
Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

1

Sommaire

INTRODUCTION GENERALE... 6

CHAPITRE1 : LES ARCHITECTURES MULTIPROCESSEUR SUR PUCE 8

1. Introduction ... 8

2. Du monoprocesseur au Multiprocesseur ... 8

3. Système multiprocesseur monopuce MPSoC .. 9

4. Principales étapes de la conception des MPSoCs .. 10
4.1. Spécification et modélisation ... 11
4.2. Vérification .. 11

4.2.1. Simulation fonctionnelle ... 12
4.2.2. Simulation temporelle ... 12

4.3. Implémentation .. 12
4.3.1. Partitionnement logiciel/matériel .. 12
4.3.2. Raffinement ... 13

4.3.2.1. Le raffinement logiciel .. 13
4.3.2.2. Le Raffinement du matériel ... 13
4.3.2.3. Le Raffinement d'interface ou raffinement des communications... 13

5. La communication dans les MPSOC ... 13

6. Conclusion ... 14

CHAPITRE2 : ETUDE DES ARCHITECTURES DE RESEAUX SUR PUCE 15

1. Introduction ... 15

2. Propriétés des réseaux d’interconnexions ... 15
2.1. Le coût d‟interconnexion ... 15

2.1.1. Le coût en surface sur FPGA .. 15
2.1.2. Energie consommée .. 15

2.2. Les performances d‟un NOC ... 16
2.2.1. La latence ... 16
2.2.2. Le débit ... 16
2.2.3. La fiabilité d‟interconnexion ... 16

2.2.3.1. La flexibilité .. 16
2.2.3.2. L‟extensibilité .. 17

3. Topologies des réseaux sur puce .. 17
3.1. Communications point-à-point... 17
3.2. Réseau en étoile ... 18
3.3. Mesh et tore ... 18
3.4. Arbre élargi .. 18

4. Classification des réseaux pour MPSoC .. 19
4.1. Réseaux à ressources partagées-bus ... 19
4.2. Réseaux directs .. 20

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

2

4.3. Réseaux indirects ... 20
4.3.1. Les réseaux à zéro étage (réseaux connectés en bus) .. 20
4.3.2. Les réseaux crossbar.. 21
4.3.3. Les réseaux d‟interconnexion multi-étages ... 22

4.3.3.1. Classification des MINs ... 22
4.3.3.2. Topologie des réseaux MINs ... 24
4.3.3.3. Les réseaux Delta ... 25
4.3.3.4. Réseau Oméga ... 26
4.3.3.5. Réseau Butterfly .. 27
4.3.3.6. Réseau Baseline ... 27
4.3.3.7. Commutateurs 2x2 ... 28

5. Conclusion ... 29

CHAPITRE3 : CONCEPTION DE RESEAUX MULTI-ETAGE RECONFIGURABLE

SUR PUCE .. 30

1. Introduction ... 30

2. Plateforme choisie .. 30

3. Langage de conception .. 31

4. Outils d'analyse et de simulation ... 31

5. Modélisation de réseaux multi-étage reconfigurable sur puce ... 32
5.1. Introduction .. 32
5.2. Paquetage des données ... 33
5.3. Composants de MIN .. 34

5.3.1. Module Switch ... 34
5.3.2. Module Ordonnanceur : routage, arbitrage et mémorisation temporaire 35

5.3.2.1. Routage et mémorisation ... 36
5.3.2.2. Arbitrage .. 37
5.3.2.3. Ordonnancement des paquets .. 37

5.3.3. Module de mémorisation : FIFO ... 37
5.3.4. Module de connexion .. 38

6. Implémentation des réseaux multi-étage ... 39

7. Estimation des performances .. 40
7.1. Switch .. 40
7.2. MIN .. 41
7.3. Commentaires .. 42

8. Conclusion ... 42

CHAPITRE4 : L’INTEGRATION DU RESEAU MULTI-ETAGE DANS UNE

ARCHITECTURE MULTIPROCESSEUR ... 43

1. Introduction ... 43

2. Architecture MPSOC reconfigurable .. 43

3. Paramétrage du NOC pour une plateforme MPSOC ... 44
3.1. Le Composant Processeur .. 44
3.2. Le composant mémoire .. 46

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

3

3.3. Composant NOC .. 48
3.3.1. Réseau de requête .. 48
3.3.2. Réseau de réponse ... 49

4. Implémentation de l'architecture sur FPGA ... 52

5. Validation du réseau multi-étage dans l'architecture MPSOC. Etude de cas : FILTRE FIR et

FILTRE IIR .. 53
5.1. Présentation du Filtre FIR et Filtre IIR .. 53
5.2. Modélisation du Filtre FIR ... 54
5.3. Modélisation du Filtre IIR .. 57
5.4. Estimation des performances ... 58

5.4.1. Implémentation du Filtre FIR .. 59
5.4.2. Implémentation du Filtre IIR ... 60

6. Conclusion ... 60

CONCLUSION GENERALE ET PERSPECTIVES .. 61

BIBLIOGRAPHIE .. 62

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

4

Table des Figures

Figure 1. Architecture typique d‟un système multiprocesseur hétérogène 10

Figure 2. Flot de conception des MPSOC ... 10

Figure 3. Quelques topologies des réseaux sur puce ... 18

Figure 4. Réseau bus partagé ... 21

Figure 5. Réseau Crossbar ... 22

Figure 6. Réseau clos ... 23

Figure 7. Classification des MIN .. 23

Figure 8. Architecture générique du réseau MIN .. 24

Figure 9. Réseaux Omega 8x8 .. 26

Figure 10. Perfect Shuffle (N est égal à 8 dans cet exemple) ... 26

Figure 11. Réseau Butterfly 8x8 .. 27

Figure 12. Réseau Baseline 8x8 .. 28

Figure 13. Les différents états du switch 2x2 .. 28

Figure 14. Carte de développement VIRTEX4 ... 30

Figure 15. Xilinx ISE Foundation software .. 32

Figure 16. Paquet processeur_mémoire .. 33

Figure 17. Architecture de Switch ... 34

Figure 18. Architecture de l‟ordonnanceur ... 35

Figure 19. Routage dans le réseau oméga. Le trajet du message de 1 à 5 36

Figure 20. Schéma d‟une FIFO ... 38

Figure 21. Schéma du module connecteur (réseau Omega) .. 39

Figure 22. Composant réseau MIN ... 40

Figure 23. Architecture proposée .. 43

Figure 24. Composant Processeur ... 45

Figure 25. Mémoire de données .. 47

Figure 26. Mémoire d‟instructions .. 47

Figure 27. Réseau multi-étage-Topologie Butterfly .. 48

Figure 28. Réseau de réponse .. 49

Figure 29. Module ACQUIT ... 50

Figure 30. Module DONNEREP ... 51

Figure 31. 1ère itération de l‟application Filtre FIR .. 55

Figure 32. 2ème itération de l‟application Filtre FIR .. 56

Figure 33. 3ème itération de l‟application Filtre FIR .. 56

Figure 34. 1ère itération de l‟application Filtre IIR .. 57

Figure 35. 2ème itération de l‟application Filtre IIR ... 57

Figure 36. 3ème itération de l‟application Filtre IIR ... 58

Figure 37. Chronogramme de simulation de l‟architecture ... 58

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

5

Table des Tableaux

Tableau 1.Synthèse et latence de Switch en mode Asynchrone .. 41

Tableau 2. Synthèse et latence de Switch en mode Synchrone ... 41

Tableau 3. Synthèse de MIN en mode Asynchrone .. 41

Tableau 4. Synthèse de MIN en mode Synchrone .. 42

Tableau 5. Synthèse du Processeur miniMIPS ... 46

Tableau 6. Synthèse du module Mémoire de donnée ... 48

Tableau 7. Synthèse du module Mémoire d‟instruction ... 48

Tableau 8. Synthèse du module Réseau de réponse .. 52

Tableau 9. Synthèse de l‟architecture multiprocesseur en mode Asynchrone 52

Tableau 10. Synthèse de l‟architecture multiprocesseur en mode Synchrone 53

Tableau 11. Latence et Temps de simulation de l‟application Filtre FIR pour 4 processeurs 59

Tableau 12. Latence et Temps de simulation de l‟application Filtre FIR pour 8 processeurs 59

Tableau 13. Latence et Temps de simulation de l‟application Filtre IIR pour 4 processeurs . 60

Tableau 14. Latence et Temps de simulation de l‟application Filtre IIR pour 8 processeurs . 60

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

6

Introduction générale

Depuis les années 70, les techniques d‟intégration de transistors dans les systèmes

électroniques ne cessent de s‟améliorer. Ainsi, les systèmes à base de puces électroniques font

de plus en plus partie de notre quotidien. Ceux-ci intègrent maintenant plusieurs millions de

transistors. Cette tendance semble non seulement se confirmer mais se renforcer : les SOC

(System on chip) contiendront plusieurs processeurs. De ce fait, les systèmes embarqués (SE)

à base de microprocesseurs ont été introduits dans de nombreux domaines d‟application tels

que les appareils électroménagers, l‟automobile, l‟avionique, les équipements réseaux, les

terminaux de communication sans fils, les systèmes multimédias, les systèmes de contrôle

industriels. Il est donc crucial de maîtriser la conception de tels systèmes tout en respectant les

contraintes de mise sur le marché et les objectifs de qualité. En effet, l‟augmentation de la

capacité et de la complexité des systèmes monopuces a stimulé les chercheurs pour concevoir

de nouvelles plateformes d‟interconnexion fiable, à énergie réduite et à rendement élevé,

baptisées réseaux sur puce (NOC : Network On Chip), afin de remédier aux problèmes de

communication générés par les anciennes architectures d‟interconnexion (les bus).

Les réseaux sur puces semblent être une solution appropriée pour gérer la communication

entre les ressources (Processeur, DSP, IP, ASIP, etc.…). La difficulté de la conception d‟un

NOC réside dans un compromis entre une Qualité de Service optimale, une bande passante

élevée, une latence faible, une flexibilité, une extensibilité d‟utilisation importantes, et une

possibilité de réutilisation de la conception, tout en limitant la consommation d‟énergie et de

surface dans la puce.

C‟est dans ce cadre que s‟inscrit notre projet qui consiste à l‟étude et prototypage des réseaux

d'interconnexions multi-étages (MINs) de type Delta dans une architecture multiprocesseur

(MPSOC), et à trouver ensuite des techniques pour améliorer leurs performances.

Ce travail couvre les aspects suivants:

 Etude et conception des réseaux multi-étages sur des plateformes reconfigurable

FPGA de type Delta dédiés aux MPSOC.

 Améliorer les performances du NOC conçu suivant le besoin et le contexte de travail

(Synchrone ou Asynchrone).

 Implémenter les réseaux multi-étages dans une architecture multiprocesseur.

 Validation du fonctionnement de l‟architecture par une application.

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

7

L‟organisation du mastère est comme suit :

Le chapitre premier étudie l‟architecture multiprocesseur sur puce et ses propriétés en

exposant les principales étapes de flot de conception. Ensuite le deuxième chapitre présente

les réseaux sur puces ainsi que leurs caractéristiques. Le chapitre 3 développe en détail la

conception des réseaux multi-étage de type Delta, en proposant 2 approches d‟amélioration

des performances du notre NOC selon le besoin.

Quant au dernier chapitre, nous décrivons l‟implantation du notre réseau Delta MIN dans une

architecture MPSOC. La validation du fonctionnement de l‟architecture a été faite dans un

contexte applicatif propre au domaine télécommunication.

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

8

Chapitre1 : Les architectures Multiprocesseur sur

puce

1. Introduction

Les applications embarquées appartiennent à un domaine en évolution phénoménale.

Néanmoins elles sont de plus en plus soumises à des fortes contraintes fonctionnelles

(Puissance de calcul, consommation, miniaturisation...) et non fonctionnelles (tels que,

temps de mise sur le marché, forte croissance de la quantité de la production). D‟un autre

coté, le progrès technologique permettra une grande capacité d‟intégration sur une seule

puce, l‟ITRS [8] prévoit en 2012 l‟intégration des systèmes électroniques de 4 milliards de

transistors pour des fréquences proches de 10 GHz . L‟architecture associée à un flot de

conception efficace qui traduit le potentiel de la technologie en performance et capacité. De

point de vue architectural, les trois manières exploitant un grand volume de ressources

afin d‟améliorer la performance sont le parallélisme, la localité, et la spécialisation. Ces

trois critères impliquent respectivement le caractère multiprocesseur, monopuce et la

focalisation sur une application spécifique. Quant au flot de conception, manipuler un grand

volume de ressources revient à remonter le niveau d‟abstraction et à proposer une

méthodologie systématique pour le passage de ce niveau à une implémentation optimale.

