérique est insuffisante. Une commande implantée dans un circuit intégré n’est
jamais congue pour fonctionner seule. Elle est toujours au sein d’un systeme global : capteurs,
CANSs, onduleur, redresseur, moteur, etc. Ainsi, le fonctionnement d’une commande implantée
dans un ASICs ou bien un FPGA sera étudié de facon plus précise si, dans les simulations, le
systeéme complet est pris en compte. Le concepteur actuel est alors confronté au probléme crucial
de la conception d’un systeme multidisciplinaire pour lequel, il devra effectuer des simulations

mixtes (analogique/numérique) du circuit intégré en tenant compte de son environnement effectif.

56

Plateforme de simulation hassairi walid

Pour arriver a satisfaire toutes les contraintes évoquées ci-dessus, il est nécessaire de trouver des
méthodes avancées de conception. C’est a cette problématique que nous allons essayer de

répondre.

I1.10 Conclusion

Nous avons présenté tout au long de ce chapitre les outils et les langages que nous allons
adopter, en décrivant le role de chacune d’eux et en précisant les résultats qui peuvent étre
produite pour la simulation.

Comme nous I’avons constaté, ces outils permettent de simuler une seule technologie a la
fois. L’objectif est de pouvoir simuler un systtme composé de plusieurs modules hétérogene.
Notre but est I’utilisation d’un environnement unifié pour la simulation.

Dans ce qui suit, nous présentons le mécanisme de communication entre MATLAB et
ModelSim et nous terminons par un dernier chapitre pour la Co-Simulation MATLAB / FPGAs

tous en présentant les apports de cette plateforme de simulation.

57

Co-Simulation MATLAB /VHDL hassairi wali

6\

CO-SIMULATION
MATLAB / VHDL

58

Co-Simulation MATLAB /VHDL hassairi walid

Chapitre I1I: CO-SIMULATION MATLAB / VHDL

III.1 Introduction

Apres avoir présenté, dans le chapitre précédent, les outils et les langages de simulation,
nous introduisons dans ce chapitre la Co-Simulation MATLAB/ VHDL. En effet ce chapitre
présente trois parties : en premier temps, nous commengons par un apercut sur les travaux
antérieures qui se résume a la conversion de code écrit en VHDL vers MATLAB et inversement.
Ensuite, nous présentons une vue générale sur la synchronisation et la communication entre
ModelSim et MATLAB, en utilisant le mode de communication TCP/IP et nous terminons par un
exemple de Co-Simulation afin d’accélérer la simulation MATLAB/VHDL et la rendre

automatique.

IIL.2 VUE D'ENSEMBLE DE BOITE A OUTILS DE CONVERSION

Aujourd'hui, beaucoup de concepteurs systemes utilisent des outils logiciels comme
MATLAB pour modeler une conception, mais ils trouvent des grandes difficultés a la conversion
entre les deux langages : MATLAB et VHDL [Wvc00]. Cette approche peut permettre a un
utilisateur de développer et de simuler un algorithme de commande numérique en utilisant
MATLAB. La routine de conversion doit étre considérée comme élément d’un large flot de
conception et développement systeme.

La vue d’ensemble du processus de conception et présenter dans la figure 20, il est
constitué de trois étapes principale : (1) Systéme initiale modelé et simulé, (2) Conversion des

données et syntheses et (3) exécution du matériel.

59

Co-Simulation MATLAB /VHDL

hassairi walid

uriliny

VHDL models
(.vird files)

¢ Synthesis

System Digital part for
CONVEersion
System
Simmlink model Simulink model level
(mdl file) {mdlfile) simndation
: —
Conversion

VHDL models
(.vhd files)

ASIC: silicon foundr
interface

FPGA/PLD:
configurarion data

Nerlist'schematic:
sinnelarion

route

I:,:

Lavyout place & I

Figure 20 : Routine de conversion dans le processus de conception.

Le programme de conversion peut étre actionné directement par des commandes de

I'UNIX, ou par I’intermédiaire d’une interface graphique figure 21.

-

B -
R
il 3 R O e Y i 8 e i L it
T

el - e

— feded 3

i g s —
[P e
- T T A .
— B S i vy Vel Ny

Figure 21 : interface graphique.

60

Co-Simulation MATLAB /VHDL hassairi walid

N

Ceci permet a lutilisateur de spécifier les parametres de conversion (conversion
périodique/parallele d'entrée-sortie, conditions d'optimisation, type arithmétique interne, 1’outil
de synthese cible). Mais la notion du temps et la synchronisation reste un glot d’étranglement
pour les concepteurs. Avec la conception €tant synchrone en nature, la commande des signaux
doivent étre produits dans une horloge externe. Elle ne permet pas 1I’optimisation du code qui

exécutera les fonctions exigées tout en prévoyant pour réduire le nombre requis de portes.

II1.3 Link for ModelSim

MATLAB Simulink fournit une méthode puissante de développement logique a I'aide d'un
outil de conception a haut niveau, il integre le matériel dans l'environnement de MATLAB
Simulink [Ug05]. Traitant des signaux complexe, des conceptions peuvent &tre développées
rapidement en utilisant les schémas fonctionnels de Simulink agissant I'un sur l'autre avec le
matériel en temps réel. Les passages entre MATLAB Simulink et le matériel permettent a des
données de couler entre le matériel et MATLAB, apportant la puissance de MATLAB a la
logique procédée de développement.

Des schémas fonctionnels de Simulink sont directement traduits en logique a l'aide de
l'outil de System Generator de XilinX. Pour chaque produit soutenu, une couche d'interface de
matériel de composants de Simulink est a condition que permet au matériel d'étre employé€ dans
la conception de Simulink. Les diverses bibliotheques composants Simulink ont été fourni par
The MathWorks, XilinX et I’interface innovatrice du matériel connecte la couche pour établir la

logique d'application sur le produit.

Develop specification 2
3
MATLAB Implement design
Signal Processing Toolbox Verify design
Filter Desian Toolbox .
Communications Toolbox Link for ModelSim Mﬁel:ljsl_'m
Simulink Verilog
Simulink Fixed Point

Signcﬂ Processing Blockset
Communications Blockset

Figure 22 : Le role de Link for ModelSim pour communiquer MathWorks et ModelSim.

61

Co-Simulation MATLAB /VHDL hassairi walid

La figure 22 montre le scénario d’adaptation des produits de ModelSim et de The
MathWorks pour de conception matériel. Le link for ModelSim relie les outils qui sont
traditionnellement employés discretement pour accomplir des étapes spécifiques dans le

processus de conception.

En reliant les outils, le link for ModelSim simplifie la vérification pres en permettant au co-
simulate l'exécution et les spécifications originales directement. Il permet aussi 1’économie
significative de temps de conception et 1'élimination d’erreurs inhérentes en comparaison avec
l'inspection manuelles. En plus du scénario précédent de conception, le link for ModelSim nous

permet d’employer :

* MATLAB ou Simulink pour créer des signaux de testes et des tests bench pour des Code

de HDL.

* MATLAB ou Simulink pour fournir un modele comportemental pour une simulation de

HDL.

* MATLAB nous permet la possibilité d'analyser et de visualisation en temps réel d’une

exécution de HDL.

* Simulink permet la traduction des descriptions du HDL en des vues au niveau systeme.

II1.4 Environnement de Co-Simulation

Le link for ModelSim est un client/serveur pour le test bench et la Co-Simulation des
applications. Le réle que ModelSim joué dans un lien pour l'environnement de simulation dépend

du fait est ce que ModelSim lie a MATLAB ou a Simulink.

Une fois li€ avec MATLAB, ModelSim fonctionne comme client, comme la montre la

figure 23.

62

Co-Simulation MATLAB /VHDL hassairi walid

Link
ModelSim Oyt f—nediesl i, MATLAB
Client i le_Response oyt Server

Figure 23 : Mode de communication entre MATLAB et ModelSim.

Dans ce scénario, MATLAB Server lance des fonctions d’attentes jusqu'a qu'il recoive des
« Requests » du ModelSim. Apres réception de ces derniers, le serveur établit un lien de
communication et appelle des fonctions spécifique de MATLAB qui permet le calcule des

données, vérifie, ou visualise des model HDL qui sont sous ModelSim.

MATLAB

Test Benching M-Function

Stimulus Response

ModelSim
VHDL Enfity

Input
IN Out I::: Arguments

Output
Arguments

Figure 24 : Principe de communication de MATLAB et ModelSim pour la phase de test.

La figure 24 montre comment une fonction de MATLAB englobe et communique avec

ModelSim pendant une session test bench de simulation.

Le serveur MATLAB peut entretenir simultanément des multiples sessions de ModelSim et
des entités de HDL. Cependant, nous devrions adhérer aux directives recommandées a assurer le
serveur peut dépister l'entrée-sortie liée a chaque entité et session. La figure 25 montre un

scénario de multiple-client se reliant au serveur au port 4449 du socket TCP/ IP.

