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Avec le progres de la capacité d’intégration de centaines de millions de transistors
sur une seule puce et I’avancement au niveau de la conception des cceurs de processeurs
embarqués deux tendances architecturales peuvent étre distinguées.

La premiére tendance consiste a développer une architecture  monoprocesseur
extensible par un ensemble de coprocesseurs ou/et accélérateurs matériels génériques ou
dédiés [1,3]. Comme exemple d’architecture monoprocesseur on peut citer : Power PC, Intel
Pentium 4, ST100, et beaucoup d’autres processeurs de type VLIW! ou super-scalaire [3].
Dans de telles architectures, la communication est basée sur le principe
maitre/esclaves : le CPU? est le maitre mais les périphériques sont les esclaves. Les
interfaces des co-processeurs sont généralement faites de registres transposés dans la
mémoire du CPU et peuvent produire des interruptions au CPU. Ces communications se font
généralement via un bus partagé (le bus mémoire du CPU). En terme de performance, de
telles architectures centrées autour d’un seul CPU ont un inconveénient : la dégradation de
performance engendrée par le fait que le processeur effectue la communication aussi bien

que le calcul [3].

CPU
|

Bus partagé

Coprocesseur Mémoire Coprocesseur

Figure 1: architecture multiprocesseurs

La deuxieme tendance adresse des architectures multiprocesseurs. En effet,
I’implémentation multiprocesseurs était réservée  aux stations de calculs scientifiques
[9,10] et actuellement les systemes embarqués sont adhérés. Ainsi, le fait de viser une
implémentation multiprocesseurs de systemes embarqués permet d’améliorer la réponse du systéme
aux contraintes de performance et de faible consommation.

De tres nombreux systemes embarqués font appel a un ou plusieurs systéemes

d’exploitation pour faciliter la gestion des évenements et gérer la réactivité de ces systemes.

L Verly Long Instruction World
2 Central Processing Unit
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En plus, et du fait de la complexité croissante de ces systemes (exemple : Systeme sur
puce), de la présence de fortes contraintes temps réel, de la limitation des ressources
disponibles, tant en mémoire qu’en énergie disponible et donc en puissance de calcul, mais
également de la pression exercée par le marché sur ces produits, I'usage de systémes
d’exploitation temps réel (RTOS®) est devenu nécessaire dans les systémes embarqués. Des
premiers travaux ont été élaborés dans notre équipe [1] afin de proposer un modele de
communication interprocesseur. Ce modele a été étudié avec des primitives logicielles.

Parmi les objectifs de ce projet on cite I’implémentation d’un modeéle sur une plateforme
mutliporcesseur d’une part et I’expérimentation d’un environnement de prototypage des
systemes réactifs/multiprocesseurs (Processeurs et RTOS embarqués), sur des architectures
reconfigurables dans le cadre des Systémes sur puce (SoC*) d’autre part. Cette plateforme a
été utilisée afin d’évaluer les performances des systemes sur puce temps réel en second lieu.

Ce rapport est organisé de la fagon suivante :

Dans le premier chapitre, on présentera d’abord, une étude des différentes architectures
multiprocesseurs qui existent, Puis on mettra en évidence les concepts de base des systemes
d’exploitation temps réel ainsi que quelques exemples de RTOSs embarqués les plus connus
et on terminera ce chapitre par une étude de quelques outils d’estimation de performance dans
le cadre des systemes sur puce.

Dans le deuxieme chapitre, on commencera d’abord par la présentation de notre
plateforme de travail. Ensuite, on passera & la conception d’une architecture multiprocesseurs
en utilisant des modules de communication inter processeur implémentés en hardware offert
par Altera. On terminera ce chapitre par la génération d’un modele d’estimation de
performance pour les applications temps réel.

Dans le dernier chapitre, nous envisagerons, dans la premiere section, la description de
I’application de traitements d’images 3D et la validation du modele d’estimation proposé a
travers cette application, et dans la deuxiéme section, la conception de SoC multiprocesseurs
sur des architectures reconfigurables. Il s’agit en fait d’étudier les points clés liés a la
conception d’un tel systeme multiprocesseurs, dans le cadre des SoCs. En effet, et vu les
limites des RTOS embarqués, un modele de communication inter processeur doit se mettre en
place. Afin de valider ce modele, un exemple de systeme multiprocesseurs a été réalisé a base
de la plate-forme ALTERA autour du cceur de processeur « NIOS » et le bus on chip
« AVALON ».

¥ Real Time Operating System
* System on Chip
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1- Introduction

Les nouvelles technologies s’orientent vers I’intégration sur une méme puce de plusieurs
processeurs, DSP®, IP® matériels et logiciels, mémoires, bus partagés, etc. Nous parlons ainsi
de systémes multiprocesseurs mono puce (MPSoC’). En fait, les systémes multiprocesseurs
sont I’une des solutions pour répondre a la complexité croissante des systemes intégrés
utilisés pour des applications telles que les applications multimédia.

Pour ce faire, depuis plusieurs années, des systéemes d’exploitation temps réel sont
utilisés dans les architectures multiprocesseurs sur puce vu que la présence des RTOS permet
de structurer et de simplifier la programmation de la partie logicielle d’un tel SoC.

Ce chapitre est organisé comme suit :

La premiére partie est consacrée pour la présentation des différentes topologies possibles
pour la réalisation d’une plateforme multiprocesseurs.

Dans la deuxieme partie de ce chapitre, nous décrirons les concepts de base des systémes
d’exploitation temps réel, puis nous présentons les caractéristiques de quelques RTOS utilisés
dans le cadre des systémes sur puce.

La troisieme partie présentera un état de I’art sur les différents outils d’estimation du temps

d’exécution existant ainsi que notre contribution.

2- Taxonomie d’architectures multiprocesseurs

2.1- Les systemes a mémoire partagée (Shared-memory systems)

Les machines du premier groupe que nous appelons les architectures a memoire
partagée centralisée Figure 2, ont au maximum quelques douzaines de processeurs au milieu
des années 90. Les multiprocesseurs avec un faible nombre de processeurs peuvent se
partager une mémoire centralisée unique et un bus pour interconnecter les processeurs et la
memoire [1]. Avec de gros caches, le bus et la mémoire unique peuvent satisfaire les besoins
mémoire d’un petit nombre de processeurs. Puisqu’il y a une seule mémoire principale avec
un temps d’accés uniforme pour chaque processeur, ces machines sont parfois appelées UMA®

pour Acces Mémoire Uniforme. Ces systémes offrent un modéle de programmation général et

> Digital Signal Processor

% Intellectual Properties

" MultiProcessor System on Chip
& Uniform Memory Access
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« commode » permettant un partage simple des données, a travers un mécanisme uniforme de
lecture et d’écriture des structures partagées dans la mémoire globale.

La facilit¢ et la portabilitt de la programmation sur de tels systémes réduisent
considérablement le co(t de développement des applications paralléles. Par contre, ces
systemes souffrent d’un handicap qui est la grande latente pour I’acces a la mémoire, ce qui
rend la flexibilité (I’extensibilité de I’architecture pour d’autres applications) assez limitée. Ce
type d’architecture a mémoire partagée centralisée reste de loin I’organisation la plus

populaire actuellement dans les multi-ordinateurs distribués sur réseau.

Processeur 1 Processeur2 |=====—-- Processeur n
+ cache + cache + cache
Mémoire globale partagée E/S

Figure 2: architecture a mémoire partagée centralisée

2.2- Les systemes a mémoire distribuée (distributed memory system)

Ces systemes sont souvent appelés « les multi-ordinateurs ». lls sont constitués de
plusieurs nceuds indépendants. Chaque nceud consiste en un ou plusieurs processeurs et de la
mémoire centrale. Les nceuds sont connectés entre eux en utilisant des technologies
d’interconnexion extensibles (scalable) Figure 3. Ces systémes sont dits aussi machines a
architecture de type NUMA?®, car en pratique, dans un réseau de stations de travail, I’accés a la
mémoire locale de la station est nettement plus rapide que celui a la mémoire d’une station
distante via le réseau [1].

La nature flexible de tels systemes, les rend d’une trés grande capacité de calcul. Mais,
la communication entre des processus résidents dans des nceuds différents nécessite
I’utilisation de modéles de communication par passage impliquant un usage explicite de
primitives du type Send/Recieve[8]. En optant pour ce type de systémes, le concepteur doit
particulierement faire attention a la distribution des données ainsi qu’a la gestion des
communications (le transfert des processus pose un important probléme a cause des différents

espaces d’adressage, c'est-a-dire deux variables distinctes peuvent avoir la méme adresse

® Non Uniform Memory Access
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logique et deux adresses physiques differentes). Ainsi, les problémes logiciels, contrairement

aux problemes matériels sont relativement complexes dans les systemes a mémoire distribuée.

Processeur 1
+ cache

Mémoire 1 E/S

Processeur n
+ cache

Mémoire n E/S

Réseau de communication

Figure 3: architecture & mémoire distribuée

2.3- Comparaison entre un systeme a meémoire partagée et celui a mémoire

distribuée

Le tableau suivant récapitule les différences essentielles entre les architectures a

mémoire partagée et celles a mémoire distribuée. Nous constatons que la communication

entre les processeurs est plus simple dans les systemes a mémoire distribuée. En effet, ce type

de systemes est utilisé pour un nombre élevé de processeurs contrairement aux systémes a

mémoire partagée.

Architecture a mémoire partagée

Architecture & mémoire distribuée

Temps d’acces a la mémoire uniforme pour

tous les processeurs (UMA)

Temps d’accés dépendant de la position du

mot de donnée en mémoire

Petit nombre de processeurs

Grand nombre de processeurs

Communication des données entre

processeurs assez complexe

Communication facile entre processeurs

Les processeurs disposent généralement de

plusieurs niveaux de cache (ou gros cache)

Processeurs avec des caches ordinaires

Architectures d’une flexibilité limitée

Architectures flexibles

Processeurs interconnectés par bus

Processeurs interconnectés par  réseau

d’interconnexion

Grande mémoire physiquement centralisée

Petites mémoires physiquement distribuées

Tableau 1: Comparaison entre une architecture a mémoire partagée et celle distribuée
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2.4- Les systemes a mémoire distribuée partagée

Un concept relativement nouveau, qui est la mémoire distribuée partagée, combine les
avantages des deux approches. Un systtme DSM' implante (logiquement) un systéme &
mémoire partagée sur une mémoire physiquement distribuée. Ces systemes préservent la
facilité¢ de programmation et la portabilité des applications sur des systemes a mémoire
distribuée, sans imposer pour autant la gestion des communications par le concepteur. Les
systemes DSM, permettent une modification relativement simple et une exécution efficace
des applications déja existantes sur des systemes a mémoire partagée, tout en héritant de la

flexibilité des systémes @ mémoire distribuée [1].

Processeur 1 Processeur2 |=====-- Processeur n
+ cache + cache + cache
Mémoire 1 Mémoire 2 Mémoire n
Mémoire globale partagée E/S

Figure 4: architecture a mémoire distribuée partagée

Un systéeme multiprocesseurs avec mémoire distribuée partagée est généralement
constitué d’un ensemble de nceuds (clusters), connectés par un reseau d’interconnexion
Figure4. Un nceud peut étre soit un simple processeur ou une hiérarchie qui cache une autre
architecture multiprocesseurs, souvent organisée autour d’un bus partagé. Les caches privés
aux processeurs sont d’une grande importance afin de réduire la latente. Chaque nceud
posséde un module de mémoire local (physiquement), faisant partie du systeme DSM global,

ainsi gu’une interface le connectant au systeme.

3- Systeme d’exploitation temps réel
3.1- RTOS et contrainte temps reel

Un systéme est dit temps réel lorsqu'il est soumis a des contraintes de temps et qu'il y
répond dans un intervalle acceptable. Il n'est pas nécessairement rapide, tout dépend des

contraintes imposées par I'application [1, 2].

9 Distributed shared Memory
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Parmi I'ensemble des systéemes temps réels existants, nous distinguons deux grandes

familles: les systéemes a contraintes souples et les systéemes a contraintes dures [36].

3.1.1- Systémes a contraintes souples

Ils acceptent des variations de durée quant aux traitements des données. Un systéme de
visioconférence, par exemple, est de ce type. Avec ce type de systeme, il est souhaitable que
les images soient affichées a une cadence de 30 images par seconde. Cependant, si I'ensemble
du systeme subit une forte charge de travail, certaines images pourront étre supprimees afin

de garder une cohérence avec le son.

3.1.2- Systémes a contraintes dures

Ils n'acceptent aucun compromis sur la durée de traitement des données. Ce type de
systeme se trouve, par exemple, dans les centrales nucléaires. Si un réacteur vient d’avoir un
disfonctionnement, le systéme devra étre capable de déclencher un processus de sécurité dans
un delai extrémement court.

En outre, pour le systéme de gestion des airbags dans une voiture, il possede des
contraintes temps réel trés importantes. En fait, quand un capteur détecte une déformation de
la carrosserie, il envoie un signal au contréleur qui doit avoir gonflé les airbags dans les 10 ms
sous peine d'arriver trop tard, ce qui aurait des conséquences désastreuses pour les occupants
de la voiture. Méme si un capteur tombe en panne et qu'il n'envoie plus d'informations, le

systeme doit continuer a fonctionner et fournir les meilleures réponses possibles.

3.2- Caracteristiques d’un RTOS

Un systéeme d'exploitation temps réel doit s'affranchir des incertitudes sur le temps. Si
une tache ne peut étre effectuée immédiatement, elle devra I'étre au bout d'un temps «t»
connu.
Un tel systeme posséde donc la caractéristique d'étre déterministe. Il apporte aussi les
services suivants :
= Communication;
= Synchronisation;
= Gestion et ordonnancement des taches;
= Gestion de la mémoire et du temps;

= Gestion des interruptions et des entrées/sorties physiques.
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3.3- Concepts de base d’un RTOS

Dans ce paragraphe, nous rappelons quelques concepts clés concernant les systemes

d’exploitation temps réel [38]:

3.3.1- Section critique

Une section critique de code (appelée aussi une région critique) doit étre traitée
continuellement. Une fois, la section de code commence I’exécution, elle ne devra pas étre
interrompue. Afin d’assurer cela, les interruptions sont généralement désactivées avant que le

code critique ne soit exécuté mais on les activera de nouveau quand le code sera achevé

3.3.2- Ressource partagée et exclusion mutuelle

Une ressource partagée est un objet qui peut étre utilisé par plusieurs parties du
programme. Cette ressource peut &tre un registre, une variable, une structure de données, ou
quelque chose physique comme un LCD, ou un beeper.

Si deux parties séparées ont besoin de la méme ressource, on devra gérer cela par
I’exclusion mutuelle. A chaque fois, qu’une partie du programme veut utiliser une ressource

partagée, il faudrait obtenir un acces exclusif a cette ressource afin d’éviter le conflit.
3.3.3- Tache

3.3.3.1- Multi-taches

Le multitache maximise I’utilisation du CPU, et fournit une construction modulaire des
applications. En plus, il permet au programmeur de I’application de geérer la complexité
inhérente dans les applications temps réel. Les programmes d’application sont typiquement
plus faciles a concevoir et a maintenir si le multitache est mis en ceuvre.

Un systéme temps réel multitche doit avoir les caractéristiques suivantes [3] :

= Plusieurs taches doivent étre exécutées périodiquement et a des intervalles différents;
= Une tache peut s’exécuter avec une faible priorité de facon a garantir les contraintes de
temps des autres taches.

= Une tdche peut communiquer de I’information a une autre.
3.3.3.2- Ordonnancement

3.3.3.2.1- Ordonnancement préemptif
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La préemption se produit quand une tache jugée plus prioritaire que la tache courante
apparait et devient éligible pour s’exécuter. Tant que la préemption peut se produire a tout
moment, elle exige donc I’utilisation des interruptions et la gestion de la pile pour garantir
I’exactitude du changement de contexte. Par une neutralisation temporaire de la préemption,
les programmeurs peuvent empécher les ruptures non désirées dans leurs programmes
pendant les sections critiques du code [5].

L’ordonnancement préemptif est trés « stack-intensive ». En fait, I’ordonnanceur
maintient une pile séparée pour chaque tache. Ainsi, quand une tache suspendue reprend
I’exécution apres le changement de contexte, toutes les valeurs de la pile, uniques et propres
pour cette tache, sont remises en place. Elles sont généralement les adresses de retour des

appels des sous-routines, les parametres et les variables locales.

3.3.3.2.2- Ordonnancement coopératif

L’ordonnanceur coopératif est susceptible d’étre plus simple que celui préemptif.
Comme les taches devraient toutes se coopérer pour que le changement de contexte se
produise, I’ordonnanceur est alors moins dépendant des interruptions, et il peut étre plus petit
et potentiellement plus rapide. En plus, les programmeurs connaissent exactement quand les
changements de contexte vont se produire, et peuvent donc protéger les régions critiques du
code [5].

En le comparant avec I’ordonnanceur préemptif, I’ordonnanceur coopératif possede
certains avantages tels que sa simplicité relative, son contréle total au changement de contexte

et un temps de réponse de I’interruption plus court.

3.3.3.3- Changement de contexte

Quand un noyau décide d’exécuter une autre tache, il sauvegarde simplement le
contexte de la tache courante (registres du CPU) dans sa propre pile. Une fois cette opération
est effectuée, le contexte de la nouvelle tache reconstituée de sa zone de stockage reprend
alors I’exécution de son code. Ce processus est appelé un changement de contexte (Context
Switch). Ce contexte représente I'état du processeur a un moment donné [4]:

» Registre: La tache suspendue devra pouvoir continuer son exécution sans étre affectée.
La premiere opération & effectuer est la sauvegarde de I'état du processeur au moment de la
suspension. Le noyau posséde pour chaque tache non dormante un espace mémoire réserveé a

cet effet.
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= Pile: Les données temporaires utilisées par la tdche suspendue doivent étre préservées
lors des opérations de la nouvelle tache active. Ces données sont organisées sous la forme
d'une pile contenant le contexte (adresse de retour, valeur des registres), des appels de sous-

routines et les variables temporaires de ces sous-routines.

