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Introduction générale 
 

Depuis les années 70, les techniques d‟intégration de transistors dans les systèmes 

électroniques ne cessent de s‟améliorer. Ainsi, les systèmes à base de puces électroniques font 

de plus en plus partie de notre quotidien. Ceux-ci intègrent maintenant plusieurs millions de 

transistors. Cette tendance semble non seulement se confirmer mais se renforcer : les SOC 

(System on chip) contiendront plusieurs processeurs. De ce fait, les systèmes embarqués (SE) 

à base de microprocesseurs ont été introduits dans de nombreux domaines d‟application tels 

que les appareils électroménagers, l‟automobile, l‟avionique, les équipements réseaux, les 

terminaux de communication sans fils, les systèmes multimédias, les systèmes de contrôle 

industriels. Il est donc crucial de maîtriser la conception de tels systèmes tout en respectant les 

contraintes de mise sur le marché et les objectifs de qualité. En effet, l‟augmentation de la 

capacité et de la complexité des  systèmes monopuces a stimulé les chercheurs pour concevoir 

de nouvelles plateformes d‟interconnexion fiable, à énergie réduite et à rendement élevé, 

baptisées réseaux sur puce (NOC : Network On Chip), afin de remédier aux problèmes de 

communication  générés par les anciennes architectures d‟interconnexion (les bus).   

Les réseaux sur puces semblent être une solution appropriée pour gérer la communication 

entre les ressources (Processeur, DSP, IP, ASIP, etc.…). La difficulté de la conception d‟un 

NOC réside dans un compromis entre une Qualité de Service optimale, une bande passante 

élevée, une latence faible, une flexibilité, une  extensibilité d‟utilisation importantes, et une 

possibilité de réutilisation de la conception, tout en limitant la consommation d‟énergie et de 

surface dans la puce. 

C‟est dans ce cadre que s‟inscrit notre projet qui consiste à l‟étude et prototypage des réseaux 

d'interconnexions multi-étages (MINs) de type Delta dans une architecture multiprocesseur 

(MPSOC), et à trouver  ensuite des techniques pour améliorer leurs performances. 

Ce travail couvre les aspects suivants: 

 Etude et conception des réseaux multi-étages sur des plateformes reconfigurable 

FPGA de type Delta dédiés aux MPSOC. 

 Améliorer les performances du NOC conçu suivant le besoin et le contexte de travail 

(Synchrone ou Asynchrone). 

 Implémenter les réseaux multi-étages dans une architecture multiprocesseur.  

 Validation  du fonctionnement de l‟architecture par une application. 
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L‟organisation du mastère est comme suit :   

Le chapitre premier étudie l‟architecture multiprocesseur sur puce et ses propriétés en 

exposant les principales étapes de flot de conception. Ensuite le deuxième chapitre présente 

les réseaux sur puces ainsi que leurs caractéristiques. Le chapitre 3 développe en détail la 

conception des réseaux multi-étage de type Delta, en proposant 2 approches d‟amélioration 

des performances du notre NOC selon le besoin. 

Quant au dernier chapitre, nous décrivons l‟implantation du notre réseau Delta MIN dans une 

architecture MPSOC. La validation du fonctionnement de l‟architecture a été faite dans un 

contexte applicatif propre au domaine télécommunication. 
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Chapitre1 : Les architectures Multiprocesseur sur 

puce 

1. Introduction 

Les  applications  embarquées  appartiennent  à  un  domaine  en  évolution phénoménale. 

Néanmoins  elles  sont  de  plus  en  plus  soumises  à  des  fortes  contraintes  fonctionnelles 

(Puissance  de  calcul,  consommation, miniaturisation...) et non  fonctionnelles  (tels  que, 

temps de mise sur le marché, forte croissance de la quantité de la production). D‟un autre 

coté,  le  progrès  technologique  permettra  une  grande capacité  d‟intégration  sur une seule 

puce, l‟ITRS [8] prévoit en 2012 l‟intégration des systèmes électroniques de 4 milliards de 

transistors pour des fréquences proches de 10 GHz . L‟architecture  associée  à  un  flot  de  

conception  efficace  qui  traduit  le potentiel de la technologie en performance et capacité. De 

point de vue architectural, les trois manières  exploitant  un  grand  volume  de  ressources 

afin d‟améliorer  la  performance  sont  le parallélisme, la localité, et la spécialisation. Ces 

trois critères impliquent respectivement le caractère multiprocesseur, monopuce et  la  

focalisation sur  une  application spécifique. Quant au flot de conception, manipuler un grand 

volume de ressources revient à  remonter  le  niveau  d‟abstraction  et à proposer  une 

méthodologie  systématique  pour  le passage de ce niveau à une implémentation optimale. 

Ce  chapitre  présente  les  systèmes  multiprocesseurs  monopuces  en  indiquant  leurs 

propriétés. Ensuite,  il  expose  les principales  étapes de  conception, la dernière partie illustre 

la communication entre les processeurs. 

2. Du monoprocesseur au Multiprocesseur 

Avec le progrès technologique il y a croissance de la capacité d‟intégration de  transistors sur 

une seule puce (centaines de millions), deux tendances architecturales ont émergé pour relever 

ce défi. La première tendance s‟est restreinte à l‟utilisation d‟architectures monoprocesseurs 

tout en améliorant considérablement  les performances du CPU utilisé et  l‟utilisation de 

coprocesseurs.  Un  tel  CPU  se  distingue  par :  une  fréquence  de  fonctionnement  très 

élevée, des structures matérielles spécialisées, un ensemble d‟instructions sophistiquées, 

plusieurs niveaux de hiérarchie mémoire (plusieurs niveaux de caches), et des techniques 

spécialisées d‟optimisation  logicielle  (nombre d‟accès mémoire,  taille,  etc). 
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La  deuxième  tendance  s‟est  tournée  vers  les  architectures  multiprocesseurs 

(multimaîtres). Ces architectures qui étaient  réservées aux machines de calculs scientifiques 

(tel que CM [1]) ne le sont plus avec le progrès de la technologie. 

Le domaine d'application couvert par des systèmes multiprocesseurs sur puce est très vaste, en 

effet les applications  télécommunications  et  multimédias  sont  les  plus  représentatives  de  

ce domaine. Elles constituent l'un des marchés le plus en expansion actuellement (modems, 

téléphones mobiles, les décodeurs audio et vidéo, etc.), notamment par le développement des  

télécommunications  sans  fil  et  d'Internet. 

3. Système multiprocesseur monopuce MPSoC 

Un  système multiprocesseur  sur  puce MPSoC dénoté multiprocessor System-on-Chip est  un  

système  complet  intégrant  sur une seule puce de silicium plusieurs composants complexes 

et hétérogènes tels que des unités de calcul spécifiques programmables et/ou non 

programmable (CPU, DSP, ASIC-IP, FPGA) des réseaux de communication complexes (Bus 

hiérarchiques sur puce, réseau sur puce)  des composants de mémorisation variés, 

périphériques E/S, etc. La Figure1 représente  un  modèle  générique  d‟un  système  MPSoC  

hétérogène  avec  des  parties matérielles et logicielles structurées en couches pour maîtriser la 

complexité. Le matériel se divise en deux couches : 

-  La couche basse contient les composants de calcul et de mémorisation utilisés par le 

système (µP, µC, DSP, matériel dédié IPs, mémoires). 

-  La  couche matérielle  de  communication  embarquée  sur  la  puce  composée  de  deux 

sous-couches : média de communication (liens point-à-point, bus hiérarchique, réseau sur  

puce)  et  adaptateurs  de  communication  entre  le  réseau  et  les  composants  de  la 

première couche. 

Le logiciel embarqué est aussi découpé en couches : 

-  La  couche  la  plus  basse  est  l‟abstraction  du  matériel  (HAL,  pour  Hardware 

Abstraction Layer en anglais) permet de faire le lien avec le matériel en implémentant les  

pilotes  E/S  des  périphériques,  des  contrôleurs  de  composants,  les  routines d‟interruption 

(ISR, pour Interrupt Service Routine). 

-  La couche système d‟exploitation qui permet de porter l‟application sur l‟architecture 

(gestion de ressources, communication et synchronisation, ordonnancement). 

-  La couche application. 
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Figure 1. Architecture typique d‟un système multiprocesseur hétérogène 

4. Principales étapes de la conception des MPSoCs 

 

 

Figure 2. Flot de conception des MPSOC 
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Il  s‟agit  essentiellement  de  la  spécification,  la  modélisation,  le  partitionnement,  le 

raffinement  du  logiciel,  le  raffinement  du  matériel,  la  génération  d'interface  entre  le 

logiciel et le matériel (i.e raffinement des communications) et la génération de code ou le 

prototypage.  La  succession  de  ces  étapes  forme  le  flot  typique  d'une  approche  de 

conception des systèmes multiprocesseurs schématisée dans la Figure2. 

Généralement  la  conception  des  systèmes  sur  puce  part  d'une  spécification  unique 

décrivant  l'architecture  et/ou  le  comportement  du  système  à  concevoir  [6]. Après cette 

phase de spécification survient l‟étape de partitionnement du système ayant pour but de 

décomposer ce dernier en trois parties : 

- Une partie matérielle implémentée sous forme de circuits (FPGA, ASIC, ...). 

- Une  partie  logicielle  implémentée  sous  forme  d'un  programme  exécutable  sur 

processeur, par exemple à usage général. 

- Une interface de communication entre les parties matérielles et logicielles. 

Les  trois parties obtenues doivent ensuite être vérifiées et validées  avant de passer à  la phase 

du raffinement et d'implémentation. Il est nécessaire de faire des retours aux étapes 

précédentes  (feed-back),  plus  précisément  à  l‟étape  de  partitionnement,  tant  que 

l‟architecture obtenue ne répond pas aux contraintes auparavant fixées. 

4.1.Spécification et modélisation 

La  spécification est  le point de départ du processus de conception des  systèmes  sur puce.  

Cette  étape  consiste,  en  général,  à  décrire  les  fonctionnalités  du  système  à concevoir  

ainsi  que  toutes  les  contraintes  qu'il  doit  satisfaire  sans  se  soucier  du découpage 

matériel/logiciel  qui  en  suit. 

4.2.Vérification 

La vérification de la conception est un processus de test des fonctionnalités et des 

performances de l‟architecture à implémenter. Les outils de conceptions offrent plusieurs 

méthodes pour ce but : 

· La simulation fonctionnelle et temporelle. 

· L‟analyse temporelle statique. 

· La vérification sur le circuit. 

Pour vérifier le design, une simulation fonctionnelle ou temporelle peut être exécutée. 
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Un processus de  Back-Annotation doit avoir lieu avant la simulation temporelle. Avant cette 

phase, la description physique du design doit être traduite en design logique compréhensible 

par le simulateur. Cette tâche est appelée  Back-Annotation. 