Ce chapitre présente les systèmes multiprocesseurs monopuces en indiquant leurs

propriétés. Ensuite, il expose les principales étapes de conception, la dernière partie illustre

la communication entre les processeurs.

2. Du monoprocesseur au Multiprocesseur

Avec le progrès technologique il y a croissance de la capacité d‟intégration de transistors sur

une seule puce (centaines de millions), deux tendances architecturales ont émergé pour relever

ce défi. La première tendance s‟est restreinte à l‟utilisation d‟architectures monoprocesseurs

tout en améliorant considérablement les performances du CPU utilisé et l‟utilisation de

coprocesseurs. Un tel CPU se distingue par : une fréquence de fonctionnement très

élevée, des structures matérielles spécialisées, un ensemble d‟instructions sophistiquées,

plusieurs niveaux de hiérarchie mémoire (plusieurs niveaux de caches), et des techniques

spécialisées d‟optimisation logicielle (nombre d‟accès mémoire, taille, etc).

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

9

La deuxième tendance s‟est tournée vers les architectures multiprocesseurs

(multimaîtres). Ces architectures qui étaient réservées aux machines de calculs scientifiques

(tel que CM [1]) ne le sont plus avec le progrès de la technologie.

Le domaine d'application couvert par des systèmes multiprocesseurs sur puce est très vaste, en

effet les applications télécommunications et multimédias sont les plus représentatives de

ce domaine. Elles constituent l'un des marchés le plus en expansion actuellement (modems,

téléphones mobiles, les décodeurs audio et vidéo, etc.), notamment par le développement des

télécommunications sans fil et d'Internet.

3. Système multiprocesseur monopuce MPSoC

Un système multiprocesseur sur puce MPSoC dénoté multiprocessor System-on-Chip est un

système complet intégrant sur une seule puce de silicium plusieurs composants complexes

et hétérogènes tels que des unités de calcul spécifiques programmables et/ou non

programmable (CPU, DSP, ASIC-IP, FPGA) des réseaux de communication complexes (Bus

hiérarchiques sur puce, réseau sur puce) des composants de mémorisation variés,

périphériques E/S, etc. La Figure1 représente un modèle générique d‟un système MPSoC

hétérogène avec des parties matérielles et logicielles structurées en couches pour maîtriser la

complexité. Le matériel se divise en deux couches :

- La couche basse contient les composants de calcul et de mémorisation utilisés par le

système (µP, µC, DSP, matériel dédié IPs, mémoires).

- La couche matérielle de communication embarquée sur la puce composée de deux

sous-couches : média de communication (liens point-à-point, bus hiérarchique, réseau sur

puce) et adaptateurs de communication entre le réseau et les composants de la

première couche.

Le logiciel embarqué est aussi découpé en couches :

- La couche la plus basse est l‟abstraction du matériel (HAL, pour Hardware

Abstraction Layer en anglais) permet de faire le lien avec le matériel en implémentant les

pilotes E/S des périphériques, des contrôleurs de composants, les routines d‟interruption

(ISR, pour Interrupt Service Routine).

- La couche système d‟exploitation qui permet de porter l‟application sur l‟architecture

(gestion de ressources, communication et synchronisation, ordonnancement).

- La couche application.

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

10

Figure 1. Architecture typique d‟un système multiprocesseur hétérogène

4. Principales étapes de la conception des MPSoCs

Figure 2. Flot de conception des MPSOC

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

11

Il s‟agit essentiellement de la spécification, la modélisation, le partitionnement, le

raffinement du logiciel, le raffinement du matériel, la génération d'interface entre le

logiciel et le matériel (i.e raffinement des communications) et la génération de code ou le

prototypage. La succession de ces étapes forme le flot typique d'une approche de

conception des systèmes multiprocesseurs schématisée dans la Figure2.

Généralement la conception des systèmes sur puce part d'une spécification unique

décrivant l'architecture et/ou le comportement du système à concevoir [6]. Après cette

phase de spécification survient l‟étape de partitionnement du système ayant pour but de

décomposer ce dernier en trois parties :

- Une partie matérielle implémentée sous forme de circuits (FPGA, ASIC, ...).

- Une partie logicielle implémentée sous forme d'un programme exécutable sur

processeur, par exemple à usage général.

- Une interface de communication entre les parties matérielles et logicielles.

Les trois parties obtenues doivent ensuite être vérifiées et validées avant de passer à la phase

du raffinement et d'implémentation. Il est nécessaire de faire des retours aux étapes

précédentes (feed-back), plus précisément à l‟étape de partitionnement, tant que

l‟architecture obtenue ne répond pas aux contraintes auparavant fixées.

4.1.Spécification et modélisation

La spécification est le point de départ du processus de conception des systèmes sur puce.

Cette étape consiste, en général, à décrire les fonctionnalités du système à concevoir

ainsi que toutes les contraintes qu'il doit satisfaire sans se soucier du découpage

matériel/logiciel qui en suit.

4.2.Vérification

La vérification de la conception est un processus de test des fonctionnalités et des

performances de l‟architecture à implémenter. Les outils de conceptions offrent plusieurs

méthodes pour ce but :

· La simulation fonctionnelle et temporelle.

· L‟analyse temporelle statique.

· La vérification sur le circuit.

Pour vérifier le design, une simulation fonctionnelle ou temporelle peut être exécutée.

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

12

Un processus de Back-Annotation doit avoir lieu avant la simulation temporelle. Avant cette

phase, la description physique du design doit être traduite en design logique compréhensible

par le simulateur. Cette tâche est appelée Back-Annotation.

4.2.1. Simulation fonctionnelle

La simulation fonctionnelle ou comportementale détermine si la logique du design est

correcte avant la phase d‟implémentation. Ce type de simulation peut avoir lieu tôt dans le

processus de conception du système. Et puisque les informations temporelles ne sont pas

disponibles à ce moment, le simulateur teste la logique en utilisant des délais élémentaires

comme unités. Le simulateur utilisé (ModelSim) est un simulateur intégré dans

l‟environnement de développement de Xilinx : le passage entre les outils de conceptions

(éditeurs HDL ou schématiques) et le simulateur se fait automatiquement sans besoin

d‟utilisation intermédiaire d‟outils de translation.

4.2.2. Simulation temporelle

La simulation temporelle examine le temps d‟exécution du design dans les pires conditions.

Ce processus peut avoir lieu après le mapping, le placement et le routage du design. A ce

moment là, tous les délais du design sont bien connus. La simulation temporelle est très

importante parce qu‟elle peut vérifier les relations temporelles et détermine les chemins

critiques du design dans les pires conditions. Avant la simulation temporelle, il faut passer par

le Back-Annotation process déjà mentionné.

4.3.Implémentation

L'implémentation consiste à la réalisation physique du matériel (par la synthèse) et du logiciel

exécutable (par la compilation).

Les étapes de cette phase d'implémentation sont principalement :

- Le partitionnement matériel/logiciel

- Le raffinement et la synthèse du code pour la partie matérielle et la partie logicielle

4.3.1. Partitionnement logiciel/matériel

La phase de partitionnement a pour but d'assurer la transformation des spécifications du

système en une architecture composée d'une partie matérielle et d'une partie logicielle. Cette

phase de partitionnement consiste donc à déterminer les parties du système qui seront

réalisées en matériel et celles qui seront réalisées en logiciel ainsi que l'interface entre ces

différentes parties.

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

13

4.3.2. Raffinement

L'étape de raffinement consiste à transformer les spécifications fonctionnelles en

descriptions directement implantables sur les composants matériels et logiciels de

l'architecture cible.

Son rôle est d'assurer la conception physique de la partie matérielle (par synthèse de haut

niveau), la génération du code exécutable correspondant à l'implémentation de la partie

logicielle (par la compilation) ainsi que le raffinement des interfaces matériel/logiciel.

4.3.2.1.Le raffinement logiciel

Le raffinement logiciel consiste à la synthèse et la génération d'un code exécutable correct et

efficace correspondant à l'implémentation de la partie logicielle à partir d'une spécification

de haut niveau. Les intérêts de ce raffinement logiciel résident dans la diminution du

coût de développement et surtout l'augmentation de la fiabilité du code généré. La

complexité de cette étape dépend du type de processeur utilisé.

4.3.2.2. Le Raffinement du matériel

Le raffinement matériel consiste à transformer la spécification de haut niveau de

l'application vers un circuit électrique. Cette opération est appelée la synthèse du

matériel. On distingue généralement deux niveaux de synthèse matérielle : synthèse

logique et synthèse comportementale. La synthèse logique consiste en la transformation

d'une description de niveau RTL en un réseau de portes logiques interconnectées qui

réalise les fonctionnalités souhaitées. La synthèse

comportementale consiste quant à elle en la transformation d'une description

comportementale faite en langage de haut niveau (un algorithme) vers une architecture

décrite au niveau RTL, composée d'une partie chemin de données et d'une partie chemin de

contrôle.

4.3.2.3. Le Raffinement d'interface ou raffinement des communications

Le raffinement des communications est la réalisation des interfaces de communications

entre les différentes ressources.

5. La communication dans les MPSOC

La multitude des composants qui intègrent l‟architecture multiprocesseur exige une

communication entre les processeurs et des moyens pour la gestion de leurs accès concurrents

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

14

aux mémoires d‟où la nécessité d‟un réseau d‟interconnexion sur puce appelé NOC (Network

On Chip).

Les réseaux sur puce ou NOC sont susceptibles de proposer des solutions efficaces aux

problèmes d‟intégrations complexes des systèmes sur puce [18].

La difficulté de la conception d‟un NOC réside dans un compromis entre une Qualité de

Service optimale, une bande passante élevée, une latence faible, une flexibilité, une

extensibilité d‟utilisation importante, et une possibilité de réutilisation de la conception, tout

en limitant la consommation d‟énergie et de surface dans la puce. Le coût et les

caractéristiques des réseaux sur puce dépendent des applications considérées [19].

6. Conclusion

Dans ce chapitre, nous avons présenté les systèmes multiprocesseurs sur puce ainsi que les

principales étapes de leur conception. Enfin, nous avons évoqué la communication dans les

MPSOCs qui va être détaillée dans le chapitre qui suit.

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

15

Chapitre2 : Etude des architectures de Réseaux sur

Puce

1. Introduction

Dans ce chapitre, nous présentons tout d‟abord les propriétés des réseaux d‟interconnexion,

leurs performances. Puis, nous classifions et détaillons quelques topologies de ces réseaux.

2. Propriétés des réseaux d’interconnexions

Cette partie présente une description détaillée des caractéristiques des NOCs. Pour cela, nous

définissons quelques paramètres tels que le coût d‟interconnexion, la latence, le débit, la

fiabilité…

2.1.Le coût d’interconnexion

Ce coût se mesure en surface d'occupation des ressources (blocs logiques,

mémoires…) sur l‟FPGA, et l'énergie consommée d‟un circuit.

2.1.1. Le coût en surface sur FPGA

La surface est une préoccupation essentielle pour tous les concepteurs de systèmes intégrés

sur FPGA. Malgré leur complexité croissante, ils doivent rester très compacts, pour des

raisons de rendement de fabrication. Un réseau sur puce utilise un grand nombre de routeurs

qu‟il faut interconnecter par plusieurs milliers de fils. Le problème topologique n‟est pas

simple à résoudre. De plus, tous les composants du NOC sont cadencés par la même horloge.

La faisabilité topologique d‟une telle implémentation centralisée mérite d‟être étudiée de

façon approfondie. Il faudra en particulier déterminer si la capacité d‟FPGA disponible

permet effectivement de router le design sans agrandir de façon significative la surface sur

FPGA utilisée par le réseau sur puce. D‟autre part, le coût de l‟extensibilité en terme de

surface doit être quantifié. C‟est-à-dire que lorsque le nombre de composants interconnectés

augmente, la surface occupée par le réseau sur puce doit être évaluée.

