

Ecole Doctorale

 Sciences et Technologies

Thèse de DOCTORAT

ISI

N° d’ordre: 297/2013

République Tunisienne
Ministère de l’Enseignement Supérieur, de

la Recherche Scientifique

Université de Sfax
École Nationale d’Ingénieurs de Sfax

THESE

Présentée à

L’École Nationale d’Ingénieurs de Sfax

En vue de l’obtention du

DOCTORAT

Dans la discipline Génie Electrique
Ingénierie des Systèmes Informatiques

Par

Mossaad BEN AYED

Environnement de Co-Simulation / Emulation
des systèmes Continus/Discrets

Soutenu le 30 Novembre 2013, devant le jury composé de :

M. Mongi LAHIANI (Professeur) Président

M. Mohamed MASMOUDI (Professeur) Rapporteur

M. Carlos VALDERRAMA (Professeur) Rapporteur

M. Ashraf SALEM (Professeur) Examinateur

M. Mohamed ABID (Professeur) Directeur de Thèse

Dédicaces

A mon cher père et ma chère mère

pour toute la peine qu’ils se sont donné pour moi,

pour leur amour et leurs encouragements.

Le plaisir que j’ai de leur dédier ce travail n’arrivera nullement à compenser leurs

sacrifices qu’ils ont consentis pour m’aider à réussir.

A ma femme HibatAllah qui m’a toujours encouragé,

acceptant tout ce temps soustrait à ma présence auprès d’elle,

Tu es une épouse exemplaire, ton affectation, ton aide et ta sympathie

sont l’essence de ma vie et le garent de ma réussite.

A mes belles filles Houda & Mariem

pour le peu de temps que je leur ai consacré pendant mon travail.

Que Dieu vous garde et vous bénisse.

A toutes la famille …

A mes amis…

A tous ceux que j’aime et qui me sont chers, je dédie ce travail

en témoignage de ma profonde gratitude et inestimable respect.

RemerciementRemerciementRemerciementRemerciementssss

Je voudrais exprimer ma gratitude et mes remerciements les plus sincères à l’égard de

toutes les personnes qui m’ont aidé aussi bien par leur soutient moral que par leur savoir et

savoir-faire pour mener à bien ce travail :

Je remercie infiniment mon directeurs de thèse Monsieur Mohamed Abid, professeur à

l’École National d’Ingénieur de Sfax et responsable du laboratoire CES. Il m’a toujours traité

comme un collègue, un ami, un des leurs enfants. Il a été un vrai plaisir de travailler et vivre

avec lui.

Un remerciement particulier à mon co-encadreur Monsieur Faouzi Bouchhima, maitre

assistant à l’Institut Supérieur d’Electronique et de Communication de Sfax pour son

soutient moral et technique. Merci infiniment pour sa disponibilité et pour le temps de

discussion et de réflexion qu’on a passé ensemble.

Mes remerciements s’adressent pareillement à Monsieur Mongi Lahiani, Professeur à

l’École National d’Ingénieur de Sfax, pour l’intérêt qu’il a porté à ce travail en acceptant de

me faire l’honneur de présider le jury de ma soutenance.

J’adresse également mes sincères remerciements à Monsieur Mohamed Masmoudi,

professeur á l’École National d’Ingénieur de Sfax, à Monsieur Carlos Valderrama professeur

á l’Université de Mons Belgique, à Monsieur Ashraf Salem professeur à l’Université de Ain

Shams et directeur d’ingénierie à Mentor Graphics Egypt pour m’avoir fait l’honneur

d’accepter de faire partie de mon jury de soutenance.

Je tiens à remercier très chaleureusement Monsieur Lazhar Ben Hmida et Monsieur

Hatem Ben Taher pour leurs rôles de « consultant linguistique » et Monsieur Ismail Ketata

pour toutes les compétences techniques partagées.

﴿قُـلْ إِن صَلاَتِي وَنُسُكِي وَمَحْيـَايَ وَمَمَاتِي

 للِهِ رَب الْعَالَمِينَ ﴾

 الأنعام 162

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-1-

Table des matières

Liste des figures ... 4

Liste des tableaux .. 7

Glossaire .. 8

INTRODUCTION GENERALE ... 10

I. Problématique et Motivation .. 10

II. Objectifs ... 12

III. Contributions ... 12

IV. Plan de la thèse .. 13

Chapitre 1 : ETAT DE L’ART .. 15

I. Introduction ... 15

II. Principe de modélisation et vérification du modèle continu .. 15

II.1. Modélisation du modèle continu .. 15

II.1.1. Au niveau comportemental .. 15
II.1.2. Au niveau structurel ... 18
II.1.3. Modélisation : exemple continu ... 18

II.2. Modèle de Simulation ... 21

III. Principe de modélisation et vérification du modèle discret ... 22

III.1. Modélisation du modèle discret ... 22
III.2. Modèle de simulation .. 23

IV. Principe de modélisation et vérification du modèle continu/discret 24

IV.1. Approche homogène : conception et simulation ... 24
IV.1.1. Validation analogique / numérique .. 24

IV.1.2. Extension du langage VHDL et Verilog .. 25

IV.1.3. Extension de SystemC ... 26
IV.1.4. Ptolemy II .. 26

IV.1.5. MLdesigner ... 27
IV.1.6. Modelica .. 27

IV.1.7. Outils basés sur l’approche UML ... 27

IV.1.8. Outil basé sur les métriques approximatives .. 28
IV.1.9. Hybride Automata ... 28
IV.1.10. Synthèse ... 29

IV.2. L’approche hétérogène ... 30
IV.2.1. Technique mono-simulateur ... 31
IV.2.2. Technique de co-simulation .. 32

V. Discussion ... 33

VI. Conclusion .. 34

Chapitre 2 : METHODOLOGIE DE MODELISATION ET DE VERIFICATION DES SYSTEMES

MATERIELS/LOGICIELS .. 36

I. Introduction ... 36

II. Modélisation des systèmes mono-puces ... 36

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-2-

III. Les techniques de vérification .. 39
III.1. Vérification formelle .. 40
III.2. Simulation .. 41

III.3. Emulation et prototypage matériel .. 43

III.4. Co-émulation et co-simulation .. 44
III.4.1. Co-émulation en mode vecteurs de test .. 46

III.4.2. Co-émulation avec synchronisation cycle à cycle.. 47
III.4.3. Co-émulation avec synchronisation clairsemée .. 47
III.4.4. Accélération .. 47
III.4.5. Co-émulation transactionnelle ... 48