4.2.1. Simulation fonctionnelle 

La simulation fonctionnelle ou comportementale détermine si la logique du design est 

correcte avant la phase d‟implémentation. Ce type de simulation peut avoir lieu tôt dans le 

processus de conception du système. Et puisque les informations temporelles ne sont pas 

disponibles à ce moment, le simulateur teste la logique en utilisant des délais élémentaires 

comme unités. Le simulateur utilisé  (ModelSim) est un simulateur intégré dans 

l‟environnement de développement de  Xilinx : le passage entre les outils de conceptions 

(éditeurs HDL ou schématiques)  et le simulateur se fait automatiquement sans besoin 

d‟utilisation intermédiaire d‟outils de translation. 

4.2.2. Simulation temporelle 

La simulation temporelle examine le  temps d‟exécution du design dans les pires conditions. 

Ce processus peut avoir lieu après le  mapping, le placement et le routage du design. A ce 

moment là, tous les délais du design sont bien connus. La simulation temporelle est très 

importante parce qu‟elle peut vérifier les relations temporelles et détermine les chemins 

critiques du design dans les pires conditions. Avant la simulation temporelle, il faut passer par 

le Back-Annotation process déjà mentionné. 

4.3.Implémentation 

L'implémentation consiste à la réalisation physique du matériel (par la synthèse) et du logiciel 

exécutable (par la compilation). 

Les étapes de cette phase d'implémentation sont principalement : 

- Le partitionnement matériel/logiciel 

- Le raffinement et la synthèse du code pour la partie matérielle et la partie logicielle 

4.3.1. Partitionnement logiciel/matériel 

La phase de partitionnement a pour but  d'assurer  la  transformation  des  spécifications  du  

système  en  une  architecture composée d'une partie matérielle et d'une partie logicielle. Cette 

phase  de  partitionnement  consiste  donc  à  déterminer  les  parties  du  système  qui  seront 

réalisées en matériel et celles qui seront réalisées en logiciel ainsi que l'interface entre ces 

différentes parties. 



Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue 

 

13 

 

4.3.2. Raffinement 

L'étape de raffinement consiste à transformer les  spécifications  fonctionnelles  en  

descriptions  directement  implantables  sur  les composants  matériels  et  logiciels  de  

l'architecture  cible. 

Son  rôle  est  d'assurer  la conception physique de  la partie matérielle  (par  synthèse de haut 

niveau),  la génération du  code  exécutable  correspondant  à  l'implémentation  de  la  partie  

logicielle  (par  la compilation) ainsi que  le raffinement des  interfaces matériel/logiciel. 

4.3.2.1.Le raffinement logiciel 

Le raffinement logiciel consiste à la synthèse et la génération d'un code exécutable correct et 

efficace correspondant à  l'implémentation de  la partie  logicielle à partir d'une spécification  

de  haut  niveau.  Les  intérêts  de  ce  raffinement  logiciel  résident  dans  la diminution  du  

coût  de  développement  et  surtout  l'augmentation  de  la  fiabilité  du  code généré. La 

complexité de cette étape dépend du  type de processeur utilisé. 

4.3.2.2. Le Raffinement du matériel 

Le  raffinement matériel  consiste  à  transformer  la  spécification  de  haut  niveau  de  

l'application  vers  un  circuit  électrique.  Cette  opération  est  appelée  la  synthèse  du  

matériel.  On  distingue  généralement  deux  niveaux  de  synthèse  matérielle : synthèse 

logique et synthèse comportementale. La synthèse  logique consiste en  la  transformation 

d'une  description  de  niveau  RTL en  un  réseau  de  portes logiques  interconnectées  qui  

réalise  les  fonctionnalités  souhaitées.  La  synthèse 

comportementale  consiste  quant  à  elle  en  la  transformation  d'une  description  

comportementale  faite  en  langage de haut niveau  (un  algorithme) vers une  architecture 

décrite au niveau RTL, composée d'une partie chemin de données et d'une partie chemin de 

contrôle. 

4.3.2.3. Le Raffinement d'interface ou raffinement des communications 

Le  raffinement  des  communications  est  la  réalisation  des  interfaces  de communications 

entre les différentes ressources. 

5. La communication dans les MPSOC 

La multitude des composants qui intègrent l‟architecture multiprocesseur exige une 

communication entre les processeurs et des moyens pour la gestion de leurs accès concurrents 
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aux mémoires d‟où la nécessité d‟un réseau d‟interconnexion sur puce appelé NOC (Network 

On Chip). 

Les réseaux sur puce ou NOC sont susceptibles de proposer des solutions efficaces aux 

problèmes d‟intégrations complexes des systèmes sur puce [18]. 

La difficulté de la conception d‟un NOC réside dans un compromis entre une Qualité de 

Service optimale, une bande passante élevée, une latence faible, une flexibilité, une  

extensibilité d‟utilisation importante, et une possibilité de réutilisation de la conception, tout 

en limitant la consommation d‟énergie et de surface dans la puce. Le coût et les 

caractéristiques des réseaux sur puce dépendent des applications considérées [19].  

6. Conclusion 

Dans ce chapitre, nous avons présenté les systèmes multiprocesseurs sur puce ainsi que les 

principales étapes de leur conception. Enfin, nous avons évoqué la communication dans les 

MPSOCs qui va être détaillée dans le chapitre qui suit.  
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Chapitre2 : Etude des architectures de Réseaux sur 

Puce 

1. Introduction 

Dans ce chapitre, nous présentons tout d‟abord les propriétés des réseaux d‟interconnexion, 

leurs performances. Puis, nous classifions et détaillons quelques topologies de ces réseaux. 

2. Propriétés des réseaux d’interconnexions 

Cette partie présente une description détaillée des caractéristiques des NOCs. Pour cela, nous 

définissons quelques paramètres tels que le coût d‟interconnexion, la latence, le débit, la 

fiabilité… 

2.1.Le coût d’interconnexion 

Ce  coût  se  mesure  en  surface  d'occupation  des    ressources  (blocs logiques, 

mémoires…)  sur  l‟FPGA,  et  l'énergie consommée d‟un circuit. 

2.1.1. Le coût en surface sur FPGA 

La surface est une préoccupation essentielle pour tous les  concepteurs  de  systèmes  intégrés  

sur FPGA. Malgré leur complexité croissante, ils doivent rester très compacts, pour des 

raisons de rendement de fabrication. Un réseau sur puce utilise un grand nombre de routeurs 

qu‟il faut interconnecter par plusieurs milliers de fils. Le problème topologique n‟est pas  

simple à résoudre. De plus, tous les composants du NOC sont cadencés par la même horloge. 

La faisabilité topologique d‟une telle implémentation centralisée mérite d‟être étudiée de 

façon  approfondie. Il faudra en particulier déterminer si la capacité d‟FPGA disponible 

permet effectivement de router le design sans agrandir de façon significative la surface sur 

FPGA utilisée par le réseau sur puce. D‟autre part, le coût de l‟extensibilité en terme de 

surface doit être quantifié. C‟est-à-dire que lorsque le nombre de composants  interconnectés 

augmente,  la surface occupée par  le réseau sur puce doit être évaluée. 

 

 

2.1.2. Energie consommée 
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L‟énergie est facteur aussi important que la surface pour tous concepteurs  de  systèmes  

intégrés  sur FPGA. Elle comporte une partie dynamique et une autre statique qui est 

négligeable devant la première. L‟énergie dépend essentiellement de le complexité de circuit, 

de la fréquence, de la tension et de l‟application  

2.2.Les performances d’un NOC 

Les performances d‟un réseau sur puce représentent l‟efficacité du réseau à acheminer les 

données d‟un composant vers un autre.  Deux métriques évaluent les performances d‟une 

interconnexion  à  savoir : la  latence moyenne mesurée  en  cycles d‟horloge  et  le débit 

mesuré en mots par unité de temps. 

2.2.1. La  latence 

La latence est  le  temps  écoulé  entre  le moment où  le message  transmis  est  initialisé 

jusqu‟au moment où il est acquitté. Deux hypothèses sont possibles : 

- Il s‟agit d‟une opération d‟écriture, la latence correspond  alors au temps entre l‟émission du 

paquet du processeur et sa réception par la mémoire. 

-  Il s‟agit d‟une opération de lecture, la  latence correspond  alors au temps entre l‟émission 

du paquet et sa réception par le processeur en passant par la mémoire comme intermédiaire. 

2.2.2. Le débit 

Le débit est la quantité maximale d‟informations transitant dans une interconnexion par unité  

de  temps  (cycle  d‟horloge).  Il  mesure  la  capacité  d'un  canal  à  transmettre  des données 

sous  forme numérique, c‟est à dire  la vitesse de transfert des données. Le débit peut  être  

mesuré  en  mots  par  seconde  ou  en  mots  par  cycle  d‟horloge  selon  que  l‟on considère 

un temps absolu (en seconde) ou relatif (en fréquence). 

2.2.3. La fiabilité d’interconnexion 

2.2.3.1.La flexibilité 

La flexibilité exprime la capacité d‟intégration d‟une architecture d‟interconnexion à un 

système. Cette  flexibilité est composée de deux paramètres : la portabilité du l‟architecture et 

son extensibilité décrite ci-après. 

Le temps de conception d‟un élément est un paramètre  important dans  l‟élaboration d‟un 

composant.  En  effet,  la durée de  vie des  composants  étant de plus  en plus faible,  leur 
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conception doit se faire en un temps réduit.  Les concepteurs utilisent donc de plus en plus de 

librairies afin de  les aider à gagner du temps. L‟interconnexion d‟un système sur puce 

doit  être  conçue  dans  la  même  optique  :  elle  doit  être  facilement  réutilisable  et  donc 

reconfigurable. 

2.2.3.2.L’extensibilité 

L‟extensibilité correspond à sa capacité à évoluer en fonction du nombre de composants. 

Si l‟ajout de blocs fait augmenter les performances et le coût de l‟interconnexion de façon 

proportionnelle,  l‟architecture  est  alors extensible. En  revanche, si l‟ajout de cœurs 

supplémentaires conduit à un goulot d‟étranglement du système,  le composant ne pourra pas 

être utilisé.  Il  faut mesurer  l‟évolution de son coût et de ces performances en fonction du 

nombre de composants connectés. 

3. Topologies des réseaux sur puce 

Le critère incontournable de classification des réseaux sur puce (NoCs) est la topologie [16]. 

Cette caractéristique spécifie l‟organisation physique du réseau. Elle définie donc comment 

les nœuds et les liens sont connectés entre eux. De nombreuses topologies sont envisageables. 

La Figure 3 montre les plus couramment utilisées. 

Ces topologies sont dîtes régulières compte tenu de leur loi de construction géométrique. 