2.1.2. Energie consommée

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

16

L‟énergie est facteur aussi important que la surface pour tous concepteurs de systèmes

intégrés sur FPGA. Elle comporte une partie dynamique et une autre statique qui est

négligeable devant la première. L‟énergie dépend essentiellement de le complexité de circuit,

de la fréquence, de la tension et de l‟application

2.2.Les performances d’un NOC

Les performances d‟un réseau sur puce représentent l‟efficacité du réseau à acheminer les

données d‟un composant vers un autre. Deux métriques évaluent les performances d‟une

interconnexion à savoir : la latence moyenne mesurée en cycles d‟horloge et le débit

mesuré en mots par unité de temps.

2.2.1. La latence

La latence est le temps écoulé entre le moment où le message transmis est initialisé

jusqu‟au moment où il est acquitté. Deux hypothèses sont possibles :

- Il s‟agit d‟une opération d‟écriture, la latence correspond alors au temps entre l‟émission du

paquet du processeur et sa réception par la mémoire.

- Il s‟agit d‟une opération de lecture, la latence correspond alors au temps entre l‟émission

du paquet et sa réception par le processeur en passant par la mémoire comme intermédiaire.

2.2.2. Le débit

Le débit est la quantité maximale d‟informations transitant dans une interconnexion par unité

de temps (cycle d‟horloge). Il mesure la capacité d'un canal à transmettre des données

sous forme numérique, c‟est à dire la vitesse de transfert des données. Le débit peut être

mesuré en mots par seconde ou en mots par cycle d‟horloge selon que l‟on considère

un temps absolu (en seconde) ou relatif (en fréquence).

2.2.3. La fiabilité d’interconnexion

2.2.3.1.La flexibilité

La flexibilité exprime la capacité d‟intégration d‟une architecture d‟interconnexion à un

système. Cette flexibilité est composée de deux paramètres : la portabilité du l‟architecture et

son extensibilité décrite ci-après.

Le temps de conception d‟un élément est un paramètre important dans l‟élaboration d‟un

composant. En effet, la durée de vie des composants étant de plus en plus faible, leur

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

17

conception doit se faire en un temps réduit. Les concepteurs utilisent donc de plus en plus de

librairies afin de les aider à gagner du temps. L‟interconnexion d‟un système sur puce

doit être conçue dans la même optique : elle doit être facilement réutilisable et donc

reconfigurable.

2.2.3.2.L’extensibilité

L‟extensibilité correspond à sa capacité à évoluer en fonction du nombre de composants.

Si l‟ajout de blocs fait augmenter les performances et le coût de l‟interconnexion de façon

proportionnelle, l‟architecture est alors extensible. En revanche, si l‟ajout de cœurs

supplémentaires conduit à un goulot d‟étranglement du système, le composant ne pourra pas

être utilisé. Il faut mesurer l‟évolution de son coût et de ces performances en fonction du

nombre de composants connectés.

3. Topologies des réseaux sur puce

Le critère incontournable de classification des réseaux sur puce (NoCs) est la topologie [16].

Cette caractéristique spécifie l‟organisation physique du réseau. Elle définie donc comment

les nœuds et les liens sont connectés entre eux. De nombreuses topologies sont envisageables.

La Figure 3 montre les plus couramment utilisées.

Ces topologies sont dîtes régulières compte tenu de leur loi de construction géométrique.

Les topologies présentent plusieurs paramètres [23]. Les plus courants sont :

– Le diamètre : C‟est le nombre maximal de liens qui séparent deux ressources quelconques

du réseau (en considérant les plus courts chemins).

– La distance moyenne : C‟est le nombre moyen de liens entre deux ressources.

– La connectivité : C‟est le nombre de voisins directs des nœuds dans le réseau.

– La largeur de bissection. C‟est le nombre minimal de liens qu‟il faut couper pour séparer le

réseau en deux parties égales (plus ou moins un nœud). Cela permet d‟évaluer le coût de

transférer les données d‟une moitié du réseau à l‟autre.

3.1.Communications point-à-point

Ces communications sont les plus simples à réaliser. Lorsque l‟application est structurée on

pourra souvent combiner plusieurs communications point-à-point en une seule

communication collective. Figure3(e)

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

18

3.2.Réseau en étoile

Les réseaux en étoile (“star-tree” et non “star-graph” qui est un autre type de réseau) ont, entre

chaque source et destination, un chemin unique de longueur maximale 2. Le routage

est très simple et consiste à passer par un seul nœud intermédiaire soit le nœud central

(Figure3(c)).

3.3.Mesh et tore

Parmi les topologies maillées à deux dimensions, le choix entre le type maillage simple

(mesh), tore est souvent discuté [3] [25]. En effet, les interconnexions en tore offrent une

meilleure utilisation des ressources réseau, puisque pour un même nombre de nœuds, il y a

plus de liens ce qui a pour effet de diminuer le diamètre et d‟augmenter la bande-passante

(largeur de bissection double). En contre partie, la structure est moins régulière que pour un

réseau maillé et les fils utilisés pour boucler le réseau sont plus longs et pénalisent donc les

performances des liens (voir Figure 3(a, b)).

3.4.Arbre élargi

Les réseaux de types arbre élargi ou anneau à corde ont un diamètre plus petit que les réseaux

maillés. Ils permettent donc de réduire la latence mais leurs structures sont moins régulières.

Une étude comparative a été effectuée [4] et on observe qu‟avec un trafic uniformément

réparti, le débit atteignable avant saturation est plus élevé avec ces topologies par rapport aux

topologies maillées. Cependant, l‟étude montre que les topologies maillées exploitent

avantageusement le fait que dans les SoC le trafic sera majoritairement local (Figure3(d)).

Figure 3. Quelques topologies des réseaux sur puce

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

19

4. Classification des réseaux pour MPSoC

Cette partie introduit les différents types de réseaux d'interconnexion en montrant les

avantages et inconvénients de chacun de ceux-ci afin de justifier le choix de celui de notre

architecture.

Cette classification comporte 4 classes majeures: les réseaux à ressources partagées, les

réseaux directs, les réseaux indirects et les réseaux hybrides. [17]

4.1.Réseaux à ressources partagées-bus

La structure d'interconnexion la moins complexe est celle dans laquelle le moyen de

transmission est partagé par tous les éléments. Dans ce genre de réseau, un seul élément peut

transmettre à la fois. Chaque élément se trouvant sur le réseau dispose de circuits de requête,

d'envoi et de réception afin de pouvoir manipuler les données et les adresses.

Un bus partagé se compose notamment :

 D‟un bus de données partagé (unique et connecté à tous les éléments du système).

 D‟un bus d‟adresses ayant les mêmes caractéristiques.

 D‟un élément particulier du système, appelé arbitre du bus, connecté par des liaisons

point à point à tous les autres éléments.

Un bus partagé, en particulier sa topologie, possède plusieurs avantages. En effet, il peut

supporter directement le modèle de communication par adressage mémoires des CPUs.

De plus, le mode de fonctionnement de l‟arbitre est simple et on peut facilement l‟adapter aux

différentes applications requises. Ainsi que, le concept de bus est parfaitement maîtrisé par les

concepteurs de matériel, ce qui favorise son usage et sa large diffusion.

En revanche un bus partagé implique de nombreux problèmes de mise à l‟échelle. Ceci

s‟avère être inacceptable, surtout pour le débit global. Un arbitrage plus sophistiqué et des

mémoires caches ne peuvent qu‟alléger cette contrainte assez forte.

Ce problème peut être résolu de deux façons : soit en augmentant la largeur du bus, soit en

augmentant la fréquence d‟horloge. Les deux solutions ne sont pas satisfaisantes car elles

impliquent des problèmes électriques auxquels il est coûteux de remédier convenablement.

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

20

4.2.Réseaux directs

Les réseaux directs (aussi appelés réseaux point à point) s'adaptent très bien à un très grand

nombre d'éléments. Ils consistent en un ensemble de points qui peuvent chacun être connecté

vers un petit sous ensemble de nœuds du réseau.

Le contrôleur de transfert est un composant important du nœud; il gère tous les messages

échangés entre différents nœuds. Si on augmente le nombre de nœuds dans le système, la

bande passante totale de communication et les capacités de calcul augmentent aussi. Ceci

permet une extensibilité très élevée.

Un réseau direct est principalement caractérisé par trois facteurs: sa topologie, ses transferts et

son multiplexage. La topologie définit comment les nœuds sont interconnectés. Pour des

réseaux directs, la topologie idéale connecte chaque nœud vers tous les autres nœuds. Un

message ne doit donc passer par aucun nœud intermédiaire

Quand un message arrive dans un nœud intermédiaire, un mécanisme de multiplexage

détermine comment et quand les multiplexeurs internes sont activés, par exemple pour

connecter une entrée à une sortie.

4.3.Réseaux indirects

Dans ce type de réseau, plutôt que de fournir des liaisons directes entre nœuds, la

communication entre deux nœuds se fait à travers de commutateurs. Chaque nœud est

connecté à un multiplexeur disposant d'un certain nombre de ports composé d‟un lien d'entrée

et d‟un lien de sortie

Un réseau indirect est caractérisé par trois facteurs: la topologie, le routage et l‟arbitrage.

Un réseau indirect ou dynamique est un réseau dont la topologie peut varier au cours de

l‟exécution d‟un programme parallèle ou entre deux exécutions de programmes ; il s‟agit du

comportement du réseau.

4.3.1. Les réseaux à zéro étage (réseaux connectés en bus)

Le réseau en bus permet d‟établir dynamiquement un et un seul lien direct à la fois entre

n‟importe quelle paire de noeuds source et destination (Figure4).

En fait, lorsque la complexité du traitement à réaliser est limitée i.e. lorsque le nombre

d‟éléments du système est moyen et que le taux d‟utilisation du bus par ces éléments n‟est pas

trop élevé, un réseau en bus ne pose pas de problèmes particuliers tout en étant simple et

relativement peu coûteux.

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

21

Par contre, lorsque les contraintes sont plus exigeantes et donc que le nombre d‟éléments

(Processeurs) augmente ainsi que leur taux d‟utilisation du bus, il se produit un problème de

blocage (bottleneck) [7]. Celui-ci résulte du fait que seulement deux éléments peuvent

communiquer entre eux à chaque instant.

De plus, une défaillance du bus ("failure") est toujours catastrophique car cela signifie le

blocage de la communication entre les éléments du système.

Figure 4. Réseau bus partagé

4.3.2. Les réseaux crossbar

Dans un réseau à crossbar (Figure5), n'importe quel élément peut être connecté à un autre

élément de sorte que plusieurs communications peuvent se faire simultanément. Une nouvelle

connexion peut être réalisée tant que les ports d'entrée et de sortie soient libres. Les crossbars

sont surtout utilisés dans les petits systèmes multiprocesseurs (dans les routeurs des réseaux

directs et dans les réseaux indirects). Un crossbar comporte N entrées et M sorties, permettant

jusqu'à min{N,M} connexions point à point sans collision.

Quand deux ou plusieurs éléments essayent d'accéder au même élément, un arbitre laisse

l'accès à un seul élément tandis que les autres doivent attendre. Dans un crossbar, l'arbitre est

distribué au niveau de tous les commutateurs ayant la même sortie. Cependant, cet arbitre est

nettement moins complexe que dans le cas des bus.

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

22

Figure 5. Réseau Crossbar

4.3.3. Les réseaux d’interconnexion multi-étages

4.3.3.1.Classification des MINs

Il existe divers critères de classification des réseaux multi-étages [10]. En effet, on peut

distinguer plusieurs classes de MINs suivant les types de commutateurs utilisés et / ou les

types de permutation. Avant de présenter la classification choisie pour les MINs, il est

important de commencer par explorer quelques définitions. Figure7

- banyan : il offre un chemin unique entre n‟importe quelle entrée et n‟importe quelle sortie.

- Un réseau d‟interconnexion est dit uniforme : "uniform MIN" lorsque tous les éléments de

commutation (SE) d‟un étage sont de même degré.

-Un réseau est dit rectangulaire si le nombre d‟entrées est égal au nombre de sorties.

-Un réseau est dit carré "Square MIN", lorsqu‟il est de degré r et il est construit à partir des

SEs de taille r.