III.4.6. Emulation avec banc de test intégré .. 48

III.4.7. Emulation avec dépendances extérieures .. 49

IV. Approche de simulation/émulation matériel/logiciel .. 49

V. Moteur de simulation / émulation .. 51
V.1. Communication... 52

V.2. Modèle de synchronisation .. 54
V.2.1. Les modèles de synchronisation simulateur/émulateur .. 55
V.2.2. Les interfaces de synchronisation .. 60

VI. Conclusion .. 61

Chapitre 3 : METHODOLOGIES DE MODELISATION ET DE VERIFICATION POUR LES SYSTEMES

HETEROGENES .. 64

I. Introduction ... 64

II. Simulation matériel/logiciel en boucle des contrôleurs numériques 65

II.1. Travaux antérieurs ... 65
II.1.1. Simulation utilisant une carte électronique .. 65

II.1.2. Simulation matériel en boucle ... 66

II.1.3. Simulation par carte de prototypage en boucle ... 68
II.1.4. Synthèse .. 69

II.2. La Simulation matériel/logiciel en boucle .. 69

II.2.1. Principe .. 70

II.2.2. Logiciels mis en œuvre ... 71
II.2.3. Couche de communication .. 73
II.2.4. Couche de synchronisation .. 75

III. Modèle et environnement de Co-simulation/Emulation des systèmes continu/discret
(CODIS+) ... 78

III.1. L’environnement CODIS ... 78
III.1.1. Présentation .. 78
III.1.2. Principe de l’environnement CODIS : ... 79

III.1.3. Modèle de synchronisation de l’environnement CODIS : .. 81
III.2. Discussion .. 82

III.3. Modèle de synchronisation de l’environnement CODIS+ ... 83

IV. Conclusion .. 85

Chapitre 4 : EXPERIMENTATION : APPLICATIONS ET ENVIRONNEMENTS................................ 87

I. Introduction ... 87

II. Implémentation de l’architecture cible sur FPGA ... 87

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-3-

III. Expérimentation de l’environnement de Simulation/Emulation matériel/logiciel 88
III.1. Application : Système de reconnaissance par empreinte digitale ... 88

III.1.1. Phase de prétraitement ... 88
III.1.2. Phase d’extraction .. 92
III.1.3. Phase de comparaison .. 95
III.1.4. Validation et performance: .. 97

III.2. Validation de la Simulation/Emulation ... 98

III.3. Résultats de la Simulation/Emulation ... 100

IV. Expérimentation de la simulation matériel/logiciel en boucle 100

IV.1. Présentation des applications de test ... 101

IV.1.1. Régulateur de la vitesse d’un moteur à courant continu ... 101
IV.1.2. Système de contrôle en boucle fermée de la vitesse du moteur .. 103

IV.2. Validation de la simulation matériel/logiciel en boucle.. 106
IV.3. Résultats de la simulation matériel/logiciel en boucle .. 108

V. Expérimentation de l’environnement CODIS+ .. 110
V.1. Application : système limiteur de vitesse .. 110

V.2. Implémentation et résultats ... 111

VI. Conclusion .. 112

CONCLUSION GENERALE .. 114

I. Conclusion .. 114

II. Perspectives .. 115

BIBLIOGRAPHIES .. 117

PUBLICATIONS .. 126

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-4-

Liste des figures

Figure 1. Circuit RLC série .. 19

Figure 2. Modélisation par diagramme de blocs (fonction de transfert) 20

Figure 3. Modélisation par diagramme de blocs (bloc primitifs) ... 21

Figure 4. Un exemple du modèle discret .. 23

Figure 5. Le principe du technique mono-simulateur .. 31

Figure 6. Le principe de la co-simulation... 32

Figure 7. Flot de conception d'un système sur puce ... 38

Figure 8. Principe d’émulation ... 44

Figure 9. Méthode de co-simulation et co-émulation .. 45

Figure 10. Principe de Co-émulation en mode vecteurs de test ... 46

Figure 11. Simulation par accélération... 48

Figure 12. Approche de simulation/émulation ... 50

Figure 13. Architecture du moteur de simulation / émulation ... 51

Figure 14. Modèle de communication .. 52

Figure 15. Bus de simulation/émulation .. 56

Figure 16. Forme de synchronisation ... 57

Figure 17. Modèle de synchronisation: schéma 1 .. 57

Figure 18. Modèle de synchronisation: schéma 2 .. 58

Figure 19. Modèle de synchronisation: schéma 3 .. 59

Figure 20. Code de la fonction attente d’une interruption ... 59

Figure 21. Modèle du code de synchronisation .. 59

Figure 22. Modèle de synchronisation: schéma 4 .. 60

Figure 23. Les interfaces de synchronisation ... 61

Figure 24. Architecture de la simulation matériel/logiciel en boucle 70

Figure 25. Les différentes parties du flot de conception de QUARTUS II 72

Figure 26. Cycle de simulation d’une S-fonction .. 74

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-5-

Figure 27. Structure de la S-Fonction synchronisation .. 75

Figure 28. Caractéristique du Convertisseur Analogique-Numérique 76

Figure 29. Forme du paquet ... 76

Figure 30. Schéma de synchronisation de la simulation matériel/logiciel en boucle 77

Figure 31. Principe du Convertisseur Numérique-Analogique .. 77

Figure 32. Schéma global de l’environnement CODIS .. 79

Figure 33. Le modèle de synchronisation pessimiste ... 82

Figure 34. Modèle de synchronisation de l’environnement CODIS+ 83

Figure 35. Modélisation de l’architecture cible ... 88

Figure 36. Chaine de reconnaissance ... 89

Figure 37. Les méthodes de Binarisation ... 91

Figure 38. Squelettisation sans/avec filtrage .. 92

Figure 39. Flot d’apprentissage de l’algorithme DECOC .. 94

Figure 40. Exemples de chaque classe ... 95

Figure 41. Méthode de comparaison .. 96

Figure 42. Angle entre trois minuties ... 97

Figure 43. Rapport de temps d’exécution .. 98

Figure 44. Implémentation de l’application ... 99

Figure 45. Schéma équivalent d’un moteur à courant continu ... 101

Figure 46. Diagramme de bloc d’un régulateur de vitesse d’un moteur continu 103

Figure 47. Implémentation du système en Simulink .. 103

Figure 48. Modèle en boucle fermé d’un contrôleur de la vitesse d’un moteur 106

Figure 49. Modèle bloc de l’application 1 basé sur la simulation HSIL 107

Figure 50. Modèle bloc de l’application 2 basé sur la simulation HSIL 108

Figure 51. Environnement Simulink/NIOSII pour la simulation HSIL 108

Figure 52. Les signaux critiques utilisés pour la vérification de l’application 1.................... 109

Figure 53. Les signaux critiques utilisés pour la vérification de l’application 2.................... 110