63

Co-Simulation MATLAB /VHDL hassairi walid

- MATLAB
Mc&d_e|5im Link Port Server
Client g : A449
ModelSim Link
Client <

Figure 25 : Multiple-client communique avec MATLAB simultanément.

Le mode de communication que le link for ModelSim emploie pour un lien entre
ModelSim et MATLAB ou Simulink dépend l1égerement de si notre application de simulation
fonctionne dans un aspect local, dans une configuration de simple-systtme ou dans une
configuration réseau. Si ModelSim et les produits de MathWorks peut exécuter localement sur le
méme systeme et notre application exige seulement un voie de transmission, nous avons l'option
du choix entre partagé mémoire et communication de « sochet TCP/IP.» LLa communication
partagée de mémoire fournit l'exécution optimale et elle est le mode de communication par

défaut.

Le mode de « sochet TCP/IP » est plus souple. Nous pouvons l'employer pour le simple-
systtme et la configuration réseau. C'est le choix optimal pour les applications qui ont un

potentiel de croissance important.

Pour les configurations dans les quelles ModelSim et les produits de MathWorks résident
différents systémes, chaque systeme doivent étre configurés pour 1'Ethernet et c’est nous que

nous devons employer la communication « sochet de TCP/IP ».

Une fois lié avec MATLAB, ModelSim fonctionne comme client, Le serveur de MATLAB,
par lequel nous commencgons fournie une fonction de MATLAB, attend des demandes de
raccordement des exemples de ModelSim fonctionnant sur la mémes ou les différents
ordinateurs. Quand le serveur recoit une demande, il exécute une fonction spécifique de
MATLAB qui nous permet d’accomplir des taches au nom d'une entité dans notre conception

VHDL.

64

Co-Simulation MATLAB /VHDL hassairi walid

ITILS Chois du port TCP/IP

Pour employer la communication du « sochet TCP/IP », nous devons choisir un nombre de
« sochet TCP/IP » qui est disponible dans notre environnement de calcul a 1'usage du link for
ModelSim des composants client et serveur. Les deux composants emploient ce nombre pour
établir un raccordement de TCP/IP. Les nombres sont particulierement importants pour des
applications qui interconnectent des multiples clients et serveurs. Les nombres identifient
uniquement chaque client et serveur et permettent des raccordements seulement entre les

composants partageant le méme nombre.

II1.6 Exemple de Co-Simulation MATLAB/ VHDL

Concernant la simulation MATLAB/VHDL, nous avons mis en place MATLAB
v7.0.1/Simulink v6.1 (R14) Service Pack (R14SP1), nous avons téléchargé ModelSim 6.0 pour la
famille XilinX [XilinX05].

65

Co-Simulation MATLAB /VHDL hassairi walid

- {_ModelSim SE PLUS 6.0} L EF |
— :

E_llpE_t;Ilt EJe_w Format Compile Simulste: Add Tools Window Help

J '@ @a“ Cantainz ,— /|

N = F 4 |__IMPORTANT Information | e e e
ame pe ==

ol w1 Model Sir , Welcome to Modelsim 6.0 @
[l modelsim_lin Libram $h . =i
std Libray 3 INPORTANT Information!

std_developerskit Library 3

. * Key Information
SPNopEyE Libray &t hy

ModelSun platform changes
werilog Library F

5

* Product Changes
Changes m ModelSun functionality

* New Features
The latest ModelSim features

ModelSim 6.0 Application Notes

* Performance Guidelines

» Taking Advantage of SvstemVernlog

= The ModelSum Debue GUI

= SystemC Venfication

= Comparng PSL and OVL

= Venlog-2001, Ready For Use E

e e Jumpstartpyg | Cose|
T~ Don't shaw this dialog again i MselS e ran] Jumpstart pM Close]
// THIS WORK CONTAINS TRADE SECRETS

#// PROPRIETARY INFORMATION WHICH 15 THE PROPERTY
#// OF MENTOR GRAPHICS CORPORATION OR ITS LICENSORS
/¢4 AND 15 SUBJECT TO LICENSE TERMS

/1

o e ks

= ![H¢- K@ 2133 !

Figure 26 : ModelSim 6.0 de XilinX.

Nous commencgons par €crire un petit programme en VHDL qui sera compilé et simulé
dans ModelSim, nous langcons MATLAB et nous suivrons les instructions pour la simulation
VHDL/MATLAB :

° Setupmodelsim : cette commande nous permet de configurer MATLAB
avec la version installer de ModelSim sur le PC, qui dans notre cas ModelSim SE 6.0.

. Nous passons ensuite a MATLAB, nous ouvrons un nouveau projet a partir
de Simulink de MATLAB, nous construirons notre circuit en ajoutant tous les blocs

nécessaires et surtout le bloc VHDL Co-Simulation Figure 27.

66

Co-Simulation MATLAB /VHDL hassairi walid

sig2
=ig1 MadelShn,
=ig3
WHDL Cosimulation

Figure 27 : bloc de Co-Simulation VHDL de MATLAB.

Nous devons configurer tous les champs de ce bloc qui sont :

e Ports : qui seront relié au programme écrit en VHDL.

¢ Connection : Nous devons choisir le port de communication entre Simulink et
ModelSim.

¢ C(Clocks : comme nous avons ajouté les ports déja cité, nous ajoutons le « clock »
qui sera relié¢ au programme.

e TCL : dans le bloc Pre- simulation command, nous écrivons la commande

echo "Running inverter in Simulink!" dont inverter est le programme écrit en VHDL et

dans le bloc Post- simulation command, nous écrivons echo "Done" Figure 28.

Z1Block Parameters: ¥HDL Cosinmulation 2=

Simulink and ModelSim Cozimulation
Cogimulation of hardware components with ModelSim(R]. Inputs from Simulink[R] are applied to a ModelSim signal. Dutputs from this block are
derived fram hardware zignalz. Specify signal paths by their full higrarchical name in ModelSim.
Connection I Clocks I Tel I
Full HDL MName I/0 Mode Sample Time Data Type Fraction Length Hew |
Ftopfsigl Input Nih Nih M/A
Fropfsige Dutput -1 Inherit N/h Delete |
Ftopfsigs Outpuat -1 Inherit M/A 0
B |
Down |
Full HDL MName I/0 Mode Sample Time Data Type Fraction Length
foopseigl Input LI INJ-’A Inherit LI IN,-‘A Update |
0K | LCancel | Help | Apply |

Figure 28 : Bloc de Co-Simulation.

Co-Simulation MATLAB /VHDL hassairi walid

Nous fermons ce bloc et nous passons au Configuration Parametres de Simulation
dont nous devons configurer tous ces champs qui son principalement le délai de la
simulation qui est dans notre exemple entre 0.0 et 10 .0 Ms et le type de « Solver » qui peut
étre « Variable-step » ou « Fixed-step », nous terminons par OK pour conserver le

changement figure 29.

=] configuration Parameters: untitled /Configuration 2|
Calect r— Sirulatiorn time =
- Solver Start time: ID_D Stop time: |1 0o
- D ata Import/E xport
-0 thlzat.mn —Solver options
[=]- Diagnostics
i~ Sample Time Type: | Fived-step x| Salver: | discrete (no continuous states) |
-D ata Integrity
- Cornwersion Periodic zample time constraint: I Unconstained j

- Connectivity
-Carnpatibility

L. Model Referencing T azking mode for peniodic zample times: Ihuto ;I
- Hardware Implementation

- Model Referencing)
- Real-Time Workshop ™ Automatically handle data transfers between tasks

Fixed-step size [fundamental sample time); Iauto

™ Higher priority value indicates higher task priority

- Comments —
-Symboals
-Custom Code
-Debug

- Interface

Ok | Cancel

Figure 29 : Bloc de Configuration Parametres de Simulation.

Nous Avons maintenant une représentation de VHDL d'un inverseur et d'un modele
de Simulink qui s’applique a I'inverseur.

Pour lancer ModelSim, nous devons écrire : vsim ('socketsimulink', 4449) cette
commande permet de lancer ModelSim a partir de MATLAB.

Nous passons maintenant a travailler sur ModelSim, nous commengons par changer
la direction de notre fichier d’extension VHDL en écrivant la commande :
ModelSim> cd C:/MyPlayArea, nous passons ensuite a simuler notre exemple par écrire la
commande : ModelSim> vsimulink work.inverter. Enfin en écrivant la commande VSIM
nn> add wave /inverter/, nous aurons 1’ajout des ports et du clock dans le WAVE

Figure 28.

68

Co-Simulation MATLAB /VHDL hassairi walid

+ wave - default E. =101 =|
Fida Edt View Insert Format Tooks ‘Window |
SRS s BMA LK (WD REQ X B BF | ELEEE] 3
UTEINIRTRINTAIN]

LI
u

[Dnstniws |

Figure 30 : Affichage des pots de 1’algorithme a simulé dans ModelSim.