Les topologies présentent plusieurs paramètres [23]. Les plus courants sont : 

– Le diamètre : C‟est le nombre maximal de liens qui séparent deux ressources quelconques 

du réseau (en considérant les plus courts chemins). 

– La distance moyenne : C‟est le nombre moyen de liens entre deux ressources. 

– La connectivité : C‟est le nombre de voisins directs des nœuds dans le réseau. 

– La largeur de bissection. C‟est le nombre minimal de liens qu‟il faut couper pour séparer le 

réseau en deux parties égales (plus ou moins un nœud). Cela permet d‟évaluer le coût de 

transférer les données d‟une moitié du réseau à l‟autre. 

3.1.Communications point-à-point 

Ces communications sont  les plus simples à réaliser. Lorsque  l‟application est structurée on 

pourra souvent combiner plusieurs communications point-à-point en une seule 

communication collective. Figure3(e) 
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3.2.Réseau en étoile 

Les réseaux en étoile (“star-tree” et non “star-graph” qui est un autre type de réseau) ont, entre 

chaque source  et  destination,  un  chemin  unique  de  longueur  maximale  2.  Le  routage  

est  très  simple  et consiste à passer par un seul nœud intermédiaire soit le nœud central 

(Figure3(c)). 

3.3.Mesh et tore 

Parmi les topologies maillées à deux dimensions, le choix entre le type maillage simple 

(mesh), tore est souvent discuté  [3] [25]. En effet, les interconnexions en tore offrent une 

meilleure utilisation des ressources réseau, puisque pour un même nombre de nœuds, il y a 

plus de liens ce qui a pour effet de diminuer le diamètre et d‟augmenter la bande-passante 

(largeur de bissection double). En contre partie, la structure est moins régulière que pour un 

réseau maillé et les fils utilisés pour boucler le réseau sont plus longs et pénalisent donc les 

performances des liens (voir Figure 3(a, b)). 

3.4.Arbre élargi 

Les réseaux de types arbre élargi ou anneau à corde ont un diamètre plus petit que les réseaux 

maillés. Ils  permettent donc de réduire la latence mais leurs structures sont moins régulières. 

Une étude comparative a été effectuée [4] et on observe qu‟avec un trafic uniformément 

réparti, le débit atteignable avant saturation est plus élevé avec ces topologies par rapport aux 

topologies maillées. Cependant, l‟étude montre que les topologies maillées exploitent 

avantageusement le fait que dans les SoC le trafic sera majoritairement local (Figure3(d)). 

 

Figure 3. Quelques topologies des réseaux sur puce 
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4. Classification des réseaux pour MPSoC 

Cette partie introduit les différents types de réseaux d'interconnexion  en montrant les 

avantages et inconvénients de chacun de ceux-ci afin de justifier le choix de celui de notre 

architecture. 

Cette classification comporte 4 classes majeures: les réseaux à ressources partagées, les 

réseaux directs, les réseaux indirects et les réseaux hybrides. [17] 

4.1.Réseaux à ressources partagées-bus 

La structure d'interconnexion la moins complexe est celle dans laquelle le moyen de 

transmission est partagé par tous les éléments. Dans ce genre de réseau, un seul élément peut 

transmettre à la fois. Chaque élément se trouvant sur le réseau dispose de circuits de requête, 

d'envoi et de réception afin de pouvoir manipuler les données et les adresses. 

Un bus partagé se compose notamment : 

 D‟un bus de données partagé (unique et connecté à tous les éléments du système). 

 D‟un bus d‟adresses ayant les mêmes caractéristiques. 

 D‟un élément particulier du système, appelé arbitre du bus, connecté par des liaisons 

point à point à tous les autres éléments. 

Un bus partagé, en particulier sa topologie, possède plusieurs avantages. En effet, il peut 

supporter directement le modèle de communication par adressage mémoires des CPUs. 

De plus, le mode de fonctionnement de l‟arbitre est simple et on peut facilement l‟adapter aux 

différentes applications requises. Ainsi que, le concept de bus est parfaitement maîtrisé par les 

concepteurs de matériel, ce qui favorise son usage et sa large diffusion. 

En revanche un bus partagé implique de nombreux problèmes de mise à l‟échelle. Ceci 

s‟avère être inacceptable, surtout pour le débit global. Un arbitrage plus sophistiqué et des 

mémoires caches ne peuvent qu‟alléger cette contrainte assez forte. 

Ce problème peut être résolu de deux façons : soit en augmentant la largeur du bus, soit en 

augmentant la fréquence d‟horloge. Les deux solutions ne sont pas satisfaisantes car elles 

impliquent des problèmes électriques auxquels il est coûteux de remédier convenablement. 
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4.2.Réseaux directs 

Les réseaux directs (aussi appelés réseaux point à point) s'adaptent très bien à un très grand 

nombre d'éléments. Ils consistent en un ensemble de points qui peuvent chacun être connecté 

vers un petit sous ensemble de nœuds du réseau. 

Le contrôleur de transfert est un composant important du nœud; il gère tous les messages 

échangés entre différents nœuds. Si on augmente le nombre de nœuds dans le système, la 

bande passante totale de communication et les capacités de calcul augmentent aussi. Ceci 

permet une extensibilité très élevée. 

Un réseau direct est principalement caractérisé par trois facteurs: sa topologie, ses transferts et 

son multiplexage. La topologie définit comment les nœuds sont interconnectés. Pour des 

réseaux directs, la topologie idéale connecte chaque nœud vers tous les autres nœuds. Un 

message ne doit donc passer par aucun nœud intermédiaire 

Quand un message arrive dans un nœud intermédiaire, un mécanisme de multiplexage 

détermine comment et quand les multiplexeurs internes sont activés, par exemple pour 

connecter une entrée à une sortie. 

4.3.Réseaux indirects 

Dans ce type de réseau, plutôt que de fournir des liaisons directes entre nœuds, la 

communication entre deux nœuds se fait à travers de commutateurs. Chaque nœud est 

connecté à un multiplexeur disposant d'un certain nombre de ports composé d‟un lien d'entrée 

et d‟un lien de sortie 

Un réseau indirect est caractérisé par trois facteurs: la topologie, le routage et l‟arbitrage. 

Un réseau indirect ou dynamique est un réseau dont la topologie peut varier au cours de 

l‟exécution d‟un programme parallèle ou entre deux exécutions de programmes ; il s‟agit du 

comportement du réseau. 

4.3.1. Les réseaux à zéro étage (réseaux connectés en bus) 

Le réseau en bus permet d‟établir dynamiquement un et un seul lien direct à la fois entre 

n‟importe quelle paire de noeuds source et destination (Figure4). 

En fait, lorsque la complexité du traitement à réaliser est limitée i.e. lorsque le nombre 

d‟éléments du système est moyen et que le taux d‟utilisation du bus par ces éléments n‟est pas 

trop élevé, un réseau en bus ne pose pas de problèmes particuliers tout en étant simple et 

relativement peu coûteux. 
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Par contre, lorsque les contraintes sont plus exigeantes et donc que le nombre d‟éléments 

(Processeurs) augmente ainsi que leur taux d‟utilisation du bus, il se produit un problème de 

blocage (bottleneck) [7]. Celui-ci résulte du fait que seulement deux éléments peuvent 

communiquer entre eux à chaque instant. 

De plus, une défaillance du bus ("failure") est toujours catastrophique car cela signifie le 

blocage de la communication entre les éléments du système. 

 

 

Figure 4. Réseau bus partagé 

4.3.2. Les réseaux crossbar 

Dans un réseau à crossbar (Figure5), n'importe quel élément peut être connecté à un autre 

élément de sorte que plusieurs communications peuvent se faire simultanément. Une nouvelle 

connexion peut être réalisée tant que les ports d'entrée et de sortie soient libres. Les crossbars 

sont surtout utilisés dans les petits systèmes multiprocesseurs (dans les routeurs des réseaux 

directs et dans les réseaux indirects). Un crossbar comporte N entrées et M sorties, permettant 

jusqu'à min{N,M} connexions point à point sans collision. 

Quand deux ou plusieurs éléments essayent d'accéder au même élément, un arbitre laisse 

l'accès à un seul élément tandis que les autres doivent attendre. Dans un  crossbar, l'arbitre est 

distribué au niveau de tous les commutateurs ayant la même sortie. Cependant, cet arbitre est 

nettement moins complexe que dans le cas des bus. 
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Figure 5. Réseau Crossbar 

4.3.3. Les réseaux d’interconnexion multi-étages 

4.3.3.1.Classification des MINs  

Il existe divers critères de classification des réseaux multi-étages [10]. En effet, on peut 

distinguer plusieurs classes de MINs suivant les types de commutateurs utilisés et / ou les 

types de permutation. Avant de présenter la classification choisie pour les MINs, il est 

important de commencer par explorer quelques définitions. Figure7 

- banyan : il offre un chemin unique entre n‟importe quelle entrée et n‟importe quelle sortie.   

- Un réseau d‟interconnexion est dit uniforme : "uniform MIN" lorsque tous les éléments de 

commutation (SE) d‟un étage sont de même degré. 

-Un réseau est dit rectangulaire si le nombre d‟entrées est égal au nombre de sorties. 

-Un réseau est dit carré "Square MIN", lorsqu‟il est de degré r et il est construit à partir des 

SEs de taille r. 

-Réseau avec Blocage (Blocking) : 

La connexion entre les entrées libres et les sorties n‟est pas toujours possible à cause des 

conflits avec les connexions existantes. Typiquement, il y a un chemin unique entre chaque 

paire d‟entrée/sortie, de ce fait le nombre de switch et d‟étages sera réduit au minimum.   

- non bloquant : Si de toute entrée inactive il existe toujours un chemin vers toute sortie 

inactive. On peut donc effectuer n'importe quelle permutation en cours d'exécution. Un 

exemple populaire de réseau sans blocage est le réseau de Clos [11].Figure6 
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Figure 6. Réseau clos 

  

Le réseau Banyan est une structure de commutation spatiale définissant un schéma 

d'interconnexion avec une seule voie d'accès entre les entrées et les sorties. Cette topologie est   

réalisée à partir d'éléments de commutation (crossbar) a x b. 

 

Une autre caractéristique qui donne à ce réseau un grand intérêt, est sa capacité de routage 

automatique (self Routing)  qui consiste à déterminer la décision de routage en utilisant 

l'adresse destination. 

Multistages interconnections networks

Non blocking networks Blocking networks

Non banyan networksBanyan networks

Non delta networksDelta networks

BaselineButterflyOmega

Figure 7. Classification des MIN 
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4.3.3.2.Topologie des réseaux MINs 

Un grand nombre de  réseaux MIN NXN  (de N processeurs d‟entrée vers N processeurs ou 

vers N mémoires de  sortie)  sont  formés de n =  2log N colonnes ayant chacune N/2 

commutateurs 2x2  i.e. avec 2 entrées et 2 sorties [5] [26]. 