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-6-

Figure 54. Graphe fonctionnel du système ... 110

Figure 55. Implémentation de l’application ... 112

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-7-

Liste des tableaux

Tableau 1 : Avantages / inconvénients des outils basés sur l’approche homogène 30

Tableau 2: Vitesse de transfert ... 52

Tableau 3 : Comparaison entre différentes méthodes de reconnaissance par empreinte digitale 98

Tableau 4: Temps de simulation de l’application .. 100

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-8-

Glossaire

API Application Programming Interface

ASIC Application Specific Integrated Circuit

CAO Conception Assistée par Ordinateur

CAN Convertisseur Analogique Nnumérique

CNA Convertisseur Numérique Analogique

CSP Communicating Sequential Processes

CODIS Continuous DIscrete Simulation

CPLD Complex Programmable Logic Device

DC Device Controller

DECOC Data-driven Error Correcting Output Codes

DSP Digital Signal Processor

ECOC Error Correcting Output Codes

EDOs Ordinary Differential Equations

FAR False Acceptance Rate

FIFO First In First Out

FSM Finite State Machine

FPGA Field Programmable Gate Array

FRR False Rejection Rate

GUI Graphical User Interface

HC Host Controller

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-9-

HDL Hardware Description Languages

HIL Hardware In the Loop

HSIL Hardware Software In the Loop

IEEE Institute of Electrical and Electronics Engineers

ISS Instruction Set Simulator

IP Intellectual Property

LSB Least Significant Bit

OS Operating System

OTG On-The-Go

SceMi Standard CoEmulation Modeling Interface

SDF Synchronous Dataflow

TLM Transaction Layer Modeling

PID Proportional Integral Derivative

RISC Reduced Instruction Set Computer

RTL Regiter Transfer Level

VHDL Very Hardware Description Language

VLSI Very Large Scale Integration

UML Unified Modeling Language

USB Universel Serial Bus

WDK Windows Driver Kit

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-10-

INTRODUCTION GENERALE

I. Problématique et Motivation

Dans ces dernières années, la conception des systèmes automatiques-embarqués est

devenue de plus en plus complexe. Cette complexité qui est due à l’intégration des

composants hétérogènes à un niveau élevé d’abstraction nécessite un nouveau cadre

conceptuel pour l’adaptation entre les composants hétérogènes ainsi que des nouvelles

méthodologies pour la vérification et la validation. L’hétérogénéité des composants est

devenue une nécessité à cause de l’utilisation des modèles en temps continu ainsi que des

modèles à événements discrets dans un modèle global, donnant une vue d’ensemble du

système. Dans la littérature, plusieurs systèmes hétérogènes (ITRS, 2003), (Senturia S., 1998),

(Jie L., 2004) ont été développés. Ce travail s’inscrit dans le domaine de la conception multi-

langages des systèmes hétérogènes.

 Étant donné l’hétérogénéité des concepts manipulés par ces deux types de modèles, la

validation globale demande un environnement spécialisé capable de vérifier le système en

cours de développement. En respectant la facilité de la modélisation et les sémantiques

nécessaires de chaque modèle (continu et discret), un environnement de co-vérification

hétérogène s’impose. Cet environnement de co-vérification met en place des interfaces de

simulation / émulation et des modèles de synchronisation entre simulateur-émulateur capable

de simuler le modèle continu et le modèle discret.

Ces systèmes hétérogènes ont créé un besoin pour les outils de CAO (Conception

Assistée par Ordinateur) capables de vérifier et de valider le comportement du système ainsi

conçu. Les environnements de co-vérification éliminent la détection tardive des erreurs et

réduisent le temps de conception. Il est donc nécessaire de définir un modèle d’exécution

globale dont les éléments de base sont (Bouchhima F., 2005), (Nicolescu G., 2002):

� Les modèles des composants du système hétérogène qui sont décrits en temps

continu ou bien dans le domaine à événement discret.

� Les interfaces de co-vérification qui réalisent l’adaptation de chaque modèle au

bus de co-vérification, l’adaptation des différents protocoles de communication

et la synchronisation entre les deux modèles.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-11-

� Le bus de co-vérification qui est responsable de l’interprétation des

interconnections entre les deux modèles compose le modèle global.

Les aspects qui rendent difficile la modélisation et la simulation des systèmes continus

et discrets sont (Bouchhima F., 2007):

� Pour le modèle discret, le temps est une notion globale pour tous les modules du

système, il avance discrètement en passant par les instants discrets définis par les

temps de notification des événements discrets. Pour le modèle continu le temps

est une variable globale qui avance par le pas d’intégration (fixe ou variable) et

qui intervient dans le calcul des signaux.

� Pour le modèle discret, les processus sont sensibles aux événements alors que,

pour le modèle continu, les processus sont exécutés à chaque pas d’intégration.

� Pour le modèle discret, la communication est réalisée par des ensembles

d’événements alors que pour le modèle continu, la communication est réalisée

par des signaux continus (un signal continu possède une valeur à tout instant).

� Chaque modèle doit être capable de détecter, de localiser en temps et de réagir

aux événements envoyés par l’autre modèle.

Les techniques de vérification pour le cas des systèmes matériels/logiciels sont déjà

matures grâce au nombre de travaux qui sont impliqués (Ismail T.B., 1994), (Valderrama C.A,

1995), (Abid M., 1998).

Cependant, les techniques de vérification sont faiblement exploitées pour le cas des

systèmes continus/discrets à cause des difficultés de mise en place des modèles de co-

simulation. L’environnement CODIS (Continuous DIscrete Simulation), est le fruit de

plusieurs travaux de recherches dans cet axe (Bouchhima F., 2005). CODIS se base en fait sur

la synchronisation entre un simulateur continu et un simulateur discret. Cet environnement

supporte deux modes de synchronisations : (1) synchronisation complète et (2)

synchronisation d’évènements prédictibles. Dans le premier mode, l’environnement CODIS

supporte la modélisation conjointe matérielle/logicielle en se basant sur un simulateur de jeux

d’instructions (ISS) pour la simulation des applications logicielles. Dans ce cas, la simulation

de la partie discrète est lente vue l’utilisation de l’ISS. Dans le deuxième mode, la

modélisation de la partie discrète est purement matérielle. En fait, ce mode diminue le temps

de simulation mais ne supporte pas la modélisation matérielle/logicielle.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-12-

II. Objectifs

Cette thèse présente une extension de l’environnement CODIS (Bouchhima F., 2007)

afin de supporter la modélisation matériel/logiciel pour le modèle discret et d’accélérer la

vitesse de la simulation d’autre part.

L’environnement cible doit être capable, par co-simulation/émulation, de surmonter le

problème de la modélisation hétérogène et multi-niveau des contrôleurs numériques d’une

part et de diminuer le temps de simulation en utilisant une carte FPGA à base d’architecture

cible d’autre part. L’accélération de la simulation présente un point clé qui impose la création

d’interfaces de synchronisation et de communication entre l’environnement de co-simulation

et la carte de prototypage FPGA.