-Réseau avec Blocage (Blocking) :

La connexion entre les entrées libres et les sorties n‟est pas toujours possible à cause des

conflits avec les connexions existantes. Typiquement, il y a un chemin unique entre chaque

paire d‟entrée/sortie, de ce fait le nombre de switch et d‟étages sera réduit au minimum.

- non bloquant : Si de toute entrée inactive il existe toujours un chemin vers toute sortie

inactive. On peut donc effectuer n'importe quelle permutation en cours d'exécution. Un

exemple populaire de réseau sans blocage est le réseau de Clos [11].Figure6

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

23

Figure 6. Réseau clos

Le réseau Banyan est une structure de commutation spatiale définissant un schéma

d'interconnexion avec une seule voie d'accès entre les entrées et les sorties. Cette topologie est

réalisée à partir d'éléments de commutation (crossbar) a x b.

Une autre caractéristique qui donne à ce réseau un grand intérêt, est sa capacité de routage

automatique (self Routing) qui consiste à déterminer la décision de routage en utilisant

l'adresse destination.

Multistages interconnections networks

Non blocking networks Blocking networks

Non banyan networksBanyan networks

Non delta networksDelta networks

BaselineButterflyOmega

Figure 7. Classification des MIN

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

24

4.3.3.2.Topologie des réseaux MINs

Un grand nombre de réseaux MIN NXN (de N processeurs d‟entrée vers N processeurs ou

vers N mémoires de sortie) sont formés de n = 2log N colonnes ayant chacune N/2

commutateurs 2x2 i.e. avec 2 entrées et 2 sorties [5] [26].

Le nombre total de commutateurs est donc d‟ordre 2log N, comparativement à N² pour

les commutateurs matriciels.

On représente normalement un tel réseau MIN par une matrice de n colonnes de N/2

commutateurs (rangées) reliant les N nœuds d‟entrée (source) placés à gauche de la dernière

colonne aux N nœuds de sortie (destination) placés à droite de la première colonne.

On numérote normalement les colonnes de commutateurs de 0 à n-1 en allant de la

première (à droite) à la dernière (à gauche) (figure8) [9].

Un étage d‟un réseau MIN comprend une colonne de commutateurs et les liens

d‟entrée de ces commutateurs. Le numéro d‟un étage est le même que celui de la colonne de

commutateurs.

Un réseau MIN comprend donc n étages suivis des liens de sortie de la dernière

colonne de commutateurs.

Figure 8. Architecture générique du réseau MIN

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

25

4.3.3.3.Les réseaux Delta

D‟après la définition formelle de Patel [12], les réseaux Delta sont des réseaux

d‟interconnexion multi étages de type Banyan, qui comprennent axb crossbars, dont tous les

ports d‟entrées et de sorties sont connectés. Le nombre total de crossbar pour construire un

réseau Delta est :

Les réseaux Delta sont des réseaux d‟interconnexion multi étages basés sur des crossbar axb.

Ils sont dépourvus de contrôle, et peuvent donc engendrer des pertes de données. L‟avantage

principal des réseaux Delta est qu‟ils sont moins complexes que les fulls crossbar. Dans le

réseau Delta pour N entrées et N sorties avec N=k
n
, on aura n étages dont chacun contient N/k

commutateurs.

Le réseau delta est caractérisé par un accès total : les types de permutations utilisées pour

construire les étages de connexion, doivent garantir l‟accès total au réseau. Ainsi, par une

configuration correcte des commutateurs à chaque étage, n‟importe quelle entrée doit être

capable d‟atteindre n‟importe quelle sortie.

Aussi, le réseau delta se caractérise par sa capacité de routage automatique des messages

depuis la source vers la destination. En ce sens le canal de sortie choisi à chaque

commutateur ne dépend pas de la source mais seulement de la destination.

Une autre propriété pour les réseaux delta est l‟équivalence topologique : il a été prouvé dans

[13], [14] et [15] que tous les MINs Delta sont équivalents du point de vue topologique. Il

suffit de réordonner les positions des commutateurs sans rompre les connexions pour passer

d‟un réseau à un autre.

Il existe plusieurs formes (types) de réseaux Delta, dépendamment de leurs connexions. Les

réseaux les plus utilisés sont:

 Omega networks

 Butterfly Networks

 Baseline Networks

 (Generalized) Cube Networks

 Flip Networks

 Reverse Butterfly Networks

 Reverse Baseline Networks

 Indirect Binary N-Cube Networks

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

26

4.3.3.4.Réseau Oméga

Le réseau Oméga est constitué de 2
k
 entrées et 2

k
 sorties, k représente le nombre d'étages.

Chaque étage contient 2
k-1

switch 2x2 (Figure 9).

Le réseau oméga est un exemple important de réseau multi-étage de type “shuffle/exchange”.

Il est formé d‟une suite d‟étages de type shuffle/exchange terminée par une permutation

identité.

Dans les réseaux oméga la connexion Ci (0 i < n) entre les étages est décrite par la

formule de permutation circulaire suivante: σ
k
 (xn-1 xn-2 … x1 x0) = xn-2 … x1 x0 xn-1

Signification : décalage cyclique de tous les bits de l‟index d‟une position vers la gauche

La connexion C0 est définie par I

Figure 9. Réseaux Omega 8x8

 Perfect-shuffle et shuffle-exchange :

Dans une permutation perfect-shuffle de N = 2
n
 noeuds, chaque noeud est donc relié au noeud

obtenu par un décalage cyclique de 1 bit vers la gauche, de son adresse binaire.

Un étage de type mélange et échange (“shuffle/exchange”) consiste en une permutation

perfect-shuffle suivie d‟une colonne de commutateurs 2x2 [7].

Cette colonne de commutateurs permet de réaliser la permutation d‟échange (Figure10).

Figure 10. Perfect Shuffle (N est égal à 8 dans cet exemple)

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

6

7

2

3

4

5

0

1

6

7

2

3

4

5

Sw00

Sw01

Sw02

Sw03

Sw10

Sw12

Sw13

Sw11

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

27

4.3.3.5.Réseau Butterfly

Un réseau butterfly (réseau papillon) de dimension r, est un réseau composé de (r + 1)2
r

noeuds organisés en 2
r
 lignes de r +1 niveaux (Figure11).

Dans les réseaux butterfly la connexion Ci entre les étages est décrite par la formule

suivante

 ßi
k
(xn-1 xn-2 … xi+1 xi xi -1 … x1 x0) = xn-1 xn-2 … xi+1 x0 xi -1 … x1 xi

 : échange entre le i
ème

 bit et le bit 0

Figure 11. Réseau Butterfly 8x8

4.3.3.6.Réseau Baseline

Un réseau MIN Baseline [7] de n étages utilise une permutation identité à l‟entrée de

l‟étage n, une permutation k

iδ à l‟entrée des étages i=1 à n-1 et une permutation identité à

l‟étage0 (Figure12).

La ith baseline permutation dans un réseau Baseline, est définie comme suit:

k

iδ (xn-1 xn-2 … xi+1 xi xi -1 … x1 x0) = xn-1 xn-2 … xi+1 x0 xi xi -1 … x1

avec 1 < i < n – 1

Signification : décalage cyclique d‟une position vers la droite, des (i+1) bits les moins

significatifs de l‟index.

On aura alors cette formule :

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

28

Figure 12. Réseau Baseline 8x8

4.3.3.7.Commutateurs 2x2

Les réseaux Delta utilisent des commutateurs 2x2. Pour un commutateur 2x2, 16 états ou

configurations sont possibles en considérant que le message sur chaque canal d‟entrée peut

être transmis ou non vers un des canaux de sortie.

Dans les réseaux MIN, seulement quatre de ces états sont significatifs. Chaque

commutateur se place donc dans une des quatre configurations de base qui permettent de

transmettre sans ambiguïté (Figure13).

Les messages arrivant sur les canaux aux entrées :

• Directe : L‟entrée IN0 passe par la sortie OUT0 et IN1 passe par OUT1

• En croisé : L‟entrée IN0 passe par la sortie OUT1 et IN1 passe par OUT0

• Vers le haut : Les entrées IN0 et IN1 passent par la sortie OUT0.

• Vers le bas : Les entrées IN0 et IN1 passent par la sortie OUT1.

Figure 13. Les différents états du switch 2x2

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

IN0

IN1

IN0

IN1

IN0

IN1

IN0

IN1

OUT0

OUT1

OUT0

OUT1

OUT0

OUT1

OUT0

OUT1

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

29

5. Conclusion

Dans ce chapitre, nous avons passé en revue les différentes notions relatives aux réseaux

multi-étages (MINs). Nous avons insisté en particulier sur les réseaux de la famille Delta. Vu

les propriétés intéressantes que possède cette dernière classe de réseaux, notre travail de

conception et modélisation se focalisera sur cette famille de réseaux.

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

30

Chapitre3 : Conception de réseaux multi-étage

reconfigurable sur puce

1. Introduction

Dans ce chapitre, on va présenter l‟environnement de travail : le langage de spécification et

les outils de conceptions utilisés. Par la suite, on passe à la conception des réseaux multi-

étages configurable sur puce. Enfin, on donne une estimation des performances en terme de

surface sur FPGA et de latence.

2. Plateforme choisie

La carte de développement VIRTEX4 comporte un FPGA (XC4VLX200-FF1513) avec

plusieurs périphériques [20] (Figure14).

 Figure 14. Carte de développement VIRTEX4

Nous citons ci-dessous les spécifications technologiques de la plateforme choisie.

Ci-dessous une liste des principaux périphériques de la carte choisie est présentée:

 Un circuit FPGA VIRTEX4 - LX200-FF1513

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

31

 Une mémoire flash de 16 MB et une mémoire DDR SDRAM 128 Mo.

 Deux blocs SRAM.

 Un port série RS-232

 Un port USB 2.0

 Interface Ethernet

 2 PROM de 32 MB

 Un oscillateur générateur de signal d‟horloge (500 MHz).

3. Langage de conception

Les langages de description matérielle supportent les concepts spécifiques aux systèmes

matériels tels que les concepts de temps, de parallélisme, de réactivité et de communication

interprocessus (signaux et protocoles). Les deux langages de description matérielle les plus

connus sont VHDL et Verilog.

Le langage VHDL permet la description de tous les aspects d‟un système matériel (hardware

system): son comportement, sa structure et ses caractéristiques temporelles.

Le langage VHDL est aussi utilisé pour la synthèse [2], par exemple pour dériver

automatiquement un circuit à base de portes logique optimisé à partir d‟une description au

niveau RTL ou algorithmique.

La description d‟un système matériel en VHDL est apte à être simulé. Il est possible de lui

appliquer des vecteurs de test, également décrits en VHDL et d‟observer l‟évolution des

signaux du modèle dans le temps.

4. Outils d'analyse et de simulation

Pour notre travail nous avons utilisé l‟environnement ISE 9.1i [21] (Figure15) et Modelsim

de la société de XILINX.

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

32

Figure 15. Xilinx ISE Foundation software

Ces outils nous permettent de faire :

 Synthèse logique d‟une description en VHDL

 Placement et routage

 Génération des fichiers de programmation du circuit FPGA

 Suivi des comportements des signaux au cours du temps

 Estimation de ressources utilisées sur FPGA

5. Modélisation de réseaux multi-étage reconfigurable sur puce

5.1.Introduction

Dans ce chapitre nous détaillons la conception des réseaux multi-étages de type DELTA

dédiés aux architectures multiprocesseurs sur des plateformes reconfigurables FPGA ainsi que

leur fonctionnement.

Notre architecture est composée essentiellement des modules suivants:

– Un module de routage qui permet de diriger les informations vers leurs destinations.

– Un module d‟arbitrage qui garanti l‟exécution des demandes provenant de chaque port

d‟entrée/sortie.

– Les modules de mémorisation, dans notre cas nous utilisons les FIFO (premier arrivé,

premier servi), ils permettent de stoker des informations afin de gérer les conflits dans les

réseaux.

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

33

– Les modules de connexion qui assurent la connexion entre les étages suivant une topologie

bien définie.

Ensuite, nous détaillons l‟architecture interne de chaque composant en expliquant son mode

de fonctionnement.