Nous retournons une autre fois au MATLAB et exactement a notre exemple et nous

cliquons sur « START » simulation, nous obtiendrons les résultats sur ModelSim figure 30.

«+ wave - default - =101 x|

Fia Edt W%iew Insest Format Took ‘Window

EB& |t RBA LK [[NB RQ @B RF {5

B~ | fiverted'sn DOO00000 ENO0HN |
B feveere o
O Aoveerten/ch

[DnatoHEns |

Figure 31 : Affichage des résultats sur ModelSim.

Avec cet exemple, nous avons montré toutes les étapes a suivre pour assurer la Co-

Simulation MATLAB/VHDL.

69

Co-Simulation MATLAB /VHDL hassairi walid

II1.7 Conclusion

Link for ModelSim est I'interface de Co-Simulation crée par The MathWorks pour la
conception des ASICs et les FPGAs. Cette interface permet une communication entre ModelSim
et le produit MATLAB de MathWorks et Simulink. En outre, une bibliotheque des blocs de
Simulink est disponible pour inclure des conceptions de ModelSim HDL dans des modeles de
Simulink pour le Co-Simulation. Dans ce chapitre, nous avons assuré la synchronisation et la
communication entre MATLAB et ModelSim a fin d’accélérer la Co-Simulation
MATLAB/VHDL. Mais cette interface n’est pas suffisante pour la Co-Simulation
MATLAB/FPGA:s.

Dans le dernier chapitre, nous entamons la Co-Simulation MATLAB/ FPGA tout en
précisant le role de chaque langage et outil, qui constituent la plateforme, et les fichiers qui vont

étre produit par System Generator qui est crée par The Math Works.

70

Co-Simulation MATLAB/FPGA hassa

iri walid

o

6\

CO-SIMULATION
MATLAB / FPGA

71

Co-Simulation MATLAB/FPGA hassairi walid

Chapitre IV: CO-SIMULATION MATLAB / FPGA

IV.1 Introduction

Nous nous sommes intéressés dans le chapitre précédant au mode de communication et
synchronisation de MATLAB et ModelSim en utilisant I’interface produit par The MathWorks
qui est Lin for ModelSim. Mais cette interface n’est pas suffisante pour entamer le terme Co-
Simulation MATLAB/ FPGAs. Dans ce contexte, nous allons voire le reste des langages et outils
présenté dans le chapitre 3, qui vont nous permettre de résoudre ce probleme et attendre notre
objectif qui est I’accélération de la Co-Simulation et réduire le taux d’erreurs.

Dans ce chapitre, nous commencons par la présentation des nouveautés de MATLAB,
quelque caractéristique des FPGAs, ensuite nous étudions le mode de communication des
langages constituant la plateforme et surtout System Generator. Nous terminons ce chapitre par

un exemple illustratif de toute I’approche de Co-Simulation.

IV.2 Interface MATLAB/FPGA

MATLAB est un logiciel de calcul numérique produit par MathWorks (le site web

http://www.mathworks.com/) [Edm 04]. Il est disponible sur plusieurs plateformes. Il est un

langage simple et tres efficace, optimisé pour le traitement des matrices, d’olt son nom. Pour le
calcul numérique, il est beaucoup plus concis que les “vieux” langages (C, Pascal, Fortran,
Basic). MATLAB contient également une interface graphique puissante, ainsi qu'une grande
variété d’algorithmes scientifiques.

Nous pouvons enrichir MATLAB en ajoutant des “boites a outils” (toolbox) qui sont des
ensembles de fonctions supplémentaires, profilées pour des applications particulieres (traitement
de signaux, analyses statistiques, optimisation, etc.).

Si les langages sont identiques pour les ASICs et les FPGAs, les outils de synthese et de
placement routage sont différents. En effet, lors de la conception sur des cibles FPGAs, le
concepteur sera amené a utiliser des outils propres aux fabricants : XilinX, Altera, Actel, etc, qui
est de ce fait adaptés a leurs composants [Gros97] [Alte02].

Par ailleurs, les avantages des FPGAs par rapport aux ASICs sont directement liés a leurs

architectures programmables. En effet, ces composants sont constitués d’une matrice de cellules

72

Co-Simulation MATLAB/FPGA hassairi walid

précongues dont les interconnexions et les cellules de base sont programmables. Cette
disponibilité du matériel dans la puce permet au concepteur de s’affranchir de certaines
contraintes de conception telle que la définition d’un arbre d’horloge dans le cas d’un circuit
synchrone, du padring...etc. Cette spécificité architecturale permet un gain considérable en temps
de conception ainsi qu’une plus grande souplesse et facilité de développement. Pour toutes ces

raisons les concepteurs d’ ASICs utilisent souvent les FPGAs comme cible de prototypage.

Par ailleurs, nous présenterons dans ce qui suit les trois principaux types de composant

FPGA existant sur le marché [Yk 02] :

e JLes FPGAs a forte densité d’intégration: La force est de constater que les

évolutions des FPGAs durant ces dix dernieres années permettent désormais de disposer de
composants de plusieurs milliers de cellules logiques avec des possibilités de mémorisation
de plus en plus importantes. Nous pensons par exemple aux composants tels que les APEXII
d’Altera qui offrent une densité allant de 16.640 a 67.200 éléments logiques et une capacité

mémoire entre 416 Kbits et 1.1 Mbits [Alte02].

° Les FPGAs avec coeur de processeur : La tendance actuelle montre 1’émergence

de nouvelles technologies FPGA qui associent les performances d’un processeur et celle
d’une cible matérielle programmable. Il offre ainsi, la possibilité d’une programmation haute
niveau, et une optimisation de I'intégration pour les parties implantées dans I’architecture
FPGA classique. Ces circuits sont destinés au prototypage ASIC ainsi qu’a un volume de

production faible [Pana02]. A titre d’exemple, nous citons les composants VirtexII de XilinX.

Par ailleurs, 1’apparition récente de nouveaux logiciels de conception et de nouvelles
familles de FPGAs, que nous associons aux IPs (Intellectual Properties) de DSPs ainsi qu’a
MATLAB/Simulink, permet de fournir un flot de conception semblable a celui des DSPs.
[Pana02].

e Les FPGAs reconfigurables dynamiquement: L’apparition dans les récentes

années des FPGAs reprogrammables dynamiquement ouvre de nouvelles perspectives dans

73

Co-Simulation MATLAB/FPGA hassairi walid

différents domaines d’applications tels que le traitement du signal, les télécommunications,
les systemes électriques, etc. Ces composants permettent une reconfiguration partielle ou
complete du circuit pendant son fonctionnement. Cette caractéristique permet dans certains
cas critique, comme par exemple la phase de démarrage d’un moteur, d’exécuter des

programmes spécifiques.

IV.3 Mode de communication de la plateforme

Suite a une inscription dans le cite de XilinX, nous avons pu avoir :
®Product ID
eRegistration ID pour les version (6.31, 7.1i et 8.11)

Nous avons téléchargé et mise en place, tous d’abords, ISE 7.1i de XilinX figure 32.

= Rilinzx - Project Navigator - - [Untitled1] -e s

r Eile Edt iew Project Source Process Simulation window Help (B
DiEl@ & e BlREE E L] flse] o] als
I | I = O e S 0 o Y T O |

Sources in Projsct:
[Ma Proect Open]

e

x|
=

i B Module Wiew l = Snapshet ..] Iy Librany Vlewl

¥ e
Select the Modules or Snapshat kab |
[Na Frocesses Awalable)

B2 Frocess View | Untitlsd1

5
EZ|

o Caonzole l % Find in Files I X Erors I U_' W’amlngsl

Lnicoll Test

&2 & 2] j L el e e o & Co-desian & Sans bitre - Paint. i il ke e g[] !_4— MDD 2148 g

Figure 32 : ISE 7.1i de XilinX.

Le chipScop pro 7.11, PlanAhead 7.1i et des bibliotheques pour la mise a jour de ModelSim

qui contiennent des bibliotheques de XilinX.

74

Co-Simulation MATLAB/FPGA hassairi walid

TS '3 Windows Messenger
% Vi iniaE ?ﬁ :Windows Movie Maker
[| MATLAB 7.0.1 b
@MMLHB s I@_MadelﬁimﬁEﬁ.D ¥
|7 | #ilin ISE 7.1 b
s SYSTRAN Gestiornaire de T ;ChipScan'F‘rn 71 ¥
Projets de Traduction ,@ {Plandhead 7.1.40 b
E e uj Microsaft Office »
l@ | Object Deskiop b
| - I | S¥STRAN Premium 5.0 v
Az () Checkit Diagnostics
| @ Fermer | 'jﬂ Memoiweb 4 - Decouverke:
- - '@ :Merc- r
Eiset () @) 2] |z) vahoo! Messenger b

Figure 33 : Plateforme installé.