 

Le  nombre  total  de  commutateurs  est  donc  d‟ordre  2log N,  comparativement  à  N² pour  

les commutateurs matriciels. 

On représente normalement un tel réseau MIN par une matrice de n colonnes de N/2 

commutateurs (rangées) reliant les N nœuds d‟entrée (source) placés à gauche de la dernière 

colonne aux N nœuds de sortie (destination) placés à droite de la première colonne. 

On  numérote  normalement  les  colonnes  de  commutateurs  de  0  à  n-1  en  allant  de  la  

première  (à droite) à la dernière (à gauche) (figure8) [9]. 

Un  étage  d‟un  réseau MIN  comprend  une  colonne  de  commutateurs  et  les  liens  

d‟entrée  de  ces commutateurs. Le numéro d‟un étage est le même que celui de la colonne de 

commutateurs. 

Un  réseau  MIN  comprend  donc  n  étages  suivis  des  liens  de  sortie  de  la  dernière  

colonne  de commutateurs. 

 

 

Figure 8. Architecture générique du réseau MIN 
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4.3.3.3.Les réseaux Delta 

D‟après la définition formelle de Patel [12], les réseaux Delta sont des réseaux 

d‟interconnexion multi étages de type Banyan, qui comprennent axb crossbars, dont tous les 

ports d‟entrées et de sorties sont connectés. Le nombre total de crossbar pour construire un 

réseau Delta est : 

  

Les réseaux Delta sont des réseaux d‟interconnexion multi étages basés sur des crossbar axb. 

Ils sont dépourvus de contrôle, et peuvent donc engendrer des pertes de données. L‟avantage 

principal des réseaux Delta est qu‟ils sont moins complexes que les fulls crossbar. Dans le 

réseau Delta pour N entrées et N sorties avec N=k
n
, on aura n étages dont chacun contient N/k 

commutateurs. 

Le réseau delta est caractérisé par un accès total : les types de permutations  utilisées pour 

construire les étages de connexion, doivent garantir l‟accès total au réseau. Ainsi, par une 

configuration correcte des commutateurs à chaque étage, n‟importe quelle entrée doit être 

capable d‟atteindre n‟importe quelle sortie. 

Aussi, le réseau delta se caractérise par sa capacité de routage automatique des messages 

depuis la source vers la destination. En ce sens le canal de sortie choisi à  chaque 

commutateur ne dépend pas de la source mais seulement de la destination. 

Une autre propriété pour les réseaux delta est l‟équivalence topologique : il a été prouvé dans 

[13], [14]  et [15] que tous les MINs Delta sont équivalents du point de vue topologique. Il 

suffit de réordonner les positions des commutateurs sans rompre les connexions pour passer 

d‟un réseau à un autre. 

Il existe plusieurs formes (types) de réseaux Delta, dépendamment de leurs connexions. Les 

réseaux les plus utilisés sont: 

 Omega networks 

 Butterfly Networks 

 Baseline Networks 

 (Generalized) Cube Networks 

 Flip Networks 

 Reverse Butterfly Networks 

 Reverse Baseline Networks 

 Indirect Binary N-Cube Networks 
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4.3.3.4.Réseau Oméga  

Le réseau Oméga est constitué de 2
k
 entrées et 2

k
 sorties, k représente le nombre d'étages. 

Chaque étage contient  2
k-1 

switch 2x2 (Figure 9). 

Le réseau oméga est un exemple important de réseau multi-étage de type “shuffle/exchange”. 

Il est formé d‟une suite d‟étages de type shuffle/exchange terminée par une permutation 

identité. 

Dans les réseaux oméga la connexion Ci  (0  i <  n) entre les étages est décrite par la 

formule de permutation circulaire suivante: σ 
k 
 ( xn-1  xn-2 … x1 x0  ) = xn-2  … x1 x0 xn-1  

Signification : décalage cyclique de tous les bits de l‟index d‟une position vers la gauche 

La connexion  C0 est définie par I 

 

Figure 9. Réseaux Omega 8x8 

 Perfect-shuffle et shuffle-exchange : 

Dans une permutation perfect-shuffle de N = 2
n
 noeuds, chaque noeud est donc relié au noeud 

obtenu par un décalage cyclique de 1 bit vers la gauche, de son adresse binaire. 

Un étage de type mélange et échange (“shuffle/exchange”) consiste en une permutation 

perfect-shuffle suivie d‟une colonne de commutateurs 2x2 [7]. 

Cette colonne de commutateurs permet de réaliser la permutation d‟échange (Figure10). 

  

Figure 10. Perfect Shuffle (N est égal à 8 dans cet exemple) 
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4.3.3.5.Réseau Butterfly 

Un réseau butterfly (réseau papillon) de dimension r, est un réseau composé de (r  + 1)2
r
  

noeuds organisés en 2
r 
 lignes de r  +1 niveaux (Figure11). 

Dans les réseaux butterfly la connexion Ci  entre les étages est décrite par la formule 

suivante 

 

 

 

 ßi
k 
( xn-1  xn-2 … xi+1  xi  xi -1  …   x1 x0  ) =  xn-1  xn-2 … xi+1  x0   xi -1  …   x1 xi 

 : échange entre le i
ème

 bit et le bit 0 

 

Figure 11. Réseau Butterfly 8x8 

4.3.3.6.Réseau Baseline   

Un réseau MIN Baseline [7] de n étages utilise une permutation identité à l‟entrée de 

l‟étage n, une permutation k

iδ  à l‟entrée des étages i=1 à n-1 et une permutation identité à 

l‟étage0 (Figure12). 

La ith baseline permutation dans un réseau Baseline, est définie comme suit: 

k

iδ  ( xn-1  xn-2 … xi+1  xi  xi -1  …   x1 x0  ) =  xn-1  xn-2 … xi+1  x0  xi  xi -1  …   x1 

avec  1 < i <  n – 1 

Signification : décalage cyclique d‟une position vers la droite, des (i+1) bits les moins 

significatifs de l‟index.  

On aura alors cette formule : 
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Figure 12. Réseau Baseline 8x8 

4.3.3.7.Commutateurs 2x2 

Les réseaux  Delta utilisent des commutateurs 2x2. Pour un commutateur 2x2, 16 états ou 

configurations sont possibles en considérant que le message sur chaque canal d‟entrée peut 

être transmis ou non vers un des canaux de sortie. 

Dans les réseaux MIN, seulement quatre de ces états sont significatifs. Chaque 

commutateur se place donc dans une des quatre configurations de base qui permettent de 

transmettre sans ambiguïté (Figure13). 

Les messages arrivant sur les canaux aux entrées : 

• Directe : L‟entrée IN0 passe par la sortie OUT0 et IN1 passe par OUT1 

• En croisé : L‟entrée IN0 passe par la sortie OUT1 et IN1 passe par OUT0 

• Vers le haut : Les entrées IN0 et IN1 passent  par la sortie OUT0.  

• Vers le bas : Les entrées IN0 et IN1 passent  par la sortie OUT1.  

 

 

Figure 13. Les différents états du switch 2x2 
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5. Conclusion 

Dans ce chapitre, nous avons passé en revue les différentes notions relatives aux réseaux 

multi-étages (MINs). Nous avons insisté en particulier sur les réseaux de la famille Delta. Vu 

les propriétés intéressantes que possède cette dernière classe de réseaux, notre travail de 

conception et modélisation se focalisera sur cette famille de réseaux. 
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Chapitre3 : Conception de réseaux multi-étage 

reconfigurable sur puce 

1. Introduction 

Dans ce chapitre, on va présenter l‟environnement de travail : le langage de spécification et 

les outils de conceptions utilisés. Par la suite, on passe à la conception des réseaux multi-

étages configurable sur puce. Enfin, on donne une estimation des performances en terme de 

surface sur FPGA et de latence. 

2. Plateforme choisie 

La carte de développement VIRTEX4 comporte un FPGA (XC4VLX200-FF1513) avec 

plusieurs périphériques [20] (Figure14). 

 

 Figure 14. Carte de développement VIRTEX4 

Nous citons ci-dessous les spécifications technologiques de la plateforme choisie. 

Ci-dessous une liste des principaux périphériques de la carte choisie est présentée: 

 

 Un circuit FPGA VIRTEX4 - LX200-FF1513 
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 Une mémoire flash de 16 MB et une mémoire DDR SDRAM 128 Mo. 

 Deux blocs SRAM. 

 Un port série RS-232 

 Un port USB 2.0 

 Interface Ethernet 

 2 PROM de 32 MB 

 Un oscillateur générateur de signal d‟horloge (500 MHz). 

3. Langage de  conception  

Les langages de description matérielle supportent les concepts spécifiques aux systèmes 

matériels tels que les concepts de temps, de parallélisme, de réactivité et de communication 

interprocessus (signaux et protocoles). Les deux langages de description matérielle les plus 

connus sont VHDL et Verilog. 

Le langage VHDL permet la description de tous les aspects d‟un système matériel (hardware 

system): son comportement, sa structure et ses caractéristiques temporelles. 

Le langage VHDL est aussi utilisé pour la synthèse [2], par exemple pour dériver 

automatiquement un circuit à base de portes logique optimisé à partir d‟une description au 

niveau RTL ou algorithmique. 

La description d‟un système matériel en VHDL est apte à être simulé. Il est possible de lui 

appliquer des vecteurs de test, également décrits en VHDL et d‟observer l‟évolution des 

signaux du modèle dans le temps. 

4. Outils d'analyse et de simulation 

Pour notre travail  nous avons utilisé l‟environnement ISE 9.1i [21]  (Figure15) et Modelsim 

de la société de XILINX. 



Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue 

 

32 

 

  

Figure 15. Xilinx ISE Foundation software 

 

Ces outils nous permettent de faire : 

 Synthèse logique d‟une description en VHDL 

 Placement et routage  

 Génération des fichiers de programmation du circuit FPGA 

 Suivi des comportements des signaux au cours du temps 

 Estimation de ressources utilisées sur FPGA 

5. Modélisation de  réseaux multi-étage reconfigurable sur puce 

5.1.Introduction 

Dans ce chapitre nous détaillons la conception des réseaux multi-étages de type DELTA  

dédiés aux architectures multiprocesseurs sur des plateformes reconfigurables FPGA ainsi que 

leur fonctionnement.  

Notre architecture est composée essentiellement des modules suivants: 

– Un module de routage qui permet de diriger les informations vers leurs destinations. 

– Un module d‟arbitrage qui garanti l‟exécution des demandes provenant de chaque port 

d‟entrée/sortie. 

– Les modules de mémorisation, dans notre cas nous utilisons les FIFO (premier arrivé, 

premier servi), ils permettent de stoker des informations afin de gérer les conflits dans les 

réseaux. 
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– Les modules de connexion qui assurent la connexion entre les étages suivant une topologie 

bien définie. 