5.2. Paquetage des données

Les données échangées entre les nœuds de MIN sont fragmentées en paquets. Ces derniers

dépendent des protocoles adoptés dans la conception des NOCs. Le paquet est composé de

trois parties (Figure16) :

- Une en-tête : codification de l‟opération (lecture, écriture, commande)

Bit r/w : bit qui définit l‟action : s‟il s‟agit d‟une écriture (r/w=1) ou d‟une lecture (r/w=0).

Bit enable : l‟activation ou la commande.

- Un message : la donnée à échanger.

- Une queue : contient l‟adresse de la source, l‟adresse de la destination et l‟adresse dans la

mémoire.

Figure 16. Paquet processeur_mémoire

 Les sources de données

Les paquets circulant à travers le réseau proviennent de plusieurs sources. Ces paquets

peuvent être classés en quatre catégories :

- Paquet_processeur_mémoire: demande d‟accès à la mémoire (opération de lecture,

opération d‟écriture).

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

34

- Paquet_ mémoire_réponse : ce paquet n‟a pas la même forme que le premier paquet envoyé

à travers le NOC. Il contient seulement 32 bits de donnée et les bits d‟adresse (2,3 ou 4 bits :

suivant le nombre de processeurs).

5.3.Composants de MIN

5.3.1. Module Switch

C‟est le composant qui présente le cœur du réseau multi-étage (Figure17).

Le switch est formé d‟un couple de FiFOs connectés à l‟ordonnanceur.

Son fonctionnement, sa fiabilité influent sur les performances de réseau en terme de

consommation de surface sur la puce ou en terme de latence.

Le switch possède 2 entrées qui reçoivent les paquets de type processeur_mémoire et les

stocke dans les files d‟attentes pour être ensuite acheminée par l‟ordonnanceur suivant leur

destination vers la sortie désirée.

Figure 17. Architecture de Switch

Le switch a comme signaux (Figure17) :

 Deux vecteurs « IN0 » et « IN1 » de taille 69 bits et qui ont la forme de paquet décrit

précédemment. Ces deux vecteurs vont être stockés dans les FIFO.

 Un vecteur « numberstagein » de taille 4 bits qui est lié au numéro de l‟étage pour

être utilisé dans l‟algorithme de routage.

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

35

 Un signal d‟horloge « clk».

 Un signal d‟initialisation « reset».

 Deux vecteurs « OUT0 » et « OUT1 » qui représentent les paquets après l‟arbitrage et

le routage.

 Un vecteur « numberstageout » de taille 4 bits qui est égale à « numberstagein-1 »

5.3.2. Module Ordonnanceur : routage, arbitrage et mémorisation temporaire

Il s‟agit de l‟acheminement des paquets dans le réseau via des routeurs, qui sont chargés de

véhiculer des paquets en vue de rejoindre la destination dans un délai minimum.

Figure 18. Architecture de l‟ordonnanceur

L‟Ordonnanceur a comme signaux (Figure18) :

 Deux vecteurs « in0 » et « in1 » de taille 69 bits et qui ont la forme de paquet décrit

précédemment. Ces deux vecteurs vont être stockés temporairement dans TEMP pour

subir l‟arbitrage puis le routage.

 Deux signaux « fifoempty0 » et « fifoempty1 », de taille d‟un bit, qui indiquent que

les Fifos sont vides.

 Un vecteur « numberstagein » de taille 4 bits qui est lié au numéro de l‟étage pour

être utilisé dans l‟algorithme de routage.

 Un signal d‟horloge « clock».

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

36

 Deux vecteurs « OUT0 » et « OUT1 » qui représentent les paquets après l‟arbitrage et

le routage.

 Deux signaux r00 et r11 qui gèrent la lecture à partir des Fifo.

 Un vecteur « numberstageout » de taille 4 bits qui est égale à « numberstagein-1 »

On passe à la description du composant Ordonnanceur et son fonctionnement. En effet ce

dernier joue le rôle d‟un routeur, arbitre et une mémorisation temporaire.

5.3.2.1.Routage et mémorisation

Le routage est fait en fonction de l‟adresse destination. En fait, le routeur redirige le message

sur l‟étage suivant, afin de s‟approcher de la destination finale. Il doit être capable de gérer les

conflits de chemin (deux messages désirant emprunter simultanément le même canal) c‟est à

dire, la mémorisation temporaire d‟un message pour l‟envoyer plus loin une fois la voie sera

libre. L‟algorithme de routage, en raison des conflits potentiels peut devenir assez complexe.

Il faut être sûr qu‟aucun message ne puisse être bloqué dans le réseau.

Pour réaliser le routage dans un réseau Delta, le i ème bit le plus significatif de l‟adresse de

destination détermine l‟activation du commutateur de l‟étage i. Ainsi, si ce bit est à 0, le

chemin passe par la sortie du haut sur le commutateur. Inversement, si le bit est à 1, la sortie

du bas du commutateur est utilisée [22].

Des algorithmes de "self-routing" existent pour la plupart des réseaux MIN.

Pour un réseau oméga par exemple, le routage se fait comme suit : supposons que nous

partons du nœud 1 au nœud 5, selon cet algorithme, 5 signifie 101 en binaire, d‟ou bas (1),

haut (0), bas(1) tel que montré par la Figure19.

Figure 19. Routage dans le réseau oméga. Le trajet du message de 1 à 5

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

37

5.3.2.2.Arbitrage

Le switch possède deux ports d‟entrées où chacun de ces ports peut demander l‟accès à un

même port de sortie. Pour cela un arbitrage doit avoir lieu, pour qu‟on puisse d‟une part,

garantir le service des demandes provenant de chaque port d‟entrée, et d‟autre part éviter les

problèmes de type famine (Risque d'affamer les flux les moins prioritaires) [24].

La technique d’arbitrage Round Robin :

Cette technique est basée sur le principe suivant : le port d'entrée ayant la priorité la plus forte

aura à la prochaine itération la priorité la plus faible. Pour cela nous avons utilisé une variable

statique qui prend les valeurs 1 ou 0 selon le cas où nous avons deux requêtes qui se

présentent et qui demandent accès au même port de sortie.

5.3.2.3.Ordonnancement des paquets

-Initialement la mémoire Temp est vide, les signaux r00 et r11 vont être alors mis à 1 pour la

remplir.

-Les entrées « entrée0 » et « entrée1 » venant des FIFOs vont être stockées suivant :

 Leurs bits de commande (bits d‟activation)

 Si les FIFOs ne sont pas vides (fifoempty=0).

-Une fois que TEMP est pleine, on va affecter ces paquets suivant leurs bits de destination.

Plusieurs cas seront présentés : accès par la même sortie ou non, passage par la sortie haut ou

par la sortie bas, les deux entrées sont actives ou non.

-Avec cette variété de cas, l‟arbitre doit gérer l‟accès de chaque entrée à la sortie demandée en

utilisant sa technique d‟arbitrage et enfin vient le routage de ces entées vers les sorties

voulues.

-Dés que TEMP sera vide elle envoie une requête aux FIFOs : r00 et r11 s‟activent pour lire

une autre fois auprès des Fifo et remplir les deux cases temporaires.

-Ce processus se répète jusqu'à ce que les Fifo soient vides.

5.3.3. Module de mémorisation : FIFO

Afin de mémoriser les données et gérer le conflit dans les réseaux, nous avons ajouté à chaque

entrée de chaque module Ordonnanceur un bloc de mémoire de type FIFO (Figure20).

Une FIFO est très utile dans notre architecture permettant de lire des données qui viennent

successivement d‟un autre module et de les stocker dans un ordre bien défini. Elle permet

aussi de vider les données de telle façon que la première donnée qui a été enregistrée sera la

première à sortir.

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

38

 Figure 20. Schéma d‟une FIFO

Une FIFO comporte essentiellement :

 Un signal « clock » d‟horloge de type entrée, qui assure la synchronisation des

signaux.

 Un signal « readenable » de type entrée, qui active la lecture à partir de la FIFO.

 Un signal « writeenable » de type entrée, qui active l‟écriture dans la FIFO.

 Un vecteur « datain » de type entré de taille 69, qui représente l‟information à écrire

dans la FIFO.

 Un vecteur «dataout » de type sortie de taille 69, qui représente l‟information à lire à

partir de la FIFO.

 Deux signaux "Fifofull" et "Fifoempty" de type sortie, indiquant l‟état de la mémoire

(pleine ou vide).

 La taille de FIFO : c‟est un paramètre critique pour les NOCs. Il influe directement sur

les performances des routeurs implémentés dans le modèle.

Plusieurs variantes de FIFOs sont implémentées et simulées en vu d‟évaluer les

performances de notre réseau sur puce () avec N ∈ [1,3]).

5.3.4. Module de connexion

Le bloc de connexion est un module qui assure la connexion entre n signaux d‟entrées et n

signaux de sorties (Figure21). Si on veut changer la topologie de notre réseau multi-étages

(par exemple changer un réseau oméga par un réseau Baseline), il suffit d‟arranger le bloc de

connexion et décrire les types de connexions correspondantes à la topologie. Pour simplifier

la tâche on a décrit la manière de connexion des topologies dont on a besoin et il suffit de

changer la position de commutateur topologie pour passer d‟une topologie à une autre.

datain

writeenable

readenable

dataout

Fifofull

Fifoempty

clock reset

FIFO

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

39

Figure 21. Schéma du module connecteur (réseau Omega)

6. Implémentation des réseaux multi-étage

Un réseau multi-étage est composé essentiellement des étages de commutateurs connectés

entre eux par les blocs des connexions suivant une topologie bien définie (Figure22).

Le réseau multi-étage permet de connecter N processeur à n modules mémoire.

La figure22 présente un exemple d‟implémentation d‟un réseau MIN de type OMEGA de

taille 8x8, c'est-à-dire qui connecte 8 processeurs à 8 mémoires. Le réseau est composé de 3

étages de switch et de 4 étages de connecteurs. Le schéma a été obtenu en utilisant l‟outil RTL

VIEWER de XILINX. Cet outil permet de transformer une description en langage VHDL en

une représentation schématique comportant les blocs utilisés ainsi que les connexions entre

ces blocs.

in0

in1

in2

in3

in4

in5

in6

in7

out0

out7

out6

out5

out4

out3

out2

out1

topologie clock

Connecteur

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

40

Figure 22. Composant réseau MIN

7. Estimation des performances

Après avoir implémenté le réseau multi-étage, nous avons dégagé les performances. Ces

performances se focalisent essentiellement sur la Surface sur FPGA et la latence. On

commence par le switch qui présente le cœur du réseau puis on passe à l‟estimation des

performances du MIN. Enfin, on commente les résultats obtenus.

7.1.Switch

Deux types de switch ont été conçus. Le premier qui fonctionne en mode Asynchrone et qui

se caractérise par une latence minimale mais une consommation importante de blocs logiques

sur FPGA (Tableau1) et un deuxième qui fonctionne en mode synchrone et qui est caractérisé

par rapport au premier par moins de surface sur FPGA et plus de latence (Tableau2).

De plus on a varié la profondeur de la FIFO utilisée pour les deux modes de fonctionnement

(2,4 et 8 places par FIFO) pour évaluer la surface de switch.

On a constaté que la solution la plus adéquate pour notre switch est d‟utiliser une FIFO de

profondeur 8 car cette dernière présente moins de surface sur FPGA.

Ceci s‟explique par l‟usage des blocs FIFO préfabriqués par le concepteur XILINX et qui se

trouve dans l‟FPGA pour un switch qui utilise une FIFO de profondeur 8 tandis qu‟un switch

qui utilise une FIFO de profondeurs 4 ou 2. Cet usage sera compensé par la combinaison des

blocs logiques élémentaires (Tableau1, Tableau2).

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

41

Mode Asynchrone

cible xc4vlx200

-11ff1513

Utilisation des ressources logiques Latence

Prof

de

FIFO

 Nombre

de Slices

Nombre de

Slice Flip

Flops

Nombre de

4 input

LUTs

Nombre de

FIFO16/RAMB16s

2 1073 719 1590 0 2 cycle

4 1081 731 1606 0 2 cycle

8 756 587 1349 4 2 cycle

Tableau 1.Synthèse et latence de Switch en mode Asynchrone

Mode Synchrone

cible xc4vlx200

-11ff1513

Utilisation des ressources logiques Latence

Prof

de

FIFO

 Nombre

de

Slices

Nombre de

Slice Flip

Flops

Nombre de

4 input

LUTs

 Nombre de

FIFO16/RAMB16s

2 812 713 1182 0 3 cycle

4 826 719 1208 0 3 cycle

8 568 587 929 4 3 cycle

 Tableau 2. Synthèse et latence de Switch en mode Synchrone

7.2.MIN

L‟estimation des performances du NOC est basée sur les deux types de switch dont on a déjà

parlé. Il existe alors deux types de NOC : un qui fonctionne en mode Asynchrone et un autre

qui fonctionne en mode Synchrone (Tableau3, Tableau4).