Les objectifs de la thèse sont organisés comme suit :

� Proposer un modèle et un environnement de co-simulation multi niveau basé sur

les techniques de simulation et d’émulation pour le cas des systèmes

matériels/logiciels.

� Proposer un modèle et un environnement de simulation Matériel/Logiciel en

boucle (″Hardware Software In the Loop″) pour les systèmes de contrôles.

� Proposer une extension du modèle et de l’environnement CODIS+ assurant la

synchronisation entre le simulateur continu d’une part et le simulateur SystemC

et une carte FPGA pour le modèle discret d’autre part.

� Valider l’environnement de vérification à travers des exemples d’applications :

un système de reconnaissance par empreinte digitale, un régulateur de la vitesse

d’un moteur à courant continu, un système de contrôle en boucle fermée de la

vitesse d’un moteur et un système limiteur de vitesse pour voiture.

III. Contributions

 Ce travail présente cinq contributions :

� Une étude des environnements de vérifications continus et discrets pour les

différents niveaux d’abstraction.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-13-

� Modélisation d’un environnement de co-simulation matériels/logiciels multi

niveau tout en respectant à la fois l’accélération du temps de simulation et la

description dans le haut niveau. Ainsi, un modèle de communication et de

synchronisation entre le simulateur SystemC et une carte FPGA à base

d’architecture cible est implémenté.

� Modélisation d’une interface générique entre le simulateur Simulink et la carte

FPGA à base d’architecture cible respectant la simulation Matériel/Logiciel en

boucle.

� Modélisation d’un moteur de synchronisation qui interface et adapte le simulateur

du modèle continu avec le simulateur/émulateur du modèle discret.

L’environnement ainsi conçu est nommé CODIS+. Le but du moteur de

synchronisation est de gérer le simulateur Simulink du domaine continu, le

simulateur SystemC et l’architecture cible du domaine discret.

� Développer un système de reconnaissance par empreinte digitale pour l’utiliser

lors de la validation des environnements.

IV. Plan de la thèse

Ce rapport est composé de 4 chapitres. Le premier est consacré à une étude

bibliographique sur les systèmes continus, discrets et hétérogènes. Le deuxième

présente les différents environnements de vérifications ainsi la méthodologie de co-

simulation matériel/logiciel multi niveau. Dans le troisième chapitre, nous proposons

la méthodologie de vérification des systèmes continus/discrets. Dans ce dernier, les

interfaces de communication et les schémas de synchronisation sont décrits. Enfin

nous présentons dans le chapitre 4, à travers plusieurs applications, la validation de

l’environnement de co-simulation matériel/logiciel multi niveau, la simulation

matériel/logiciel en boucle et l’environnement de co-simulation/émulation

continu/discret (CODIS+).

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-14-

Chapitre 1 : ETAT DE L’ART .. 15

I. Introduction ... 15

II. Principe de modélisation et vérification du modèle continu .. 15

II.1. Modélisation du modèle continu .. 15

II.1.1. Au niveau comportemental .. 15
II.1.2. Au niveau structurel ... 18
II.1.3. Modélisation : exemple continu ... 18

II.2. Modèle de Simulation ... 21

III. Principe de modélisation et vérification du modèle discret ... 22

III.1. Modélisation du modèle discret ... 22
III.2. Modèle de simulation .. 23

IV. Principe de modélisation et vérification du modèle continu/discret 24

IV.1. Approche homogène : conception et simulation ... 24
IV.1.1. Validation analogique / numérique .. 24

IV.1.2. Extension du langage VHDL et Verilog .. 25

IV.1.3. Extension de SystemC ... 26
IV.1.4. Ptolemy II .. 26

IV.1.5. MLdesigner ... 27
IV.1.6. Modelica .. 27

IV.1.7. Outils basés sur l’approche UML ... 27

IV.1.8. Outil basé sur les métriques approximatives .. 28
IV.1.9. Hybride Automata ... 28
IV.1.10. Synthèse ... 29

IV.2. L’approche hétérogène ... 30
IV.2.1. Technique mono-simulateur ... 31
IV.2.2. Technique de co-simulation .. 32

V. Discussion ... 33

VI. Conclusion .. 34

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-15-

Chapitre 1 : ETAT DE L’ART

I. Introduction

Compte tenu de la diversité et de la complexité des systèmes, plusieurs méthodes de

descriptions sont étudiées dans la littérature. Chaque méthode dépend de la nature des

systèmes à concevoir. En fait, plusieurs outils et environnements de modélisation et de

vérification existent pour les systèmes continus et pour les systèmes discrets. En contre partie,

les outils destinés aux systèmes continus/discrets souffrent encore de plusieurs lacunes. Le

temps de simulation, la modélisation dans différents niveaux d’abstractions et le temps de

mise en marché sont principalement les insuffisances présentes dans les environnements

supportant les systèmes continus/discrets.

Dans ce chapitre, nous présentons tout d’abord une description des méthodes de

modélisations et de simulations du modèle continu. Un exemple illustre la modélisation au

niveau comportementale et fonctionnelle. Ensuite une description du principe de modélisation

des systèmes discrets. Finalement une étude sur les méthodes de descriptions des systèmes

continus/discrets basées sur l’approche homogène et hétérogène est détaillée. Cette dernière

section cite les différentes caractéristiques des outils présents en soulignant les avantages et

les inconvénients de chaque méthode.

II. Principe de modélisation et vérification du modèle continu

Tout modèle continu se base sur la résolution des équations différentielles ordinaires

(EDOs) (Ordinary Differential Equations). Ainsi, les diagrammes de blocs utilisent ses EDOs

pour la modélisation des systèmes. Une étude détaillée est présentée dans cette section.

II.1. Modélisation du modèle continu

Par définition, les systèmes continus couvrent tous les systèmes dynamiques à variables

continus dans le temps. Leur modélisation se fait au niveau comportemental ou fonctionnel.

II.1.1. Au niveau comportemental

Le système continu est modélisé dans son ensemble de fonctionnement. Le modèle est

décrit, dans ce cas, par des EDOs. Les équations utilisées sont des équations différentielles

d'ordre 1 données par l’équation (1). Pour les EDOs d’ordre supérieur peuvent être réduites à

un système d’équations différentielles d’ordre 1. Bien que celles supérieur à 1 puissent être

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-16-

parfois résolues directement, très peu d’algorithmes sont disponibles pour le faire (Gupta

G.K., 1985).