Ensuite, nous détaillons l‟architecture interne de chaque composant en  expliquant son mode 

de fonctionnement. 

5.2. Paquetage des données  

Les données échangées entre les nœuds de MIN sont fragmentées en paquets. Ces derniers 

dépendent des protocoles adoptés dans la conception des NOCs. Le paquet est composé de 

trois parties (Figure16) : 

- Une en-tête : codification de l‟opération (lecture, écriture, commande) 

Bit r/w : bit qui définit l‟action : s‟il s‟agit d‟une écriture (r/w=1) ou d‟une lecture (r/w=0). 

Bit enable : l‟activation ou la commande. 

-  Un message : la donnée à échanger.  

-  Une queue : contient l‟adresse de la source, l‟adresse de la destination et l‟adresse dans la 

mémoire. 

 

Figure 16. Paquet processeur_mémoire 

 

 Les sources de données   

Les paquets circulant à travers le réseau proviennent de  plusieurs sources. Ces paquets  

peuvent être classés en quatre catégories :   

-  Paquet_processeur_mémoire: demande d‟accès à la mémoire (opération de lecture, 

opération d‟écriture). 
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-  Paquet_ mémoire_réponse : ce paquet n‟a pas la même forme que le premier paquet envoyé 

à travers le NOC. Il contient seulement 32 bits de donnée et les bits d‟adresse (2,3 ou 4 bits : 

suivant le nombre de processeurs).  

5.3.Composants de MIN 

5.3.1. Module Switch 

C‟est le composant qui présente le cœur du réseau multi-étage (Figure17). 

Le switch est formé d‟un couple de FiFOs connectés à l‟ordonnanceur. 

Son fonctionnement, sa fiabilité influent sur les performances de réseau en terme de 

consommation de surface sur la puce ou en terme de latence. 

Le switch possède 2 entrées qui reçoivent les paquets de type  processeur_mémoire et les 

stocke dans les files d‟attentes pour être ensuite acheminée par l‟ordonnanceur suivant leur 

destination vers la sortie désirée. 

  

Figure 17. Architecture de Switch 

Le switch a comme signaux (Figure17) : 

 Deux vecteurs « IN0 » et  « IN1 »  de taille 69 bits et qui ont la forme de paquet décrit 

précédemment. Ces deux vecteurs vont être stockés dans les FIFO. 

 Un vecteur « numberstagein »  de taille 4 bits qui est lié au numéro de l‟étage pour 

être utilisé dans l‟algorithme de routage. 
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 Un signal d‟horloge « clk».   

 Un signal d‟initialisation « reset».   

 Deux vecteurs « OUT0 » et « OUT1 »  qui représentent les paquets après l‟arbitrage et 

le routage. 

 Un vecteur « numberstageout »  de taille 4 bits qui est égale à « numberstagein-1 »   

5.3.2. Module Ordonnanceur : routage, arbitrage et mémorisation temporaire 

Il s‟agit de l‟acheminement des paquets dans le réseau via des routeurs, qui sont chargés de 

véhiculer des paquets en vue de rejoindre la  destination dans un délai minimum.  

 

Figure 18. Architecture de l‟ordonnanceur 

L‟Ordonnanceur a comme signaux (Figure18) : 

 Deux vecteurs « in0 » et  « in1 »  de taille 69 bits et qui ont la forme de paquet décrit 

précédemment. Ces deux vecteurs vont être stockés temporairement dans TEMP pour 

subir l‟arbitrage puis le routage. 

 Deux signaux « fifoempty0 » et « fifoempty1 », de taille d‟un bit, qui indiquent que 

les Fifos sont vides. 

 Un vecteur « numberstagein »  de taille 4 bits qui est lié au numéro de l‟étage pour 

être utilisé dans l‟algorithme de routage. 

 Un signal d‟horloge « clock».   
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 Deux vecteurs « OUT0 » et « OUT1 »  qui représentent les paquets après l‟arbitrage et 

le routage. 

 Deux signaux r00 et r11 qui gèrent la lecture à partir des Fifo.  

 Un vecteur « numberstageout »  de taille 4 bits qui est égale à « numberstagein-1 »   

On passe à la description du composant Ordonnanceur et son fonctionnement. En effet ce 

dernier joue le rôle d‟un routeur, arbitre et une mémorisation temporaire. 

5.3.2.1.Routage et mémorisation   

Le routage est fait en fonction de l‟adresse destination. En fait, le routeur redirige le message 

sur l‟étage suivant, afin de s‟approcher de la destination finale. Il doit être capable de gérer les 

conflits de chemin (deux messages désirant emprunter simultanément le même canal) c‟est à 

dire, la mémorisation temporaire d‟un message pour l‟envoyer plus loin une fois la voie sera 

libre. L‟algorithme de routage, en raison des conflits potentiels peut devenir assez complexe. 

Il faut être sûr qu‟aucun message ne puisse être bloqué  dans le réseau. 

Pour réaliser le routage dans un réseau Delta, le i ème bit le plus significatif de l‟adresse de 

destination détermine l‟activation du commutateur de l‟étage i. Ainsi, si ce bit est à 0, le 

chemin passe par la sortie du haut sur le commutateur. Inversement, si le bit est à 1, la sortie 

du bas du commutateur est utilisée [22]. 

Des algorithmes de "self-routing" existent pour la plupart des réseaux MIN. 

Pour un réseau oméga par exemple, le routage se fait comme suit : supposons que nous 

partons du nœud 1 au nœud 5, selon cet algorithme, 5 signifie 101 en binaire, d‟ou bas (1), 

haut (0), bas(1) tel que montré par la Figure19. 

 

Figure 19. Routage dans le réseau oméga. Le trajet du message de 1 à 5 
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5.3.2.2.Arbitrage 

Le switch possède deux ports d‟entrées où chacun de ces ports peut demander l‟accès à un 

même  port de sortie. Pour cela un arbitrage doit avoir lieu, pour qu‟on puisse d‟une part, 

garantir le service des demandes provenant de chaque port d‟entrée, et  d‟autre part éviter les 

problèmes de type famine (Risque d'affamer les flux les moins prioritaires) [24]. 

La technique d’arbitrage Round Robin : 

Cette technique est basée sur le principe suivant : le port d'entrée ayant la priorité la plus forte 

aura à la prochaine itération la priorité la plus faible. Pour cela nous avons utilisé une variable 

statique qui prend les valeurs 1 ou 0 selon le cas où nous avons deux requêtes qui se 

présentent et qui demandent accès au même port de sortie.   

5.3.2.3.Ordonnancement des paquets 

-Initialement la mémoire Temp est vide, les signaux r00 et r11 vont être alors mis à 1 pour la 

remplir. 

-Les entrées  « entrée0 » et  « entrée1 » venant des FIFOs vont être stockées suivant : 

 Leurs bits de commande (bits d‟activation)  

 Si les FIFOs ne sont pas vides (fifoempty=0).  

-Une fois que TEMP est pleine, on va affecter ces paquets suivant leurs bits de destination. 

Plusieurs cas seront présentés : accès par la même sortie ou non, passage par la sortie haut ou 

par la sortie bas, les deux entrées sont actives ou non. 

-Avec cette variété de cas, l‟arbitre doit gérer l‟accès de chaque entrée à la sortie demandée en  

utilisant sa technique d‟arbitrage et enfin vient le routage de ces entées vers les sorties 

voulues.  

-Dés que TEMP sera vide elle envoie une requête aux FIFOs : r00 et r11 s‟activent pour lire 

une autre fois auprès des Fifo et remplir les deux cases temporaires.  

-Ce processus se répète jusqu'à ce que les Fifo soient vides. 

5.3.3. Module de mémorisation : FIFO 

Afin de mémoriser les données et gérer le conflit dans les réseaux, nous avons ajouté à chaque 

entrée de chaque module Ordonnanceur un bloc de mémoire de type FIFO (Figure20). 

Une FIFO est très utile dans notre architecture permettant de lire des données qui viennent 

successivement d‟un autre module et de les stocker dans un ordre bien défini. Elle permet 

aussi de vider les données de telle façon que la première donnée qui a été enregistrée sera la 

première à sortir. 
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 Figure 20. Schéma d‟une FIFO 

Une FIFO  comporte essentiellement : 

 Un signal « clock » d‟horloge de type entrée, qui assure la synchronisation des 

signaux. 

 Un signal « readenable » de type entrée, qui active la lecture à partir de la FIFO. 

 Un signal « writeenable » de type entrée, qui active l‟écriture dans la FIFO. 

 Un vecteur « datain » de type entré de taille 69, qui représente l‟information à écrire 

dans la FIFO. 

 Un vecteur «dataout » de type sortie de taille 69, qui représente l‟information à lire à 

partir de la FIFO. 

 Deux signaux "Fifofull" et "Fifoempty" de type sortie, indiquant l‟état de la mémoire 

(pleine ou vide). 

 La taille de FIFO : c‟est un paramètre critique pour les NOCs. Il influe directement sur 

les performances des routeurs implémentés dans le modèle.  

Plusieurs variantes de FIFOs  sont implémentées et simulées en vu d‟évaluer les 

performances de notre réseau sur puce ( ) avec N ∈ [1,3]).   

5.3.4. Module de connexion 

Le bloc de connexion est un module qui assure la connexion entre n signaux d‟entrées et n 

signaux de sorties (Figure21). Si on veut changer la topologie de notre réseau multi-étages 

(par exemple changer un réseau oméga par un réseau Baseline), il suffit d‟arranger le bloc de 

connexion et décrire les types de connexions correspondantes à la topologie. Pour simplifier 

la tâche on a décrit la manière de connexion des topologies dont on a besoin et il suffit de 

changer la position de commutateur topologie pour passer d‟une topologie à une autre.  
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clock reset
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Figure 21. Schéma du module connecteur (réseau Omega) 

6. Implémentation des réseaux multi-étage 

Un réseau multi-étage est composé essentiellement des étages de commutateurs connectés 

entre eux par les blocs des connexions suivant une topologie bien définie (Figure22). 

Le réseau multi-étage permet de connecter N processeur à n modules mémoire. 

La figure22 présente un exemple d‟implémentation d‟un réseau MIN de type OMEGA de 

taille 8x8, c'est-à-dire qui connecte 8 processeurs à 8 mémoires. Le réseau est composé de 3 

étages de switch et de 4 étages de connecteurs. Le schéma a été obtenu en utilisant l‟outil RTL 

VIEWER de XILINX. Cet outil permet de transformer une description en langage VHDL en 

une représentation schématique comportant les blocs utilisés ainsi que les connexions entre 

ces blocs. 
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Figure 22. Composant réseau MIN 

7.  Estimation des performances 

Après avoir implémenté le réseau multi-étage, nous avons dégagé les performances. Ces 

performances se focalisent essentiellement sur la Surface sur FPGA et la latence. On 

commence par le switch qui présente le cœur du réseau puis on passe à l‟estimation des 

performances du MIN. Enfin, on commente les résultats obtenus. 