Les résultats ont été pris en variant le nombre des processeurs (4, 8, 16 et 32).

 Mode Asynchrone

cible

xc4vlx200

-11ff1513

Utilisation des ressources logiques

Nombre de

processeurs

Nombre

de Slices

% Nombre de

Slice Flip

Flops

% Nombre de

4

input LUTs

% Nombre de

FIFO16/RAM

B16s

%

4 3538 3 2344 1 6521 3 16 4

8 10718 12 7036 3 19673 11 48 14

16 33199 37 19024 10 61337 34 128 38

Tableau 3. Synthèse de MIN en mode Asynchrone

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

42

Mode Synchrone

cible:

xc4vlx200

-11ff1513

Utilisation des ressources logiques

Nombre de

processeurs

Nombre

de Slices

% Nombre de

Slice Flip

Flops

% Nombre de

4

input LUTs

% Nombre de

FIFO16/RAM

B16s

%

4 2281 2 2364 1 3993 2 16 4

8 6839 7 7092 3 12257 6 48 14

16 18220 20 18912 10 33057 18 128 38

 Tableau 4. Synthèse de MIN en mode Synchrone

7.3.Commentaires

Après avoir dégagé les estimations des performances de switch et de MIN, on remarque bien

que l‟évolution de l‟utilisation des ressources logiques sur FPGA en fonction du nombre de

processeur est linéaire pour le mode synchrone tandis qu‟elle ne l‟est pas pour le mode

asynchrone (Nombre de Slices, Nombre de 4 input LUTs).

8. Conclusion

Dans ce chapitre, nous avons présenté l‟environnement de travail à savoir le langage VHDL et

les outils de conception de XILINX. Puis nous avons modélisé les réseaux multiétages de

type DELTA. Ensuite nous avons fait l‟implantation de notre réseau. Enfin nous avons

terminé par une estimation des performances.

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

43

Chapitre4 : L’intégration du réseau multi-étage dans

une architecture multiprocesseur

1. Introduction

Notre objectif est d‟adopter le réseau d‟interconnexions multi-étage en tant qu‟une

architecture de communications dédiées aux MPSOC.

Après avoir élaboré la spécification des réseaux DELTA MIN qui présente une bonne

solution pour connecter N processeurs à N mémoires, ce chapitre s‟intéressera à

l‟implémentation notre réseau dans une architecture multiprocesseur en faisant varier les

topologies afin de tester la fiabilité et l‟efficacité du NOC et comparer les performances des

différents types de réseaux.

On va s‟intéresser tout d‟abord à spécifier l‟architecture multiprocesseur.

Par la suite, on va valider le fonctionnement de notre architecture par une application.

2. Architecture MPSOC reconfigurable

L‟architecture est composée de N processeurs, N mémoires de données, N mémoires

d‟instructions, un réseau de requête DELTA MIN et un réseau de réponse (voir Figure23).

Figure 23. Architecture proposée

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

44

Chaque processeur est connecté à sa propre mémoire d‟instruction d‟une part et au réseau

DELTA MIN d‟autre part qui est à son tour connecté aux mémoires des données. Chaque

processeur peut accéder à n‟importe quelle mémoire de données via le réseau pour faire une

opération de lecture ou d‟écriture de données.

Initialement chaque processeur accède à sa propre mémoire d‟instructions, ensuite suivant

cette instruction il peut faire une opération de calcul ou un accès à la mémoire de données.

S‟il s‟agit d‟une opération d‟écriture la mémoire envoie un acquittement au processeur qui a

fait la requête indiquant la fin de l‟opération sinon (en cas d‟une opération de lecture) la

mémoire doit envoyer la donnée désirée avec l‟acquittement.

Par la suite le processeur passe à l‟instruction suivante. De cette façon si un processeur accède

à une mémoire de données il restera en pause jusqu‟à ce qu‟il reçoit un acquittement de cette

mémoire.

3. Paramétrage du NOC pour une plateforme MPSOC

3.1.Le Composant Processeur

 Il existe une grande variété de processeurs commercialisés et autres opencores. La

spécification de ces processeurs en langage matériel (VHDL ou VERILOG) peut être portable

(comme le processeur MIPS, LEON, etc.) ou non portable et spécifique pour une plateforme

bien déterminée (tel que le processeur Microblaze de XILINX, etc.).

Le processeur miniMIPS est classé dans la catégorie des processeurs opencore et compatibles

pour plusieurs plateformes de prototypages. La spécification en langage VHDL est disponible

sur Internet. C‟est un processeur efficace pour notre application et répond bien à nos besoins.

Le processeur miniMIPS est une version simplifiée du processeur MIPS R3000. C‟est un

RISC 32 bits auquel ils manquent quelques instructions, et le mécanisme d‟interruption

externe. Il comporte 32 registres et inclut deux mémoires cache de 4 Koctets. Il comporte 5

étages pipeline.

Le processeur miniMIPS possède une interface avec 7 ports (Figure24).

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

45

Figure 24. Composant Processeur

– Clock : est l‟entrée d‟horloge. Les registres internes de miniMIPS sensitives au front

montant de CLK.

– Ram_ack : est le signal qui permet l‟exécution d‟une nouvelle instruction à l‟état ‟1‟, par

suite il indique la fin d‟exécution de la dernière instruction.

– Reset : est le signal d‟initialisation du processeur. C‟est une entrée synchrone active à l‟état

bas.

– Ram_r_w : est une commande sur un bit définissant le type d‟accès à une mémoire externe.

Elle peut prendre deux valeurs : lecture d‟un mot de 32 bits ou écriture d‟un mot de 32 bits.

– Ram_adr : est un vecteur de 32 bits. Dans notre cas, nous avons choisie que les 12 premiers

bits de poids fort représentent l‟adresse (le numéro) de la source (le processeur), les 8 bits

suivants représentent l‟adresse de la destination (la mémoire) et le reste des bits représentent

l‟adresse dans la mémoire (Figure 16).

– Ram_data : est le mot de 32 bits de type entrée/sortie. Ce denier contient l‟instruction lue à

partir de la mémoire d‟instruction ou la donnée à lire ou à écrire dans la mémoire de données.

– it_mat : interruption du processeur.

Implémentation du composant processeur

Afin d‟avoir une idée sur les ressources utilisées par un composant processeur, nous avons

effectué une analyse et synthèse pour le code de ce composant (décrit en VHDL) en utilisant

l‟outil ISE 9.1i de XILINX. Par suite, nous avons obtenu les résultats suivants (Tableau5) :

ack
Ram_data

Ram_r_w

Ram_req

resetclock

Processor

minimips

Ram_adr

It_mat

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

46

cible: xc4vlx100-12ff1148

Utilisation de ressources utilisé disponible Utilisation

Nombre de Slices 3344 89088 3%

Nombre de Slice Flip Flops 1883 178176 1%

Nombre de 4 input LUTs 6375 178176 3%

Nombre de bonded IOBs 74 960 7%

Nombre de GCLKs 1 32

Nombre de DSP48s 4 96 4%

 Tableau 5. Synthèse du Processeur miniMIPS

3.2.Le composant mémoire

Une mémoire est tout dispositif capable de stocker des informations (instructions et données)

de telle sorte que l‟organe qui les utilise (processeur) puisse à n‟importe quel moment accéder

à l‟information qu‟il demande.

Les informations peuvent être écrites ou lues. Il y a écriture lorsque nous enregistrons des

données en mémoire, lecture lorsque nous appelons des informations précédemment

enregistrées. Le temps d‟accès est le temps qui s‟écoule entre l‟instant où a été lancée une

opération de lecture en mémoire et l‟instant où la première information est disponible. Le

temps de cycle représente l‟intervalle minimum qui doit séparer deux demandes successives

de lecture ou d‟écriture.

Une mémoire est formée d‟un certain nombre de cellules, ou cases, contenant chacune une

information. Chaque cellule a un numéro qui permet de la référencer et de la localiser.

Ce numéro est son adresse. Avec une adresse de n bits il est possible de référencer

directement au plus 2 cellules. La capacité d‟une mémoire est le nombre total de cellules

qu‟elle contient. Elle s‟exprime en nombre de bits, d‟octets (bytes) ou de mots (words).

Dans une mémoire à semi-conducteur, nous accédons directement à n‟importe quelle

information dont nous connaissons l‟adresse. Le temps pour obtenir l‟information ne dépend

pas de l‟adresse. On dira que l‟accès à une telle mémoire est aléatoire, direct ou encore

sélectif.

Les mémoires utilisées dans notre architecture sont des mémoires de type RAM (Read Access

Memory) et ROM (Read Only Memory). Les RAM représentent les mémoires de données, par

suite il est possible d‟effectuer des lectures et des écritures, alors que les ROM représentent

les mémoires d‟instructions afin de faire des lectures seulement. Les mémoires utilisées

possèdent une interface comportant sept ports : Figure25, Figure26

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

47

– Clk : est l‟entrée d‟horloge. Les lectures et les écritures dans les mémoires sont

synchronisées par les fronts montants de CLK.

– Adresse : est le mot en entrée de 8 bits qui indique l‟adresse dans la mémoire dans laquelle

une lecture ou une écriture sera effectuée.

– Data_out : est un mot en sortie sur 32 bits. Il représente la donnée à lire à partir de la

mémoire.

– Ack : est un signal en sortie qui indique la fin d‟une manipulation à savoir une écriture ou

une lecture.

Les signaux qui suivent sont propres à la mémoire de donnée

– req : est l‟entrée qui active ou désactive toute manipulation dans la mémoire. Ce signal est

actif à l‟état ‟0‟.

– WR: est un signal d‟entrée qui indique le type de manipulation dans la mémoire. Il s‟agit

d‟une lecture si le signal est à l‟état ‟0‟ et une écriture si le signal est à l‟état ‟1‟.

– Data_in : est un mot en entrée sur 32 bits. Il représente la donnée à écrire dans la mémoire.

Figure 25. Mémoire de données

Figure 26. Mémoire d‟instructions

ack

Data_in

req

clock

Data

memoryAdresse

Data_out

WR

ack

clock

Instruction

memory
Adresse

Data_out

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

48

 Après une analyse et synthèse de ces composants, nous avons obtenu les résultats présentés

dans les Tableau6 et Tableau7.

cible: xc4vlx200-11ff1513

 Utilisation de ressources utilisé disponible Utilisation

Nombre de Slices 11 89088 0%

Nombre de 4 input LUTs 22 178176 0%

Nombre de FIFO16/RAMB16s 1 336 0%

 Tableau 6. Synthèse du module Mémoire de donnée

cible: xc4vlx200-11ff1513

 Utilisation de ressources utilisé disponible Utilisation

Nombre de Slices 7 89088 0%

Nombre de 4 input LUTs 12 178176 0%

 Tableau 7. Synthèse du module Mémoire d‟instruction

On remarque que les deux types de mémoires consomment peu de ressources sur FPGA

3.3. Composant NOC

3.3.1. Réseau de requête

Dans notre architecture proposée, le réseau de requête est présenté par le réseau Multi-étage

de type Delta dont on a déjà parlé dans le chapitre précédent. Ce réseau permet aux

processeurs d‟accéder aux mémoires de données (écriture ou lecture). De plus il est possible

d‟avoir plusieurs types de ce réseau en changeant seulement la topologie des modules de

connexion entre les étages de Switch. La figure27 présente un réseau de type Butterfly utilisé

dans l‟architecture adoptée.

Figure 27. Réseau multi-étage-Topologie Butterfly

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

49

Notre réseau est unidirectionnel c'est-à-dire qu‟il ne peut transférer que des paquets circulant

des processeurs vers les mémoires. Pour cela il nous faut un autre réseau pour le transfert des

paquets mémoire_réponse.