)1()(),,(00 vecteurunestyoùyxyyxf
dx

dy
y ===
•

L’équation (1) est appelée EDO explicite. Il existe une autre forme appelée EDO

complètement implicite donnée par la forme suivante

)2(0),,(=
•
yyxf

La plupart des EDOs complètement implicites peuvent être écrites sous la forme

suivante (Gupta G.K., 1985)

)3(),(matriceuneestMoùyxMy =
•

La forme (3) est appelée EDO linéairement implicite.

Dans le cas des systèmes continus l’équation (1) devient:

)2.4(),,(

)1.4()(),,,(00

tuxgy

xtxtuxf
dy

dx
x

=

===
•

Où, t représente le temps, u représente le vecteur d'entrée, x représente le vecteur des

variables d'états et y représente le vecteur de sortie. Ainsi, un espace d'états complètement

spécifié par les équations (4.1) et (4.2) est obtenu.

L'équation (4.1) représente l'ensemble des équations d'états avec une condition initiale,

et l'équation (4.2) donne l'ensemble des équations de sortie. Assumons que nous avons n

variables d'états, m variables d'entrées et r variables de sorties, ces équations peuvent être

écrites sous la forme scalaire suivante :

Il y aura n équations d'états

)3.4(

)(),),(.,),........(),(,),........((

.

.

)(),),(.,),........(),(,),........((

0011

10011111












==

==

•

•

nnmnnn

mn

xtxttututxtxfx

xtxttututxtxfx

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-17-

et r équations de sortie

)4.4(

)),(.,),........(),(,),........((

.

.

)),(.,),........(),(,),........((

11

1111











=

=

ttututxtxgy

ttututxtxgy

mnnr

mn

La linéarité :

La notion de linéarité est fondamentale dans les domaines scientifiques et les domaines

d'ingénieur. La nature des fonctions f et g, donnée par les équations (4.1) et (4.2), sert à fixer

la nature du système. Ce dernier est appelé linéaire si ces deux fonctions sont toutes les deux

linéaires. Dans ce cas, les équations (4.1) et (4.2) se réduisent à :

)2.5()()()()()(

)1.5()()()()()(

tutDtxtCty

tutBtxtAtx

+=

+=
•

•

A(t) (n,n), B(t) (n,m), C(t) (r,n) et D(t)(r,m) sont des matrices où n, m et r sont les

mêmes variables données ci-dessus. La classe des systèmes linéaires est en effet restreinte.

Par exemple, une simple fonction comme f(x) = xn (n > 1 est un entier) est non linéaire.

L'invariance par rapport au temps :

Une autre propriété est l'invariance du modèle du système par rapport au temps. Dans le

cas où les fonctions f et g ne dépendent pas explicitement du temps, le système est dit

invariant par rapport au temps, dans ce cas les équations (4.1) et (4.2) se transforment en :

)2.6())(),(()(

)1.6())(),(()(

tutxgty

tutxftx

=

=
•

•

En assumant la propriété de l'invariance par rapport au temps, nous pouvons restreindre

la classe des systèmes linéaires en une autre classe où les matrices A(t), B(t), C(t) et D(t) sont

constantes, et on obtient :

)2.7(

)1.7(

DuCxy

BuAxx

+=
+=

•

Les équations différentielles-algébriques :

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-18-

Si l’ensemble des équations qui décrivent le système continu sont composées

d’équations algébriques et différentielles, elles sont nommées donc équations différentielles-

algébriques et données par (Gupta G.K., 1985)

0),,(

)8()(,0),,,(

2

001

=
==

•

zyxF

yxyyzyxF

Où F1 est un ensemble de N équations et F2 de M équations.

Il est indéniable que la modélisation au niveau comportemental s’avère une tâche

pénible pour les concepteurs. C’est pourquoi la modélisation au niveau fonctionnel évolue

rapidement.

II.1.2. Au niveau structurel

Le système continu est modélisé par un ensemble de fonctions, prenons par exemple :

un régulateur PID. Dans ce cas, le modèle est décrit par un diagramme de blocs prédéfinis où

chaque bloc est caractérisé par un ensemble de relations, linéaires ou non linéaires, entre les

variables d’entrées et les variables de sorties, citons par exemple: sommation, fonction de

transfert, intégration, etc. Les blocs sont interconnectés par des chemins orientés représentant

des signaux. A ce niveau d’abstraction et à partir des blocs prédéfinis, il est possible de

construire des modèles et des sous modules pour des systèmes dynamiques complexes.

Actuellement, grâce à des blocs spéciaux, les EDOs modélisant un système continu au

niveau comportemental peuvent être programmées et connectées aux autres blocs du

diagramme. Ainsi, le formalisme du diagramme de blocs est le plus adapté puisqu’il supporte

aussi le formalisme des EDOs. En fait, c’est plus facile de modéliser un système continu en

utilisant le diagramme de blocs que par la résolution des EDOs.

II.1.3. Modélisation : exemple continu

A travers cet exemple nous présentons le formalisme de diagramme de blocs. Pour une

meilleure explication, nous utilisons aussi le formalisme des EDOs où nous expliquons la

technique de réduction d’ordre. Prenons l’exemple du circuit RLC représenté par la figure 1.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets

 Modélisation comportementale

Le comportement de ce circuit est décrit par l'équation différentielle

issues de la loi des mailles

eV =

Pour résoudre cette équation numériquement, nous aurons besoin de la réécrire sous un

système équivalant d'équations

En combinant les deux équations (9) et (10)

différentiel d’ordre 1 suivant :













=
=

=
•

•

1

2

21

/1

yV

LCy

yy

s

Par la même démarche donnée par (10) et (11), toute

supérieur à 1, peut être réécrite sous un système équivale

1. Le même circuit peut être facilement décrit par l'espace d'états (forme (7.1) et (7.2)) donné

par :

mulation / Emulation des systèmes Continus / Discrets

-19-

Figure 1. Circuit RLC série

Modélisation comportementale

comportement de ce circuit est décrit par l'équation différentielle

de la loi des mailles :

2

s
ss V

dt

dV
RC

dt

Vd
LC ++

Pour résoudre cette équation numériquement, nous aurons besoin de la réécrire sous un

équivalant d'équations différentielles d'ordre 1. Nous supposons :

s

s

Vy

Vy
•

=

=

2

1)10(

En combinant les deux équations (9) et (10), on obtient le système d’équations

suivant :

−− 12)(yyRCVLC e

Par la même démarche donnée par (10) et (11), toute équation différentielle d'ordre

éécrite sous un système équivalent d'équations différentielles d'ordre

Le même circuit peut être facilement décrit par l'espace d'états (forme (7.1) et (7.2)) donné

 Mossaad Ben Ayed

comportement de ce circuit est décrit par l'équation différentielle (9) d'ordre deux

)9(

Pour résoudre cette équation numériquement, nous aurons besoin de la réécrire sous un

on obtient le système d’équations

)11(

équation différentielle d'ordre

nt d'équations différentielles d'ordre

Le même circuit peut être facilement décrit par l'espace d'états (forme (7.1) et (7.2)) donné

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-20-

étatsdiableslesntreprésenteIxetVxoù
x

x
V

V
Lx

x

LRL

C

x

x

es

e

'var,

)12(
/1

0

//1

/10

21
2

1

2

1

2

1

==







=









+

















−−
=















•

•

Nous pouvons remarquer que les systèmes (11) et (12) sont équivalents, ainsi ils

peuvent être facilement programmés en utilisant un éditeur de texte ou modélisés par un

diagramme de blocs.