3.3.3.4- Structure d’une tache

Généralement, une tache est une opération qui a besoin de se produire a plusieurs
reprises dans I’application. La structure est réellement tres simple. Elle se compose d’une
initialisation optionnelle et d’une boucle infinie qui se répéte inconditionnellement.

Avec un ordonnanceur préemptif, une tache peut se voir comme suit [5]:

Initialize() ;
For (5:)
{ Structure d’une tache pour un multitiche préemptif
¥
Quant a I’utilisation d’un ordonnanceur cooperatif, une tdche peut se voir comme suit:
Initialize() ;
For (};)
Structure d’une tiche pour un multitiche coopératif
{....
TaskSwitch() ;
...... }

La seule différence entre les deux versions est le besoin d’exiger explicitement le
changement de contexte dans la version coopérative. Dans le multitiche coopératif, chaque
tache décide elle-méme d’abandonner le contréle du processeur pour une autre tache.

Mais, dans le multitiche préemptif, I’ordonnanceur procede a un changement de
contexte juste a I’apparition d’une tache de priorité plus élevée éligible pour s’exécuter. Nous
pouvons noter aussi que les changements de contextes peuvent se produire a des temps

multiples a I’intérieur d’une tache, dans les deux types de systemes coopératifs et préemptifs.

3.3.3.5- Etat d’une tache

Un RTOS maintient chaque tache dans un état bien défini. La figure 5 illustre les
différents etats qu’une tache peut étre dedans, et les transitions permises entre les différents
états [18].
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Figure 5: Etats d’une tache

= Avant qu’une tache ne soit crée, elle est dans un état « Inexistante ». Elle retournera a
cet état quand elle sera détruite.

= Une tache « Préte » est a I’état prét pour s’exécuter, mais elle ne le peut pas car elle
n’est pas la tache la plus prioritaire. Elle devra donc rester dans cet état jusqu’a ce que
I’ordonnanceur détermine quelle est la plus prioritaire et la bascule a I’état « En cours ».

= Une tdche « En cours », c’est a dire en cours d’exécution, devra retourner a I’état
éligible aprés un simple changement de contexte. Mais, elle peut transiter vers un autre état si
la tAche appelle un service de RTOS qui détruit, stoppe, retarde, ou fait attendre la tache.

= Une tache « Suspendue » est une tache qui était précédemment en cours d’exécution,
mais maintenant elle est suspendue et en attente de I’expiration du « delay timer ». Une fois,
le temporisateur associé est expiré, le systeme d’exploitation bascule la tache a I’état « Prét ».
Nous pouvons ainsi noter que les taches périodiques sont susceptibles d’étre « Suspendue » a
tout instant particulier.

» Une tache « Inexistante » est précédemment en cours d’exécution, et elle sera par la
suite suspendue indéfiniment. Elle ne sera recommencée que via un appel d’un service RTOS
permettant de provoquer sa regénerissance.

= Une tache « Bloguée » est suspendue ; elle restera en attente jusqu’a la production de

I’événement désiré.

3.3.4- Communication entre taches

Un RTOS fournit diverses méthodes pour faire communiquer les taches entre elles.
Dans le multitdches a base d’événements, et pour qu’une tache réagisse a un événement, ce

dernier doit déclencher une sorte de communication avec la tache.
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Les taches peuvent aussi coopérer I’une avec I’autre par divers outils de communication
comme les sémaphores, les messages, et les queues de messages. Ainsi nous distinguons
deux principales actions [18]:

= Signalisation; appelée aussi envoi (Posting).

= Attente; appelée aussi réception (Pending).

3.3.4.1- Sémaphores

Il'y a deux types de sémaphores : les sémaphores binaires (Binary Semaphore) et les
sémaphores compteurs (Counting Semaphore). Un sémaphore binaire peut prendre
uniquement deux valeurs, 0 ou 1. Un sémaphore compteur peut prendre une gamme de
valeurs basées sur sa taille. Par exemple, la valeur d’un sémaphore compteur a 8 bits peut
s’étendre de 0 a 255. Il peut aussi étre a 16 ou 32 bits. Les sémaphores et leurs valeurs se

présentent généralement de la fagon suivante figure 6 :

Figure 6: Sémaphores binaires et compteur

3.3.4.2- Messages

Les messages fournissent un moyen arbitraire d’envoi d’informations a une téache.
L’information peut étre un nombre, une chaine, un tableau, une fonction, un pointeur, ou toute
autre chose. Comme avec les sémaphores, le systeme d’exploitation fournit le moyen pour
créer, signaler, et attendre les messages.

Actuellement, le contenu du message n’est pas I’information elle-méme, mais plut6t un
pointeur indiquant I’emplacement de I’information. Quand un message est initialisé d’étre

vide, il contient donc un pointeur nul, qui ne pointe a aucune chose.

3.3.4.3- Files de communication (message queue)

Les files de messages sont une extension de messages. Une queue de messages peut
contenir des messages multiples (jusqu’a un nombre prédéterminé) a tout moment. L’envoi
des messages peut continuer jusqu’a ce que la boite de messages soit pleine. La réception

aussi peut continuer jusqu’a ce qu’elle soit vide.
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Un RTOS aura besoin d’allouer une certaine RAM*! additionnelle pour gérer chaque
gueue de messages. Cette RAM sera utilisée pour garder la trace du nombre de messages dans

la queue, et I’ordre dans lequel les messages sont envoyés.

3.4- Conflits

Une variété de conflits peut se produire dans un environnement multitache. Les plus

connus sont les suivants: I’interblocage et I’inversion des priorités [5].

3.4.1- Interblocage (Deadlock)

Le « Deadlock » se produit avec deux ou plusieurs taches, quand chaque tache est en
attente sur une ressource contrdlée par une autre. Cette ressource resterait non disponible
indéfiniment. Les taches en attente seront donc abouties a une impasse. La solution, pour
toutes les tches désirant acquérir des ressources, est de :

= Acquérir souvent des ressources dans un ordre prédeterminé.
= Acquérir toutes les ressources avant de continuer.
= Libérer les ressources dans un ordre oppose.

En utilisant un « timeout », nous pouvons éviter le « Deadlock ». En fait, en essayant
d’obtenir la ressource, une période de temps optionnelle peut étre spécifiée. Si la ressource
n’est pas acquise dans une telle période de temps, la tdche continue mais avec un code

d’erreur indiquant que le temps d’attente de la ressource a expiré.

3.4.2- Inversions des priorités

Les inversions de priorité se produisent quand une tache de haute priorité est en attente
sur une ressource commandee par une autre de basse priorité. La tache la plus prioritaire
devra attendre jusqu’a ce que la tache de basse priorité libére la ressource, sur laquelle elle
peut continuer. Pour ce, la priorité de la tache la plus prioritaire doit étre réduite a celle de la
tache de basse priorité.

Il'y a une variété de méthodes pour éviter ce probleme (exemple, transmission
prioritaire). La méthode la plus pratique consiste a changer dynamiquement la priorité de la
tache qui commande une ressource. Cette méthode est donc basée sur les priorités des taches

désirant acquérir cette ressource [18].

! Random Access Memory
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3.5- Systemes d’exploitation dans les systemes embarqués

L’usage de systemes d’exploitation est nécessaire dans les systemes embarqués, du fait
de la complexité croissante de ces systemes (exemple : Systémes sur puce), de la présence de
fortes contraintes temps réel, de la limitation des ressources disponibles, tant en mémoire
gu’en énergie disponible et donc en puissance de calcul, mais également de la pression
exercée par le marché sur ces produits. En effet, le temps de développement doit étre
raisonnable, afin de limiter le temps de mise sur le marché (time to market), et permet ainsi
d’assurer le succes du produit.

Les systemes d’exploitation a micronoyaux sont mieux adaptés aux systemes embarqués
[9]: la tolérance aux fautes doit étre forte, car les conditions environnementales ne sont pas
toujours optimales (exemple: systemes pour I’automobile ou I’industrie). Ceci est permis par
la possibilité de redondance, ainsi que le confinement des erreurs, qui est bien meilleur dans
un systéeme d’exploitation & micronoyau que dans un systéeme d’exploitation plus classique.
Par ailleurs, il est également possible de charger dynamiquement les modules a exécuter, ainsi
que de les distribuer, ce sont des besoins forts pour ce type de systeme. La figure 7 montre
I’architecture d’un tel systeme d’exploitation.

Quelques exemples d’implémentation de Systemes d’Exploitation pour Systemes
Embarqués [9]:

= Inferno (Lucent) : avec sécurité intégrée,

= VxWorks, version générique,

= VxWorks, pour I’automobile,

= VxWorks, pour I’électronique grand public,
= VxWorks, pour I’industrie,

= pSOS Systems,

= Lynx Real-Time Systems (LynxQOS).

Processus Mémoire Réseaux
Application Serveur de fichiers Affichage
\__, Micronoyau J
Matériel

Figure 7: Architecture d’un SE a micronoyau

21



ENIS Chapitrel : Systéme sur puce multiprocesseur temps réel: état de [art

Parmi les Systemes d’Exploitation pour les Systemes Embarqués, nous distinguons les
systemes d’exploitation temps réel (RTOS) qui se caractérisent par la présence de contraintes

temps réel.

3.5.1- Caractéristiques des RTOS pour les systemes embarques

Les caractéristiques essentielles d’un RTOS pour les systéemes embarqués sont:

= La premiere caractéristique des RTOS est son temps de réponse prévisible a un stimulus
externe [13]. Un tel systéme possede donc la caractéristique d'étre déterministe.

= Un RTOS doit s'affranchir des incertitudes sur le temps. Si une tache ne peut étre
effectuée immédiatement, elle le devra au bout d'un certain temps « t » connu [14].

= Si un périphérique génére une interruption, le RTOS doit répondre et démarrer le service
a I’intérieur d’une période de temps connu, et ce, peu importe la charge du processeur sur
lequel s’exécute le RTOS [13].

» Dans I’industrie, on s’entend dire de fagon générale qu’un OS est RTOS lorsque le
changement de contexte et le temps de réponse a une interruption sont garantis a I’intérieur
d’une période de 10 ps [13].

= Finalement, un bon RTOS doit aussi supporter les mécanismes d’un OS distribué
(permet ainsi  I’exploitation des systemes temps réel distribués), mécanismes
d’ordonnancement [15] (préemptif, non préemptif ou coopératif), précision de I’horloge et des

minuteries, les outils de visualisation, et la compatibilité POSIX.

3.5.2- Importance des RTOS pour les systemes embarqués

Depuis plusieurs années des systemes d’exploitation temps réel (RTOS) sont introduits
dans les architectures embarquées [13] monoprocesseurs et multiprocesseurs, telles que les
architectures réactives embarquées afin de gérer la réactivité du systéme. En fait, la présence
d’un RTOS permet de:

= Structurer et simplifier la programmation de la partie logicielle du SoC. En effet, le
RTOS geére lui-méme le matériel et propose aux applications logicielles des fonctions d’acces
de haut niveau. Ainsi, le travail du programmeur d’application est soulagé de la
programmation des acces au matériel.

= Utiliser des spécificités des processeurs. En effet, Les systéemes d’exploitation
spécialement programmeés pour le processeur sur lequel ils vont s’exécuter, peuvent tirer
parties de ses spécificités en ce qui concerne le mécanisme d’interruption, les instructions de

réduction de consommation et de gestion de cache [16].
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= Et le réutiliser comme un IP logiciel dans les systéemes embarqués.
Grace au RTOS, la réutilisation du point de vue logiciel peut se faire a plusieurs niveaux [13]:
= Gestion des tdches dans un systeme temps réel multitiches (notion de priorité,
ordonnancement, changement de contexte, etc.);
= gestion des interruptions et des entrées/sorties physiques;
= gestion du temps (minuteries);
= gestion des communications entre taches;

= gestion de la mémoire, etc.

3.5.3- Limites des RTOS dans les systemes embarqueés

Il est courant d’utiliser un systeme d’exploitation temps réel dans un tel systeme
embarqué comme étant une structure logicielle permettant de gérer I’exécution compléte de
plusieurs taches concurrentes sur le méme systeme. Cependant, et bien que cette méthode soit
couramment employée dans les systemes embarqués spécifiques, celle-ci peut entrainer
certains inconvénients en terme de co(t, consommation et performances. Parmi ces limites,
nous citons [16] :

= Les systemes d’exploitation consomment de la mémoire. En plus, ils sont spécifiques au

processeur sur lequel ils s’exécutent.

= Les impératifs de performances empéchent souvent I'utilisation d'interfaces génériques
abstraites, et la multitude des systéemes d'exploitation et des architectures sont des freins a

l'uniformité des interfaces.

» La généralité du systeme d'exploitation vis a vis de I'application faite est qu'il soit
souvent plus volumineux que nécessaire. C'est un défaut important dans le monde des

systemes embarqués ou la mémoire est limitée.

= La vitesse du systeme d'exploitation est aussi limitée par I'ordonnancement dynamique
des taches qui demande du temps aussi bien pour la décision que pour le passage d'une tache a

l'autre.

= Les systemes d'exploitation peuvent étre non déterministes : En fait, il est souvent
impossible de savoir, avant utilisation, si une application basée sur un systeme d'exploitation

respectera des délais ou non.
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4- Quelques exemples de noyaux embarques

Nous présentons dans la suite de cette section deux systémes d’exploitation embarqués
pour chaque catégorie. Nous rappelons ainsi les caractéristiques, et les services de chacun de

ces systemes d’exploitation. Cette étude est inspirée de [1].

4.1- RTEMS

RTEMS® est un noyau temps réel qui fournit de hautes performances pour les
applications embarquées militaires. En plus, de point de vue code, il est tres complet et assez
lourd par rapport a certains autres RTOS. En fait, le taux d’occupation de cet RTOS est
généralement tres grand (200Mo). Les architectures supportant RTEMS sont les suivantes :
M68k, Coldfire, Hitachi SH, Intel 1386, Intel 1960, MIPS, PowerPC, SPARC, AMD A29k et
HP PA-RISC.

4.1.1- Architecture interne de RTEMS

Comme indiqué dans la figure 8, RTEMS peut étre envisagé comme un ensemble de
composants superposes en couches qui travaillent en harmonie pour produire un ensemble de
services pour des applications temps réel.

L'interface exécutive de I’application est formée par des groupes de directives
constituant le manager de ressources. Les fonctions utilisées par les différents managers tels
que I’ordonnanceur (scheduler), le partitionneur (dispatcher), et la gestion de I'objet sont
intégrées dans le noyau exécutif. Ce dernier est en relation avec le « code dépendant du
CPUn».

_____________________________________________________________________

Figure 8: Organisation de RTEMS

4.1.2- Architecture d’une application RTEMS

RTEMS se sert d’un Bridge (pont) entre les deux couches critiques: celle de

I’architecture matérielle cible et celle du code de I’application dépendante. La plupart des

12 Real Time Executive for Multiprocessors Systems
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opérations matérielles dépendantes de I’application temps réel peuvent étre localisées dans la
couche la plus basse du gestionnaire des périphériques.

Le manager de I’interface I/0 de RTEMS présente un outil efficace pour I’incorporation
des dépendances matérielles dans le systéme en fournissant un mécanisme général au code de
I’application qui y accéde. Un systeme temps reel bien congcu peut bénéficier de cette
architecture en construisant une bibliothéque riche en composants pouvant étre utilisée dans

d’autres applications ou projets temps réel.

4.1.3- Services de RTEMS

= Les services primaires : Erreur Fatale, Initialisation, Tache, horloge et temporisateur,
Interruption ;

= Les services de Communication et de Synchronisation : Signal, Sémaphore, Message et
Evénement ;

= Le multiprocessing ;

= 1/O;

= Rate Monotonic;

= Les services de mémoire : Partition, Région, Dual-ported memory et 1/O ;

4.1.4- Ordonnancement

L’ordonnanceur de RTEMS utilise I’un des algorithmes suivants :
= A base de priorité (priority-based),
»  Préemptif,
= Méthode de tourniquet (round-robin),
= Par partage de temps (Time slicing).
Il est a noter que I’ordonnanceur de RTEMS choisit toujours la tache préte de plus haute
priorité.

4.1.5- Caractéristiques et capacités

RTEMS inclut les aspects suivants :
» Le multitache ;
= Des systemes supportant des processeurs homogeénes ou hétérogenes ;
= Pilotage par événement (Event-driven) et en fonction de la priorité (Priority-based) ;
= Ordonnancement préemptif (Preemptive scheduling);

= QOrdonnancement Rate Monotonic (RMS);
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= Communication et synchronisation entre taches;
= L’héritage de priorité ;
= Gestion des interruptions ;

= Allocation dynamique de la mémoire.

4.1.6- Aspect multiprocesseurs

RTEMS supporte le multiprocesseurs. La communication inter processeur est gérée par
la couche MPCI non compléte (MPCI™).

4.2- Ecos

Ecos est un noyau a code source ouvert, développé par RedHat. L’objectif principal
d’Ecos est de fournir aux développeurs embarqués une infrastructure logicielle commune
pour délivrer une gamme diverse de produits embarqués.

La nature de configuration d’Ecos permet a ce systeme d'exploitation d'étre personnalisé
aux exigences de l'application, en délivrant de meilleures performances en temps d'exécution
(run time) et une occupation de ressource matérielle optimisée. Ecos est visé aux
applications a fort débit dans I’électronique grand public, les télecommunications, les
véhicules a moteur, et les applications profondément embarquées. Dans la version 1.3.1
d’Ecos par exemple, le OS occupe 3K de ROM et 1K de RAM [21].