7.1.Switch 

Deux types de switch ont été conçus. Le premier qui fonctionne en mode Asynchrone et qui 

se caractérise par une latence minimale mais une consommation importante de blocs logiques 

sur FPGA (Tableau1) et un deuxième qui fonctionne en mode synchrone et qui est caractérisé 

par rapport au premier par moins de surface sur FPGA et plus de latence (Tableau2). 

De plus on a varié la profondeur de la FIFO utilisée pour les deux modes de fonctionnement 

(2,4 et 8 places par FIFO) pour évaluer la surface de switch. 

On a constaté que la solution la plus adéquate pour notre switch est d‟utiliser une FIFO de 

profondeur 8 car cette dernière présente moins de surface sur FPGA. 

Ceci s‟explique par l‟usage des blocs FIFO préfabriqués par le concepteur XILINX et qui se 

trouve dans l‟FPGA pour un switch qui utilise une FIFO de profondeur 8 tandis qu‟un switch 

qui utilise une FIFO de profondeurs 4 ou 2. Cet usage sera compensé par la combinaison des 

blocs logiques élémentaires (Tableau1, Tableau2). 
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Mode Asynchrone 

cible xc4vlx200 

-11ff1513 

Utilisation des ressources logiques Latence 

Prof 

de 

FIFO 

 Nombre 

de Slices 

Nombre de 

Slice Flip 

Flops 

Nombre de 

4 input 

LUTs 

Nombre de  

FIFO16/RAMB16s 
 

2 1073 719 1590 0 2 cycle 

4 1081 731 1606 0 2 cycle 

8 756 587 1349 4 2 cycle 

Tableau 1.Synthèse et latence de Switch en mode Asynchrone  

Mode Synchrone 

cible xc4vlx200 

-11ff1513 

Utilisation des ressources logiques Latence 

Prof 

de 

FIFO 

 Nombre 

de 

Slices 

Nombre de 

Slice Flip 

Flops 

Nombre de 

4 input 

LUTs 

  Nombre de  

FIFO16/RAMB16s 

  

2 812 713 1182 0 3 cycle 

4 826 719 1208 0 3 cycle 

8 568 587 929 4 3 cycle 

 Tableau 2. Synthèse et latence de Switch en mode Synchrone  

7.2.MIN 

L‟estimation des performances du NOC est basée sur les deux types de switch dont on a déjà 

parlé. Il existe alors deux types de NOC : un qui fonctionne en mode Asynchrone et un autre 

qui fonctionne en mode Synchrone (Tableau3, Tableau4). 

Les résultats ont été pris en variant le nombre des processeurs (4, 8, 16 et 32). 

   Mode Asynchrone 

cible 

xc4vlx200 

-11ff1513 

Utilisation des ressources logiques 

Nombre de 

processeurs 

Nombre 

de Slices 

% Nombre de 

Slice Flip 

Flops 

% Nombre de 

4 

input LUTs 

% Nombre de 

FIFO16/RAM

B16s 

% 

4 3538 3 2344 1 6521 3 16 4 

8 10718 12 7036 3 19673 11 48 14 

16  33199  37  19024  10  61337 34  128  38  

Tableau 3. Synthèse de MIN en mode Asynchrone 
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Mode Synchrone 

cible: 

xc4vlx200 

-11ff1513 

Utilisation des ressources logiques 

Nombre de 

processeurs 

Nombre 

de Slices 

% Nombre de 

Slice Flip 

Flops 

% Nombre de 

4 

input LUTs 

% Nombre de 

FIFO16/RAM

B16s 

% 

4 2281 2 2364 1 3993 2 16 4 

8 6839 7 7092 3 12257 6 48 14 

16 18220 20 18912 10 33057 18 128 38 

 Tableau 4. Synthèse de MIN en mode Synchrone 

7.3.Commentaires 

Après avoir dégagé les estimations des performances de switch et de MIN, on remarque bien 

que l‟évolution de l‟utilisation des ressources logiques sur FPGA en fonction du nombre de 

processeur est linéaire pour le mode synchrone tandis qu‟elle ne l‟est pas pour le mode 

asynchrone (Nombre de Slices,  Nombre de 4 input LUTs). 

8. Conclusion 

Dans ce chapitre, nous avons présenté l‟environnement de travail à savoir le langage VHDL et 

les outils de conception de XILINX. Puis nous avons modélisé les réseaux multiétages de 

type DELTA. Ensuite nous avons fait l‟implantation de notre réseau. Enfin nous avons 

terminé par une estimation des performances.  
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Chapitre4 : L’intégration du réseau multi-étage dans 

une architecture multiprocesseur 

1. Introduction 

Notre objectif est d‟adopter le réseau d‟interconnexions multi-étage en tant qu‟une 

architecture de communications dédiées aux MPSOC. 

Après avoir élaboré la spécification des réseaux DELTA MIN qui présente une bonne 

solution pour connecter N processeurs à N mémoires, ce chapitre s‟intéressera à 

l‟implémentation notre réseau dans une architecture multiprocesseur en faisant varier les 

topologies afin de tester la fiabilité et l‟efficacité du NOC et comparer les performances des 

différents types de réseaux. 

On va s‟intéresser tout d‟abord à spécifier l‟architecture multiprocesseur. 

Par la suite, on va valider le fonctionnement de notre architecture par une application. 

2. Architecture MPSOC reconfigurable 

L‟architecture est composée de N processeurs, N mémoires de données, N mémoires 

d‟instructions, un réseau de requête DELTA MIN et un réseau de réponse (voir Figure23). 

  

Figure 23. Architecture proposée 
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Chaque processeur est connecté à sa propre mémoire d‟instruction d‟une part et au réseau 

DELTA MIN d‟autre part qui est à son tour connecté aux mémoires des données. Chaque 

processeur peut accéder à n‟importe quelle mémoire de données via le réseau pour faire une 

opération de lecture ou d‟écriture de données. 

Initialement chaque processeur accède à sa propre mémoire d‟instructions, ensuite suivant 

cette instruction il peut faire une opération de calcul ou un accès à la mémoire de données. 

S‟il s‟agit d‟une opération d‟écriture la mémoire envoie un acquittement au processeur qui a 

fait la requête indiquant la fin de l‟opération sinon (en cas d‟une opération de lecture) la 

mémoire doit envoyer la donnée désirée avec l‟acquittement. 

Par la suite le processeur passe à l‟instruction suivante. De cette façon si un processeur accède  

à une mémoire de données il restera en pause jusqu‟à ce qu‟il reçoit un acquittement de cette 

mémoire. 

3.  Paramétrage du NOC pour une plateforme MPSOC 

3.1.Le Composant Processeur 

 Il existe une grande variété de processeurs commercialisés et autres opencores. La 

spécification de ces processeurs en langage matériel (VHDL ou VERILOG) peut être portable 

(comme le processeur MIPS, LEON, etc.) ou non portable et spécifique pour une plateforme 

bien déterminée (tel que le processeur Microblaze de XILINX, etc.). 

Le processeur miniMIPS est classé dans la catégorie des processeurs opencore et compatibles 

pour plusieurs plateformes de prototypages. La spécification en langage VHDL est disponible 

sur Internet. C‟est un processeur efficace pour notre application et répond bien à nos besoins. 

Le processeur miniMIPS est une version simplifiée du processeur MIPS R3000. C‟est un 

RISC 32 bits auquel ils manquent quelques instructions, et le mécanisme d‟interruption 

externe. Il comporte 32 registres et inclut deux mémoires cache de 4 Koctets. Il comporte 5 

étages pipeline. 

Le processeur miniMIPS possède une interface avec 7 ports (Figure24).  
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Figure 24. Composant Processeur 

 

– Clock : est l‟entrée d‟horloge. Les registres internes de miniMIPS sensitives au front 

montant de CLK. 

– Ram_ack : est le signal qui permet l‟exécution d‟une nouvelle instruction à l‟état ‟1‟, par 

suite il indique la fin d‟exécution de la dernière instruction. 

– Reset : est le signal d‟initialisation du processeur. C‟est une entrée synchrone active à l‟état 

bas. 

– Ram_r_w : est une commande sur un bit définissant le type d‟accès à une mémoire externe. 

Elle peut prendre deux valeurs : lecture d‟un mot de 32 bits ou écriture d‟un mot de 32 bits. 

– Ram_adr : est un vecteur de 32 bits. Dans notre cas, nous avons choisie que les 12 premiers 

bits de poids fort représentent l‟adresse (le numéro) de la source (le processeur), les 8 bits 

suivants représentent l‟adresse de la destination (la mémoire) et le reste des bits représentent 

l‟adresse dans la mémoire (Figure 16). 

– Ram_data : est le mot de 32 bits de type entrée/sortie. Ce denier contient l‟instruction lue à 

partir de la mémoire d‟instruction ou la donnée à lire ou à écrire dans la mémoire de données. 

– it_mat : interruption du processeur. 

Implémentation du composant processeur 

Afin d‟avoir une idée sur les ressources utilisées par un composant processeur, nous avons 

effectué une analyse et synthèse pour le code de ce composant (décrit en VHDL) en utilisant 

l‟outil ISE 9.1i de XILINX. Par suite, nous avons obtenu les résultats suivants (Tableau5) : 
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Ram_r_w

Ram_req

resetclock

Processor 
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cible: xc4vlx100-12ff1148 

Utilisation de ressources utilisé disponible Utilisation 

Nombre de Slices 3344 89088 3% 

Nombre de   Slice Flip Flops 1883 178176 1% 

Nombre de   4 input LUTs 6375 178176 3% 

Nombre de   bonded IOBs 74 960 7% 

Nombre de   GCLKs 1 32  

Nombre de   DSP48s 4 96 4% 

 Tableau 5. Synthèse du Processeur miniMIPS 

3.2.Le composant mémoire 

Une mémoire est tout dispositif capable de stocker des informations (instructions et données) 

de telle sorte que l‟organe qui les utilise (processeur) puisse à n‟importe quel moment accéder 

à l‟information qu‟il demande.  

Les informations peuvent être écrites ou lues. Il y a écriture lorsque nous enregistrons des 

données en mémoire, lecture lorsque nous appelons des informations précédemment 

enregistrées. Le temps d‟accès est le temps qui s‟écoule entre l‟instant où a été lancée une 

opération de lecture en mémoire et l‟instant où la première information est disponible. Le 

temps de cycle représente l‟intervalle minimum qui doit séparer deux demandes successives 

de lecture ou d‟écriture.   

Une mémoire est formée d‟un certain nombre de cellules, ou cases, contenant chacune une 

information. Chaque cellule a un numéro qui permet de la référencer et de la localiser. 