Modélisation fonctionnelle

Le diagramme de blocs : La figure 2 montre le même circuit modélisé par un seul bloc

qui décrit sa fonction de transfert donnée par l’équation (13)

Figure 2. Modélisation par diagramme de blocs (fonction de transfert)

)13(
1

1

)(

)(
)(2 ++

==
RCsLCssV

sV
sH

e

s

En utilisant (12), le circuit peut être décrit par un diagramme de blocs, en utilisant des

blocs prédéfinis appelés primitifs, qui sont l’intégrateur, l’additionneur et le gain où

l’intégrateur représente le bloc principal (Callier F.M., 1991), voir figure 3.

1 1 1.².

1

++ sRCsLC

Fonction de transfert

Vs Ve

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-21-

Figure 3. Modélisation par diagramme de blocs (bloc primitifs)

Il est clair, à travers cet exemple, que la modélisation des systèmes continus par le

diagramme de blocs est plus simple. Dans la section suivante nous introduisons le modèle de

simulation des systèmes continus.

II.2. Modèle de Simulation

La simulation des systèmes continus se base sur la résolution numérique du système

d’équations différentielles et algébriques. Plusieurs algorithmes de résolutions essaient de

résoudre les EDOs en un temps le plus court possible afin de pouvoir traiter des problèmes de

grande taille. Une large classe d'algorithmes discrétisent le temps en un ensemble d'instants

discrets croissants et calculent numériquement les variables du modèle à ces instants. Un pas

d’intégration correspond à l’intervalle entre deux instants consécutifs. Ce pas peut être fixe ou

variable.

Durant la simulation, le temps avance par le pas d'intégration. À chaque pas, les blocs

qui modélisent le système continu sont exécutés (résolus) et l'ensemble des états continus sont

mis à jour. L’ordre de résolution de ces blocs est donné par la règle de dépendance des

données.

La précision, la stabilité et la continuité des signaux sont les trois critères responsables

aux choix du pas d’intégration. Lorsque la précision est le seul critère à prendre en compte

(c’est-à-dire le système est à la fois stable et continu), on peut utiliser un algorithme à pas

fixe. En contrepartie, l'utilisation d'un algorithme à pas variable augmente la vitesse de la

simulation, puisque l'algorithme réduit le pas quand le modèle évolue rapidement et vice

versa. Ceci évite tous les calculs non nécessaires et réduit le nombre total des pas

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-22-

d'intégration. Bien que le calcul de la largeur du pas d'intégration ajoute un temps de calcul

additionnel à chaque pas, l’impact positif de la réduction du nombre total de ces pas

d'intégration s’impose.

Lorsque le modèle continu présente des discontinuités et/ou des problèmes de stabilité

alors il faut utiliser :

• Des algorithmes à pas variable (Gear C.W., 1984), pour surmonter les problèmes de

discontinuités observés au niveau des solutions, surtout lorsqu'il interagit avec un

environnement discret où les signaux changent leurs valeurs d’une manière discontinue. Dans

le cas de discontinuité, l'algorithme recalcule les solutions en raffinant les pas d'intégration

autour de ces points de discontinuité.

• Des algorithmes spécifiques à pas variable pour résoudre les problèmes dû aux

méthodes numériques pour la résolution des équations différences qui sont numériquement

instable. Ces problèmes sont appelés les problèmes stiff qui apparaissent surtout dans les

modèles non linaires dans le cas des systèmes mécaniques, électriques, etc. Ces algorithmes

sont conçus pour la résolution des problèmes stiff, car dans leur cas le pas d'intégration est

contrôlé par précision plutôt que par stabilité (Gupta G.K., 1985).

Le problème stiff apparait lorsque les variables d’états évoluent d'une manière très

rapide sur un intervalle de temps très court par rapport au pas d'intégration. Ceci peut être

observé au niveau de la matrice Jacobine (Sameh A.H, 1971) qui peut avoir des valeurs

propres qui sont négatives (ou complexes avec des parties réelles négatives) avec des modules

largement supérieurs par comparaison aux autres valeurs propres. Cela implique que des

composants de la solution vont dégrader très vite et deviennent non significatifs. Alors,

l'algorithme doit changer le pas d'intégration sans tenir compte des valeurs propres liées à ces

solutions.

III. Principe de modélisation et vérification du modèle discret

Nous présentons ici les concepts de base utilisés pour la modélisation et la vérification

des systèmes discrets.

III.1. Modélisation du modèle discret

Par définition les systèmes discrets sont tous les systèmes numériques ou d’une manière

plus générale tous les systèmes à événements discrets. Leurs comportements sont souvent

décrits par des processus concurrents en utilisant des expressions booléennes, logiques et/ou

arithmétiques selon le niveau d’abstraction. Dans le niveau RTL (Regiter Transfer Level), ces

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-23-

processus sont connectés par des signaux à travers leurs ports d'entrée/sortie (figure 4). Ces

signaux qui représentent un support physique, assurent la communication et l’échange des

évènements entre les processus. Un événement représenté par le couple (valeur du signal,

temps d’occurrence) est un événement dû à un changement de la valeur d’un signal à un

instant précis. Un événement pur est un événement qui se représente par son temps

d’occurrence seulement. L’exécution d’un processus est déclenchée si un évènement dans sa

liste de sensibilité est aussi déclenché. Par définition, une liste de sensibilité contient une liste

de signaux qui réveillent le processus lors d'un changement d'un des signaux. Si plusieurs

processus sont sensibles à un ou à plusieurs événements qui ont le même temps d’occurrence

alors, dans les deux cas, ces processus doivent être exécutés en parallèle. Le parallélisme est

un aspect qui est assuré par le modèle de simulation mais qui doit être pris en compte par le

modèle. Le problème est dû à l’exécution à partir d’une machine séquentielle, capable

d’exécuter une instruction à la fois, toutefois cette machine ne peut pas paralléliser réellement

les différents processus en même temps. La solution repose sur une idée très simple mais

efficace : le processus exécuté ne doit pas changer les valeurs de sortie des processus jusqu’à

la fin de l’exécution des autres processus qui lui sont en parallèle. Ainsi, l’ordre d’exécution

de ces processus n’a plus d’importance et tout se passe comme s’ils s’exécutaient en parallèle.