Et pour installer System Generator, nous devons télécharger la mise a jour de I'ISE 7.1i de

XilinX et la version 7.0 de System Generator figure 34.

Note: myplugin. zip s the name of the plugm file you are mstalling.

Thiz mstalls the plugin. A status bar 15 displayed to show the progress of the metaller,

+ } Installing Annapolis_WildcardII Plugin

Updating Matlab files.

Figure 34 : Installation de System Generator.

Nous aurons 1’ajout des bibliotheques de XilinX dans Simulink de MATLAB qui sont :
¢ XilinX Blockset.
¢ XilinX Reference Blockset.
¢ XilinX XtremeDSP Kit.

75

Co-Simulation MATLAB/FPGA

hassairi walid

Celles-ci contiennent des blocs pour la Co-Simulation du matériel.

[] MIrLUdl REdILY UL

= B i Blockset]

----- m Basic Elements
EEI-"E Communication
.....] Contral Logic
..... B Data Tvpes

..... | pap

.....] Memary
..... 33 shared Memary
.....] Tools

= W@ ilin: Reference Blockset

..... B Communication
.....] Contral Logic
..... | DEp

G- W iliree XbremeDSP Kit
- W %P Target

<

-

f| ——

2.
2.

> A

> X

2.

2

il

DsP

Indes

d ath

M ermary

Shared Memary

Tools

Figure 35 : Ajout des bibliotheques de XilinX dans le Simulink de MATLAB.

Nous citons dans cette partie le fonctionnement des différents logiciels composant la

plateforme [XDSPO5] :

IV.3.1 Model de conception systeme

Le model de conception systeme comporte essentiellement :

e Simulink : Simulink (du MathWorks) est une plateforme pour multi domaine de

simulation et de conception des systemes dynamiques. Il fournit un environnement

graphique interactif et un ensemble de bibliotheques de bloc qui nous laissent

exactement modeler et simuler le traitement des signaux, de communications, et

d'autres systemes a temps variables.

e Platform Studio : La Platform Studio (de XilinX) est un environnement qui integre

le développement contenant une grande variété d'outils de conception, d'IP, de

76

Co-Simulation MATLAB/FPGA hassairi walid

bibliotheques et de générateurs incorporés de conception pour accélérer et faciliter

la création de notre plateforme.

IV.3.2 Algorithme de développement

Il comporte essentiellement :

MATLAB : MATLAB (du MathWorks) est une langue de calcul technique a niveau
élevé et un environnement interactif pour le développement d'algorithme, la
visualisation de données, 1'analyse de données, et le calcul numérique. En utilisant
MATLAB, nous pouvons résoudre des problemes de calcul techniques plus

rapidement qu'avec des langages de programmation traditionnels, tels que C, C++.

Accelchip : Accelchip DSP fournit un lien direct entre MATLAB et System
Generator de XilinX ou le logiciel d'ISE. Il fournit un environnement unifié de
conception qui produit automatiquement des modeles synthétisable RTL et des

testbench dans MATLAB.

IV.3.3 Simulation et génération VHDL

Il comporte essentiellement :

ISE 7.1i: ISE 7.1i est le logiciel de base (de XilinX), il nous permet de
programmer essentiellement les FPGAs. Les concepteurs de matériel peuvent
concevoir en utilisant VHDL ou Verilog. A l'aide du System Generator, des outils

de conception d'ISE peuvent étre appelés.

Synthesis : XST de XilinX et Synplify pro de Synplicity sont des outils de synthese

qui permettent de concevoir peu coliteux et tres efficace du matériel de XilinX.

ModelSim : Si nous avons déja des produits déja préts de HDL, System Generator
fournit les interfaces nécessaires pour nous permettre de connecter au ModelSim.
Nous pouvons Co-simuler notre HDL en utilisant ModelSim et importer des

résultats simulés vers le Simulink/la simulation System Generator en temps réel.

77

Co-Simulation MATLAB/FPGA hassairi walid

1V.3.4 Verification

Il comporte essentiellement de :

e Chip Scope Pro : Il permet de vérifier les conceptions des FPGAs pour expédier I'étape de
correction. Des sondes de Chip Scope peuvent étre insérées dans Simulink/ System

Generator. Elles sont automatiquement insérées dans le matériel pendant I'étape de

génération de HDL.

=8
H%
it

1
i

e e .
L e 1L T
Siruird HF 858 Trarmceiver

T4
Frmiy (MY

- S

- +

pmmen O &

Roal-Tima Workshop (RTW) | 5‘-""‘:‘;;‘"

e — :
FE prevwrany W gy -

Figure 36 : Exemple de Co-Simulation MATLAB/ FPGAs.

MILPITAS, CA, 9 janvier 2006 [AemO5], les fournisseurs de l'industrie qui sont
principalement DSP semi-conducteur de I'IP et «algorithmic synthesis » software pour la
conception modele-basée, ont annoncé aujourd'hui la disponibilité dans sa version 2006.1 des
outils Accelchip® DSP Synthesis and AccelWare® IP toolkits figure 36. La chose nouvelle dans
2006 est M2C-Accelerator™, une option a la synthese d'Accelchip DSP qui prolonge la solution
modele-basée de la conception en ajoutant la génération automatique de C++ dans des modeles
de vérification de MATLAB. Avant le M2C-Accélérateur, des compagnies congoivent des
algorithmes dans MATLAB. Pour la conversion, elle était manuelle des modeles de MATLAB en
C. Maintenant, ce processus est rendues automatiques, rapides et sans erreur avec le M2C-

Accélérateur. Les équipes de conception peuvent maintenant développer des algorithmes plus

78

Co-Simulation MATLAB/FPGA hassairi walid

rapidement et explorer une gamme des solutions architecturales dans moins de temps. Les
modeles de C++ produits par le M2C-Accélérateur peuvent étre employés dans MATLAB®,

Simulink®, System Generator de XilinX et environnements autonomes de vérification de C.

Les clients de M2C-Accélérateur du d'Accelchip travaillent sur des algorithmes pour des
applications telles que 802.11 et des satellites de positionnement globaux (GPS) , ils ont amélioré
des exécutions de vérification jusqu'a 1000X en utilisant le M2C-Accélérateur dans leurs suites
C-basées de vérification et jusqu'a 150X dans des simulations de MATLAB une fois comparée

aux temps d'exécution a point fixe courants de MATLAB.

Le M2C-Accélérateur nous permet ainsi d’accélérer le processus de conception a point fixe,
plus d'itérations de conception par jour dans notre choix d'environnement Modele-Basé de

conception et de réduire le temps de mise sur le marche (time —to-market).

IV.4 Expérimentations et résultats

Nous avons pris un exemple de LMS-based adaptive equalization (Synthesizable RTL
implementation using M-code Block), Cette conception montre comment employer le bloc de
M-Code pour créer des conceptions enticrement synthétisable du niveau de transfert de registre
(RTL) dans System Generator. La conception a été dérivée directement de la conception de
démonstration de sysgenFSE.mdl, remplagant des blocs de non-RTL par des blocs de M Code
équivalents. Les cibles de RTL sont particulierement utiles quand la source simple doit viser
différentes familles de FPGA. Cette conception montre qu’a T/2 1’adaptive Fractionally Spaced
Equalizer (FSE) fonctionnant sur un point d'émission 16-QAM avec le bruit et le filtre présenté

dans le modele de canal ullistré dans la figure 37.

79

Co-Simulation MATLAB/FPGA hassairi walid

=] sysgenSynthFSE * !EE

File Edit ‘iew Simulation Formab Tools Help

DIEEHE| 2R s o - B@Bed RBRE G ®

Adaptive Equalizer Demonstration
(Synthesizable RTL implementation using M-Code Blocks)

IO —
I_in o_out

I_0ut [| |_Ch:
Data = LS Ermr Symbols
i g S DHAT [ahaf dB
<]
QAMAG Source Interpolation FIR Channel 1;2 EETS [d q] o_in Canversion
hadel Coeff]
T_2 FSE
Error
; Re(u) |
Double click v : _~ (]
far i Doubrle click L m) >
Copyright Motice, tar
P & rrore information. DHAT
Fezource
] System
(c) Copyright 1995-2003 Xiling, Inc. Estimatar Generator [Teeet | 1l
#- All rights resened. User
Filter
Taps
Ready (EEE [odess v

Figure 37 : Notre exemple pour tester la plateforme.

Lorsque nous cliquons sur le bloc de System Generator de notre exemple, nous aurons

I’ouverture d’une fenétre de dialogue dans la quelle nous devons configurer tous les champs.