3.3.2. Réseau de réponse

Il s‟agit de l‟acheminement des paquets mémoire_réponse via ce module de réponse en vue de

rejoindre la destination (processeurs) dans un délai minimum, sans blocage d‟information et

sans perte d‟information (Figure28).

Figure 28. Réseau de réponse

Ce module comporte donc 2 composants : ACQUIT et DONNEREP.

ACQUIT : pour les signaux d‟acquittement (Figure29)

DONNEREP : pour les données (Figure30)

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

50

ACQUIT

Figure 29. Module ACQUIT

Le composant ACQUIT a comme signaux :

8 vecteurs (de in0 à in7) de taille d‟un bit qui représentent les acquittements sortants des

mémoires.

8 vecteurs (de ad0 à ad7) de taille 3 bits qui représentent les adresses des destinations de

chaque acquittement sortant de la mémoire.

8 vecteurs (de out0 à out7) de taille d‟un bit qui représentent les acquittements vers les

processeurs.

in0

ad0

in1

in2

in3

in4

in5

in6

in7

clock

ad1

ad2

ad3

ad4

ad5

ad6

ad7

out0

out1

out2

out4

out3

out6

out7

out5

A

C

Q

U

I

T
D

E
M

U
X

0
D

E
M

U
X

1
D

E
M

U
X

2
D

E
M

U
X

3
D

E
M

U
X

4
D

E
M

U
X

5
D

E
M

U
X

6
D

E
M

U
X

7

OR0

OR1

OR2

OR3

OR4

OR5

OR6

OR7

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

51

DONNEREP

Figure 30. Module DONNEREP

Le composant DONNEREP a comme signaux :

 8 vecteurs (de en0 à en7) de taille 32 bits qui représentent les données sortantes des

mémoires.

 8 vecteurs (de adr0 à adr7) de taille 3 bits qui représentent les adresses des

destinations de chaque donnée sortant de la mémoire.

en0

adr0

en1

en2

en3

en4

en5

en6

en7

clock

adr1

adr2

adr3

adr4

adr5

adr6

adr7

O0

O1

O2

O4

O3

O6

O7

O5

D

O

N

N

E

R

E

P

D
E

M
U

X
0

D
E

M
U

X
1

D
E

M
U

X
2

D
E

M
U

X
3

D
E

M
U

X
4

D
E

M
U

X
5

D
E

M
U

X
6

D
E

M
U

X
7

OR0

OR1

OR2

OR3

OR4

OR5

OR6

OR7

enable0

enable1

enable2

enable3

enable4

enable5

enable6

enable7

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

52

 8 vecteurs (de out0 à out7) de taille 32 bits qui représentent les données vers les

processeurs.

 8 vecteurs (de enable0 à enable7) de taille d‟un bit qui représentent les signaux

d‟activation car le transfert de données ne devra fonctionner qu‟en cas de lecture.

Les performances de module réponse se focalisent en terme de surface (Tableau8).

D‟après les résultats estimés, on peut conclure que ce composant présente un gain

important comparé à la solution qui utilise un réseau NOC comme un réseau de réponse.

cible:

xc4vlx200

-11ff1513

Utilisation de ressources

Nombre de

processeurs

Nombre

de Slices

% Nombre

de Slice

Flip Flops

% Nombre de

4

input LUTs

%

4 761 0 - - 1340 0

8 2824 3 256 0 5173 2

16 10369 11 - - 18889 10

 Tableau 8. Synthèse du module Réseau de réponse

4. Implémentation de l'architecture sur FPGA

Après l‟implémentation du NoC dans une architecture multiprocesseur, l‟estimation de

performance se focalise sur la surface de l‟architecture sur FPGA.

Les mesures ont été prises en variant le nombre de processeur (4, 8,16) et en utilisant les deux

modes de fonctionnement : Asynchrone et Synchrone (Tableau9, Tableau10).

Mode Asynchrone

cible:

xc4vlx200

-11ff1513

Utilisation de ressources

Nombre de

processeurs

Nombre

de

Slices

% Nombre de

Slice Flip

Flops

% Nombre

de 4

input

LUTs

% Nombre de

FIFO16/RAMB16s

%

4 14390 16 10048 5 26551 14 20 5

8 35321 39 22896 12 65540 36 56 16

16 77563 87 49459 27 142761 80 144 42

 Tableau 9. Synthèse de l‟architecture multiprocesseur en mode Asynchrone

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

53

Mode Synchrone

cible:

xc4vlx200

-11ff1513

Utilisation de ressources

Nombre de

processeurs

Nombre

de

Slices

% Nombre de

Slice Flip

Flops

% Nombre

de 4

input

LUTs

% Nombre de

FIFO16/RAMB16s

%

4 12697 14 10057 5 23667 13 20 5

8 30251 33 22909 12 56534 31 56 16

16 68432 76 49466 27 127564 71 144 42

Tableau 10. Synthèse de l‟architecture multiprocesseur en mode Synchrone

Après avoir dégagé les estimations des performances de l‟architecture en mode synchrone et

asynchrone, on remarque bien que l‟évolution de l‟utilisation des ressources logiques sur

FPGA en fonction du nombre de processeur n‟est pas linéaire pour les modes synchrone et

asynchrone.

5. Validation du réseau multi-étage dans l'architecture MPSOC. Etude de cas :

FILTRE FIR et FILTRE IIR

Dans cette partie, nous allons mettre en application notre architecture multiprocesseur. Pour

cela, nous allons procéder à l‟implémentation d‟un Filtre FIR puis un Filtre IIR. Nous allons

alors présenter l‟application en premier lieu ensuite on va donner une estimation des

performances.

5.1.Présentation du Filtre FIR et Filtre IIR

L‟application choisie comme démonstration est une application typique du domaine des

télécommunications mobiles.

Un filtre numérique peut-être défini par une équation aux différences, c'est-à-dire l'opération

mathématique du filtre dans le domaine temporel (discret).

La forme générale du filtre d'ordre M est la suivante:

Sa fonction de transfert dans le domaine fréquentiel (Transformée en Z) est :

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

54

Il y a deux grandes familles de filtres numériques : la première, les filtres FIR, de l'anglais

"Finite Impulse Response" (Filtre à réponse impulsionnelle finie). Ce type de filtre est dit fini,

car sa réponse impulsionnelle se stabilisera ultimement à zéro. Un filtre FIR est non récursif,

c'est-à-dire que la sortie dépend uniquement de l'entrée du signal, il n'y a pas de contre-

réaction.

Ainsi, les coefficients « a » de la forme générale des filtres numériques sont tous égaux à

zéro.

Une propriété importante des filtres FIR est que les coefficients du filtre « b » sont égaux à la

réponse impulsionnelle « h » du filtre.

D'autre part, la forme temporelle du filtre est tout simplement la convolution du signal

d'entrée x avec les coefficients (ou réponse impulsionnelle) b (ou h).

En opposition, les filtres de la seconde famille, les IIRs, de l'anglais "Infinite Impulse

Response" (Filtre à réponse impulsionnelle infinie) possèdent une réponse impulsionnelle qui

ne se stabilisera jamais, et ce, même à l'infini. Ce type de filtre est récursif, c'est-à-dire que la

sortie du filtre dépend à la fois du signal d'entrée et du signal de sortie. Il possède ainsi une

boucle de contre-réaction (feedback). Les filtres IIR sont principalement la version numérique

des filtres analogiques traditionnels: Butterworth, Tchebychev, Bessel, Elliptique.

5.2.Modélisation du Filtre FIR

Pour tester la fonctionnalité de l‟architecture multiprocesseur, une implantation de filtre FIR a

été faite. Dans ce qui suit la façon dont un filtre FIR peut être mis en œuvre est décrite. Huit

processeurs ont été utilisés. La réponse impulsionnelle utilisée est :

h(n) = { h(0), h(1), h(2), h(3), h(4), h(5), h(6), h(7) }

Le vecteur d‟entrée est :

x(n) = {C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16}

Le vecteur de sortie est :

y(n) = { S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18,

S19, S20, S21, S22, S23 }

Chaque processeur envoie des requêtes demandant l‟accès aux mémoires de données pour

apporter les entrées Ci, ensuite il effectue les opérations de calculs nécessaires et enfin il

stocke les résultats obtenus Si dans la mémoire de donnée Si.

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

55

L‟envoi et la réception des requêtes sont cadencés par le signal d‟horloge globale du système.

L‟allocation des données dans les mémoires est un choix effectué, par suite il est possible

d‟utiliser de différentes distributions et comparer à chaque fois les performances du réseau.

L‟application sera repartie sur 3 itérations présentées dans les figures 31, 32 et 33.

Figure 31. 1ère itération de l‟application Filtre FIR

Y(n) est calculé en utilisant des opérations de multiplication et d‟addition comme suit :

S0 = h(0) ∗ C0 + h(1) ∗ 0 + h(2) ∗ 0 + h(3) ∗ 0 + h(4) ∗ 0 + h(5) ∗ 0 + h(6) ∗ 0 + h(7) ∗ 0

S1 = h(0) ∗ C1 + h(1) ∗ C0 + h(2) ∗ 0 + h(3) ∗ 0 + h(4) ∗ 0 + h(5) ∗ 0 + h(6) ∗ 0 + h(7) ∗ 0

S2 = h(0) ∗ C2 + h(1) ∗ C2 + h(2) ∗ C0 + h(3) ∗ 0 + h(4) ∗ 0 + h(5) ∗ 0 + h(6) ∗ 0 + h(7) ∗ 0

S3 = h(0) ∗ C3 + h(1) ∗ C2 + h(2) ∗ C1 + h(3) ∗ C0 + h(4) ∗ 0 + h(5) ∗ 0 + h(6) ∗ 0 + h(7) ∗ 0

S4 = h(0) ∗ C4 + h(1) ∗ C3 + h(2) ∗ C2 + h(3) ∗ C1 + h(4) ∗ C0 + h(5) ∗ 0 + h(6) ∗ 0 + h(7) ∗ 0

S5 = h(0) ∗ C5 + h(1) ∗ C4 + h(2) ∗ C3 + h(3) ∗ C2 + h(4) ∗ C1 + h(5) ∗ C0 + h(6) ∗ 0 + h(7) ∗ 0

S6 = h(0) ∗ C6 + h(1) ∗ C5 + h(2) ∗ C4 + h(3) ∗ C3 + h(4) ∗ C2 + h(5) ∗ C1 + h(6) ∗ C0 + h(7) ∗ 0

S7 = h(0) ∗ C7 + h(1) ∗ C6 + h(2) ∗ C5 + h(3) ∗ C4 + h(4) ∗ C3 + h(5) ∗ C2 + h(6) ∗ C1 + h(7) ∗ C0

La même procédure se répète jusqu‟à ce que les entrées soient finies (Figure32, Figure33).

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

56

Figure 32. 2ème itération de l‟application Filtre FIR

Figure 33. 3ème itération de l‟application Filtre FIR

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

57

5.3.Modélisation du Filtre IIR

Une 2
ème

 application a été choisie pour mieux évaluer la fonctionnalité de notre architecture

multiprocesseur. L‟application consiste à l‟implantation de filtre IIR.

Dans ce qui suit, la mise en œuvre d‟un filtre FIR est décrite. Huit processeurs ont été utilisés.

Sachant que ce type de filtre est récursif, on trouve que chaque sortie dépend des sorties qui la

précédent.

Chaque processeur Pi envoie des requêtes demandant l‟accès aux mémoires de données pour

apporter les entrées Ci, ensuite il effectue les opérations de calculs nécessaires mais cette fois,

contrairement au filtre FIR, il continue à demander l‟accès aux mémoires de données pour

apporter les Si s‟ils sont disponibles et enfin il y revient pour stocker les résultats obtenus Si.

Dans le cas de dépendance de données le processeur refait le processus (demande de lecture

de Si) jusqu'à ce qu‟il trouve sa valeur désirée.

L‟application sera repartie sur 3 itérations présentées dans les Figures 34, 35 et 36.

Figure 34. 1ère itération de l‟application Filtre IIR

La même procédure se répète jusqu‟à ce que les entrées soient finies (Figure35, Figure36).