Ce numéro est son adresse. Avec une adresse de n bits il est possible de référencer 

directement au plus 2 cellules. La capacité d‟une mémoire est le nombre total de cellules 

qu‟elle contient. Elle s‟exprime en nombre de bits, d‟octets (bytes) ou de mots (words). 

Dans une mémoire à semi-conducteur, nous accédons directement à n‟importe quelle 

information dont nous connaissons l‟adresse. Le temps pour obtenir l‟information ne dépend 

pas de l‟adresse. On dira que l‟accès à une telle mémoire est aléatoire, direct ou encore 

sélectif. 

Les mémoires utilisées dans notre architecture sont des mémoires de type RAM (Read Access 

Memory) et ROM (Read Only Memory). Les RAM représentent les mémoires de données, par 

suite il est possible d‟effectuer des lectures et des écritures, alors que les ROM représentent 

les mémoires d‟instructions afin de faire des lectures seulement. Les mémoires utilisées 

possèdent une interface comportant sept ports : Figure25, Figure26 
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– Clk : est l‟entrée d‟horloge. Les lectures et les écritures dans les mémoires sont 

synchronisées par les fronts montants de CLK. 

– Adresse : est le mot en entrée de 8 bits qui indique l‟adresse dans la mémoire dans laquelle 

une lecture ou une écriture sera effectuée. 

– Data_out : est un mot en sortie sur 32 bits. Il représente la donnée à lire à partir de la 

mémoire. 

– Ack : est un signal en sortie qui indique la fin d‟une manipulation à savoir une écriture ou 

une lecture. 

Les signaux qui suivent sont propres à la mémoire de donnée 

– req : est l‟entrée qui active ou désactive toute manipulation dans la mémoire. Ce signal est 

actif à l‟état ‟0‟. 

– WR: est un signal d‟entrée qui indique le type de manipulation dans la mémoire. Il s‟agit 

d‟une lecture si le signal est à l‟état ‟0‟ et une écriture si le signal est à l‟état ‟1‟. 

– Data_in : est un mot en entrée sur 32 bits. Il représente la donnée à écrire dans la mémoire. 

 

Figure 25. Mémoire de données 

 

Figure 26. Mémoire d‟instructions 
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  Après une analyse et synthèse de ces composants, nous avons obtenu les résultats présentés 

dans les Tableau6 et Tableau7. 

 

cible: xc4vlx200-11ff1513 

 Utilisation de ressources utilisé disponible Utilisation 

Nombre de Slices 11 89088 0% 

Nombre de 4 input LUTs 22 178176 0% 

Nombre de FIFO16/RAMB16s 1 336 0% 

 Tableau 6. Synthèse du module Mémoire de donnée 

cible: xc4vlx200-11ff1513 

 Utilisation de ressources utilisé disponible Utilisation 

Nombre de Slices 7 89088 0% 

Nombre de 4 input LUTs 12 178176 0% 

 Tableau 7. Synthèse du module Mémoire d‟instruction 

On remarque que les deux types de mémoires consomment peu de ressources sur FPGA   

3.3. Composant NOC 

3.3.1. Réseau de requête 

Dans notre architecture proposée, le réseau de requête est présenté par le réseau Multi-étage 

de type Delta dont on a déjà parlé dans le chapitre précédent. Ce réseau permet aux 

processeurs d‟accéder aux mémoires de données (écriture ou lecture). De plus il est possible 

d‟avoir plusieurs types de ce réseau en changeant seulement la topologie des modules de 

connexion entre les étages de Switch. La figure27  présente un réseau de type Butterfly utilisé 

dans l‟architecture adoptée. 

 

Figure 27. Réseau multi-étage-Topologie Butterfly 
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Notre réseau est unidirectionnel c'est-à-dire qu‟il ne peut transférer que  des paquets circulant 

des processeurs vers les mémoires. Pour cela il nous faut un autre réseau pour le transfert des 

paquets mémoire_réponse.  

3.3.2. Réseau de réponse 

Il s‟agit de l‟acheminement des paquets mémoire_réponse via ce module de réponse en vue de 

rejoindre la  destination (processeurs) dans un délai minimum, sans blocage d‟information et 

sans perte d‟information (Figure28). 

 

Figure 28. Réseau de réponse 

 

Ce  module comporte donc  2 composants : ACQUIT et DONNEREP. 

ACQUIT : pour les signaux d‟acquittement (Figure29) 

DONNEREP : pour les données (Figure30) 
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ACQUIT 

 

Figure 29. Module ACQUIT 

Le composant  ACQUIT a comme signaux : 

8 vecteurs (de in0 à in7) de taille d‟un bit qui représentent les acquittements sortants des 

mémoires. 

8 vecteurs (de ad0 à ad7) de taille 3 bits qui représentent les adresses des destinations de 

chaque acquittement sortant de la mémoire. 

8 vecteurs (de out0 à out7) de taille d‟un bit qui représentent les acquittements vers les 

processeurs.  
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DONNEREP 

 

Figure 30. Module DONNEREP 

 

Le composant  DONNEREP a comme signaux : 

 8 vecteurs (de en0 à en7) de taille 32 bits qui représentent les données sortantes des 

mémoires. 

 8 vecteurs (de adr0 à adr7) de taille 3 bits qui représentent les adresses des 

destinations de chaque donnée sortant de la mémoire. 
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 8 vecteurs (de out0 à out7) de taille 32 bits qui représentent les données vers les 

processeurs.  

 8 vecteurs (de enable0 à enable7) de taille d‟un bit qui représentent les signaux 

d‟activation car le transfert de données ne devra fonctionner qu‟en cas de lecture. 

Les performances de module réponse se focalisent en terme de surface (Tableau8). 

D‟après les résultats estimés, on peut conclure que ce composant présente un gain 

important comparé à la solution qui utilise un réseau NOC comme un réseau de réponse. 

 

cible: 

xc4vlx200 

-11ff1513 

Utilisation de ressources 

Nombre de 

processeurs 

Nombre 

de Slices 

% Nombre 

de Slice 

Flip Flops 

% Nombre de 

4 

input LUTs 

% 

4 761 0 - - 1340 0 

8 2824 3 256 0 5173 2 

16 10369 11 - - 18889 10 

 Tableau 8. Synthèse du module Réseau de réponse 

4.  Implémentation de l'architecture sur FPGA 

Après l‟implémentation du NoC dans une architecture multiprocesseur, l‟estimation de 

performance se focalise sur la surface de l‟architecture sur FPGA. 

Les mesures ont été prises en variant le nombre de processeur (4, 8,16) et en utilisant les deux 

modes de fonctionnement : Asynchrone et Synchrone (Tableau9, Tableau10). 

Mode Asynchrone 

cible: 

xc4vlx200 

-11ff1513 

Utilisation de ressources 

Nombre de 

processeurs 

Nombre 

de 

Slices  

%  Nombre de 

Slice Flip 

Flops  

%  Nombre 

de 4  

input 

LUTs  

%  Nombre de 

FIFO16/RAMB16s  

%  

4  14390 16  10048 5  26551 14  20 5  

8  35321 39  22896 12  65540 36  56  16  

16  77563  87  49459  27  142761  80  144  42  

 Tableau 9. Synthèse de l‟architecture multiprocesseur en mode Asynchrone 
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Mode Synchrone 

 

cible: 

xc4vlx200 

-11ff1513 

Utilisation de ressources 

Nombre de 

processeurs 

Nombre 

de 

Slices  

%  Nombre de 

Slice Flip 

Flops  

%  Nombre 

de 4  

input 

LUTs  

%  Nombre de 

FIFO16/RAMB16s  

%  

4  12697 14  10057 5  23667 13  20 5  

8  30251 33 22909 12  56534 31  56  16  

16  68432 76  49466 27  127564 71  144  42  

Tableau 10. Synthèse de l‟architecture multiprocesseur en mode Synchrone 

Après avoir dégagé les estimations des performances de l‟architecture en mode synchrone et 

asynchrone, on remarque bien que l‟évolution de l‟utilisation des ressources logiques sur 

FPGA en fonction du nombre de processeur n‟est pas linéaire pour les modes synchrone et  

asynchrone. 

5. Validation du réseau multi-étage dans l'architecture MPSOC. Etude de cas : 

FILTRE FIR et FILTRE IIR 

Dans cette partie, nous allons mettre en application notre architecture multiprocesseur. Pour 

cela, nous allons procéder à l‟implémentation d‟un Filtre FIR puis un Filtre IIR. Nous allons 

alors présenter l‟application   en premier  lieu ensuite on va donner une estimation des 

performances. 

5.1.Présentation du Filtre FIR et Filtre IIR 

L‟application choisie comme démonstration est une application typique du domaine des 

télécommunications mobiles. 

Un filtre numérique peut-être défini par une équation aux différences, c'est-à-dire l'opération 

mathématique du filtre dans le domaine temporel (discret). 

La forme générale du filtre d'ordre M est la suivante: 

 

Sa fonction de transfert dans le domaine fréquentiel (Transformée en Z) est :  
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Il y a deux grandes familles de filtres numériques : la première, les filtres FIR, de l'anglais 

"Finite Impulse Response" (Filtre à réponse impulsionnelle finie). Ce type de filtre est dit fini, 

car sa réponse impulsionnelle se stabilisera ultimement à zéro. Un filtre FIR est non récursif, 

c'est-à-dire que la sortie dépend uniquement de l'entrée du signal, il n'y a pas de contre-

réaction.  

Ainsi, les coefficients « a » de la forme générale des filtres numériques sont tous égaux à 

zéro. 

Une propriété importante des filtres FIR est que les coefficients du filtre « b » sont égaux à la 

réponse impulsionnelle « h » du filtre.  

D'autre part, la forme temporelle du filtre est tout simplement la convolution du signal 

d'entrée x avec les coefficients (ou réponse impulsionnelle) b (ou h). 

En opposition, les filtres de la seconde famille, les IIRs, de l'anglais "Infinite Impulse 

Response" (Filtre à réponse impulsionnelle infinie) possèdent une réponse impulsionnelle qui 

ne se stabilisera jamais, et ce, même à l'infini. Ce type de filtre est récursif, c'est-à-dire que la 

sortie du filtre dépend à la fois du signal d'entrée et du signal de sortie. Il possède ainsi une 

boucle de contre-réaction (feedback). Les filtres IIR sont principalement la version numérique 

des filtres analogiques traditionnels: Butterworth, Tchebychev, Bessel, Elliptique. 