80

Co-Simulation MATLAB/FPGA hassairi walid

v
d

System
Genergtor

) System Generator: ADconverter !EH
—Xilinx System Generator
Carnpilation :
DL Metlist Settings... |
Part :

irtexz ey 000-4bgs7s

Target Directory :

I..l'ne‘tlist Browvse. .. |

Syhthesiz Tool : Hardware Description Language
fsT | JwHoL |

FPZ& Clock Period (hs) Clock Pin Location :

froo |

[T Creste Testhench [Impott 5= Configurable Subsyst..
Owverride wwith Doubiles @ I.&ccurding to Block Settings j

Sitmulink System Period (sec) : |1

Generate (8004 | Apply | Cancel | Help |

Figure 38 : Configuration du bloc de System Generator.

Nous citons dans ce qui suit tous les champs du bloc de System Generator figure 38 :

Part : Définit I’ FPGA a employer.

Target Directory : Définit ou le System Generator devrait écrire
des résultats de compilation.

Synthesis Tool : Indique l'outil a employer pour synthétiser la
conception.

Hardware Description Langage : Indique la langue a employer
pour le Netlist de HDL de la conception. Les possibilités sont
VHDL et Verilog.

FPGA Clock Period : Définit la période en nanosecondes de
I'horloge du matériel.

Clock Pin Location : Définit I’endroit des pins pour 1'horloge du

matériel.

81

Co-Simulation MATLAB/FPGA

hassairi walid

Create Testbench : Ceci demande au System Generator de créer

un testbench de HDL.

Import as Configurable Subsystem : System Generator est

sensé de faire deux choses : 1) Construisez un bloc auquel les

résultats de la compilation sont associés et 2) la construction d’un

bloc qui se compose de sous-ensemble configurable.

Le bloc d'estimateur de ressource de XilinX fournit des évaluations rapides des ressources

de I” FPGA exigées et ceci pour mettre en application un sous-systeéme ou un modele de systeme

figure 39.

Re=zource
Estimator

) Resource Estimator: sysg... |5 |m! xll

—Ailinx Rezource Estimator Block (mask)
Eztimates resources used by the subsystem.

Slices

FF=

BR ANz

LUT=

I2Es

Embedded Mults
TELUF=

-

1630
2374

1]
1252

Post-mMap Area

Cloze |

Help |

E=timate Area

Gwick Surm

Read MEP

Figure 39 : Présentation des différents champs du bloc Resource Estimator.

. Slices: indique les nombres de Slices utilisées par bloc.

° FFs : Bascules électroniques utilisées par bloc.

° BRAMs : blocs de RAMs utilisées par bloc.

° LUTs : Tableaux de consultation utilisés par bloc.

° IOBs : Blocs d'entrée-sortie consommés par bloc.

. Embedded Mults: Multiplicateurs inclus utilisés par bloc.

. TBUFs: Buffers utilisés par block.

82

Co-Simulation MATLAB/FPGA hassairi walid

Use Area Above : Quand cette case est collectionnée, toute évaluation de

ressource effectuée sur ce sous-ensemble renverra les nombres écrits dans les boites

d'édition de la zone de dialogue.

IV.4.1 Différents types de compilation du System Generator

Il y a différentes manieres dont le System Generator peut compiler notre conception. La

maniere dont une conception est compilée dépend des arrangements dans la fenétre de dialogue

du System Generator. En supportant différents types de compilation, nous avons la liberté de

choisir une représentation qui convient a l'environnement que la conception sera employée pour

notre exemple, un HDL ou NGC Netlist est une représentation appropriée quand votre

conception est employée comme composant dans un plus grand systéme. Si le systtme complet

est modelé a l'intérieur du system Generator, nous pouvons choisir de compiler notre conception

Bitstream. Parfois nous voulons compiler notre conception dans un module a niveau élevé

équivalent qui exécute une fonction spécifique dans les applications externes au System

Generator (par exemple, Co-Simulation de matériel avec ModelSim) :

HDL Netlist Compilation : Le générateur de systtme emploie le type de

compilation de HDL Netlist comme cible de génération de défaut.

NGC Netlist Compilation : La NGC Netlist compilation nous permet de compiler
notre conception dans un dossier binaire autonome de Netlist de XilinX NGC. Le
dossier de Netlist de NGC que le System Generator produit contient l'information
logique et facultative de contrainte pour notre conception. Ceci signifie que les
HDL, les noyaux, et les contraintes classent l'information qui correspondent a une
conception de System Generator sont dans un seul bloc dans un simple dossier. Le
System Generator produit le dossier de Netlist de NGC en exécutant les étapes
suivantes pendant la compilation : génerate un HDL Netlist pour la conception,
exécute l'outil choisi de syntheése pour produire un Netlist plus bas. Le type du
Netlist (par exemple, EDIF pour Synplify et de Leonardo, NGC pour XST) dépend

de quel outil de synthese est choisi pour la compilation.

83

Co-Simulation MATLAB/FPGA hassairi walid

e Bitstream Compilation : Le type de compilation Bitstream nous permet de compiler

notre conception dans un dossier de Bitstream de configuration de XilinX qui
convient a la carte FPGA choisie dans la zone de dialogue de System Generator. Le
dossier de Bitstream est appelé <design>_clk_wrapper.bit et il est placé dans
I'annuaire de la conception, ou le <design> est dérivé de la partie de la conception
étant compilée. Le System Generator produit le dossier de Bitstream en exécutant
les étapes suivantes pendant la compilation : Produire d'un Netlist de HDL pour la
conception ; Courir 1'outil choisi de synthése pour produire un Netlist plus bas. Le
type du Netlist (par exemple, EDIF pour Synplify et de Leonardo, NGC pour XST)
dépend de quel outil de synthese est choisi pour la compilation. exécution du
XFLOW pour produire un Bitstream de notre configuration.

e EDK Export Tool : L'outil d'exportation d'EDK permet a une conception de System

Generator d'étre exporté vers un projet du kit de développement inclus par XilinX
(EDK). L'outil d'exportation d'EDK simplifie le processus de création d’un
périphérique en produisant automatiquement des dossiers exigés par I'EDK.

e Hardware Co-Simulation Compilation : System Generator peut compiler des

conceptions dans I’FPGA qui peut étre utilisé dans la boucle avec des simulations
de Simulink. Nous pouvons choisir une cible de Co-Simulation de matériel et en
choisissant la plateforme désirée de Co-Simulation de matériel. Si nous avons une
plateforme de FPGA qui n'est pas énumérée comme cible de compilation, nous
pouvons créer une nouvelle cible de compilation de System Generator qui emploie

le JTAG pour communiquer avec le matériel de FPGA.

IV.4.2 Résultats de System Generator

Dans cette section, nous discutons les fichiers produite par System Generator bas niveau
quand HDL Netlist est choisit comme type de compilation. Les dossiers se composent de HDL et
d'EDIF qui met en application la conception. En outre, le System Generator produit les dossiers
auxiliaires qui simplifient en aval le traitement, par exemple, introduisant la conception dans le
navigateur de projet, simulant en utilisant ModelSim, et le synthétisant a I'aide de divers outils de

synthese. Tous les dossiers sont écrits a l'annuaire de cible indiqué sur le bloc de System

84

Co-Simulation MATLAB/FPGA hassairi walid

Generator. Si aucun testbench n'est demandé, alors les dossiers principaux produits par System

Generator sont les suivants :

e <design> files.vhd/.v : Ceci contient la majeure partie du HDL pour la conception.

e <design> clk wrapper.vhd/.v: C'est un emballage de HDL pour

<design>_files.vhd/.v. Il conduit des horloges.

e conv_pke.vhd/.v: Ceci contient des constantes et des fonctions utilisées dans

<design>_files.vhd/.v.

e .edn files: system Generator exécute le NOYAU de générateur (coregen) pour
mettre en application des parties de la conception. Coregen écrit les dossiers d'EDIF
dont les noms semblent typiquement quelque chose comme l'edn de
multiplier_virtex2_6_0_83438798287b830b.

e Globals : Ce dossier se compose de la clef/ valeur qui décrivent la conception. Le
dossier est organisé comme table de brouillage de Perl de sorte que les clefs et les
valeurs puissent étre rendues disponibles aux manuscrits de Perl en utilisant des evals
de Perl.

e <design>.xcf (or .ncf) : Ceci contient la synchronisation et les contraintes d'endroit.

Celles-ci sont employées par l'outil XST de synthese de XilinX et les outils
d'exécution de XilinX. Si l'outil de synthese est placé a quelque chose autre que XST,
alors le suffixe est changé en un ficher d’extension .ncf.

e <design>.ise : Ceci permet au HDL et I'EDIF a introduire dans le navigateur de
XilinX d'outil de gestion de projet.

e hdlFiles : Ceci indique la liste de dossiers de HDL écrits par System Generator. Les
dossiers sont énumérés dans 1'ordre habituel de dépendance de HDL.

e gsynplify <design>.prj, xst <design>.prj, or spectrum <design>.tcl : Ces dossiers

permettent a la conception d'étre compilée par l'outil de syntheése que nous avons
indiqué.
e vcom.do : Ce manuscrit peut étre employé dans ModelSim pour compiler le HDL

pour une simulation comportementale de la conception.