Figure 35. 2ème itération de l‟application Filtre IIR

C7

C6

C0

C1

C2

C3

C4

C5

C6

C0

C1

C2

C3

C4

C5

C0

C1

C2

C3

C4

C5

C0

C1

C2

C3

C4

C0

C1

C2

C3

C0

C1

C2

C0

C1 C0

00 00

00 00

00 0

0 00 00

0 0

0 00 0

0 00

0 0

0

00 00

00 00

00 0

0 00 00

0 0

0 00 0

0 00

0 0

0

S7

S6

S0

S1

S2

S3

S4

S5

= X

h7

h6

h0

h1

h2

h3

h4

h5

X

a7

a6

0

a1

a2

a3

a4

a5

S6

S0

S1

S2

S3

S4

S5

S0

S1

S2

S3

S4

S5

S0

S1

S2

S3

S4

S0

S1

S2

S3

S0

S1

S2

S0

S1 S0

0

0

0

0

0

0

0

0

C15

C14

C8

C9

C10

C11

C12

C13

C8

C9 C8

C6C7 C4C5

C6C7 C4C5

C2C3 C1

C7 C5C6 C3C4

C3 C2

S15

S14

S8

S9

S10

S11

S12

S13

= X

h7

h6

h0

h1

h2

h3

h4

h5

X

a7

a6

0

a1

a2

a3

a4

a5

0

0

0

0

0

0

0

0

C10 C9 C8 C7 C5C6 C4

C11 C10 C9 C8 C7 C6 C5

C12 C11 C10 C9 C8 C7 C6

C13 C12 C11 C10 C9 C8 C7

C14 C13 C12 C11 C10 C9 C8

S6 S5 S4 S3 S2 S1S7

S6 S5 S4 S3S9 S8 S7

S6 S5 S4 S3 S2S8 S7

S6 S5 S4S10 S9 S8 S7

S6 S5S10 S9 S8 S7S11

S6S10 S9 S8 S7S11S12

S10 S9 S8 S7S11S12S13

S10 S9 S8S11S12S13S14

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

58

Figure 36. 3ème itération de l‟application Filtre IIR

5.4.Estimation des performances

L‟estimation des performances se focalise sur la mesure des latences et les temps de

simulation.

La simulation est faite pour une architecture qui comporte (4,8) processeurs et (4,8) mémoires

et un réseau (4x4, 8x8) en utilisant l‟outil Modelsim de XILINX.

Après avoir lancé la simulation de notre architecture, nous avons obtenu le chronogramme

représenté par la Figure37.

Figure 37. Chronogramme de simulation de l‟architecture

S23

S22

S16

S17

S18

S19

S20

S21

= X

h7

h6

h0

h1

h2

h3

h4

h5

X

a7

a6

0

a1

a2

a3

a4

a5

0

0

0

0

0

0

0

0

C15 C14 C13 C12 C11 C10 C9C16

C16

C15 C14 C13 C12 C11 C10C16

C15 C14 C13 C12 C11C16

C15 C14 C13 C12C16

C15 C14 C13C16

C15 C14C16

C15C16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

00 S22 S16S17S18S20S21 S19

S15S16S17S18S20S21 S19

S15S16S17S18S20 S19 S14

S15S16S17S18S19 S14 S13

S15S16S17 S14 S13S18 S12

S15S16S17 S14 S13 S12 S11

S15S16 S14 S13 S12 S11 S10

S15 S14 S13 S12 S11 S10 S9

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

59

Les résultats de simulation ont été pris en faisant varier la topologie (OMEGA, BASLINE,

BUTTERFLY) et en augmentant le nombre de processeurs de 4 à 8 processeurs.

La fréquence utilisée est 50 MHZ.

5.4.1. Implémentation du Filtre FIR

4 processeurs

 Mode Asynchrone Mode synchrone

 topologie topologie

 Baseline Omega Butterfly Baseline Omega Butterfly

Latence

moyenne

105 ns 105,8 ns 105,8 ns 144,2ns 145,82ns 145,82ns

Temps de

simulation

4050ns 4070 ns 4070 ns 4530ns 4550ns 4550ns

Tableau 11. Latence et Temps de simulation de l‟application Filtre FIR pour 4 processeurs

8 processeurs

 Mode Asynchrone Mode synchrone

 topologie topologie

 Baseline Omega Butterfly Baseline Omega Butterfly

Latence

moyenne

144 ns 146 ns 146 ns 203,2 ns 206 ns 206 ns

Temps de

simulation

7930 ns 8070 ns 8070 ns 9270 ns 9270 ns 9130 ns

Tableau 12. Latence et Temps de simulation de l‟application Filtre FIR pour 8 processeurs

Les résultats obtenus montre qu‟en passant du mode Asynchrone vers le mode Synchrone le

temps de simulation et la latence moyenne augmentent (voir Tableau11, Tableau12).

Aussi on peut conclure que le réseau Baseline est le réseau le plus performant dans la plupart

des cas (mode Synchrone, Asynchrone).

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

60

5.4.2. Implémentation du Filtre IIR

4 processeurs

 Mode Asynchrone Mode synchrone

 topologie topologie

 Baseline Omega Butterfly Baseline Omega Butterfly

Latence

moyenne

103,8 ns 103,2 ns 103,2 ns 144,4ns 143,9ns 143,9ns

Temps de

simulation

9450ns 9830 ns 9830 ns 10850ns 10510ns 10510ns

Tableau 13. Latence et Temps de simulation de l‟application Filtre IIR pour 4 processeurs

8 processeurs

 Mode Asynchrone Mode synchrone

 topologie topologie

 Baseline Omega Butterfly Baseline Omega Butterfly

Latence

moyenne

146 ns 146,6 ns 146,6 ns 202,8 ns 205,4 ns 205,6 ns

Temps de

simulation

23050ns 23210 ns 23210 ns 25110 ns 25330 ns 25330 ns

Tableau 14. Latence et Temps de simulation de l‟application Filtre IIR pour 8 processeurs

 Les résultats obtenus dans les tableaux pour l‟implantation de Filtre IIR montrent une

augmentation importante au niveau du temps de simulation par rapport à la première

application (Filtre FIR). Ceci s‟explique par la complexité de l‟application vue la dépendance

de données (voir Tableau13, Tableau14).

6. Conclusion

Dans ce chapitre nous avons achevé l‟implémentation des MINs dans une architecture

multiprocesseur. Nous avons présenté tout d‟abord notre architecture adoptée puis nous avons

validé son fonctionnement dans un contexte applicatif en variant la topologie utilisée. Enfin,

nous avons donné une estimation des performances en terme de surface, latence et temps de

simulation.

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

61

Conclusion générale et perspectives

Nous récapitulons ici les travaux de mastère et ses apports. Nous avons passé en revue les

conceptions des réseaux et leurs implémentations dans des systèmes sur puce. Nous avons

décelé plusieurs besoins auxquels doit répondre une architecture d‟interconnexion à haute

performance d‟une part, et des directives générales indispensables pour la conception d‟un

réseau sur puce fiable et flexible.

Notre architecture d‟interconnexion a été modélisée en composants contenant des

descriptions en langage VHDL, puis elle a été évaluée par simulation avec Modelsim et

synthétisé avec ISE de XILINX.

La conception du modèle à été réalisée en trois phases :

 Nous avons commencé par détailler les composants du Delta MIN (Switch, ordonnanceur,

blocs de connexions) puis leurs implémentations.

Nous avons proposé deux modèles de réseaux Delta MIN, un modèle Asynchrone et un autre

Synchrone et nous avons détaillé les caractéristiques et les avantages de chacun en termes de

surface et de latence.

Dans la deuxième phase nous avons intégré le réseau Delta MIN dans une architecture

multiprocesseur, ce qui a nécessité la conception d‟un réseau de réponse acheminant les

paquets des mémoires vers les processeurs. Ce réseau de réponse s‟avère performant pour

notre architecture MPSOC puisqu‟il présente une optimisation en termes de surface, de

latence ainsi que sa fiabilité de fonctionnement.

La dernière phase renferme l‟application pour évaluer et tester la fiabilité de notre architecture

et estimer ses performances. Nous avons fait l‟implémentation de deux types de Filtres : un

Filtre FIR et Filtre IIR. L‟estimation des performances s‟est focalisée sur la surface sur

FPGA, la latence et le temps de simulation.

Un des travaux futurs est de prototyper notre architecture sur une plateforme FPGA afin

d„estimer la consommation d‟énergie.

Une autre perspective envisageable comme extension à ce mastère consiste à concevoir un

environnement qui nous permet de spécifier notre application et architecture a haut niveau et

qui utilise le réseau Delta MIN et tous les autres composants de l‟architecture MPSOC

comme des IP.

Un des objectifs futurs aussi est d‟introduire la puce conçu dans une chaine industrielle

complète.

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

62

Bibliographie

[1] CM, “The CM-5 Connection Machine: A Scalable Supercomputer”, W. Daniel Hillis and

Lewis W. Tucker, Communications of the ACM, November 1993, Vol. 36, No. 11.

[2] Modélisation de Systèmes Intégrés Numériques Introduction à VHDL Alain Vachoux,

Laboratoire de Systèmes Microélectroniques STI-LSM, alain.vachoux@epfl.ch

[3]C. A. Zeferino et A. A. Susin – « SoCIN : a parametric and scalable network-on-chip »,

Proc. 16th Symposium on Integrated Circuits and Systems Design, Septembre 2003, p. 169–

174.

[4] P. P. Pande, C. Grecu, M. Jones, A. Ivanov et R. Saleh – « Performance evaluation and

design trade-offs for network-on-chip interconnect architectures », IEEE Transactions on

Computers 54 (2005), p. 1025–1040.

[5] Les réseaux dynamiques ou configurables ,Robert Bergevin

[6] A.A. Jerraya and W.Wolf, editors. "Multiprocessor System-on-Chips". Morgan Kaufmann

Publishers Inc., Octobre 2004

 [7] Architectures et traitement parallèles 19268.gel.ulaval.ca/notes/pdf_A05/CH_2.pdf

 [8] P.M. Zeitzoff and J. E. Chung, A perspective from the 2003 ITRS, IEEE circuits and

devices magazine, février 2005.

[9] Collier, M. « A systematic analysis of equivalence in multistage networks»,Lightwave

Technology, Journal of Volume 20, Issue 9, Sep 2002 Page(s): 1664 – 1672

[10] Szymanski T, Hamacher V« On the universality of multistage interconnection

networks», IEEE Computer Society Press, 1994, p. 73-101.

[11] C. Clos, A study of Non-Blocking Switching Networks, Bell Systems Technical Journal,

March 1953

[12] J. H. Patel, Performance of processor-memory interconnections for multiprocessors.

IEEE Trans. Comput.Octobre 1981.

[13] Argawal D.P., « Graph theoretical analysis and design of multistage interconnection

networks », IEEE Transactions on Computer, vol. 32, n° 7, July 1983.

[14] Wu C.L., Feng T.Y., « On a class of multistage interconnection networks », IEEE

Transactions on Computers, August 1980.

[15] Collier M., « A Systematic Analysis of Equivalence in Multi-Stage Networks », JLT,

2002.

mailto:alain.vachoux@epfl.ch

Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue

63

[16] Bjerregaard T, Mahadevan S, « A survey of research and practices of Network-on-chip »,

ACM Computing Surveys, vol. 38, n° 1, 2006.

[17] L. Benini, G. De Micheli, Powering Network on Chip, ISSS‟2001, pp. 33-38.

 [18] L. Benini, G. De Micheli; "Networks on chips: a new SoC paradigm", IEEE Computer

35 (1) (2002), pp70–78.

[19] Ateris, A comparison of Network-on-Chip and Busses ,www.ateris.com, 2005

[20] http://em.avnet.com/evk/home

[21] Xilinx ISE9.1i Foundation software.Technical Document.

[22] Daoud.I, Routage dans les NoCs : Etude de cas, rapport de Master, ENIS 2005.

[23] Guerrier. P., Un Réseau d‟Interconnexion pour systèmes intégrés, Thèse de doctorat,

Université Paris VI, 2000.

[24] B.Ch, Parallélisme, cui.unige.ch/aei/r/Para/CoursParallelisme.pdf

[25] W. J. Dally et B. Towles « Route packets, not wires: on-chip interconnection networks »,

Proc. Design Automation Conference, Juin 2001, p. 684–689

[26] Dietmar Tutsch,

Matthias Hendler

and Günter Hommel.« Multicast Performance of

Multistage Interconnection Networks with Shared Buffering »

http://www.ateris.com/
http://em.avnet.com/evk/home