Pour parvenir à ce résultat, il faut que les signaux d'un processus conservent leurs valeurs

jusqu’à ce que tous ces processus aient fini leur exécution (Valderrama C.A., 1995).

Figure 4. Un exemple du modèle discret

III.2. Modèle de simulation

La simulation dans le domaine discret désigne la vérification d’un modèle qui évolue

dans le temps à travers des variables (grandeurs caractéristiques des systèmes) qui ne

changent qu’en nombre fini dans le temps. Ces points représentent les instants où se déroulent

les événements (changement des variables). La simulation prend en compte les tâches actives

Module
B1

Module
B2

Module A Module B

P1 P1

P1

P2

P2 P2

Signaux

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-24-

à des instants précis. Toute une description des différents types de simulation est décrite dans

le chapitre 2.

IV. Principe de modélisation et vérification du modèle

continu/discret

A l'heure actuelle, les recherches concernant les méthodes, les outils formels relatifs à

l'analyse du comportement des systèmes hétérogènes et à la synthèse de leurs lois de

commande en sont encore à leur début. La simulation reste donc un passage nécessaire pour la

validation du fonctionnement de ces systèmes hybrides. Vu l’hétérogénéité des modèles à

valider, la simulation n’est pas une tâche facile. Pour surmonter cette difficulté, deux

approches sont proposées : l’approche homogène et l’approche hétérogène.

IV.1. Approche homogène : conception et simulation

Cette approche consiste à utiliser un seul langage pour la spécification complète du

fonctionnement du système. Cela suppose qu’il possède une sémantique consistante et assez

riche pour qu’il puisse supporter l’hétérogénéité des modules continus/discrets.

Une première solution consiste à étendre les langages existants, en modifiant le noyau

de simulation afin de supporter l’hétérogénéité. L’avantage de cette solution est que le style

d’écriture est formalisé de façon à faciliter l’analyse formelle et la construction de nouveaux

outils. L’inconvénient majeur réside dans la difficulté de la construction de nouvelles

bibliothèques, mécanismes et formalismes qui demandent un temps d’apprentissage important

pour les nouveaux langages.

En citant les différents travaux et outils, on a essayé de les classifier selon leurs points

communs. Plusieurs travaux et outils portant sur l’extension des langages matériels étaient

proposés pour enrichir ou améliorer leur capacité descriptive et simulatrice. Ces extensions

étaient pour le domaine continu et pour d’autres domaines discrets plus spécifiques.

IV.1.1. Validation analogique / numérique

Ce type d’outils est le sujet de plusieurs travaux, citant Diana (De Man H.J., 1980),

Splice (Newton A.R., 1978), Motis (Chen C.F, 1984) Samson (Sakallah K.A., 1985), Spice

(Banzhaf W., 1989). Ces outils se basent sur la combinaison de deux algorithmes dans le

noyau de simulation : algorithme de résolution des EDOs et algorithme de gestion des

événements discrets. L’important dans ces outils est la simulation rapide de la partie

numérique. Mais malheureusement, ces outils supportent seulement le niveau transistor pour

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-25-

la modélisation, augmente le temps de mise en marché et rend pénible la phase de

modélisation.

D’autre travaux comme Mode Circuit Simulator (Odryna P., 1986), MAST de SABER

(Getreu I.E., 1989), ALFA (Kazmierski T.J., 1992), S++SDL (Brown A.D., 1992), Verilog-A

(Fitzpatrick F., 1998) et HDL-A (Pabst D., 1995) modélisent les modèles analogiques à plus

haut niveau (macro-modèles). Mais de même que précédemment, les modèles analogiques

restent à un niveau beaucoup plus bas.

IV.1.2. Extension du langage VHDL et Verilog

Ce type d’outils utilisent deux noyaux différents : un pour l’analogique et l’autre pour

les événements discrets, pour simuler le comportement global du système. Les outils comme

VHDL-AMS (Std VHDL-AMS, 1999) développé par le standard IEEE 1076.1, (Drager S.L.,

1998), (Pêcheux F., 2005) et Verilog-AMS développé par le co-standard IEEE 1364 (Frey P.,

2000), (Pêcheux F., 2005) assurent la validation des systèmes hétérogènes à différents

niveaux d’abstractions. Une autre approche (Pichon F., 1995), est fondée à la fois sur une

description par fonctions de transfert et une approximation des signaux analogiques par PWL

(Piece Wise Liner). La même technique est employée dans (Long D.I., 1997) pour étendre

VHDL. Mais la conception des circuits analogiques et mixtes reste à un niveau beaucoup plus

bas que celui des circuits numériques. Ces langages n’offrent pas un niveau d’abstraction

suffisamment élevé (Vachoux A., 2003) et souhaitable pour la simulation des systèmes sur

puce intégrant du matériel numérique, du logiciel et d’autres composants non électriques et ne

supportent pas la simulation conjointe des systèmes matériels / logiciels. Ces outils présentent

aussi une limitation au niveau interaction entre les modules continus et discrets, ce qui oblige

l’utilisateur à créer d’une manière explicite les interfaces nécessaires. De plus, le temps de

passage du sous-modèle continu au sous-modèle discret et vice versa est toujours difficile à

repérer. Ces langages sont toujours considérés comme souhaitables pour la modélisation des

systèmes mixtes « big-D-little-A » c'est-à-dire pour des systèmes numériques intégrant une

faible composante analogique (Antao B.A., 1996). En contre partie, ces outils utilisent un seul

solveur pour la résolution des systèmes d’équations algébriques et différentielles ce qui rend

nécessaire d’indiquer dans le code l’emplacement où le modèle change de fonctionnement

c'est-à-dire que la discontinuité du modèle n’est pas résolue automatiquement par le

simulateur.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-26-

IV.1.3. Extension de SystemC

Cette extension se base sur la construction d’une nouvelle bibliothèque et des solveurs

pour la résolution des équations différentielles et algébriques SystemC-AMS (Vachoux A.,

2003), SystemC-A (Al-Junaid H., 2005), (Al-Junaid H., 2004). Dans (Vachoux A., 2003), les

auteurs indiquent la possibilité d’utilisation d’un mécanisme de synchronisation pour

l’intégration d’autres simulateurs et solveur pour des systèmes assez complexes et pour des

niveaux d’abstraction qui ne sont pas couverts par SystemC-AMS, ce qui rend leur approche

intéressante. Dans (Bonnerud T.E., 2001), d’autres travaux sont proposés pour étendre

SystemC par classes, pour la simulation mixte d’un convertisseur pipeline

analogique/numérique. Dans (Patel D.H., 2004), les auteurs proposent l’extension des

capacités de description de SystemC en ajoutant un nombre de noyaux spécifiques à quelques

domaines discrets qui sont : le domaine de Flux de données synchrones (SDF: Synchronous

Dataflow), le domaine CSP (Communicating Sequential Processes) et le domaine de Machine

d’états finis (FSM: Finite State Machine).