85

Co-Simulation MATLAB/FPGA hassairi walid

e gsysgen.log, postnetlist.log : system Generator emploie ces dossiers pour rapporter si
la traduction a réussi, et pour enregistrer ce qui a mal tourné quand la traduction
échoue, le fichier devient d’extension. nterf

e Various ace and interface.txt files. : System Generator écrit des dossiers d'interface

pour décrire ses résultats de traduction. Ce sont les dossiers binaires, les dossiers du
compagnon interface.txt qui contiennent la méme information, mais exprimé sous

format le texte.

e <design> config.m : C'est une configuration de fonction M, elle permet au HDL et

I'EDIF pour que la conception soit apportée de nouveau dans le générateur de

systéme comme boite noire.

IV.4.3 Résultats expérimentaux

Nous retournons a notre application, nous cliquons sur Generate dans la fenétre de
dialogue de System Generator, nous aurons, comme ['ullistre la figure 40, le
déclanchement de la création des fichiers que nous avons déja cité dans la section
présidente.

L HEE

Filz= Edit Wew Simulation Format Tools Help

DEE&E|s2R <2y s o S HeBen RREET®

Adaptive Equalizer Demonstration
(Synthesizable RTL implementation using M-Code Blocks)
) [x]ow
—Kilinx System Generator Ot [}
‘ Error Symbaols
QAMIS Souree SaTEE HAT |——pe-< a0 a1 | . 4B
: Bl E S
Fart:
I: Epanang xo3s Running System Generator Errar
| J Re(u)
DE | Target Directory: { o (]
Cop Ifsw’vp Browse T ation ohAT
() Gopyright Synthesis Tool Hardhware Description Language : et m El
Al T =] oL =1 (et User
Filter
FPGA Clock Period (=) © Clock Pin Location : Taps
s |
I~ Creste Testbench [~ Import &= Configurable Subsyst
Ready I [[odeds 4
Override with Doubles [sccordngto Biock Setings - [yg
Simulink System Period (sec) F tes in Lh?v E§,9§,, or Mm of
1 1 1 i 1 . et =

Figure 40 : Lancement du System Generator.

86

Co-Simulation MATLAB/FPGA hassairi walid

Une fois la génération est terminée, nous aurons 1’apparition de la fenétre « Generation

complited » comme le montre la figure 41.

w AEE

File Edit Wiew Simulation Format Tools Help

DEEH& fBR 5|y s [oe S BHBEE RRETS

Adaptive Equalizer Demonstration
(Synthesizable RTL implementation using M-Code Blocks)

~
g2l
1.9
) +0.8 ﬁ
05 } Message !EH .
w
é 0 . Generation completed 1
e
-OK
0.5 T
H1.3 3
-1 4 ke
H.2 er
15 L L L L L 0 -
95 41 05 o0& 1 15 Fhame: 0
¥ Aois 1 L i 3
Initilizing [o6%5 [[T=0.00 [odeds 4

Figure 41 : Fin de la génération.
Nous pouvons maintenant accéder a I’emplacement ou nous avons crée le fichier de

conception pour interpréter les résultats comme le montre la figure 42.

87

Co-Simulation MATLAB/FPGA hassairi walid

- _ netlist | - = e
r =
Fichier Edition Affichage Fawvoris Outils 7 | ';’," |
@ Précédente - “-;J v :?‘r /ﬁ Rechercher |‘\ . Dossiers v
Adresse |I{’_’| CHMATLABTO1 toolboxxilinysysgenexamplest demos netlist | Ok
- - - T e
Gestion des fichiers = @ E |I ﬁ |;=
\'.j R A Y sysgensynthf... sysgensynthf... sysgensynth... xlbitstream_e... makebitError xst_sysgens... xst_sysgens... sysgensynthf...
@ Publier ce: dossier sur le Web
=] q = = m : L E, E, =
Partager ce dossier = 1= = =
9 = 5 = =] = Whdl Vhdl
postnetlist clwrappetint, . sysgeninterface sysgeninterface cllkwrapperint... sysgensynth... sysgensynth... hdlFiles
Autres emplacements =
d By 3 Ly = = =
0 demes Whdl Vhl E E Vhdl
D MeE doctvants globals conv_pkg sysgensynth... sysgensynthf... sysgenswnth... sysgen xtremedsp_error xlmemmap
) Documents partagés
W Poste de travai = B - —
& Favoris résesu ¥hdl . = |::
benone_top_pei sysgenhwcos... sysgen_hw_c... sysgensynthf... automake __prajnav sysgensynthf... sysgensynthf...
Détails e
o =
&) = [
Dioesier de fichiers sysgensynth.., sysgensynthf... sysgensynthfse sysgensynthf... sysgensynthf... sysgensynthf.., sysgensynbhf... sysgensynthf,..
Date de modification: mardi 2 mai _cle_wrapper_su
2008, 09:04 PRy
sysgensynthf... sysgensynth... .untf *flow synth_model _ngo wst __projnav
_XmMsgs temp
B8l 2 8 j & HEEEOT e M) 1 i e tar INEPCE L LT A 23:19‘1

Figure 42 : Résultat de Co-Simulation.

Nous ouvrons le fichier sysgensynthfse clk wrapper summary.html , nous trouvons des

tableaux déja remplis. Le premier tableau, comme le montre la figure 40, contient

essentiellement :

° I’emplacement du projet qui est dans notre cas
c:\matlab701\toolbox\xilinx\sysgen\examples\demos\netlist.

o Le type de la carte qui est ici xc3s200, c’est une information lié€ a la carte qui est dans
notre cas une SPARTAN 3.

o Le dossier sysgensynthfse_clk_wrapper.ucf qui contient des informations sur les pins
que nous devons utiliser pour notre exemple.

o La date du dernier changement pour ce fichier.

° Une version imprimable du rapport présenté en fichier HTML.

88

Co-Simulation MATLAB/FPGA hassairi walid

|].:'1'uperty Value
|Pro ject Mame: ||::1matlab?ﬂ 1itoolboxtalny\sysgentexample s\demos'nethst
|Target Dewice: |X|:352CICI

|Constrajnts File: |sysgensynﬂlfse_c]lc_wapper.ucf
|Report Fenerated: |Tuesda§.r 050206 at 09:55

Printable Summary
(Wiew as HITL)

sysgensynthfze cle wrapper sunumnary htmml

Tableau 2 : principal information du projet.

Ce tableau conclut le taux d’utilisation des ressources de la carte et est ce que le projet ou

I’application peut étre exécuté sur notre I’FPGA.

|I.ug'{: Ttilization |Use:l |Availﬂhle |Uti].izatiun | Note(s)
Number of Shices: 11883 1920 98% |

Mumber of Slice Flip Flops: | 2817 3840 | 73% |

Mumber of 4 input LUTs: | 1307 3840 34% |

Mumber of bonded IOBs: | 83| 173 47% |

Mumber of MULT18318s: | 19| 12| 158% | Resource Overuse
Number of GCLEs: I 2| 1294 |

Tableau 3 : Tableau d’estimation de ressources.

Pour des informations sur le déroulement de la conception, nous trouvons dans le dernier
tableau deux liens pour accéder aux fichiers de synthese de la conception et le fichier de

translation vers la carte que XFLOW génere.

|Re-.1mrt Name |Status Last Date IIodified
|Synthesis Report |Current Tuesday 05/02/06 at 09:55
I Transtation Report (Out-of-Date (Tuesday 05/02/06 at 0931

Tableau 4 : Plus d’information sur le rapport produit par System Generator.

&9

Co-Simulation MATLAB/FPGA hassairi walid

IV.5 Conclusion

Dans ce dernier chapitre, nous avons présenté 1’utilité et le role de chaque langage et outil
formant la plateforme. Nous nous sommes intéressés au System Generator, crée par The
MathWorks et responsable de I’interconnexion des différents langages pour la conception des
systemes hétérogenes.

Son rdle se résume principalement en quatre points qui sont :

o Rendement €levé : développer des systemes qui exigent des taux d’échantillon
et de prototypage tres élevé.

o Une grande flexibilité : pour une architecture configurable de matériel qui est
également champ extensible, c'est-a-dire que nous pouvons changer a tous moment dans
notre architecture.

o Productivité élevée : les concepteurs matériel et logiciel peuvent utiliser les

mémes écoulements de conception.

° Le délai de mise sur le marché : il permet de réduire le temps de mise sur le

marché.

Nous avons testé toute la plateforme sur I’exemple LMS-based adaptive equalization
(Synthesizable RTL implementation using M-code Block) .Avec cette interface, nous avons
accéléré la simulation et produit les fichiers nécessaires pour la Co-Simulation des systemes
hétérogenes.il nous a permit aussi d’identifier une méthode efficace de validation fonctionnelle

de systeme embarqué dans son environnement unifié.