Les plus adoptés sont: Motorola PowerPC, Intel strong ARM, Advanced RISC
Machines ARM7, NEC VR4300, MB8683 * series, Hitachi SH3, Toshiba TX39, Matsushita
MN10300, Fujitsu SPARCIite, etc.

4.2.1- Caractéristiques et capacités

= Conception modulaire pour la configuration au niveau source.
= Un ensemble riche en primitives de synchronisation.

= Choix des algorithmes d'ordonnancement.

» Choix de la stratégie d'allocation de la mémoire.

= Des horloges et compteurs.

= |’acceptation des interruptions et des communications.

= Traitement des exceptions.

= Une bibliotheque C conforme a la norme I1SO.

= Une bibliotheque mathématique.

¥ Multiprocessor Communication Interface
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= La portabilité : Ecos et ses composants sont liés a HLA. Ainsi, ils s’exécutent sur

n'importe quelle cible, une fois le HAL et ses pilotes sont portés sur I’architecture cible.

4.2.2- HAL

Ecos inclut une couche dabstraction du matériel (HAL'), qui cache les traits
specifiques du CPU et des différents dispositifs « On Chip » de la plate-forme supportée.
Ainsi le noyau et les autres composants peuvent étre implémentés de facon portative. Cette
abstraction concerne exactement: le changement de contexte, la réaction suite a une
interruption matérielle et I’acces aux registres.

Il y a trois couches sur lesquelles fonctionne le HAL :

= L’architecture : est le premier sous module de HAL. Chaque famille de processeurs
supportée par eCos est considérée comme une architecture différente. Chaque sous module
d’architecture contient :
- le code nécessaire pour le démarrage du CPU,
- lalivraison des interruptions,
- le changement de contexte,
- et autres fonctionnalités spécifiques a I’architecture.
» La variante : est le deuxieme sous module de HAL. Elle représente un processeur
specifique dans la famille de processeurs décrite par I’architecture.
= La plate —forme : est le troisieme sous module de HAL. Une plate-forme est une partie
spécifique du matériel qui inclut I’architecture a base de processeur choisi, et méme la
variante. Typiquement, ce module inclut le code pour le démarrage de la plate-forme, la
configuration sélectionnée de chip, les contrdleurs des interruptions, et les dispositifs de

temporisateur.

4.2.3- Détails du noyau

Ce noyau présenté dans la figure ci-dessous est composé des éléments suivants :
L application mise en jeu.
= Des librairies écrites en C, utilisées par le noyau lors de la compilation.
= Les pilotes et HLA qui coopérent ensemble afin d’assurer I’abstraction du matériel et
le portage.
= Le noyau qui gére les taches, la communication, la synchronisation, les compteurs et

les interruptions.

¥ Hardware Abstraction Layer
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= Ledebug : c’est un support débogueur du multitache.
= |RON : c’est une couche qui assure I’utilisation efficace des hétérogénéités présentes

dans les systemes embarqués.

Application embarquée |
Librairies C IRON
Noyau
Pilotes
HLA Debug
Matériel

Figure 9: Les éléments d’Ecos

4.2.4- Ordonnancement

Ecos soutient deux différents ordonnanceurs qui mettent en application des politiques
distinctes. Les deux ordonnanceurs sont les suivants:
= Bitmap Scheduler: il permet I’exécution des threads a des niveaux de priorité
multiples. Cependant, un seul et simple thread peut exister a chaque niveau de priorité. Ceci
facilite I’algorithme d’ordonnancement, et rend I’ordonnanceur bitmap trés efficace. Le
nombre de niveaux de priorité est au maximum 32 : 0 correspond a la priorité la plus élevée et
31 la plus basse. Chaque niveau de priorité est représenté par un bit.
= Multi-level Queue Scheduler: Le nombre de niveaux de priorité est au maximum 32 :
0 correspond a la priorité la plus élevée et 31 la plus basse. Un méme niveau de priorité peut
étre attribué a plusieurs taches en méme temps. Cet ordonnanceur permet :
- Lapréemption entre les différents niveaux de priorité.
- Le soutien du SMP™,

- Le partage du temps sur un méme niveau de priorité.

4.2.5- Avantages d’Ecos

= La configurabilité : Ecos est désigné comme une architecture composante et
configurable formée par plusieurs composants logiciels principaux. La nature de

configuration d” Ecos nous permet de sélectionner les différentes options nécessaires dans un

% Symmetric Multi-Processing
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composant logiciel, ou/et de supprimer des composants tout a fait inutilisables afin de créer
un systéme spécialement concu pour répondre aux exigences de notre application. Par
conséquent, la taille de I’application devient compacte et plus rapide comprenant seulement
les composants a utiliser.

= La portabilité : Ecos est designe étre portatif sur une large gamme d’architectures
cibles en incluant les architectures a 16, 32 et 64 bits, les microcontrdleurs et les DSPs. La

raison permettant a Ecos d’étre fortement portatif est I’implémentation de HAL.

4.3- QNX

QNX est un systeme temps réel de type UNIX développé par la société canadienne
« QNX Software ». Il est conforme a POSIX, il permet de développer directement des
applications sur la plate-forme cible, et il intégre I’environnement graphique « Photon »,
proche du systéeme Xwindows.

Le point fort de QNX réside dans son architecture & micronoyau préemptif. Comme son
nom peut déja le laisser présumer, QNX a pour domaine de prédilection les applications
temps reel dans lesquelles un nombre d'événements doit étre géré dans un laps de temps
déterminé et garanti. QNX se voit donc doté d'une architecture dans laquelle le noyau du
systeme est réduit a sa plus simple structure. L’unique tache de ce dernier est de gérer un
ensemble de processus de méme priorité et inter communiquant entre eux. Graphiquement,

cette architecture se résume de la fagon suivante figure 10:

Gestion des Gestion des
Drocessus fichiers svstemes

Gestion des
périphériques

Gestion réseau

Figure 10: Gestion de processus par Micro-Kernel
Le micronoyau est au centre de cette structure. Il joue le role de passerelle entre les différents

processus en cours. Il n’occupe que 10 Ko de mémoire. Ainsi, il peut étre tenu dans de

nombreuses applications embarquées.
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Cette compacité extréme du noyau ainsi que cette structure permet a QNX une certaine
adaptabilité. En effet, il est envisageable de faire fonctionner le systéme sans avoir besoin de
certains de ces gestionnaires comme par exemple dans le cas des applications embarquées ou
I'interface graphique est tout bonnement enlevée du systeme.

Selon les besoins, les développeurs n'ont alors plus qu'a supprimer ou rajouter des
modules au micronoyau pour former le systeme le plus adapté a ce que nous souhaitons

réaliser; c'est la grande force de QNX.

4.3.1- Caractéristiques techniques

= Systeme de type UNIX respectant les spécifications POSIX.

=  QNX supporte les architectures MIPS, PowerPC, SH4, StrongArm et x86.

= Compatible POSIX.

= Supporte le multiprocesseurs et le multitache.

= Reconnait les partitions FAT 16 et FAT 32, ext2, UNIX, OS/2 HPFS, NFS, ainsi que
les partitions issues des versions 1.x a 4.x de QNX.

= Interpréteur de commandes standard dans le monde UNIX

4.3.2- Caractéristiques de spécification de QNXv6.1

Le tableau 2 ci-dessous présente les principales caractéristiques de spécification
concernant le systeme d’exploitation QNX v6.1 [22].

Critéres de classification

QNX v6.1
12 Ko
ROM-RAM Footprint
Caractéristiques Le RTOS QNX supporte le multiprocesseurs,

le traitement distribué transparent, la gestion

de réseau avec tolérance aux défaillances.

Threads et Processus.

Modele
64 niveaux

Priorité

Nombre maximum de taches 4095 processus. Chaque processus peut avoir
32 767 threads.
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Politique d’ordonnancement - FIFO prioritaire

- Ordonnancement Round-Robin

- Adaptatif
- Sporadique
Soutien MMU™ Oui
Taille de la page physique Dépend de I’architecture supportée.
Mémoire virtuelle Chaque processus s’execute dans son propre

espace mémoire virtuelle.

Modeéles de protection de la mémoire Protection de la mémoire virtuelle.

Contexte L’ISR s’exécute dans le contexte du thread

qui lui est attaché.

Pile L’ISR a sa propre pile.

Tableau 2: Caractéristiques de QNXv6.1

4.4- Windows CE

Windows CE prend en charge une multitude de fonctionnalités et peut étre compilé sur
une grande variété de processeurs. Il supporte un environnement multitdche et inclut, en
option, une interface utilisateur graphique (GUI). Windows CE reprend l'architecture de la
famille Windows, de sorte que tout programmeur de Windows peut facilement passer a la
programmation de Windows CE.

Windows CE 3.0 est un systeme d'exploitation embarqué modulaire et temps réel pour
la configuration 32bits légére. Il combine la compatibilitt Windows et les services
d’applications avancees. Il supporte aussi de multiples architectures a base de processeurs,
ainsi que des options de communication et de réseaux. Il permet donc de construire un
systeme adaptable pour développer une large gamme d'équipements.

Cet OS soutient des terminaux Web, des contrbleurs industriels spécialisés, des
équipements d'acquisition de données portables et des appareils communicants embarqués.
Cette plate-forme particulierement modulaire permet aux développeurs de concevoir des

configurations 32-bits l1égéres compatibles Windows et Internet.

!¢ Memory Management Unit
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Le tableau 3 ci-dessous présente les principales caractéristiques de spécification

concernant le systeme d’exploitation Windows CE [22] :

Critéres de classification

Windows CE

ROM-RAM Footprint

400 Ko de RAM
au grosso modo 200 Ko de ROM

PVM?Y’

Fiabilitt par la protection des services

d'application critiques.

Processus et Threads

Le nombre maximum de threads dans un
processus est seulement limité par la quantité
disponible de mémoire. Ce processus peut

exécuter simultanément au maximum 32

processus.
256 niveaux

Priorité

SIM™ Réponses trés rapides face aux événements

avec les ISRs.

Advanced Power Management

Batterie longue durée et dissipation de chaleur
réduite.

Support pour le débogage "On-Chip"

Autorise le débogage de I'OAL avant que le
noyau de I’OS ne se mette en route.

Politique d’ordonnancement

Round Robin en adoptant un quantum (time
slice). Quand ce quantum prend la valeur 0, le
thread s’exécute alors  jusqu’a son

achevement.

Soutien MMU

Oui

7 Protected Virtual Memory
18 sophisticated Interrupt Management
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Taille de la page physique Dépend de I’architecture supportee.

Mémoire virtuelle Oui

Modeles de protection de la mémoire Protection de la mémoire virtuelle.

Contexte L’ISR s’exécute dans un contexte spécial, et

utilise des adresses virtuelles statiquement
tracées par I’OEM™. L’IST est un thread
normal d’application, et il a son propre

contexte.

Pile L’IST est un thread normal d’application, et a

son propre contexte.

Tableau 3: Caractéristiques de Windows CE

5- Estimation de performance dans les systémes embarques temps réel

La complexité des Systemes sur Puce rend la place des RTOS de plus en plus
importante. De plus, leur prix, qui reste relativement élevé, rend indispensable de bonnes
performances et une bonne fiabilité, pour que ces systemes soient compétitifs.

Parmi ces systémes sur puce, nous citons les systemes réactifs. En effet, Les systemes
réactifs embarqués tels que définis par Harel et Pnueli [10] sont des systemes qui
maintiennent une relation permanante avec leur environnement physique, a une vitesse
déterminée par cet environnement.

Etant trés contraints au niveau des ressources matérielles, ils doivent aussi réagir a des
sollicitations de leur environnement en un temps fini et spécifié (contraintes temporelles)
[11]. D’un point de vue logiciel, de tres nombreux systéemes réactifs embarqués font appel a
un ou plusieurs systemes d’exploitation temps réel pour faciliter la gestion d’événements. Un
systeme d’exploitation apporte une souplesse dans I’organisation du contrdle de I’application
mais se traduit aussi par un surcolt en mémoire, en ressources de calcul, en consommation et
en temps d’exécution. En fait, Le concepteur d’un SoC est donc confronté a de multiples
choix pour architecturer son systéme tout en optimisant une fonction multicritéres :
performances, colts, consommation, temps d’exécution et durée de conception (Time to
Market) [12].

'® Original Equipment Manufacture
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L’ objectif est, donc, de trouver une méethode d’estimation de performance des systemes
sur puce temps réel qui soit rapide et précise et qui s’integre facilement dans un flot de

codesign pour assister le concepteur dans son choix architectural.

5.1- Approches d’estimation du temps d’exécution :

Les méthodes d’estimations que I’on trouve dans la littérature peuvent étre classées dans
trois catégories : statiques, dynamiques et mixtes
Dynamique : les mesures de performance d’une solution est le résultat d’une analyse statique
d’une spécification, (exemple : simulation).

Statique : I’estimation de performance d’une solution est le résultat d’une analyse statique
d’une spécification, (exemple: analyse de chemins dans une spécification de flots de
controle).

Mixte dynamique/statique : C’est I'utilisation de quelques éléments des deux approches
précédentes pour I’analyse de performance d’une solution.

Les approches dynamiques sont en général tres précises. Leur inconvénient majeur est le
temps nécessaire pour I’obtention du modele a simuler (synthese, génération, compilation...),
ainsi que le temps de la simulation. Ce qui les rend, en pratique, inutilisable dans le contexte
particulier de I’exploration ou le nombre de modéles a analyser est énorme. D’un autre coté,
les approches statiques sont certes trés rapides (pas de génération de modeles a simuler, ni de
simulation), mais les tadches de modélisation et d’estimation sont complexes a cause de la

distance qui sépare les concepts de spécification de I’implémentation.

5.1.1- Travaux visant des architectures cibles monoprocesseur :
Dans cette catégorie, on peut citer PMOSS [30], COSYMA [31] and LYCOS [32].

L’architecture cible est monoprocesseur (une seule unité de contréle). Il n’y a donc pas de
difficultés liées au parallélisme par rapport aux architectures multiprocesseurs. Cependant, les
analyses de performance des parties logicielles et matérielles sont réalisées conjointement.
PMOSS se contente de calculer I’accélération due au coprocesseur (partie matérielle),
sur la performance globale du systeme. Pour cela, il utilise, pour le logiciel, des analyses
statiques (calcul du temps d’exécution basé sur le code assembleur) et dynamiques
(profilage). Pour le matériel, il utilise des analyses statiques (calcul du temps d’exécution basé
sur la description de la machine de contréle). Et pour les communications, des analyses

dynamiques (profilage), sont utilisées.
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COSYMA calcule des meétriques séparées pour le logiciel, le matériel et la
communication. Ensuite, ces métriques sont combinées dans des équations particuliéres pour
procéder a une partition basée sur une méthode de recuit simulé (simulated annealing). Des
mesures de temps dans le pire cas sont calculées pour les implémentations logicielles en
utilisant plusieurs variantes de techniques d’analyse de chemins. Le temps de communication
est estimé pour son modeéle particulier (mémoire partagée).

LYCOS procede a des estimations de performance en utilisant des techniques de
profilage et d’estimations de temps d’exécution a bas niveau pour le matériel, le logiciel et la
communication.

Malgré leur performance, ces méthodes ne permettent pas de traiter des architectures

complexes pouvant contenir plus qu’un seul processeur.

5.1.2- Travaux visant des architectures cibles multiprocesseurs :
Dans cette catégorie nous trouvons SpecSyn [33], POLIS [34] et la méthode créée par

Yen et al [35]. L’architecture cible est multiprocesseurs complexe.

SpecSyn admet des architectures avec un nombre quelconque de microprocesseurs et de
coprocesseurs. L’approche utilisée pour [I’estimation de performance est mixte
statique/dynamique. Elle est faite en deux étapes :

e Pre-estimation : elle est réalisée avant la phase d’exploration d’architectures. Un
profilage de la description du systéme est réalisé pour obtenir des temps d’exécution
pour différents niveaux (processus, bloc de base, communication).

e Estimation en ligne : elle est faite durant la phase d’exploration d’architectures. Les
résultats obtenus durant la phase de pre-estimation sont utilisés dans des expressions
complexes pour le calcul de la performance globale du systeme.

Le probleme d’une telle approche est son incapacité a capturer les changements
dynamiques du comportement temporel durant la phase d’exploration d’architectures. Car
durant cette phase, des méthodes statiques sont utilisées (le temps global est la somme des
temps d’exécution partiels des différentes ressources d’exécution). Par exemple, cette
méthode n’est pas capable d’estimer le temps d’attente d’un processus pour qu’un autre
finisse son exécution. Le passage sur un tel comportement dynamique peut introduire une
grande imprécision sur les résultats de I’estimation.

POLIS est capable de surmonter le probleme mentionné ci-dessus (capture du
comportement dynamique), en combinant une simulation de haut niveau avec des estimations

de bas niveau (approche statique/dynamique).
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Yen et al, attaquent le probléeme d’un point de vue générique. Ils analysent, au niveau
systeme, I’interaction entre les différents processus en donnant le meilleur et le pire délai pour
chacun d’entre eux. Ensuite, en partant d’un graphe acyclique représentant les dépendances de
données entre les processus, et a I’aide d’informations sur le partitionnement (la distribution
sur les unités de traitement), ils calculent le temps d’exécution, dans le pire cas, pour le
systeme entier. Cette méthode est précise et capable de prendre en compte les délais de
communications [37]. Malheureusement, elle est limitée a des applications pour lesquelles il
est suffisant de connaitre les délais dans le pire cas. De plus, les processus doivent étre

représentables par graphes acycliques.

6- Contribution
De nos jours I’usage des systémes d’exploitation dans les systémes sur puce est devenu

indispensable et vu que ces systemes ont subit des évolutions telle que I’assistance a
I’intégration de plusieurs processeurs dans une seule puce, il a fallu trouver des méthodes
pour adapter les systemes d’exploitation existant pour les nouvelles architectures. Des études
ont été faites dans notre équipe pour étendre un RTOS monoprocesseur par une couche de
communication implémentée en logiciel afin de I’adapter aux architectures multiprocesseurs.
Les travaux entrepris dans notre mastere consistent a remplacer cette couche implémentée en
software par I’utilisation des modules d’un RTOS implémenté en hardware.