5.2.Modélisation du Filtre FIR 

Pour tester la fonctionnalité de l‟architecture multiprocesseur, une implantation de filtre FIR a 

été faite. Dans ce qui suit la façon dont un filtre FIR peut être mis en œuvre est décrite. Huit 

processeurs ont été utilisés. La réponse impulsionnelle utilisée est : 

h(n) = { h(0), h(1), h(2), h(3), h(4), h(5), h(6), h(7) } 

Le vecteur d‟entrée est : 

x(n) = {C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16} 

Le vecteur de sortie est : 

y(n) = { S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, 

S19, S20, S21, S22, S23 } 

Chaque processeur envoie des requêtes demandant l‟accès aux mémoires de données pour 

apporter les entrées Ci, ensuite il effectue les opérations de calculs nécessaires et enfin il 

stocke les résultats obtenus Si dans la mémoire de donnée Si. 
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L‟envoi et la réception des requêtes sont cadencés par le signal d‟horloge globale du système. 

L‟allocation des données dans les mémoires est un choix effectué, par suite il est possible 

d‟utiliser de différentes distributions et comparer à chaque fois les performances du réseau. 

L‟application sera repartie sur 3 itérations présentées dans les figures 31, 32 et 33. 

 

Figure 31. 1ère  itération de l‟application Filtre FIR 

 

Y(n) est calculé en utilisant des opérations de multiplication et d‟addition comme suit : 

S0 = h(0) ∗ C0 + h(1) ∗ 0 + h(2) ∗ 0 + h(3) ∗ 0 + h(4) ∗ 0 + h(5) ∗ 0 + h(6) ∗ 0 + h(7) ∗ 0 

S1 = h(0) ∗ C1 + h(1) ∗ C0 + h(2) ∗ 0 + h(3) ∗ 0 + h(4) ∗ 0 + h(5) ∗ 0 + h(6) ∗ 0 + h(7) ∗ 0 

S2 = h(0) ∗ C2 + h(1) ∗ C2 + h(2) ∗ C0 + h(3) ∗ 0 + h(4) ∗ 0 + h(5) ∗ 0 + h(6) ∗ 0 + h(7) ∗ 0 

S3 = h(0) ∗ C3 + h(1) ∗ C2 + h(2) ∗ C1 + h(3) ∗ C0 + h(4) ∗ 0 + h(5) ∗ 0 + h(6) ∗ 0 + h(7) ∗ 0 

S4 = h(0) ∗ C4 + h(1) ∗ C3 + h(2) ∗ C2 + h(3) ∗ C1 + h(4) ∗ C0 + h(5) ∗ 0 + h(6) ∗ 0 + h(7) ∗ 0 

S5 = h(0) ∗ C5 + h(1) ∗ C4 + h(2) ∗ C3 + h(3) ∗ C2 + h(4) ∗ C1 + h(5) ∗ C0 + h(6) ∗ 0 + h(7) ∗ 0 

S6 = h(0) ∗ C6 + h(1) ∗ C5 + h(2) ∗ C4 + h(3) ∗ C3 + h(4) ∗ C2 + h(5) ∗ C1 + h(6) ∗ C0 + h(7) ∗ 0 

S7 = h(0) ∗ C7 + h(1) ∗ C6 + h(2) ∗ C5 + h(3) ∗ C4 + h(4) ∗ C3 + h(5) ∗ C2 + h(6) ∗ C1 + h(7) ∗ C0 

 

La même procédure se répète jusqu‟à ce que les entrées soient finies (Figure32, Figure33). 

 



Etude et prototypage des réseaux sur puce sur des plateformes programmables Ramzi Tligue 

 

56 

 

 

Figure 32. 2ème itération de l‟application Filtre FIR 

Figure 33. 3ème itération de l‟application Filtre FIR 
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5.3.Modélisation du Filtre IIR 

Une 2
ème

 application a été choisie pour mieux évaluer la fonctionnalité de notre architecture 

multiprocesseur. L‟application consiste à l‟implantation de filtre IIR. 

Dans ce qui suit, la mise en œuvre d‟un filtre FIR est décrite. Huit processeurs ont été utilisés. 

Sachant que ce type de filtre est récursif, on trouve que chaque sortie dépend des sorties qui la 

précédent. 

Chaque processeur Pi envoie des requêtes demandant l‟accès aux mémoires de données pour 

apporter les entrées Ci, ensuite il effectue les opérations de calculs nécessaires mais cette fois, 

contrairement au filtre FIR, il continue à demander l‟accès aux mémoires de données pour 

apporter les Si s‟ils sont disponibles et enfin il y revient pour stocker les résultats obtenus Si. 

Dans le cas de dépendance de données le processeur refait le processus (demande de lecture 

de Si) jusqu'à ce qu‟il trouve sa valeur désirée.    

L‟application sera repartie sur 3 itérations présentées dans les Figures 34, 35 et 36. 

 

 

Figure 34. 1ère itération de l‟application Filtre IIR 

La même procédure se répète jusqu‟à ce que les entrées soient finies (Figure35, Figure36). 

 

Figure 35. 2ème itération de l‟application Filtre IIR 
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Figure 36. 3ème itération de l‟application Filtre IIR 

5.4.Estimation des performances 

L‟estimation des performances se focalise sur la mesure des latences et les temps de 

simulation. 

La simulation est faite pour une architecture qui comporte (4,8) processeurs et (4,8) mémoires 

et un réseau (4x4, 8x8) en utilisant l‟outil Modelsim de XILINX. 

Après avoir lancé la simulation de notre architecture, nous avons obtenu le chronogramme 

représenté par la Figure37. 

 

 

Figure 37. Chronogramme de simulation de l‟architecture 
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Les résultats de simulation ont été pris en faisant varier la topologie (OMEGA, BASLINE, 

BUTTERFLY) et en augmentant le nombre de processeurs de 4 à 8 processeurs.   

La fréquence utilisée est 50 MHZ. 

5.4.1. Implémentation du Filtre FIR 

 

4 processeurs 

 Mode Asynchrone Mode synchrone 

 topologie topologie 

 Baseline Omega Butterfly Baseline Omega Butterfly 

Latence 

moyenne 

105 ns 105,8 ns 105,8 ns 144,2ns 145,82ns 145,82ns 

Temps de 

simulation 

4050ns 4070 ns 4070 ns 4530ns 4550ns 4550ns 

Tableau 11. Latence et Temps de simulation de l‟application Filtre FIR pour 4 processeurs 

8 processeurs  

 Mode Asynchrone Mode synchrone 

 topologie topologie 

 Baseline Omega Butterfly Baseline Omega Butterfly 

Latence 

moyenne 

144 ns 146 ns 146 ns 203,2 ns 206 ns 206 ns 

Temps de 

simulation 

7930 ns 8070 ns 8070 ns 9270 ns 9270 ns 9130 ns 

Tableau 12. Latence et Temps de simulation de l‟application Filtre FIR pour 8 processeurs 

 

Les résultats obtenus montre qu‟en passant du mode Asynchrone vers le mode Synchrone le 

temps de simulation et la latence moyenne augmentent (voir Tableau11, Tableau12). 

Aussi on peut conclure que le réseau Baseline est le réseau le plus performant dans la plupart 

des cas (mode Synchrone, Asynchrone). 
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5.4.2. Implémentation du Filtre IIR 

 

4 processeurs  

 Mode Asynchrone Mode synchrone 

 topologie topologie 

 Baseline Omega Butterfly Baseline Omega Butterfly 

Latence 

moyenne 

103,8 ns 103,2 ns 103,2 ns 144,4ns 143,9ns 143,9ns 

Temps de 

simulation 

9450ns 9830 ns 9830 ns 10850ns 10510ns 10510ns 

Tableau 13. Latence et Temps de simulation de l‟application Filtre IIR pour 4 processeurs 

 

8 processeurs  

 Mode Asynchrone Mode synchrone 

 topologie topologie 

 Baseline Omega Butterfly Baseline Omega Butterfly 

Latence 

moyenne 

146 ns 146,6 ns 146,6 ns 202,8 ns 205,4 ns 205,6 ns 

Temps de 

simulation 

23050ns 23210 ns 23210 ns 25110 ns 25330 ns 25330 ns 

Tableau 14. Latence et Temps de simulation de l‟application Filtre IIR pour 8 processeurs 

 

 Les résultats obtenus dans les tableaux pour l‟implantation de Filtre IIR montrent une 

augmentation importante au niveau du temps de simulation par rapport à la première 

application (Filtre FIR). Ceci s‟explique par la complexité de l‟application vue la dépendance 

de données (voir Tableau13, Tableau14). 

6. Conclusion 

Dans ce chapitre nous avons achevé l‟implémentation des MINs dans une architecture 

multiprocesseur. Nous avons présenté tout d‟abord notre architecture adoptée puis nous avons 

validé son fonctionnement dans un contexte applicatif en variant la topologie utilisée. Enfin, 

nous avons donné une estimation des performances en terme de surface, latence et temps de 

simulation. 
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Conclusion générale et perspectives 

 

Nous récapitulons ici les travaux de mastère et ses apports. Nous avons passé en revue les 

conceptions des réseaux et leurs implémentations dans des systèmes sur puce. Nous avons 

décelé plusieurs besoins auxquels doit répondre une architecture d‟interconnexion à haute 

performance d‟une part, et des directives générales indispensables pour la conception d‟un 

réseau sur puce fiable et flexible.   

Notre architecture d‟interconnexion  a été modélisée en  composants contenant des 

descriptions en langage VHDL, puis elle a été évaluée par simulation avec Modelsim et 

synthétisé avec ISE de XILINX.  

La conception du modèle à été réalisée en trois phases : 

 Nous avons commencé par détailler les composants du Delta MIN (Switch, ordonnanceur, 

blocs de connexions) puis leurs implémentations.  

Nous avons proposé  deux modèles de réseaux Delta MIN, un modèle Asynchrone et un autre 

Synchrone et nous avons détaillé les caractéristiques et les avantages de chacun en termes de 

surface et de latence. 

Dans la deuxième phase nous avons intégré le réseau Delta MIN dans une architecture 

multiprocesseur, ce qui a nécessité  la conception d‟un réseau de réponse acheminant les 

paquets des mémoires vers les processeurs. Ce réseau de réponse s‟avère performant pour 

notre architecture MPSOC puisqu‟il présente une optimisation en termes de surface, de 

latence ainsi que sa fiabilité de fonctionnement. 

La dernière phase renferme l‟application pour évaluer et tester la fiabilité de notre architecture 

et estimer ses performances. Nous avons fait l‟implémentation de deux types de Filtres : un 

Filtre FIR et Filtre IIR. L‟estimation des performances s‟est focalisée sur la surface sur 

FPGA, la latence et le temps de simulation. 

Un des travaux futurs est de prototyper  notre architecture sur une plateforme FPGA afin 

d„estimer la consommation d‟énergie.   

Une autre perspective envisageable comme extension à ce mastère consiste à concevoir un 

environnement qui nous permet de spécifier notre application et architecture a haut niveau et 

qui utilise le réseau Delta MIN et tous les autres composants de l‟architecture MPSOC 

comme des IP. 

Un des objectifs futurs aussi est d‟introduire la puce conçu dans une chaine industrielle 

complète.  
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