90

assairi walid

%

6\

CONCLUSION ET
PERSPECTIVE

91

Conclusion et perspective hassairi walid

Conclusions et perspectives

Les systemes enfouis sont de plus en plus présents dans la vie quotidienne, que ce soit pour
un usage professionnel ou personnel. Nous pouvons citer par exemple les té€léphones mobiles, les
assistants personnels (PDA), les consoles de jeux vidéos portables, les lecteurs multimédias
portables (MP3 et consorts). Nous trouvons aussi de plus en plus de systemes enfouis dans les
automobiles, les appareils domestiques "intelligents" etc. Les fonctions qui peuvent étre intégrées
dans ce type de systeme peuvent étre, par exemple, de type traitement de signal numérique
(filtrage, compression décompression audio-vidéo,...), de type télécommunication (protocole
réseau,...) ou bien encore contréle/commande (domotique...).

La complexité grandissante des applications fait qu'il est nécessaire de pouvoir aborder
leurs conceptions a des niveaux d'abstractions élevés. En effet, il est tres intéressant de travailler
a ces niveaux (par exemple au niveau systtme) car les gains (en
surface/temps/consommation/colit) qu'il est possible d'obtenir par diverses transformations (tant
algorithmiques qu'architecturales) sont proportionnels au niveau d'abstraction auquel on se situe.
De plus, les décisions prises au niveau systéme peuvent avoir un impact trés important en termes
de développement industriel.

En effet, une mauvaise adéquation application/architecture (architecture sur/sous-
dimensionnée ou mal adaptée aux caractéristiques de l'application) peut imposer, soit de mettre
sur le marché un produit trop cher ou peu performant, soit de relancer un cycle de conception
entrainant des délais pouvant étre rédhibitoires.

Notre travail de recherche s’inscrit dans la préoccupation générale de conception de
systemes hétérogenes. Il y a un besoin urgent de proposer des méthodes et des outils permettant
au chercheur et a I’ingénieur de créer des nouveaux objets au plus vite et « sans faute ».

Nous avons réalis€ un état de I’art des pratiques de conception de systemes, a base
d’électronique, en nous appuyant sur notre interprétation de la démarche générale de conception.
Pour ce faire, nous avons parcouru les outils de conception électronique analogique, numérique et
mixte. Nous nous sommes intéressés principalement au produit de MathWorks qui est
précisément Link for ModelSim. C’est une interface de Co-Simulation crée par The MathWorks

pour la conception des ASICs et les FPGAs. Cette interface permet une communication entre

92

Conclusion et perspective hassairi walid

ModelSim et le produit MATLAB de MathWorks et Simulink. En outre, une bibliotheque des
blocs de Simulink est disponible pour inclure des conceptions de ModelSim HDL dans des
modeles de Simulink pour le Co-Simulation. Nous avons assuré la synchronisation et la
communication entre MATLAB et ModelSim & fin d’accélérer la Co-Simulation
MATLAB/VHDL. Mais cette interface, n’est pas suffisante pour la Co-Simulation
MATLAB/FPGAs. Ensuite, Nous nous sommes intéressés au System Generator qui est crée aussi
par The MathWorks qui est responsable de I'interconnexion des différents langages pour la
conception des systemes hétérogenes.
Son role se résume principalement en quatre points qui sont :

o Rendement élevé : développer des systemes qui exigent des taux d’échantillon
et de prototypage tres élevé.

o Une grande flexibilité : pour une architecture configurable de matériel qui est
également champ extensible, c'est-a-dire que nous pouvons changer a tous moment dans
notre architecture.

o Productivité élevée : les concepteurs matériel et logiciel peuvent utiliser les

mémes écoulements de conception.

° Le délai de mise sur le marché : il permet de réduire le temps de mise sur le

marché.

Avec c’est deux interface link for ModelSim et System Generator, nous avons identifié une
méthode efficace de validation fonctionnelle de systeme embarqué dans son environnement
unifié, accéléré la tache de Co-Simulation MATLB/ VHDL et Co-Simulation MATLAB
/FPGAs et minimiser le taux d’erreurs dans les conceptions.

Mais des questions qui se posent : est ce que nous pouvons le faire pour plusieurs carte
FPGAs en mémes temps, est ce que sa reste valable pour d’autre carte sur tous les nouvelles

comme VirteX-5 qui a apparu tres ressement pour le 17 mai 06.

93

Bibliographie hassairi walid

Bibliographie

[Aas 04] Y. Le Moullec « développer un estimateur systeme dont les résultats puissent étre
utilisés par le concepteur tres tot dans le flot de conception »2004.

[Acc98] Accellera, Accellera Verilog Analog Mixed-Signal Group, “Velilog-AMS Home”. [En
ligne].Adresse URL : http://www.eda.org/verilog-ams/. 1998

[AemO5] « AccelChip Enhances Model-Based Design Tool Suite » Barbara Marker 2006
barbara@hipcom.com

[Alte02] Altera « Altera device » on : http://www.altera.com , 2002.

[Ana0Ola] Analogy, Inc. « Saber® / Verilog-XL® Co-Simulation Interface ». Analogy, Inc,
Beaverton, Oregon, Etats Unis d’ Amérique, 2001.

[AnaOlb] Analogy, Inc. « Saber® / ModelSim TM Co-Simulation Interface ». Analogy, Inc,
Beaverton, Oregon, Etats Unis d’ Amérique, 2001.

[AnaOlc] Analogy, Inc. « Saber® / ViewSim ® Co-Simulation Interface ». URL :
http://www.analogy.com/Products/simulation/simulation.htm#ViewSim. Analogy, Inc,

[And96] C. ANDRE. « Representation and Analysis of Reactive Behaviors: A Synchronous
Approach » CESA'96, IEEE-SMC, Lille, France, 9 au 12 juillet, 1996.

[Ans03] ANSOFT Corporation, « System Modeling » [En ligne]. Adresse URL :
http://www.ansoft.com/products/em/simplorer/. ANSOFT Corporation. Etats-Unis d’ Amérique
d’ Amérique 2003.

[Bol 97] BOLSENS 1., « Specification, co-simulation and Hardware/Software Interfacing for
Telecom Systems », Leuwen Codesign Course, February, 1997.

[Bro0O3] D. BROWN. « A beginners guide to UML ». University of Kansas, Department of
Electrical Engineering and Computer Science. [En ligne]. Adresse URL :
http://consulting.dthomas.co.uk. Dustan Thomas Consulting 2003.

[Cal 95] CALVEZ J., HELLER D., PASQUIER O., « System Performance Modeling and
Analysis with VHDL : Benefits and Limitations », Proceedings of VHDL-Forum Europe
Conference, April, 1995.

[Cel02] Celoxica Ltd. « HANDEL-C language Overview ». Celoxica Ltd, aott 2002.

[Cesa99] W. O. Cesario « Synthese architecturale flexible » These de doctorat, Institut
National Polytechnique de Grenoble INPG, 1999.

[Cds03a] Cadence Design Systems Inc, « Using PSpice » [En ligne]. Adresse URL :

4

Bibliographie hassairi walid

http://www.orcadpcb.com/pspice/default.aspbc=F. Cadence 2003.

[Cla01] P. CLARKE. « ESTEREL system-level language emerges from the lab ». EE TIMES,
EE Times Network 2001.

[CloO1] F. CLOUTE, « Etude de la conception des systemes embarqués sur silicium : Une
approche de codesign matériel / logiciel », These doctorat, Institut National Polytechnique de
Toulouse, 2001.

[Cof03] Cofluent Design. « The MCSE Methodology Overview ». Cofluent Design 2003.

[Coo01] R. Scott COOPER. “The Designer’s Guide to Analog & Mixed-Signal Modeling”.
Avant Corp. ISBN 0-9705953-0-1. 2001.

[Cow01] CoWare, Inc. « CoWare N2C Design System », Coware N2C Data Sheet, Coware, Inc,
Santa Clara, Californie, Etats Unis d’ Amérique 2001.

[Csp05] ChipScope Pro Software and Cores User Guide (ChipScope Pro Software v7.1i)
UGO029 (v7.1) February 16, 2005 www.xilinx.com

[DdOO] B. DION, S. DISSOUBRAY, “Modeling and implementing critical real-time systems
with Esterel Studio”, Esterel Technologies 2000.

[Dgg01] R. DOMER, A. GERSTAULER, D. GAJSKI, « SpecC Language Reference Manual,
Version 1.0 », Université de Californie, Irvine,Mars 6, 2001.

[Di03] Dolphin Integration. “Dolphin Medal. New Features in SMASH™ 5.0.0 — 5.1.3”. Dolphin
Integration 2003

[Dmg97] G. DE MICHELLI, R. GUPTA. « Hardware / Software Co-Design ». Proceedings of
the IEEE, Vol 85, No 3, March 1997.