Suite a I’étude faite sur les outils d’estimation existant, on constate que la plupart des
outils d’estimation ne tiennent pas en compte I’utilisation des systémes d’exploitation temps
réel. Alors afin d’exploiter et d’utiliser les outils d’estimation existant pour les systemes sur
puce nous proposons un modele qui s’intégrera dans ces outils pour qu’ils puissent estimer le
temps d’exécution des applications temps réel.

Notre modéle d’estimation consiste a construire une bibliothéque qui contient tous les
services de I’RTOS ainsi que leurs temps d’exécution obtenu par I’exécution dans un
environnement de prototypage, et, a chaque fois qu’on utilise un service dans I’application, on

ajoute le temps approprié au temps global de I’application.

7- Conclusion
Dans ce chapitre, nous avons rappelé les différentes topologies possibles pour la

réalisation d’une plateforme multiprocesseurs ainsi que les avantages et inconvénients de
chacune d’elles. Nous avons détaillé aussi les caractéristiques et les principaux concepts

temps réel des RTOS, ainsi que quelques exemples de RTOS embarqués. Nous avons terminé
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ce chapitre par un état de I’art sur les travaux qui concernent les outils d’estimation de
performances des systémes sur puce.

Dans le chapitre suivant, nous nous intéressons a la présentation de notre environnement
de travail et a la réalisation d’une plateforme de prototypage des systemes sur puce
multiprocesseurs temps réel, ainsi que la génération d’un modeéle d’estimation de performance

des applications temps réel.

37



ENIS

Chapitre2 : Conception d’un MPSoC temps réel et estimation de performance

Chapitre 2

o

6\

Conception d ' un MPSoC

temps réel et estimation de

performance

38



ENIS Chapitre2 : Conception d’un MPSoC temps réel et estimation de performance

1-Introduction

Les architectures reconfigurables ont la possibilité d’offrir une performance comparable
a celle d’un matériel dédié et une flexibilit¢é comparable a celle d’un processeur a jeux
d’instructions ce qui les rend tres efficaces pour le prototypage des systémes sur puce.

Dans ce chapitre, on envisage la conception d’un environnement de prototypage des
systemes multiprocesseurs temps réel reconfigurables a travers I’environnement d’altera et la
génération d’un modele d’estimation de performance pour les applications temps réel.

Ce chapitre est structuré de la fagon suivante :
e en premier lieu, on présentera notre plateforme de travail,
e endeuxieme lieu, on décrira I’architecture multiprocesseurs adoptée,
e en troisieme lieu, on précisera la génération d’un modeéle d’estimation de performance

des applications temps réel.

2- Plate-forme de conception

Dans ce projet, on a utilisé le kit EXCALIBUR d’ALTERA qui est composé de :
= un cceur de processeur NIOS-II,

= un systéme d’exploitation temps réel embarqué MicroC/OS-11%°

qui était choisi pour
étre le support logiciel dans la conception du systéeme reactif embarqué,
= une carte de développement a base du circuit FPGA de la famille STRATIX-II,
= et d’un environnement de développement Quartus-11 .
Le choix de cette plate forme est justifié par la flexibilité donnée par I’environnement de
conception et de prototypage des systemes sur puce propose par Altera « QUARTUS Il », qui
permet d’accélérer le processus de développement de I’application et par la présence de cet

environnement dans notre équipe.

2.1- Etude du systeme d’exploitation temps réel : MicroC/OS-11

MicroC/OS-I1, congu et mis a point par Jean J. Labrosse, est un noyau temps réel
permettant d’effectuer une exécution de plusieurs taches sur un microprocesseur ou un
microcontréleur [23].

Ce noyau temps réel est maintenant disponible sur un grand nombre de processeurs, et il
peut intégrer des protocoles standard comme TCP/IP (uC/IP) pour assurer une connectivité IP

sur une liaison série par PPP. Les différentes versions de MicroC/OS-II sont portées sur des

2 Micro-Controller Operating System Version Il
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systemes différents : Motorola famille 680x0, 68HC11/16, Power PC 860, Intel 80x86,
Philips XA, etc.

2.1.1- Capacités et caractéristiques

Les caractéristiques essentielles de ce noyau sont les suivantes :

= Quvert, code source disponible [24],

= Portable, ROMable donc Encapsulable dans un produit,

= Fiable et robuste,

= Aux fonctionnalités ajustables,

= Multitaches et préemptif (I’Ordonnanceur de ce noyau contient seulement quatre
lignes simples de code C [26]),

= Interruptible : traitement des interruptions Par les ISR?,

= 63 taches ou chaque degré de priorité correspond a une seule tache, c'est-a-dire deux
taches ne peuvent pas avoir le méme degré de priorité,

= Changement de priorité des taches (inversion et héritage de priorités),

= Fonction d'attente de tache,

= Occupation optimale dans la mémoire: 2 Koctets taille du code [25],

= Création et gestion des sémaphores, des mutex, des mails box, des queues de messages
et des drapeaux d’événements,

= Le temps d'exécution pour la plupart des services fournis par uC/OS-1I est constant et

« déterministe ».

2.1.2- Structure de MicroC/OS-11

Le systeme MicroC/OS-II peut étre vu comme une bibliotheque de fonctions réparties
sur des couches logicielles. Cette bibliotheque est liée avec I’application a développer. Ainsi,
les services de MicroC/OS-II sont appelés depuis I’application comme de simples fonctions.
Et comme le montre la figure 11, le code source de ce noyau est divisé en deux sections : la

premiére est indépendante du processeur et la seconde en est dépendante.

2! Interrupt Service Request
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/ Application Software (le code)
Micro C/OS-II here (L0 |
Configuration
(Processor Independant (Application
Code) Specific)
OS_CORE.C
OS FLAG.C
0OS_MBOX.C
OS_MEM.C OS_CFG.h
0S_MUTEX.C INCLUDE.H
0S_Q.C
OS_SEM.C
OS_TASK.C
0S_TIME.C
UCOS _II.C
o< 1 H
Micro C/OS-11 (Processor Specific Code)
SW OS_CPU.H
HAL 0S_CPU_A32.s
K OS_CPU_C.C
HW CPU Timer

Figure 11: Structure de MicroC/OS-11

2.1.3. Fonctionnement de MicroC/OS-11

Lors de l'initialisation du programme MicroC/OS-II, les différents programmes de
l'utilisateur sont considérés comme des taches qui sont toutes créées pendant cette periode
d'initialisation. Le programmeur doit alors spécifier le point d'entrée de la tache,
I'emplacement des données pour cette tache, I'adresse de la téte de la pile de la tache et le
degré de sa priorité. Ainsi, la tAche du plus haut degré de priorité est préte a I’exécution. Les
taches peuvent communiquer avec d’autres grace aux sémaphores, boites aux lettres, files

d’attentes et aux drapeaux d’événements, ou bien avec des périphériques grace aux ISRs.

2.1.3.1. Création d’une tache

Une telle tache de I’application est constituée par une zone d'initialisation (une zone
permettant d'initialiser les variables du programme utilisateur), une zone ou l'utilisateur place
le code de son programme et une instruction OSTimeDly(n) permettant de céder « n » coups
d'horloge aux autres taches. La création de la tache se fait en appelant la routine suivante :

OSTaskCreate(AppTaskl, (void *)0, (void *)&AppTasklStk[255], 3);
AppTaskl: point d'entrée du programme utilisateur (nom de I'étiquette).

(void *) O : adresse des données.
(void *)&AppTaskl1Stk [255] : adresse de la téte de la pile de la tache.

3 : degré de priorité de la tache.
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2.1.3.2. Fonctions de base

Les principales routines de MicroC/OS-11 sont [27] :
= [|nitialisation de pCOSII : OSInit()
= Démarrage du multitache : OSStart(),
=  Gestion des taches: OSTaskCreate, OSTaskCreateExt, OSTaskQuery, OSTaskDel,
OSTaskDelReq, OSTaskChangePrio, OSTaskSuspend et OSTaskResume.
= Gestion d'interruption : OSIntEnter et OSIntEXit.
= Gestion du temps: OSTimeDly, OSTimeDIyHMSM, OSTimeDlyResume,
OSTimeSet, OSTimeGet et OSTimeTick.
=  Gestion des sémaphores : OSSemCreate, OSSemAccept, OSSemPost, OSSemPend,
0OSSembDel et OSSemQuery.
= Gestion des mails box: OSMboxCreate, OSMboxAccept, OSMboxPost,
OSMboxPend, OSMboxDel et OSMboxQuery.
= Gestion des files de communication : OSQCreate, OSQAccept, OSQPost, OSQPend,
0SQQuery et OSQDel.
= Gestion des drapeaux d’événements: OSFlagCreate, OSFlagPost, OSFlagPend,
OSFlagDel, OSFlagAccept et OSFlagQuery.

2.1.4- Communication inter taches

Deux mécanismes élémentaires sont adoptés :

2.1.4.1- Partage de variable

Dans le cadre d’un partage de variable, le plus souvent, une tache produit des données
qui sont utilisées par une (ou plusieurs) autre(s) tache(s). La coopération des taches de
I’application entre elles s’effectue a travers les messages, et les queues de messages. Alors
que le semaphore est employé pour gérer I’acces exclusif a la ressource partagée du systéme
(mémoire vidéo). Le commun entre toute coopération est la présence de deux actions :

= Signalisation ; appelée aussi envoi (Posting).
= Attente ; appelée aussi réception (Pending).

Avec MicroC/OS, lors de la création d’un tel outil de communication, un ECB (Event
Control Block) est créé pour maintenir I’état courant de cet outil. En fait, un ECB est une
structure de données désignée pour décrire le type de I’événement en cours, ainsi que la liste
des taches en attente sur cet événement, avec d’autres informations nécessaires pour sa

gestion.
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Les actions de synchronisation mises au point sont les suivantes :

= Lors d’un PEND sur un sémaphore, un mutex, un message de la queue de messages ou
un message d’un mail box, la fonction OS_EventTaskWait() est appelée pour retirer la tache
courante de la liste OSRdyGrp, et la mettre a I’état bloqué dans la liste OSEventGrp.

= Lors d’un POST sur I’un de ces outils, la fonction OS_EventTaskRdy() est appelée pour
déterminer la prochaine tache en attente qui aura la section critique. Et donc, celle-ci sera
retirée de la liste OSEventGrp et mise a nouveau, active dans la liste OSRdyGrp.

= Lors d’un retour au PEND sur timeout, la fonction OS_EventTo() va retirer la tache de
la liste OSEventGrp, mais sans la mettre & nouveau active car elle I’est déja active. En effet,
c’est OS_TickTime() qui a la responsabilite de mettre OSTCBDIy a jour et puis de rendre la

tache active lorsque ce dernier arrive a 0.

2.1.4.2- Synchronisation par événements

Dans ce cadre, les taches sont synchronisées via les événements. En fait, si deux taches
ont besoin de se synchroniser avec I’apparition de multiples événements, typiquement, la
seconde, afin de poursuivre son exécution, devra attendre que la premiere parvienne a un
point donné. La synchronisation est maintenue a travers les drapeaux d’événements (Event
Flag).

Les drapeaux d’événements de pCOS-I1 sont constitués de deux éléments : une série de
bits (8 ou 16 ou 32 bits) utilisés pour maintenir I’état courant des événements dans le groupe,
et une liste de toutes les taches en attente de la combinaison de ces bits (0 et 1) selon I’ordre
désire.

La gestion d’un événement se fait généralement au moyen des actions suivantes:

= Lors d’un PEND, la fonction OS_FlagBlock() est appelée pour maintenir le blocage de
la tdche en attente sur I’apparition de I’évenement. En fait, si les bits désirés dans le groupe de
drapeaux d’événements (Event Flag Group) ne sont pas encore obtenus, cette tache restera en
attente indéfiniment jusqu’a la production de I’événement, ou bien I’expiration du timeout.
Dans le cas de notre application, nous attribuons la valeur 0 au champ « timeout », étant
donné que les taches en attente sur un événement ne consomment aucune capacité de
traitement, donc elles restent indéfiniment en attente jusqu’a ce que I’événement se produise.

= Lors d’un POST, la fonction OS_FlagTaskRdy() est appelée pour retirer la tache
bloguée de la liste d’attente (Waiting List of the Event Flag Group), et la remettre & nouveau a
I’état prét pour s’exécuter. Pour garantir qu’a tout moment le systeme puisse répondre aussi

rapide que possible a un événement, cette tache devrait commencer son exécution juste apres
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la terminaison de la tache produite. Pour ce faire, si la priorité associée a la tache produite est

« i », alors la priorité de la tache consommatrice sera « i+1 » sachant que la valeur la plus

petite correspond a la priorité la plus élevée.

2.2- Carte de développement : STRATIX-II

) PROTO1
Reset, Config {J11,4J12, J13)
(SW10)

CPU Reset

PROTO2
(415, J16, J17)

CON3 Factory Config

(Swg)

SWO0 - SW3

Figure 12: Carte de développement STRATIX 11

2.2.1. Description

Cette carte de développement STRATIX-II d’Altera comprend les éléments suivants

(figure 12) :

Un circuit STRATIX 11 EP2S60 Device (U60),

Deux SRAM d’1Mbits (512Ko * 16) (U35-U36),

Une mémoire flash de 16 Mb (U5),

Deux connecteurs de port série (J19, J27),

Deux expansions de connecteurs de prototype (PROTOL1, PROTO2),
Connecteur de mémoire flash (CON3),

Connecteur Mictor (J25),

Contréleur de configuration de la carte (U3),

Deux connecteurs JTAG pour les fonctions de configuration (J24, J5),
Quatre boutons poussoirs définissables par I’utilisateur (SW0-SW3),
mémoire SDRAM (U57),

interface Ethernet MAC/PHY (U4),
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= Deux boutons affectés en priorité :
- Le «Reset»: recharge la configuration de la carte selon le contrdleur de
configuration,
- Le «Clear » : effectue le Reset du CPU.
= Huit diodes electro-luminéscentes (D0-D7),
= Deux afficheurs 7 segments (U8 et U9),
= Un circuit de controle de I’alimentation,

= Un oscillateur générateur d’une horloge.
2.3- Environnement de développement

2.3.1. Environnement Quartus

Cet environnement permet la création, la compilation, la simulation et le prototypage sur

la carte Excalibur d’applications pour les circuits Altera.

2.3.2. SOPC Builder

L’environnement Quartus permet la création des systéemes complexes comportant des
processeurs, des périphériques, des mémoires, des bus, des arbitres, et des noyaux d’IPs.
Alors que le SOPC Builder produit automatiquement la logique nécessaire pour intégrer tous
ces composants sur la méme carte.

Ce systéme inclut automatiquement un bus pour I’interconnexion logique entre ce bus
Avalon et les ports de tous les périphériques du systeme NIOS-II. La bibliotheque du SOPC
Builder contient des composants sous forme de blocs :

= Simple de logique fixée,
= Complexe paramétrable,
= Sous systéemes dynamiquement générés.

Le SOPC Builder permet de générer le systeme par la génération de fichiers pour la

synthese et la simulation. Il est composé de :

= Une interface graphique pour spécifier et placer les composants constituant notre
systéeme. Chaque composant peut étre configuré selon les besoins a travers une petite interface
graphique spécifique pour lui. Une fois les composants sont bien listés et arrangés, une

description du systéme dans un fichier (*.PTF) se cree.
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= Un programme générateur pour convertir la description du systéeme (*.PTF) vers une
implémentation matérielle. 1l permet ainsi de créer une description HDL du systéme pour une

cible sélectionnée.

3- Méthodologie de developpement logiciel et mateériel

Dans le cadre du prototypage d’un modéle de systeme réactif embarqué sur une plate-
forme a base d’un cceur de processeur RISC et d’un RTOS, nous adoptons une méthodologie
de conception et de développement logiciel/matériel.

Avec cette méthodologie, nous devons bien évidemment, d’un coté, concevoir tout le
systeme matériel devant étre intégré au FPGA, et parallelement, développer le logiciel et
prévoir son intégration.

La figure 13 présente les étapes nécessaires pour le prototypage d’un SoC en utilisant le

kit de développement Excalibur d’Altera.

Core NIOS Configuration du CPU
v

Sélection des
périphériques

Périphériques (IPs)

Matériel v Logiciel
- ?C(::tliiesrs yetrilog/vhdl Configuration du Bus - Fichiers *.c
- cripts o
- Test Bench . J’ ; Ffll_Ote:% de
Génération périphériques
Debug
l SOF Info .EXE \ 4
Quartus TM & - Y Cygnus/Red Hat GNU
LeonardoSpectrun T™ > SignalTap T™ [« Pro
A A A
PC Trace ITAG
- Conception utilisateur - Code Utilisateur
- Autres IPs STRATIX - Bibliothéques
- RTOS

Figure 13: Flot de conception logiciel et matériel

4- Conception d’un systéme réactif embarqué monoprocesseur

4.1- Réalisation de la plate-forme matérielle & base de NIOS 11

La conception des systéemes sur puce par I’environnement d’Altera est rendue trés

simple grace a I’entrepreneur SOPC Builder qui permet de concevoir le systeme voulu par

46



ENIS Chapitre2 : Conception d’un MPSoC temps réel et estimation de performance

I’assemblage d’un ensemble d’IP fourni dans une bibliothéque avec cet environnement. Le
Systéme monoprocesseur qu’on a proposé contient les composants suivants:
= Un processeur NIOS 11 32 bits,
» Deux UART « interface série » I’une pour le Jtag utilisé lors de la configuration et
I’autre pour I’affichage sur I’écran de I’ordinateur,

= Une interface avec la SRAM externe,

= Une mémoire flash,

= Une mémoire interne,

= Une ROM de boot,

= Un timer utilisé pour donner le contrdle au code du RTOS adopté,

= Un autre timer employé pour compter le nombre de cycles d’horloges réserves pour
chaque tache de I’application.