[Dob03] A. DOBOLI. «Towards Automated Synthesis of Analog and Mixed-Signal Systems
from High-Level Specifications». University of New York. FDL 2003. Frankfurt, Germany,
September 2003.

[Dv03] A. DOBOLI, R. VEMURI. “A VHDL-AMS Compiler and Architecture Generator for
Behavioral Synthesis of Analog Systems”, Proceedings of DATE'99, pp.338-345, 1999.

[Edm 04] Eléments de MATLAB Alfred A. Manuel Département de la Physique de la Matiére
Condensée alfred.manuel @physics.unige.ch 15 October 2004

[EurO4] EUROPRACTICE Software Service, « RAL-EUROPRACTICE Software Service Home
Page » [En ligne]. Adresse URL : http://www.te.rl.ac.uk/europractice/. 2004.

[F11+98] E. FILIPPI, L. LAVAGNO, L. LICCIARDI, A. MONTANARO, M. PAOLINI, R.

95

Bibliographie hassairi walid

PASSERONE, M. SGROI, A. SANGIOVANNI-VINCENTELLI. « Intellectual Property Reuse
in Embedded System Co-design: an Industrial Case Study ». Proceedings of International
Symposium System Synthesis, Hsinchu, Taiwan, December 1998.

[Gev04] C. GRIMM, K EINWICH et A. VACHOUX. « Analog and Mixed-Signal System
Design with SystemC ». FDL’04 Tutorial. Septembre 16 2004. Lille, France.

[GomO1] M. GOMEZ. « Hardware-in-the-loop Simulation ». Embedded System Programming ».
Etats Unis d’Amérique, novembre 2001.

[Gros97] C. Gross « La conception systeme d’ASIC et de FPGA » Electronique, n°75,pp.95-103,
Novembre 1997

[Hag 93] HAGEN K., MEYR H., « Timed and Untimed Hardware/Software Cosimulation :
Application and Efficient Implementation », Proceedings of CODES, 1993.

[HamO1] J.C HAMON. « Plate-forme de Prototypage Virtuel, Conception Systeme et « Codesign
» micro électronique », Stage DEA CCMM, Institut National Polytechnique de
Toulouse, 2001.

[Her02] Y. HERVE. « VHDL-AMS : «Applications et enjeux industriels». Dunod-Université -
collection : Sciences-sup - préface d’ Alain Vachoux. ISBN : 2-10-005888-6 - mars 2002.

[Ieee99] IEEE 1076.1-1999 standard, Language Reference Manual. “VHDL Analog and Mixed
Signal extensions”. ISBN 0-7381-1640-8.

[Jerr97] A. A. Jerraya, H. Ding, P. Kission, M. Rahmouni « Behavioral synthesis and component
reuse with VHDL » Kluwer Academic Publishers, 1997.

[Mal02] D. MALINIAK. « From CAD to CAE to EDA, Design tools have wrestled with
complexity ».ED Online ID #2311. Penton Media, Inc. juin 2002.

[Mei 97] MEIER W. ET AL., « Design of Multimedia Systems : Anatomy of an MPEG?2
Decoder », Leuwen Codesign Course, February, 1997.

[Mil03] R. MILLER. « Practical UML™: A Hands-On Introduction for Developers ».
BorlandDeveloper Network. [En ligne]. Adresse URL:http://community.borland.com
0,1410,31863,00.html. Borland SoftwareCorporation, Inc, 2003.

[Mg00a] Mentor Graphics Corporation, « Seamless CVE User’s Reference and Manual, software
version 4.0 », Mentor Graphics 2000.

[Mg00b] Mentor Graphics Corporation, « Getting Started with Seamless CVEI, software version
4.0 », Mentor Graphics 2000.

96

Bibliographie hassairi walid

[Mg01a] Mentor Graphics Corporation, « AdvanceMS Datasheet » Mentor Graphics
Corporation.2001

[Mg03] Mentor Graphics Corporation, « System Modeling » [En ligne]. Adresse URL :
http://www.mentor.com/systemvision/. Mentor Graphics Corporation.2003.

[Moc05] « Méthodes et outils de la conception amont pour les systemes et les microsystemes »
M Juan-Carlos HAMON Soutenue le 1 février 2005,

[Omg03] Object Management Group, Inc., "OMG Unified Modeling Language Specification,
Version 1.5", Object Management Group, Inc. Etats Unis d’ Amérique 2003.

[Pa05] PlanAhead User Guide Release 7.1 6/2/2005. www.xilinx.com

[Pana02] J. Panattoni « News & Views » Newsletter for Altera Custemers, Third Quarter
2002.

[Per04] V. PERRIER. “System Architecting complex designs”. Embedded Systems Europe.
Janvier/février 2004. pp. 24 — 26.

[Pn 03] Patrice NOUEL « Langage VHDL et conception de circuits » Dernieres mise a jour
Juillet 2003

[Ros72] DT, ROSS. “Structured Analysis and Design Technique (SADT)”. The Massachusetts
Institute of Technology. Cambridge, Massachusetts, Etats Unis 1972.

[Ries99] T. Riesgo, Y. Torroja, E. De la Torre « Design methodologies based on hardware
description languages » IEEE Transaction On Industrial Electronics, Vol. 46, n°1, February 1999.

[San96] A. SANGIOVANNI-VINCENTELLI. « Trends in Electronic Systems ». Proceedings of
Mediterranean Electrotechnical Conference on Industrial Applications in Power System:s,
Computer Science, and Telecommunications, mai 1996.

[Sdc03] Le langage VHDL P.N ENSEIRB « Synthese des circuits » 2003

[Sim03] SIMEC GmbH & Co KG. « hAMSter The High Performance AMS Tool for
Engineeringand Research ». [En ligne]. Adresse URL : http://www.hamster-ams.com/. SIMEC
GmbH & Co KG, 2003.

[SUG 03] Synplify® User Guide June 2003

[Sore01] Y. Sorrel « Méthodes et architectures pour le TSI en temps réel, chapitre méthodologie
AAA d’adéquation algorithme architecture » Kluwer Academic Publishers, 2001.

[Sug 03] Synplicity, Inc. 600 West California Avenue Sunnyvale, CA 94086 User Guide
June 2003

97

Bibliographie hassairi walid

[Syn00] Synopsys, « Hardware/Software Co-Verification with Synopsys Eaglei Tools »,
Synopsys, Inc, Etats Unis d’ Amérique 2000.

[Syn03] Synopsys®. « Saber HDL: Language-Independant Mixed-Signal Multi-Technology
Simulator ». Synopsys® Etats Unis d’ Amérique 2003.

[Syn04] Synopsys®. « OpenMAST Overview ». [En ligne]. Adresse URL :
http://www.openmast.org/overview/overview.html. Synopsys® Etats Unis d’ Amérique 2004.

[TmwO4a] The MathWorks. « System Specification and Modeling ». [En ligne]. Adresse URL :
http://www.mathworks.com. The Mathworks, Inc. 2004.

[Tmw04b] The MathWorks. « Embedded System Design ». [En ligne]. Adresse URL :
http://www.mathworks.com. The Mathworks, Inc. 2004.

[TmwO4c] The MathWorks. « Aerospace and Defense — Engineering Tasks ». [En ligne].
Adresse URL : http://www.mathworks.com. The Mathworks, Inc. 2004.

[TmwO03] The MathWorks. « Link for ModelSim® 1.1 ». The mathWorks, Inc. 2003.

[Ug05] User’s Guide Link for ModelSim For Use with MATLAB® and Simulink
www.mathworks.com

[Ver 94] VERMA D., « Very Large Scale Integrated Circuit Architecture Performance
Evaluation Using SES Modelling Tools », rapport technique, VLSI Technology, 1994.

[WmS85] P. WARD, J. STEPHEN J. MELLOR. “Structured Development for Real-Time
Systems”.Vol. 1-3, Yourdon Press, Englewood Cliffs, 1985.

[Wvc00] ILA. Grout , K. Keane <A MATLAB TO VHDL CONVERSION TOOLBOX FOR
DIGITAL CONTROL» 2000

[Xap 05] « Using the ISE Design Tools for Spartan-3 Generation FPGAs » XAPP473 (v1.1) May
23, 2005 : http://www.xilinx.com/ise/ise _promo/ise _spartan3.htm

[Xdsp05] Xtreme DSP Sélection Guide Fourth Quarter, 2005 www.xilinx.com/dsp.

[XilinX05] Xilinx 7.1i Design Tools Product Backgrounder February, 2005 www.xilinx.com.

[Xsg05] Xilinx System Generator v 7.1 User Guide 2006.

[Yk 02] « Développement d’'une Méthodologie de Conception Matériel a Base de Modules
Génériques VHDL/VHDL-AMS en Vue d’une Intégration de Systemes de Commande
Electriques » Youssef KEBBATI 16 Décembre 2002

98