Il est a noter que le timer peut étre configuré suivant les besoins de I’utilisateur. Notre
systeme fonctionne avec une fréquence de 50 Mhz, la durée d’un cycle d’horloge est donc
égale a T=1/1.

Une fois le choix des différents composants du systéme est fait, il est nécessaire de faire
I’interconnexion entre eux afin de réaliser la fonction globale du systéeme; ce qui se fait
d’une maniere graphique dans le SOPC Builder. A chaque fois qu’on veut faire interconnecter
deux composants, il faut cocher le point initialement blanc qui les relie. Ce point devenu noir,
indique qu’ils sont connectés. Aprés la phase d’interconnexion, il reste I’assignement de la
base d’adresse de tous les composants constituant le systéme. Cette opération peut se faire de
deux maniéres : soit automatiquement ou manuellement (dans le cas ou le concepteur veut
fixer des adresses bien précises). Dans le deuxieme cas, il faut préter I’attention a ne pas faire
de conflits d’adresses qui peuvent causer un disfonctionnement du systeme.

La figure suivante illustre la phase de conception de notre systeme par le SOPC Builder :
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Target Clock (MHZ)

Board: INios Developmert Board, Stratix | (EP25E0ES) j clk a0.0

Deyvice Family: IStratix Il ‘l [ HardCopy Compatitale

lze Madule Matme Descrigtion Clack Baze End R
¥ Elcpu Nioz | Proceszor - Altera Corporation clk
r— instruction_master Master port
—t cata_mazter taster port RGO IRG 31|
+ jtag_debug_module Slave port 0x02120000) 0x021207FF
¥ ext_flash Flash Memory (Cotmon Flash Interface) # 000000000 0x00FFFFFF
W ext_ram [DT714% 416 SRAM # 0:020000000 0x020FFFFF
¥ El ext_ram_bus Avalon Tri-State Bridge clk
—+ gvalon_slave Slave port
tristate_master taster port
V¥ high_res_timer Irterval timer clk 0x021208200 0x0212083F|[ 3
7 jtag_uart JTAG UART clk 0x021208B0) (021208671
V¥ {t] onchip_ram_64_kbytes On-Chip Memory (RAM or ROM) clk § 02021000000 0x0210FFFF
¥ | e sdram SDRAM Cartraller clk # 0:01000000)  0=01FFFFFF
W sys_clk_timer Interval timer clk 002120800 (:0212051F| [0
W sy=id system ID Peripheral clk 0x021208B8 0x0212056F |
| uart1 JART [R5-232 zerial port) clk 0x02120840  0x0212085F|[ 4

Figure 14: Architecture monoprocesseur

On termine la phase de conception de la partie matérielle par le SOPC Builder par une
étape de génération du systeme qui permet de générer le systeme global sous forme de boite
noire (on ne peut voir que les entrées et les sorties du systéme) dans le logiciel QUARTUS.

Si I’étape de génération est terminée avec succes, il restera a interconnecter les différents
composants externes (mémoire externe, accélérateur,...) au systeme déja congu. Une fois
cette tdche accomplie, on procéde a la compilation du systéme global pour vérifier s’il
comporte des erreurs de conception ou de dépassement de la capacité de notre carte de
prototypage. Si la compilation est terminée avec succes, on pourrait conclure que notre partie
matérielle est préte, et qu’il ne reste plus d’a que le développer la partie logicielle.

Pour le développement et I’exécution de la partie logicielle, la nouvelle version de
QUARTUS 1l comporte un nouveau outil appelé NIOS-1I IDE «Nios Il Integrated
Development Environment» qui peut supporter le langage C/C++ et permet la compilation des
projets réalisés suivant les spécifications de la plateforme d’Altera. Cet outil permet aussi la
configuration de I’FPGA avec le systeme déja concu et I’exécution du résultat de la

compilation, directement sur la carte de prototypage.

4.2- Portage du MicroC/OS-I1 sur le processeur NIOS

Avec les versions antérieures de notre environnement de conception, il a été nécessaire

de configurer le port du MicroC/OS-11 suivant les spécificités du processeur NIOS, pour
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pouvoir exécuter des applications écrites avec I’utilisation des routines de notre RTOS. Alors
gu’avec la version actuelle, le code et le port du MicroC/OS-Il étaient fournis avec
I’environnement. Ainsi, pour bénéficier des routines de ce RTOS et pouvoir exécuter les
applications temps réel sur le processeur NIOS I, il suffit de choisir, lors de la création du
projet de travail, celui qui utilise le MicroC/OS-I1.

4.3- Configuration des services de MicroC/OS-I1

Le nouvel outil NIOS 11 IDE fournit une interface pour la configuration des services du
MicroC/OS-I1. A travers cette étape, on peut : fixer le nombre maximum de taches que I’on
peut utiliser dans notre application, sélectionner les services que I’on va utiliser tel que les

sémaphores, les drapeaux d’événements, et fixer la valeur la moins prioritaire.

=
E MicroC/OS-11 RTOS Options

Bl vicrocios-11 | MicroC/0S-1I
| Event Flags
Mk MicroCjOS-II General Options
Semaphores Maximum number of tasks 10
Mailboxes
Queues Lowest assignable priority [ZD
Mismory Management Enable code generation for Event Flags ~
Miscellaneous =
Task Management Enable code generation for Mutex Semaphores &
Time Management Enable code generation for Semaphores v
Enable code generation for Mailboxes v
Enable code generation for Queues I
Enable code generation for Memory Management W
Restore Defaults | Apply

Figure 15: Configuration de I’'RTOS

5- Conception d’une architecture multiprocesseurs

5.1- Bus Avalon

C’est le bus utilisé par le processeur NIOS-II. Il peut étre vu comme un ensemble de
signaux predéfinis, permettant de connecter un ou plusieurs blocks IP. En plus, il est généré
automatiquement par le NIOS-II Builder. Le bus Avalon a comme caractéristiques principales
Figure 16 :

= Plusieurs circuits maitres simultanés [28]. Et en cas d’une ressource partagée, un
arbitrage nécessaire pour le partage de cette ressource par les circuits maitres est
automatiquement inclus.

= Dimensionnement dynamique des interfaces [28]. Ceci permet d’utiliser de la

mémoire avec une taille de données inférieure a celle du bus NIOS-II. Par exemple, un
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systeme configuré avec un bus de données de 32 bits, pourra intégrer facilement une mémoire

flash 8-bits. Le NIOS-1I Builder aura automatiquement génére la logique nécessaire a cette

opération.
Masterl Master2
Masters (System CPU) (100BaseT
Ethernet)
A A A A A
A 4 v
Arbitre
A
\4 v \ 4 v
Esclaves UART 1/10 Mémoire de Mémoire
paralléle programme de données

Figure 16: Systéme multi masters

5.2- Mutex fourni par I’interface Avalon

Le mutex est un composant Hardware fourni comme un IP avec I’environnement
d’ALTERA. 1l est généralement utilisé par les environnements multiprocesseurs afin de
coordonner les acceés a une ressource partagée. Le mutex fournit un protocole pour assurer la
propriété mutuelle exclusive d'une ressource partagée.

Le mutex fournit une opération «test-and-set» a base de matériel, permettant au
logiciel dans un environnement multiprocesseurs de déterminer le processeur qui possede
I’accés a une ressource partagée. Le mutex est utilisé dans la conjonction avec la mémoire
partagée pour mettre en oeuvre des dispositifs de coordination d'inter processeurs
complémentaires, comme les boites aux lettres et le logiciel mutex. Il est concu pour
l'utilisation dans des systéemes de processeurs, mais il faut configurer cet IP suivant la
plateforme utilisée. Pour notre plateforme de travail, Altera fournit un driver pour le

processeur de Nios-1I afin de permettre I'utilisation du matériel mutex.

5.2.1- Comportement de base
Le mutex a une interface d'esclave d'Avalon simple qui fournit I'accés a deux registres

32 bits. Le tableau 4 expose ces registres.
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Nom du Description du Bit
Offset _ L/E
Registre 31..16 15..1 0
0 mutex L/E Propriétaire VALEUR
1 reset L/E - - RESET

Tableau 4: Registre de mutex

Le mutex a le comportement de base suivant. Cette description suppose qu'il y a des
processeurs multiples ayant accés a un mutex simple et que chaque processeur a un
identificateur unique (ID).

e Quand le champ de VALEUR est 0x0000, le mutex est disponible (i.e, ouvert).
Autrement, le mutex est indisponible (c'est-a-dire, ferme).

e Le registre de mutex est toujours lisible. Un processeur (ou n'importe quel périphérique de
maitre Avalon) peut lire le registre de mutex pour déterminer son état actuel.

e Le registre de mutex est échangeable seulement dans des conditions spécifiques. Une
opération d’écriture qui vise a changer le contenu du registre du mutex ne se fait que si
une ou deux des conditions suivantes soient vraie :
¢ Le champ de VALEUR du registre de mutex est le zéro.
¢ Le champ de PROPRIETAIRE du registre de mutex correspond au champ de

PROPRIETAIRE dans les données a étre écrit.

e Un processeur essaie dacquéerir le mutex en écrivant son ID au champ de
PROPRIETAIRE et écrit une valeur différente de zéro dans le champ VALEUR. Le
processeur Vérifie alors si l'acquisition est succédée en examinant le champ de
PROPRIETAIRE.

e Apres la remise a zéro du systeme, le bit RESET dans le registre « Reset » est au niveau
haut. L'écriture de 1 dans ce bit I’efface.

5.2.2- Configuration du mutex dans SOPC Builder
Les concepteurs du matériel utilisent la configuration du Constructeur SOPC Builder

pour spécifier les fonctions du matériel. La fenétre de configuration du mutex fournit les

fixations des parametres suivants :

e Initial Value--Le contenu initial du champ de VALEUR aprées « Reset ». Si le champ
Initial Value est différent de zéro, vous devez aussi spécifier le Propriétaire

Initial «Initial Owner ».
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e Initial Owner--Le contenu initial du champ de PROPRIETAIRE aprés « Reset ». Quand
le Propriétaire Initial est spécifié, ce propriétaire doit sortir le mutex avant qu'il ne soit

acquis par un autre propriétaire.

5.2.3- Modéle de programmation logicielle
Les sections suivantes décrivent le logiciel programmant le modele pour le mutex,

comme le logiciel construit est utilisé pour avoir acces au matériel. Pour des utilisateurs de
processeur de Nios-I1, Altera fournit des routines pour avoir acces au matériel fondamental
mutex. Ces fonctions sont spécifiques au mutex et manipulent directement le matériel a bas
niveau. Le mutex ne peut pas étre en acces via I'APl de HAL ou I'ANSI C la bibliotheque
standard. Dans des systéemes de processeurs de Nios-1l, un processeur ferme le mutex en
écrivant la valeur de son registre de contréle de CPU_ID au champ de PROPRIETAIRE du
registre de mutex.

Le fichier altera_avalon_mutex.h déclare une structure alt_mutex_dev qui représente un
cas d'un mutex. Il déclare aussi des fonctions pour avoir accés a la structure de matériel

mutex, inscrite dans le Tableau suivant.

Nom de la fonction Description

Revendique a une poignée a un mutex,
Altera_avalon_mutex_open() permettant a toutes les fonctions d'avoir accés

au coeur mutex.

Altera_avalon_mutex_trylock() o o .
immédiats s'il échoue a fermer le mutex.

Altera_avalon_mutex_lock() _ . )
aie avec succes fermé le mutex.

Altera_avalon_mutex_unlock() Ouvre le mutex.

o Détermine si ce CPU posséde le mutex.
Altera_avalon_mutex_is_mine()

Essaie de fermer le mutex. Envoie des retours

Ferme le mutex. Ne retourne pas jusqu'a ce qu'il

Altera_avalon_mutex_first_lock() Teste si le mutex a été sorti depuis un « Reset »

Tableau 5: Fonction du mutex
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5.3- Boite aux lettres « Mailbox» fournie par altéra

La boite aux lettres doit contenir deux mutexes : L’un pour s’assurer qu’un seul
processeur possede I’acces a la mémoire partagée a la fois et I’autre, afin de garantir qu’il y a
un unique acces en lecture de la mémoire partagée. La boite aux lettres est utilisee dans la
conjonction avec une mémoire séparée dans le systéme qui est partagé parmi des processeurs
multiples.

Le coeur de la boite aux lettres soutient toutes les familles de dispositifs Altera
soutenues par le Constructeur SOPC et fournit pour la couche d'abstraction du matériel (HAL)

de Nios-II la bibliothéque systeme.

5.3.1- Comment utiliser le cceur de la boite aux lettres dans SOPC Builder
1- Décider quels processeurs doivent partager la boite aux lettres.

2- Dans I’étiquette du SOPC Builder System Contents, instantier un composant de mémoire
pour servir de buffet de boite aux lettres. N'importe quelle RAM peut étre utilisée comme

buffet de boite aux lettres qui peut partager lI'espace dans une mémoire existante, comme la

mémoire de programme; il n'exige pas de mémoire consacrée.

3- Dans le SOPC Builder System Contents étiquette, instantier le composant de boite aux
lettres. La fenétre de configuration de boite aux lettres ne présente aucune fixation
configurable.

4- Faire les connections nécessaires dans I’étiquette du SOPC Builder System Contents.

a- connecter chaque port du bus de donnée maitre du processeur au port esclave de la
boite aux lettres.
b- connecter chaque port du bus de donnée maitre du processeur a la memoire
partagée de la boite aux lettres.
5- Configurer le cceur de la boite aux lettres dans I’étiquette More<nom mailbox>Settings.
Cette étiquette se trouve dans I’interface graphique utilisateur du SOPC Builder chaque fois

gu’un mailbox existe dans le systeme.

L’étiquette More<nom mailbox>Settings fournit les options suivantes :

e Memory module spécifie quelle mémoire on va utiliser pour le mailbox. Si la liste
apparue ne contient pas la mémoire désirée c’est que cette derniére n’est pas connectée au
systéme correctement.

e Shared Mailbox Memory Offset spécifie un offset dans la mémoire a partir duquel

commence le mailbox
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Mailbox Size (bytes) spécifie le nombre d’octets a utiliser pour le mailbox message
buffet. Le logiciel driver de Nios-11 fourni par Altera utilise huit octets d'au-dessus pour
mettre en oeuvre la fonctionnalité de la boite aux lettres. Pour une boite aux lettres
capable de passer seulement un message a la fois, la Taille de Boite aux lettres doit étre au
moins 12 octets puisque la taille d’un message qui peut étre stocké dans une boite aux

lettres doit étre 4 octets.

5.3.2- Caractéristiques du mailbox

Le logiciel de boite aux lettres programmant le modeéle a les caractéristiques suivantes et

suppose qu'il y a des processeurs multiples ayant accés a un coeur de boite aux lettres simple

et une mémoire partagée.

Chaqgue message de boite aux lettres est un mot 32 bits.

Il 'y a une gamme d'adresses prédéterminées dans la mémoire partagée consacrée au
stockage de messages. La taille de cette gamme d'adresses impose une limite maximale au
nombre de messages stockeés.

Le logiciel de boite aux lettres met en oeuvre un message FIFO? (premier entré premier
sorti) entre des processeurs. Un seul processeur peut écrire a la boite aux lettres par fois et
un seul processeur peut lire de la boite aux lettres par fois, assurant I'intégrité de message.
Le logiciel tend sur I'envoi que les processeurs de réception doivent convenir d'un
protocole pour interpréter des messages de boite aux lettres. Typiquement les processeurs
traitent le message comme un pointeur sur une structure dans la mémoire partagée.

Le processeur d'envoi peut poser des messages dans la succession, jusqua la limite
imposée par la taille de la gamme d'adresse de messages.

Quand les messages existent dans la boite aux lettres, le processeur de réception peut les
lire . Le processeur de réception peut étre bloque jusqu'a ce qu'un message apparaisse, ou
il peut voter la boite aux lettres pour de nouveaux messages.

e La lecture du message enleve le message de la boite aux lettres.

5.3.3- Programmation du cceur de la boite aux lettres

Cette section décrit le logiciel construit pour manipuler le matériel de la boite aux

lettres.

2 Eirst In First Out
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Le fichier altera_avalon_mailbox.h déclare une structure alt_mailbox_dev qui représente
un cas d'un dispositif de la boite aux lettres. 1l déclare aussi des fonctions pour avoir acces a la

structure de matériel de la boite aux lettres, inscrite dans le tableau suivant.

Nom de la fonction Description
altera_avalon_mailbox_close() Ferme la poignée a une boite aux lettres.
altera_avalon_mailbox_get() Rend un message s’il en a présent, mais ne se

bloque pas en attente d’un message.

. Revendique a une poignée a une boite aux
altera_avalon_mailbox_open() a Poig

lettres, permettant a toutes les autres fonctions

d'avoir accés a la boite aux lettres.

altera_avalon_mailbox_pend() Se bloqué en attendant un message pour étre

dans la bofte aux lettres

altera_avalon_mailbox_post() Poste un message a la boite aux lettres.

Tableau 6: Fonction du mailbox

5.4-Topologie proposée pour une architecture multiprocesseurs :

Suite a I’étude faite sur les différentes architectures existantes pour un systeme
multiprocesseurs dans le chapitrel, le bus avalon d’Aletra qui est un bus simultané multi
maitre et les modules fournis par Aletra « mutex et mailbox » pour la communication entre les
processeurs, on a proposé la topologie suivante figure 17 pour le prototypage des systémes
réactifs multiprocesseurs sur des architectures reconfigurables.

Cette architecture est composée essentiellement de :

-un ensemble de sous systémes qui contient :
» processeur,

accélérateur,

coprocesseur,

IP,

Mémoire,

Y V V V

>
- une mémoire partagée par I’ensemble des processeurs pour assurer la communication entre

eux. L’acces a cette mémoire est contrdlé par un mutex ou une boite aux lettres. Au début on
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a utilisé un seul module de communication entre processeurs (mutex ou mailbox )Mais on
s’est rendu compte que cette méthode presente quelques probléemes On va donc ralentir un
peu le systeme puisqu’a chaque fois que le processeur va prendre un message de la mémoire,
il doit consulter tous les messages pour trouver celui qui lui est destiné. En outre, dans le cas
ou on utilise un mailbox, et puisque ce module est de type FIFO, le processeur doit remettre
les messages qui ne lui sont pas destinés dans le mailbox, vu que la consultation du message
I’enleve automatiquement du mailbox. En conséquence, le temps de communication va
hausser surtout en augmentant le nombre de processeurs et de messages échangés entre eux.
Pour remédier a ce probléme, on a proposé comme solution, I’utilisation d’un module de
communication «<mutex ou mailbox» pour chaque processeur. Ce dernier peut écrire dans
n’importe quel module associé a d’autres processeurs et ne peut prendre les messages que de

son propre module de communication. De cette fagon, on est certain que chaque processeur ne

consulte que les messages qui lui sont destinés.

Mailhox1 MutexiW
Mailhox2 MutexiW
Mailhox3

Figure 17: Architecture multiprocesseurs proposée

56




ENIS Chapitre2 : Conception d’un MPSoC temps réel et estimation de performance

6- Estimation de performance des systémes sur puce temps reel

Il est courant d’utiliser un systeme d’exploitation temps réel dans un tel systéme
embarqué comme étant une structure logicielle permettant de géerer I’exécution compléte de
plusieurs taches concurrentes sur le méme systeme. Cependant, et bien que cette méthode soit
couramment employée dans les systemes embarqués spécifiques, celle-ci peut entrainer
certains inconvénients en terme de colt, consommation et performances [16].

Dans le cadre de notre projet, on s’intéresse a I’estimation du temps d’exécution d’une
application temps réel écrite avec les services d’un RTOS. Une étude des différents outils
d’estimation du temps d’exécution a été faite au premier chapitre. Apres cette étude on s’est
rendu compte que ces outils ne tiennent pas compte des systémes d’exploitation temps réel.
Dans la suite de notre projet, on va donc essayer de générer un modeéle qui s’ integrerait dans
ses outils pour qu’il puisse estimer le temps d’exécution des applications écrites avec les
routines d’un RTOS.

6.1- Principe

Notre idée de départ se base sur le fait que le temps d’exécution d’une application temps
réel (taches + services RTOS) est égal au temps d’exécution de la méme application non
temps réel auquel on ajoute une certaine valeur due a I’effet de I’utilisation de I’'RTOS et le
temps pris par chaque service utilisé. Notre modele consiste en premier lieu, a trouver une
méthode qui puisse déterminer I’effet de I’utilisation d’un systéme d’exploitation sur le temps
d’exécution de [I’application. En second lieu, on construira une base de données qui
contiendrait tous les services qu’on peut utiliser d’un RTOS , ainsi que leurs temps
d’exécution. A chaque fois qu’on emploie un service de cet RTOS dans notre application, on

ajoute le temps approprié au temps déja calculé.

6.2- Remarque
e Le modéle généré peut étre intégré dans n’importe quel outil d’estimation, puisqu’il
utilise les temps d’exécution des différents services du RTOS obtenus par exécution
directe sur la plateforme de travail.
e Toutes les mesures sont faites autour de I’environnement d’Altera et le systéme temps
réel MicroC/OS-11. Si on change I’environnement de conception ou le RTOS, on

procedera a la démarche présentée ci-dessous.
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6.3- Evaluation de I’effet du MicroC/OS-11 sur le temps d’exécution d’une

fonction

Afin de pouvoir générer une méthode qui puisse déterminer I’effet de I’utilisation d’un

RTOS sur le temps d’exécution d’une application, on a procédé aux étapes suivantes :

1-

On a écrit une fonction qui fait un traitement quelconque. Cette fonction a été
exécutée sur une plateforme monoprocesseur et on a pris son temps d’exécution
sans utiliser un ROTS.

On a pris le méme code de la fonction et on a mesuré son temps d’exécution
sur la méme plateforme, mais dans une application temps réel. Cette derniére ce
compose uniquement de la tdche qui contient le code de la fonction sans utiliser
des routines offertes par notre RTOS (dans cette étape, on ne mesure pas le
temps de création de la tache et d’activation des services de I’RTOS mais plutot
le temps d’exécution de la portion du code qui exécute la méme fonction déja
mesurée a I’étape 1).

On a refait les étapes 1 et 2 pour des fonctions qui prennent des temps
d’exécution différents. Le tableau 7 illustre les résultats trouvés lors de

I’exécution des différentes fonctions sur notre plateforme qui se compose

essentiellement du processeur NIOS 1l et du systeme d’exploitation
MicroC/OS-I1.
Temps sans RTOS | Temps avec RTOS

90294 91106
449559 451645
897117 901089
4477789 4495777
8956136 8990554
44779001 44950710
89556865 89897197
447781676 449484289
895561972 898968551

Tableau 7: Mesure du temps d’exécution avec et sans RTOS
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A partir des mesures déja effectuées dans les étapes précédentes, on a construit

un graphe figure 18. On constate que I’ensemble des points forme une droite

linaire, et, cela est d0 au fait que chague RTOS possede des taches systéme qui

interviennent d’une facon periodique dans I’exécution de I’application.

Les taches systemes permettent de:

configurer le systeme.

afficher des messages de systeme sans appeler des routines 1/0 exécutées
dans le contexte de la tache courante.

exécuter de différentes fonctions spécifiques aux taches, a une priorité
supérieure.
exécuter des fonctions de réseau.

obtenir des statistiques dynamiques (ex.: le degré d’utilisation du CPU par
I’application, en pourcentage).

Donc, en utilisant ce graphe, on peut déterminer le temps d’exécution de n’importe

quelle application temps réel, tout en sachant son temps d’execution sans RTOS,

bien évidemment sans utiliser les services offerts par I’RTOS.

temps avec RTOS

1000000000
900000000 ///»447
800000000
700000000 ////
600000000
500000000 ////
400000000
300000000 ///////

200000000
100000000

/ —e— Sériel

Jes

0 2E+08 4E+08 6E+08 8E+08 1E+09

temps sans RTOS

Figure 18: Courbe d’estimation
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Pour déterminer le temps avec RTOS, il suffit d’appliquer la formule suivante :
Y=1.0038X qui représente I’équation de la droite linaire figure ci-dessus.

X étant le temps de I’application sans RTOS.

Y est le temps de la méme application exécutée dans une seule tache

6.4- Mesure du temps pris par les services du RTOS

Une application écrite en utilisant les routines d’un systéme temps réel se compose
essentiellement d’un ensemble de taches. Ces taches utilisent les différents services offerts par
I’RTOS, pour gérer la communication et la synchronisation entre elles afin de réaliser la
fonction globale de I’application.

On peut diviser les services d’un RTOS en deux groupes :

e Des services qui permettent d’une part la création des différentes taches, mécanismes
de synchronisation et de communication, et I’initialisation de I’'RTOS ; et d’autre part,
le démarrage de I’application temps réel. Généralement ces services n’entrainent pas
de changement de contexte.

e Des services de communication et de synchronisation. Généralement appelés dans le
code des taches a des moments bien déterminés pour réaliser la fonction globale du
systeme. L’appel de ses services peut causer parfois des changements de contexte.

Pour le premier groupe, on constate que le temps pris par n’importe quel service est

indépendant du contexte la ou il est appelé, puisqu’ils n’entrainent pas de changements de
contexte. Par conséquent, ce temps restera le méme dans n’importe quel contexte et moment il
est utilisé. Alors que les services du deuxiéme groupe sont plus complexes puisqu’ils exigent
un ré-ordonnancement du systéme et peuvent entrainer des changements de contexte. Donc, il
faut mesurer le temps pris par ces services dans les deux cas :

e Appel du services mais pas de changement de contexte : dans ce cas, on mesure le
temps pris par I’appel du service et I’execution de I’instruction qui le suit.

e Appel du service avec un changement de contexte : dans ce cas, on mesure le temps
pris par I’appel du service approprié et I’exécution de la premiére instruction de la
nouvelle tache qui va étre exécutée.

Vu que les services du MicroC/OS-11 sont trés nombreux, on va mesurer le temps pris
par ceux que I’on va utiliser dans notre application. (Bien entendu les plus utilisés, lors du
développement de n’importe quelle application)

Le tableau suivant présente les mesures de quelques services offerts par MicroC/OS-II :
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) _ Nombre de tics
Services du MicroC/OS-I1
d’horloge
Création d’une tdche OSTaskCreateExt 9756
Fonction OS_Start 827
Groupel | Création d’un mailbox OSMboxCreate 679
Creation d’un message queue OSQCreate 1565
Création d’un drapeau d’événement OSEventFlagCreate 419
OSEventFlag sans changement de contexte 876
OSEventFlag avec changement de contexte 4464
OSMboxPost sans changement de contexte 854
Groupe2
OSMboxPost avec changement de contexte 3418
OSQPost sans changement de contexte 912
OSQPost avec changement de contexte 3966

Tableau 8: Temps pris par les services du MicroC/OS-I1

6.5- Formalisation du modeéle

Etant donné une application qui consomme « n » tics d’horloge lors de son exécution sur

la plateforme d’Altera sans utiliser les routines du MicroC/OS-I1.

Cette application sera décomposée en un ensemble de taches pour réaliser la fonction

globale du systeme figure 19. A partir du graphe déja construit, on doit extraire 1’une des

solutions possibles pour construire le diagramme de séquences qui décrit la succession des

différentes taches ainsi que les routines de I’RTOS, utilisées pour assurer la synchronisation et

la communication entre elles (figure 20).

61




ENIS Chapitre2 : Conception d’un MPSoC temps réel et estimation de performance

t2

t5 XSH

Figure 19: Graphe de taches Figure 20: Graphe de séquences

O - représentent les taches constituants notre application
X : représentent les services utilisés d’un RTOS (sémaphore, mailbox, event_flag ...)

Pour calculer le temps global de I’application écrite avec les routines de I’'RTQOS, il faut :

e Déterminer la nouvelle valeur du temps d’exécution de I’application en utilisant le
modele.

e En utilisant le graphe de I’application, ajouter, & chaque fois qu’on utilise un service
de I’'RTQOS, le temps approprié, a partir du tableau déja mesuré.

6.6- Mise en équation

Le modéle proposeé peut se récapituler dans I’équation suivante :
i=0
Ntr = N x1.0038+ > T,(S;)
Ntr : nombre de tics de I’application temps réel.
N : nombre de tics de I’application sans RTOS.
Ti(Si) : nombre de tics du service i déterminé a partir du tableau construit.

n : nombre de services utilisés.
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6.6- Limites de la méthode d’estimation

e Les applications réactives sont caractérisées par leur interaction avec I’environnement
extérieur qui peut influer, sur I’ordre d’exécution des taches et le comportement du
systeme, dans des temps non prédéterminés. Dans notre modeéle, on ne tient pas
compte de ce type d’application. On doit connaitre, dés le début, I’ordre d’exécution
des différentes taches et les instants de production des interruptions qui peuvent
influer sur le fonctionnement de I’application.

e Cette méthode n’est applicable que pour I’application totale. On ne peut pas, par
exemple, appliquer le méme modele & une portion de code d’une application temps
réel.

e |l faut disposer d’un outil qui fait I’estimation du temps d’exécution sans I’utilisation
d’un RTOS.

7. Conclusion

Dans ce chapitre, on a présenté I’environnement d’Altera, notre plateforme de travail,
puis on a décrit I’architecture multiprocesseurs proposée et on a terminé par la génération
d’un modele d’estimation de performance utilisé dans le cadre des systemes sur puce temps
réel.

On s’intéressera dans le chapitre suivant, a la validation du modele d’estimation généré
a travers I’application de traitement d’images 3D, et la présentation des différentes étapes de

la conception d’un systeme sur puce multiprocesseurs.
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1- Introduction

Généralement, un systéme sur puce est formé par un ou plusieurs processeurs, des
accelérateurs, des contrdleurs de périphériques, des IP, de la mémoire et une structure de bus
ou réseau, etc... Et vu que les applications sont de plus en plus complexes, I’usage des
systemes d’exploitation dans de tel systéme devient indispensable afin de contrdler le systeme
et de gérer son interactivité avec I’environnement extérieur.

Les objectifs des travaux présentés dans ce chapitre consistent a évaluer I’effet de
I’utilisation des systémes d’exploitation temps réel dans les systéemes sur puce et a
expérimenter la conception d’un systéme multiprocesseurs temps réel.

Ce chapitre est organisé comme suit :

La premiere section est consacrée a la présentation des différentes étapes du pipeline
graphique utilisé dans I’application de traitement d’images 3D et la validation du modele
d’estimation de performance des applications temps réel, a travers cette application. A la
deuxiéme section, nous focaliserons les travaux sur la réalisation de la plateforme
multiprocesseurs. On terminera par la validation de I’application de traitement d’images 3D

sur I’architecture proposeée.

2- Application de traitement d’images 3D

Afin d’expertiser les services du MicroC/OS-11 et d’évaluer les performances de notre
architecture multiprocesseurs, nous avons considéré une étude de cas sur une application de
traitement d’images 3D, ciblée vers une architecture embarquée, basée sur une plate-forme
NIOS-11 et le systeme d’exploitation temps réel uC/OS-I1.

2.1- Introduction a la création d’objet 3D

L’écran d'ordinateur est seulement capable de représenter des coordonnées en deux
dimensions. Comme les écrans de sortie tridimensionnelle n’existent pas encore, on est amené
a transformer les coordonnées 3D en coordonnées 2D. Pour ce faire, on utilise la projection
par perspective, qui permet de représenter correctement la « profondeur » d’un objet en
donnant I’impression de volume. Mais précisons dés a présent que toutes les méthodes de
création et de visualisation d’un contenu 3D ne permettent de donner a I’utilisateur que

I’illusion qu’il évolue dans un « monde 3D ».
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2.2- Pipeline 3D

Le pipeline 3D est I'ensemble des étapes nécessaires pour la création et la visualisation
d'une image 3D. Cette chaine est décomposée en un ensemble d’opérations nécessaires pour
afficher un objet 3D observé a partir d’une position et avec une orientation donnée. Une mise

en forme est montrée dans la figure 21 [39].

Test de visibilité

Calculs des lumiéeres

Transformations
des textures

Figure 21: Diagramme de conception de pipeline

2.3- Maillage Triangulaire

Les méthodes de maillage de surface dans I’espace tridimensionnel sont aujourd’hui en
plein essor en raison du nombre croissant d’applications dans de nombreux domaines.

Différents types de maillage sont possibles.

2.4- Transformation géométrique

La notation homogéne est de grande importance dans les transformations géométriques.
En effet, elle permet de concaténer plusieurs transformations Elle représente un outil
géométrique trés puissant, s’appuyant sur le concept d’ajout d’une troisieme coordonnée w.

Ainsi, un point 3D devient un vecteur a quatre coordonnées (X, y, z, w).

2.4.1- Translation
La modification est simple dans ce cas. Elle est donnée par :

X=X+Wt,

y=y+wt,

I'=7+Wt,
wW=w

En notation vectorielle, la translation est une somme vectorielle donnée par :
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X 100tx X

Yl lo 10 t|VY

P’ = T(thtyth)P:> z = 0 0 1 ty YA
Z

Wi lo oo 1]|W

2.4.2- Changement d’echelles
Les coordonnées sont multipliées par le facteur de changement d’échelles :

X=S, X
y=S,y
7’=S, 12
W=w

En notation vectorielle, on écrit :
S 0O 0 O

X X X
y 0 s, 0 ofY
PP = |Ll= .
z 0 0 S, 0]|2
w 0 0 0 1|Ww

2.4.3- Rotation
La matrice de rotation, dépend de I’axe et de I’angle. A titre d’exemple, on montrera :

e Lamatrice Rr de la rotation d'angle &, par rapport a I'axe Ox.
e Lamatrice Ry de la rotation d'angle &, par rapport a I'axe Oy.

e Lamatrice Rz de la rotation d'angle &, par rapport a l'axe Oz.

1 0 0 0
R B 0 cos(f,) —sin(g,) O
“ |0 sin(6,) cos(6,) 0l
0 0 0 1
cosdy, 0 sing, 0O cosd, -sing, 0 O
R,= _0 1 0 0 R, = sing, cosd, 0 O .
—-singd, 0 cos6, O 0 0 10
0 0 0 1 0 0 01
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2.4.4- Composition de transformation

Pour composer plusieurs transformations, il suffit de multiplier les matrices. Par

exemple, la composition d’une rotation par rapport a I’axe x et d’une translation est donnée

par :
X X
z z
w w
Avec,

M = T, Rx : produit matriciel de la matrice de rotation Ry et de la matrice de

ty,tz) *

translation T(tX'ty'tZ) :

2.5- Test de visibilité

Le test de visibilité d’un triangle est basé sur I’hypothese suivante : V;,, .N <0

— -
Si I’angle formé entre le vecteur normal N et le vecteur de vision V est aigué alors la

face sera visible. Sinon elle sera invisible. En d’autres termes, la face est visible si le produit

scalaire de ﬁ et \7 est positif. Ce qui est illustré par la figure 22 [40].

Figure 22: Test de visibilité d’une facette triangulaire

Soit : V, (P,P, AP,P,)<0
Et: Vi ((Va =V ) A (V5 =V, ) <0
Dol ; V,(V, AV;)<0
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Le critére de visibilité consiste donc a déterminer le signe du déterminant correspondant

au produit mixte de I’expression précédente :

2.6- Calculs des lumiéres

Dans cette partie, on va voir des modeles d’illumination constitués principalement
de trois composantes : ambiante, diffuse et spéculaire.

On désire calculer particulierement la quantité de lumiere par unité de surface.

2.6.1- Lumiere ambiante
Le modéle d’éclairement le plus simple est celui de la lumiere ambiante. On considere

qu'il existe une source lumineuse uniformément répartie, qui éclaire toutes les directions.
Cette lumiére représente le niveau minimum d'éclairage qui sera appliqué sur les objets.
On définit Il'intensité de cette lumiére sur une surface, en particulier une surface
triangulaire, par I'équation E(1).
Ip=0,*la E(1)
Cette intensité lumineuse est constante sur toute la surface.
= |, désigne l'intensité de la lumiere,
=, estle coefficient de réflexion de la lumiere ambiante par la surface (0< 5, <1).

= Ipcorrespond a l'intensite de la lumiére résultant de la réflexion sur la surface.

2.6.2- Lumiere due a une réflexion diffuse

2.6.2.1- principe de la réflexion diffuse

On considéere comme hypothése que la source de lumiere est ponctuelle et qu'elle émet
de maniere constante dans toutes les directions de I'espace.

Dans le modéle de réflexion diffuse, l'intensité en un point d'une surface dépend de
I'angle formé entre le rayon de lumiére qui touche le point de la surface et la normale a la
surface. Plus I'angle formé entre le rayon de lumiere et la normale au plan est faible, plus
I'intensité lumineuse , réfléchie et visible par I'observateur est forte. Ce principe est illustré par

la figure 23
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Figure 23: Principe de la réflexion diffuse

2.6.2.2- Calcul des lumiéres

La lumiére émise en direction de Il'observateur dépend de l'intensité de la source
lumineuse Ib, de l'angle theta formé par le rayon de lumiere et la normale au plan et du

coefficient de réflexion &, de la lumiére diffuse par la surface (0 = &, =1). On obtient la

formule E(2) :
lpb= &4 * I, * cos(theta) E(2)

Remarque : Si theta est supérieur a > alors la face n'est pas du tout éclairee par la
source lumineuse. Dans ce cas, l'intensité lumineuse est 0.

2.6.3- Lumiére due a une réflexion spéculaire

2.6.3.1- Principe de la réflexion spéculaire

On appelle réflexion spéculaire le phénomene de réflexion de la lumiére dans un cone
plus ou moins ouvert autour d'une direction privilégiée. A I'extréme, ce cbne peut étre
totalement ferme, la réflexion spéculaire est alors parfaite et ne s'effectue que selon l'axe

privilégié (effet miroir parfait).

= visualisation des reflets des sources lumineuses,

= aspect laqué.

La quantité de lumiere réfléchie séculairement est en fonction de la distance angulaire
entre la direction privilégiée de réflexion et I'axe de vision de I'observateur. Plus cette distance
angulaire est grande, moins il y a de lumiere spéculaire. Si I'observateur change de position,
les taches de lumiére spéculaire changent de position. Ce principe est expliqué par la
figure24.
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2.6.3.2- Calcul de la lumiere

Il faut calculer d’abordle rayon réfléchi sur la face. Ensuite, I'intensité de la lumiere
observée ; dépendra de theta qui correspond a l'angle entre le rayon réfléchi et le point
d'observation, de l'intensité Il de la source de lumiére et du coefficient de réflexion de la
lumiére spéculaire par la surface (0 , 1). Le calcul de I’intensité des rayons lumineux
résultants de la réflexion spéculaire peut étre decrit par le modéle d’illumination donné par
I'équation E(3).

Is= * Il * cos (theta)*n (E3)

Figure 24: Principe de la réflexion spéculaire

2.7- Transformations des textures

Cette étape permet de transformer les textures avant qu’elles ne soient appliquées au
triangle dans I’étape de Rastérisation dans le cas de la chaine pipeline 3D. Ce sont des
transformations 2D sur les images qui sont un cas simplifié des transformations 3D

précedentes. Si aucune texture ne doit étre appliquée au triangle, cette étape sera sautee.

2.8- Clipping (fenétrage)

Dans cette étape on élimine les triangles qui ne font pas partie du volume de vue et on
découpe ceux en partie visible selon leurs intersections avec le volume de vue. Le Clipping
consiste a limiter le tracé d’une figure a une région déterminée. C’est-a-dire rechercher
I’intersection entre des figures géométriques simples (formées de triangles élémentaires) et
des zones de Clipping graphiques (formées par des rectangles ou des, polygones convexes). Il
s’agit donc de déterminer si le triangle considéré est derriere I'observateur, trop loin sur I’ un
de ses cOtés, au-dessus ou en dessous de I'écran. Si le triangle se positionne dans I’un de ces

cas, il ne sera pas pris en compte pour le reste du pipeline. Si une partie du triangle n'est pas
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visible, le triangle sera "clippé" (découpé). Ceci est remarqué a la figure 25 et sa partie visible

suit le traitement du pipeline

Zone de
clipping N

Figure Figure
clippée

Figure 25: Clipping d’une figure

2.9- Projection

La projection est la transformation qui permet de donner la position du point image sur
le plan a partir d'un point dans I'espace.

Le principe de la projection est représenté a la figure 26.

Les nouvelles coordonnées de I'objet sont présentées sous le bon angle, devant la caméra
qui est placée sur l'origine du repere grace aux translations effectuées. On se propose alors de
calculer les intersections entre I'écran de I'ordinateur et les droites définies par notre regard
d'une part et chaque sommet du triangle "objet" d'autre part. Ainsi, les coordonnées X et Y

obtenues sont les coordonnées a partir desquelles il faudra tracer le triangle sur I'écran.

z=0 Z=300 =7
A
T x2d

Centre de 1'écran

(160;100) ~

Z Ll
Figure 26: Principe de la projection
Les coordonnées du point sont X', Y' et Z'. On trouve dans une configuration de Thales,

que 300/ Z'=X2d/ X3d.
D'ou: (300 * X3d)/ Z'=X2d ou la constante 300 représente la distance supposée entre

4

300

notre ceil et la surface de I'écran.
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2.10- Rastérisation

La rastérisation est I’étape transformant les formes géométriques 3D en des pixels sur
I’écran tout en donnant un aspect réel a I’objet 3D en question.

La solution la plus simple pour effectuer le rendu d’une surface consiste a calculer
I’illumination en chaque point visible de la surface. Cette méthode est tres colteuse en temps
de calcul. Dans cette partie, nous allons voir les différentes méthodes permettant de diminuer

le codt en temps en n’effectuant le calcul d’illumination qu’en un nombre limité de points.

2.10.1- Ombrage plat
La méthode d’ombrage la plus simple pour les facettes polygonales est I’ombrage plat.

Elle consiste a calculer I’intensité de couleurs pour un seul point de la surface que I'on veut
représenter. Ensuite, on applique la méme intensité pour toute la surface. La figure 27 montre

une application d’ombrage plat sur une sphére.

Figure 27: Application d’ombrage plat sur une sphére

2.11- Graphe de taches de I’'application 3D

Dans le processus de conception d’une application, la premiére étape consiste a décrire
le comportement souhaité. C’est la phase de spécification. Cette tache, essentielle, peut
s’averer extrémement difficile dans le cas de systéemes embarqués assez complexes.

On a decomposé I’application de traitement d’images 3D en 11 taches. A la figure 28,

nous proposons un graphe de taches modélisant cette application :
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Transformation

Precalc

LoadASC

Dessine_Objet

Figure 28: graphe de taches de I’application 3D

3- Validation du modele d’estimation proposé

Par manque de disposition d’un outil d’estimation du temps d’exécution pour notre
environnement de travail, on a déterminé le temps d’exécution de I’application de traitement
d’images 3D, sans utiliser des services d’un RTOS par I’exécution directe sur la carte, mais en
utilisant un module hardware appelé Timer qui permet de calculer le nombre de tics
nécessaires a I’exécution de I’application complete.

Aprés I’exécution, on a obtenu le résultat suivant : N=1066889330 tics.

On a procéde, ensuite, a I’extraction d’un diagramme de séquences a partir du graphe de
taches déja construit tout en décrivant les mécanismes adoptés pour assurer la communication
et la synchronisation des différentes taches, afin de réaliser la fonction globale du systéme.

Le graphe de séquences suivant est le modéle qui sera adopte pour réaliser tous les tests.
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LoadASC )
Mail bxox 4 Mail box 3
]I | | X/ \iventFlagl

[,
Mail box 1 Oueue (N) X @

Rotation Transformation
Event Flag2
Mail box 7
Dessine_Objet Calcul_Normale
V\ Mail boxAS/

Figure 29: Diagramme de séquences de I’application 3D

9

ail box 2

08

Mail box 6

|:|:X

Afin d’évaluer le modéle d’estimation proposé, on va essayer de comparer le temps
d’exécution de I’application obtenu par exécution directe sur notre plateforme de travail et
celui trouvé en appliquant le modéle propose.

e Quand cette application temps réel a été implémentée et testée sur notre
plateforme de travail ( NIOS Il + MicroC/OS-I1) nous avons obtenu le résultat
suivant : 1074048767 tics

e Calcul du temps d’exécution en utilisant le modeéle trouvé :
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Ntr= N * 1.0038
+ 11 temps de création de taches
+ 7 temps de création de mailbox
+ 2 temps de creation de eventFlag
+ 1 temps de création d’un message queue
+ 1 temps de la fonction OSStart()
+ 7 OSMboxPost avec changement de contexte
+ 2 OSEventFlag avec changement de contexte
+ OSQPost avec changement de contexte
Ntr = 1066889330 * 1.0038 + 11 * 9756 + 7 * (679 + 3418) + 2 * (419 + 4464) +
1565 + 3966 + 827 = 1071095628 tics
Calcul du pourcentage d’erreurs : (1074048767-1071095628) / 1074048767 = 0.27%
Comme on le constate, le taux d’erreurs est tres faible; ce qui valide le bon

fonctionnement de notre modele.

4- Conception de coprocesseurs

Pour la conception des coprocesseurs, il faut disposer du code VHDL d’opérations a
implémenter. Pour notre application, nous avons préféré I’utilisation de quatre coprocesseurs :
I’addition, la soustraction, la multiplication et la division.

Pour ajouter des coprocesseurs a notre systeme, nous utilisons le SOPC Builder et, a
I’intérieur de la fenétre du paramétrage du CPU dans le menu « Custum Instruction », nous
ajoutons les codes VHDL des coprocesseurs, puis nous faisons la lecture de leurs ports afin
de pouvoir les ajouter, par la suite, au systéeme, tout en appuyant sur le bouton « add to

System »
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Figure 30: Ajout des coprocesseurs

Tout le code de I’application a été modifié pour remplacer les opérateurs arithmétiques

utilisés par I’utilisation des coprocesseurs. Les résultats obtenus sont les suivants :

e Sans utilisation de RTOS : 716576082 tics
e Avecun RTOS : 720223958 tics

5- Conception d’acceélérateurs pour le traitement d’images 3D

5.1- Détermination de la normale a une face

Pour calculer la normale a une face triangulaire, on prend les trois vecteurs délimiteurs

du triangle, dans le sens des aiguilles d'une montre. On soustrait celui du milieu des 2 autres,

et on obtient 2 vecteurs dont le produit vectoriel est la normale de la face.

i i v 3 > >
Soit les trois vecteurs V1: |y, | ,V2:| Yo | €t V3:| Yc |, On détermine Vi et Vi tel que :

9
an .

Vinix= Xa - Xp
an.y =Ya-Yo
Viniz = Za- Zp

Xa % Xb XC

Za Zb ZC

Vhn2x = Xc = Xp
> _
\V/o% Vn2.y =Ye-W
Vn2z = Zc- Zp
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> [Nx Ny = an.y x Vn2z — Vn2.y x Vhiz
La normale de la face est N [Ny| tel que: J Ny=Vi, x Viex = Vizz x Viix (E1)
Nz
Nz =Vhix x Vn2.y - Vh2x x an.y

Pour la réalisation du circuit de calcul de la normale, on propose le schéma suivant:

ya —
o —

L —p
b —p

ye
yo

e —
z

@_,Nx

Figure 31: Schéma bloc du module de calcul normal

5.2- Projection

La projection permet le passage du coordonné du monde au cordonné d’écran. Le code
effectuant cette opération est le suivant
ecran = monde * DISTANCE / monde + MX

On propose le circuit suivant pour la réalisation de cette fonction sous forme

d’accélérateur matériel :

mondex
distance

vy

.
N

mondez >

(N
\J
MX + )—— €cranx

Figure 32: Schéma bloc du module de Projection

5.3- Produit vectoriel

Pour le calcul du produit vectoriel de deux vecteurs v1(x, y, z) et v2(X, y, z) on a recourt

au traitement suivant :
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vX = (v1y * v2z) - (v2y * v12z)
vy = (v1z * v2X) - (v2z * v1X)
vz = (VIX * v2y) - (v2X * v1y)
On propose le circuit suivant pour la réalisation de cette fonction sous forme

d’accélérateur matériel :

vly
2z

i

VX
v2y 5
vliz —

Figure 33: Schéma bloc du module du produit vectoriel

5.4- Transformation

La fonction de transformation permet le passage des coordonnées de tous les sommets
des coordonnées locales aux coordonnées du monde, et I’application de la matrice de

transformation globale a toutes ces coordonnées.
On propose le circuit suivant pour la réalisation de cette fonction sous forme

d’accélérateur matériel :

el
e2 >

e3 \
e4
e _IX) e
@_> monde
iy -

Figure 34: Schéma bloc du module de transformation

5.5- Interconnexion processeur accélérateur

5.5.1- Différentes méthodes d’interconnexion

Le SOPC fournit trois méthodes [9] pour I’ajout des modules propres a I’utilisateur :
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P10 (Parallel Input/Output)
Les P10s jouent le role d’interfaces entre le logiciel et les modules utilisateurs.
Une PIO a deux fonctions distinctes :
= Fournir une interface entre la partie logicielle et la logique utilisateur au sein
d’un méme circuit.
= Fournir une interface entre le logiciel et la logique utilisateur, définie a
I’extérieur du circuit du NIOS.

Interface avec les modules utilisateurs « user defined interface »

Cette fonctionnalité permet de définir I’interface entre le périphérique utilisateur et le bus

AVALON du processeur NIOS. C’est une interface que I’utilisateur peut adapter selon ses

besoins, pour pouvoir établir des communications entre le NIOS et les modules qu’il a au

préalable définis.

Cette interface est automatiquement générée par I’outil SOPC Builder.

Ajout d’un composant a la bibliotheque : cette fonction permet de définir un module
gu’on peut ajouter a la bibliotheque du QUARTUS Il par le développement d’un
fichier (d’extension .ptf) qui comporte tous les composants utilisés, ainsi que leur
liaison et fonctionnement. Par la suite, on peut ajouter ce module au NIOS comme si
I’on ajoute un composant prédéfini dans I’environnement SOPC.

Dans notre projet, nous avons préféré de travailler avec les P10.

5.5.2- Interconnexion a travers les PIO

La procédure de I’interconnexion a travers les PIO est la suivante :

On ajoute le nombre necessaire de PIO pour relier les composants au processeur tout
en définissant la taille du bus de données et les types d’interruptions matérielles pour
les entrées afin de pouvoir récupérer le résultat.

On génere I’ensemble (processeur, PIO) dans le but d’ajouter les broches P10 dans le
schéma bloc du Standard.

On termine par I’interconnexion des entrées/sorties de I’accélérateur avec le CPU
NIOS Il par I'intermédiaire des PIO. La figure suivante représente le schéma du

systeme et les quatre modules d’accélération matérielle déja congus .
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2 Partial Line Selection

i e e
i e

et e e e
e i L

Figure 35: Schéma du systéme et des accélérateurs

5.6- Compilation

Une fois toutes les connexions établies, une étape de compilation est nécessaire pour
s’assurer si le schéma bloc ne contient pas d’erreurs ( manque de liaison, tailles du bus de
données de deux composants connectés non égales...). Une fois la compilation terminée avec
succes, le fichier de configuration (extension .sof) se crée et sera, par la suite, envoyé vers la

carte STRATIX 11 pour le prototypage.

5.7- Mesure accélérateurs

Les accélérateurs sont considérés comme des boites noires par le systeme. Donc, pour
utiliser un accélérateur, le CPU envoie les données nécessaires a ce dernier et attend le
résultat. Deux types d’instructions sont utilisés dans le développement de la partie logicielle :
I’'une pour I’envoi des données et I’autre pour la réception Pour se faire, on utilise des
pointeurs sur les adresses des ports des accélérateurs.

Les mesures effectuées dans cette partie nous ont conduit aux résultats suivants :
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Le temps global de I’application de traitement d’images 3D en utilisant les quatre
modules d’accélération déeja présentés est :
e sans utiliser un RTOS : 707680249 tics
e avecun RTOS : 707872710 tics

6- Conception d’un systeme reactif embarqué multiprocesseurs

6.1- Création du systeme hardware

La conception des systéemes sur puce multiprocesseurs est rendue plus simple grace aux
deux services de communication implémentés en hardware fournis comme IP avec

I’environnement d’Altera le mutex et le mailbox.

6.1.1- Démarche a suivre pour la réalisation d’une plateforme multiprocesseurs
Dans cette partie, on commencera la conception de notre plateforme multiprocesseurs,

soit en partant du systeme monoprocesseur déja réalisé, ou en utilisant I’exemple de systéeme
monoprocesseur « standard » fourni avec I’environnement d’ Altera et I’étendre pour le rendre
multiprocesseurs. Pour ce, on doit procéder a la démarche suivante :
= Prendre une copie du projet monoprocesseur existante
= Quvrir le projet monoprocesseur par le logiciel Quartus et lancer le SOPC Builder
= Pour ajouter un deuxieme processeur NIOS |1 a notre systeme, faire un double clic sur
« Nios Il Processor — Altera Corporation » qui se trouve parmi la liste des composants
offerts par notre outil de conception. Ainsi, une fenétre apparait a I’écran dans le menu
« NIOS Il core ». Il faut choisir Niosll/s, et, dans le menu « JTAG Debug Module »
sélectionner Level 1, puis appuyer sur le bouton « Finish » (Des messages d’erreurs
vont apparaitre dans la fenétre des messages du SOPC. Ceci est d0 au fait que le
nouveau processeur n’est pas encore connecté aux autres composants du systeme. Il
faut donc laisser ces erreurs en instance pour y revenir dans d’autres étapes).
= Ajouter un autre Timer pour le nouveau CPU ; donc, doubles clics sur le composant
« Timer Interval » qui se trouve dans la liste des composants et, une fenétre de
paramétrages apparait a I’écran. On accepte les parametres par défaut et on appuie sur
le bouton « Finish »
= Connecter le nouveau Timer au bus « data master » du deuxiéme CPU et déconnecter
toutes les autres connexions aux autres processeurs. Si les connexions n’apparaissent
pas dans le menu du SOPC, il faudra choisir « Show Connections »

= Fixer la priorité du nouveau Timer a 0 pour qu’il soit le hardware le plus prioritaire.
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= Faire un double clic sur le composant Mutex pour I’ajouter au systeme. On accepterait
les parametres par défaut du mutex

= Connecter le Mutex au « Data Master » de tous les processeurs du systeme.

= Ajouter la mémoire qui sera partagée entre les CPU et protégée par le Mutex,faire un
double clic sur le composant « On-Chip Memory », fixer la taille de la mémoire que
I’on veut utiliser (on a proposé dans notre topologie d’utiliser pour chaque processeur
un Mutex). Donc, cette étape et I’étape précédente vont étre dupliquées.

= Ajouter une autre mémoire au systeme qui va contenir les mailbox.

= Ajouter le nombre voulu de mailbox au systeme (cette étape est bien détaillée dans la
section 4.3.1 du deuxiéme chapitre.)

= Connecter le SDRAM et le Ext_ram_bus au « Data Master » et « Instruction Master »
de chaque processeur a travers la matrice de connexion.

= Connecter la mémoire protégée par le Mutex au « Data Master » de tous les
processeurs et enlever la connexion avec I’ « Instruction Master » du CPU 1.

.

Dans le menu System, choisir Auto-Assign Base Adresse pour donner a chaque
périphérique une adresse unique.
La figure suivante représente le systéme obtenu, au cas ou on a suivi les étapes ci-
dessus :

s
File Module System Wiew Tools Help
System Contents | Board Semngsl Nios IT More "cpul" Semngsl Nios IT More "cpuz" Semngsl More "mailkox_1" Saﬂlngsl More "maikoz_2" Semngsl System Genermlonl
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EE-- valon Components Baard: [Mios Developmert Board, Stratix Il (EP2560ES) x| ok a00
Altera Carporation
Device Fammily: JStratix (] | - ] HardCopy Compatible
£1C20 Hios Devalopment Board Cyclane Edition Use Module Mame Descrigtion Clock Bose EREE
P1510 Hios Development Board Stratix Edition 2 B eput Mios Il Processor - Attera Co...|clk
P1540 Hios Development Board Stratix Pro Edition (—— instruction_master Mester port
P2C35 Hios Development Board Cyclone Il Edition = data_taster Master port 1RGO R& 3 «I
P2560 DSP Board Stratix Il Edition Jtag_debug_mocule Slave port 0x02124000)  0x021247FF)
P2S60 Hios Development Board Stratix Il Edition Il cpul_timer Interval timer clk 0x02124C00|  0x02124C1F| [0
[#-Ethernet I Bl cpu2 Mios Il Processor - Sftera Co...|clk
(1 Extra Utilities —— instruction_master Master port
[#-Legacy Components ¢ data_master Master part IRG Q) IRG 31| €]
-Memony b—— ftag_dehug_module Slave port 0x02100000 02021 007FF _I
Other ~ cpu2_timer Interval timer ok 0202100800 0x0210081F o
E1-AHB Components | 2] ext_ram_bus Avalon Tri-State Bridge =3
(5 Bridges I ext_flash Flash bMemory (Common Fla & 000000000 0:xD0FFFFFF
= ext_ram IDT71W416 SRAM & 002000000 0x020FFFFF]
I {# onchip_ram_64_kbytes On-Chip Memory (RAM or ... jclk & 002100000 0x0210FFFF)
¥ I—|—|= jtag_uart UTAG UART ok 0x02124CC0]  0x02124CC7|[1
ol [—|—|-= high_res_timer Interval timer =3 0x02124G20)  0x02124C3F|[3
~ f—|—|—@ vart1 UART (RS-232 serial port)  [clkc 0x02124C40)  0x02124C5F|[ 4
I [~ — sysid System D Peripheral k. 002124CC8 0021 24CCF)
~ # sdram SORAM Canitraller clk & 0x01000000  0x01FFFFFF]
|7 f——=# message_buffer_mut... Mutex ik 0x02124CD0  0x02124C07
| [——— message_buffer_ram [Or-Chip Mermory (RAM or R_.. [clk 0802124800 0121 24BFF
~ ——f1 message_buffer_mut... [Mutex lcllc 0x02121130) 002121137
4 M = ——~ message_buffer_ram_1|0r-Chip Metmory (RAM or R... [clk 0202121400  0:021217FF
_ All Available Components | I # memory_mailbox Or-Chip Mermory (RAM or R Ik 0x02120000  0x021206FF)
& [© ilil 7 — ma!lhoxJ Mailioox ik 0x02124CB0,  0x02124CEF
I ——] mailbox_2 Mailbox =3 0802122000  0:x0212200F
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Figure 36: Conception du systeme par le SOPC Builder
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= Spécifier I’adresse de Reset et des Exceptions pour les deux CPU dans le menu « Nios
Il More ‘cpu’ Setting ».

= Générer le systeme en appuyant sur le bouton « Generate ».Si la génération est
achevée avec succes, on quittera le SOPC Builder,et un message apparaitra
directement sur I’écran pour inviter le concepteur a mettre a jour, son systeme, afin
d’afficher les modifications faites.

= Une compilation est nécessaire a cette étape pour vérifier le systéme complet. Si la
compilation se termine avec succes, cela veut dire que notre projet est prét pour étre
téléchargé dans le FPGA.

A ce stade, il ne reste qu’a développer la partie logicielle pour tester notre architecture

multiprocesseurs.

6.2- Développement de la partie software

Pour le développement de la partie software qui servira a tester notre plateforme
multiprocesseurs, on procédera de la méme maniére que celle pour le monoprocesseur,
puisque chaque CPU exécutera son propre code. Il faut tenir compte qu’un seul processeur
peut afficher des messages sur I’écran. Donc, pour que les autres processeurs puissent afficher
des messages, ils doivent les envoyer a ce processeur pour qu’il les affiche.

On utilise Nios Il IDE pour le développement de la partie software pour une plateforme
multiprocesseurs.

A présent, comment agir pour executer simultanément les codes développés sur les
processeurs spécifiques ? Pour surmonter ce probléme, il faut procéder a la démarche
suivante :

= Lors de I’étape de création du projet, on doit spécifier le processeur sur lequel il va

étre exécute (figure 37).
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. Mew Project
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Figure 37:

Choix du processeur

= Dans la fenétre « system Library », il faut selectionner le Timer utilisé pour chaque

systeme dans « System Clock Timer ».
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Figure 38: Choix du timer
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Builder les projets, I’un aprés I’autre, en accédant au menu « project » puis « Build
Project »

Une fois, cette tche terminée avec succeés, on passe a la création de la configuration
du Debug pour chaque processeur. On sélectionne le projet et dans le menu Run, on
choisit « Run... » . Une fenétre apparait. Alors, on clique sur le bouton « new » puis
« Apply » et « Close ». On refait de méme pour tous les projets.

Pour exécuter le tout sur notre plateforme multiprocesseurs dans le menu « Run », on
choisit «Run...» et on sélectionne dans la fenétre qui apparait « Nios Il
Multiprocessors Collection ». Puis, on appuie sur le bouton « New » et on coche les
projets qu’on veut exécuter. Enfin on clique sur « Run » (figure 39). Ainsi, la partie

sera exécutée sur la plateforme réalisée.

J Run E_]

Create, manage, and run configurations

I @

Corfigur ations; Mame: | hsw Kins T Mulbipeceessor Collectian configuration

= = Mios IT Hardware
Iﬁﬂ hello_rnuki_coul Mios I HwW configuration

iﬁﬂ hiello_rruki_couz Mics I HwW configaration El Main |
m hello_rruki_cou3 Mics ITHW configuration Help

Mios I Inskruction Sek Smulabor

B8 Mins IT Mad=ISim Select Mos 11 Hardware configarations to run conoarrencly:

= i T f £ il
' ET:S X Multu:u.u:-:es Sllatne o B P hello_multi_cput Mios 1T HW configuration
Jen Mins tpiocessor Collackion oo ratio : / : ;
Rt ke s U R eSS Gt Bl L G Gl iR S mhdlu_multl_cpuz Mios 1T HW configurabion
[ET] Delete

Figure 39: Exécution sur une architecture multiprocesseurs

6.3- Exécution de I’application de traitement d’images 3D sur la plateforme

multiprocesseurs

Pour développer n’importe quelle application sur une plateforme multiprocesseurs, il

faut essayer de minimiser au maximum, la communication entre les processeurs qui peuvent

ralentir le temps d’exécution de notre application. Pour pouvoir répartir une application sur
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plusieurs processeurs, il faut décomposer I’application en un ensemble de fonctions et on
détermine ceux qui peuvent s’exécuter en paralléle. Afin de faire un bon choix, il faut qu’on
précise, des le début, les informations échangées entre les différentes fonctions.

Le graphe suivant illustre la décomposition de I’application de traitement d’images 3D

en un ensemble de fonctions ainsi que les données échangées entre elles :

Ident mat

Matricel 4x4
y

LoadASC

Tables de Y
Sin et Cos @Ile

Table des Matricel 4x4

A 4

Table des @tation
Faces _
Matricel 4x4
A 4
Matricel 4x
Transformation
Vecteur Lumiére Couleur RGB

Table des Sommets

A

Normaux

A
Calcul Preparepal

Vecteurs
A

Dessine Obiet

4

Matrice des
couleurs de I’objet

Figure 40: Graphe de dépendance de données de I’application 3D
Comme on le constate dans la figure ci-dessus, la plupart des fonctions de I’application

3D se font d’une maniére séquentielle. Donc, pour executer cette application sur notre

plateforme multiprocesseurs qui contient deux processeurs CPU1 et CPU2, on a proposé de:
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exécuter la fonction « precalc » qui permet de remplir deux tableaux sin et cos, sur le
cpu2 qui va envoyer le résultat de cette fonction au processeur CPUL.

exécuter les fonctions « ident_mat » et « echelle » sur le CPUL.

utiliser le résultat de la fonction « precalc » fourni par le CPU2 pour exécuter la
fonction « rotation » sur le CPU1.

exécuter la fonction «translation» sur CPU1l pour que notre matrice de
transformation globale soit préte en vue de I'appliquer a tous les sommets des
polygones qui construisent notre objet 3D

envoyer la matrice de transformation globale au CPU2.

exécuter la fonction « loadASC » sur les deux processeurs. Le CPU1 va télécharger la
premiere moitié des sommets et des faces qui construisent I’objet, alors que le
deuxiéme processeur téléchargera la deuxiéme moitié.

terminer I’exécution du reste de I’application pour la moitié du nombre de polygones
sur chacun des processeurs (transformation, Normalise, calcul normal, preparepal et
dessine objet).

lorsque le deuxieme processeur termine ses calculs, il envoie un message le signaler
au CPUL.

Les valeurs suivantes représentent les mesures du temps total d’exécution de

I’application 3D sur notre plateforme multiprocesseurs (2cpu) :

3D avec deux processeurs sans rtos : 712248263 tics

3D avec deux processeurs avec rtos : 717162554 tics

Ces mesures sont faites avec I’emploi des quatre coprocesseurs sur chagque processeur :
3D avec deux processeurs avec coprocesseurs sans rtos : 558288052 tics

3D avec deux processeurs avec coprocesseurs avec rtos : 570376431 tics

7-Interprétation
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2cpu +
1cpu lcpu+coproc | lcpu+acc 2 cpu coproc
Total 3505 4676 4254 9020 9153
ALUTS (7%) (9%) (8%) (18%) (18%)
Total 571136 571136 571136 657920 657920
memory bits (22%) (22%) (22%) (25%) (25%)
Occupation
e Cpul:193 Ko | Cpul:190 Ko
memoire 204 Ko 197 Ko 199 Ko : :
sans RTOS Cpu2:161 Ko | Cpu2:168 Ko
Occupation . .
mémoire 339 Ko 332 Ko 336 Ko gpﬂégég Eg gpﬂ%:%if’o
avec RTOS pue pue:
d’;(%r:uptsion 1066889330 | 716576082 | 707680249 | 712248263 | 558288052
sans RTOS (-32,83%) | (-33,66%) | (-33,24%) | (-47,67%)
Temps
d’exécution | 1071095628 720223958 707872710 717162554 570376431
avec RTOS
Temps
d’exécution | 1074048767 719451189 710521551 715106924 560561644
avec modele
Erreur du 0.27% 0.1% 0.37% 0.28% 1.72%
modéle

Tableau 9: Performances des architectures proposées

On constate bien, d’apres le tableau ci-dessus, qu’en utilisant deux processeurs, on aura

le méme gain obtenu qu’avec des accélérateurs ou des coprocesseurs, en terme de temps

d’exécution, mais, en contre partie, on trouvera qu’on a perdu, en terme de surface du circuit,

vue I’augmentation du nombre de ressources utilisées.

Peut-on dire que I’utilisation des systemes multiprocesseurs est inutile en comparant ces

performances avec celles obtenues en utilisant des coprocesseurs ou des accélérateurs ?

D’apres moi, la réponse est « non » pour plusieurs raisons. En premier lieu, on trouve

que les accélérateurs et les coprocesseurs sont spécifiques a des traitements bien précis : donc
ce type d’architecture est non flexible. En second lieu, et d’apres le tableau 9, on constate
gu’on a atteint 50% de gain sur le temps d’exécution en utilisant une architecture qui
comporte deux processeurs et quatre coprocesseurs sur chacun d’eux. Donc, si on a besoin de
la rapidité du traitement, il sera souhaitable de combiner les solutions pour profiter de
I’avantage de chacune d’elles.

Pour conclure, le choix de [I’architecture dépend des contraintes imposées par

I’application tel que la rapidité, la surface, la consommation, la flexibilité etc.
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8- Conclusion

Dans ce chapitre, on a présenté les différentes étapes de conception d’un systéme
monoprocesseur temps reel. Ensuite, on a généré un modele d’estimation de performances des
applications temps réel. Ce modéle a été validé a travers I’application de traitement d’images
3D. On a terminé par la conception d’une plateforme de prototypage des systémes
réactifs/multiprocesseurs reconfigurables dont la validation a été faite par la méme

application.
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Les systemes embarqués sont de plus en plus complexes et [’architecture
multiprocesseurs ne va pas tarder a étre un choix crucial lorsqu’il s’agit d’un systéme puissant
et temps réel.

En plus, et du fait de la présence de fortes contraintes temps réel, de la limitation des
ressources disponibles, tant en mémoire qu’en énergie disponible et donc en puissance de
calcul, mais également de la pression exercée par le marché sur ces produits, I’usage de
systemes d’exploitation temps réel est devenu nécessaire dans les systémes embarqués.

Ces évolutions ont rendu indispensable I’adaptation des systemes d’exploitation temps
réel afin de les rendre compatibles avec les nouvelles architectures des Systéemes Embarqués
d’exploitation pour faciliter la gestion des évenements et gérer la réactivité de ces systemes.

Le travail entrepris dans ce stage de mastere a permis d’étudier de prét les contraintes et
les problémes engendrés par le Prototypage des systemes réactifs/multiprocesseurs sur des
architectures reconfigurables. En premier lieu, des études bibliographiques sur les
architectures des systéemes multiprocesseurs, les systemes d’exploitation temps réel utilisés
dans le cadre des systemes sur puce et les différentes méthodes d’estimation de performance
ont été faites pour explorer le domaine et avoir une idée sur leurs caractéristiques.

En deuxieme lieu, une étude sur I’environnement EXCALIBUR d’ALTERA a été faite
pour explorer et béneficier des services offerts par cet environnement. On a pu proposer apres
ces études une topologie pour une architecture multiprocesseurs et on a généré un modele
d’estimation de performance dans le cadre des systémes sur une puce temps réel.

La partie pratique du travail a visé le test et la validation du modéle d’estimation de
performance proposé et de la plateforme mono/multiprocesseurs a travers I’application de
traitement d’images 3D.

L’ensemble des étapes de ce travail nous a permis, entre autre, de maitriser quasiment
toutes les étapes du flot du Codesign et d’expérimenter I’implantation d’un systéme embarqué
mono/multiprocesseurs temps réel sur une cible de prototypage et cela nous a incités a
dégager plusieurs réflexions sur de futurs travaux :

e La génération automatique du code des applications temps réel.

e La conception et la mise en place d’un superviseur sur les différents maitres de
I’architecture multiprocesseurs élaboreée. En fait, le réle de ce superviseur est
d’affecter les taches sur les maitres du systéme de facon transparente, automatique et

dynamique, etc.
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e Le développement d’un outil d’exploration d’architecture qui peut aider le concepteur
a prendre la décision pour le choix de I’architecture du systéme a partir du code de

I’application.
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