Cette extension permet d’étendre la modélisation et la simulation des systèmes

continus. La simulation devient plus performante spécialement dans le domaine de

communication et de traitement de signal (Vachoux A., 2003). Les travaux cités montrent par

quelques exemples que la précision de SystemC a été améliorée et les performances de la

simulation ont augmenté quand les noyaux spécifiques ont été utilisés. Les auteurs créent

aussi un ensemble d’interfaces de programmation (API : Application Programming Interface)

pour permettre aux développeurs d’ajouter d’autres noyaux spécifiques à d’autre domaines de

modélisation. Mais la simulation du modèle continu reste moins puissante au niveau de la

précision de la simulation et de la disponibilité des bibliothèques par rapport à

l’environnement complet que Matlab / Simulink (Matlab/Simulink, 2012) l’offre d’une part,

et un manque de solveurs adéquats pour les différents domaines continus (mécanique,

hydraulique, robotique,…) d’autre part.

IV.1.4. Ptolemy II

Ptolemy (Eker J., 2003) est développé au sein de l’université de Berkeley. Il utilise un

environnement et un langage qui sont unifiés. C’est une approche hétérogène de point de vue

composition disjointe des modèles de calcul appelé actors. Il utilise des directors qui

implémentent les modèles de calcul et qui permette d’établir le style de communication entre

les actors et de fixer leur ordre d’exécution. La composition des modèles de calcul dans

Ptolemy II assure la spécification des systèmes hétérogènes multi-disciplines et multi-

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-27-

domaines. Cet outil est à source ouverte pour les développeurs et indépendant des plateformes

grâce à la technologie Java. Les inconvénients de cet outil résident dans le temps

d’apprentissage important et le non utilisation des bibliothèques (en particulier les composants

matériels comme les processeurs et les accélérateurs) et IPs conçu pour chaque modèle.

IV.1.5. MLdesigner

MLdesigner (Mission Level designer) (Schorcht G., 2003) se base sur l’approche

Ptolemy. C’est une plateforme unifiée, dédiée à la modélisation (fonctionnelle et

architecturale) et à la simulation au niveau système. L’environnement établit une connexion

par appel de service (callback) avec SatLab (Schorcht G., 2003) pour assurer des calculs de

trajectoire ou des analyses pour les systèmes de navigation et de communication. L’utilisateur

peut construire son modèle en utilisant une interface graphique proche de celle du Simulink

(Matlab/Simulink, 2012). Les blocs fonctionnels fournis par la bibliothèque sont écrits par un

langage proche de C++ et sont paramétrables. Malheureusement, les exemples fournis avec

MLdesigner ciblent seulement les systèmes à architecture numérique mono et multi-

processeurs. De plus, Mldesigner est complexe dans son environnement et le langage utilisé

nécessite un temps d’apprentissage important.

IV.1.6. Modelica

Modelica (Modelica, 1997) est un langage et environnement unifié pour la

spécification et la modélisation des systèmes physiques. Les composants du système sont

mathématiquement décrits par des équations différentielles et algébriques. Cet outil montre

une bonne capacité de modélisation et de réutilisation en se basant sur les concepts d’orienté

objet et de non-causalité. Modelica fournit un ensemble de bibliothèques dans plusieurs

disciplines et domaines : continu, électrique, mécanique, thermique, discret et logique

booléen, réseau de Petri, logique floue, VehicleDynamics, etc. Le langage, les librairies et les

outils de simulation de Modelica sont à usage libre, mais il existe des environnements de

simulation commerciaux basés sur ce langage qui sont Dymola (Ferretti G., 2006) de

Dynasim et MathModelica (Mathmodelica, 2006) de MathCore Engineering. Mais, il est

incapable de supporter la notion d’événements discrets exploitée dans la simulation des

systèmes numériques.

IV.1.7. Outils basés sur l’approche UML

Paragon (Pinki M., 2003), (Riihimaki J., 2005) et (Kajtazovic S., 2005) peuvent

appartenir aussi à l'approche hétérogène car ils partent avec un seul langage de modélisation

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-28-

(UML) mais, dans la majorité des cas, après ils font appel aux langages existants (VHDL,

SystemC, etc.). Au niveau modélisation, les auteurs décrivent la structure du système en

utilisant des IPs (Intellectual property) mais lors de la simulation, ils utilisent la technique de

la co-simulation.

SysML (Azam F., 2005) (Systems Modeling language) est développé à partir de

l’UML pour la spécification, l’analyse et la validation des systèmes matériels/logiciels et des

systèmes d’information. Pour la vérification, SysML génère un code adéquat à un langage

cible (comme VHDL et C) en respectant le simulateur utilisé.

Paragon (Pinki M., 2003) qui est un outil de modélisation indépendant des langages

matériels utilisés pour la simulation ou pour la conception. Il fournit une sémantique qui est

capable de décrire des systèmes continus/discrets. Le fonctionnement (les expressions et les

calculs) est décrit par MathML qui représente une application de l’XML pour la description

des notations mathématiques. L’important ici c’est que l’utilisateur peut créer son modèle à

partir d’une interface graphique.

Tous ces outils sont plutôt utilisés pour décrire la structure et l'hiérarchie des systèmes.

Le comportement est difficilement décrit par ces langages qui ne peuvent pas fournir la

sémantique donnée par les langages matériels.

IV.1.8. Outil basé sur les métriques approximatives

(Antoine G., 2007) a développé un environnement qui supporte le modèle continu et le

modèle discret en utilisant le langage d’inclusion approximative et la bisimulation

approximative. L’utilisation de cette approche approximative qui est basée sur la machine

d’état infinie pour le modèle continu et la machine d’état finie pour le modèle discret, permet

de résoudre la complexité des EDOs et d’accélérer la simulation d’une part et souffre de

manque d’algorithme pour le calcul des fonctions linéaires et non-linéaires d’autre part.

IV.1.9. Hybride Automata

(Vladimeros V., 2012) a développé un outil en se basant sur la solution « Hybride

Automata » qui permet à la fois la modélisation continu/discret. Cet outil utilise la classe

mathématique o-minimal qui se base sur une résolution géométrique des EDOs. Une

amélioration de la classe o-minimal est présentée par Vladimeros pour considérer le modèle

discret. Cet outil exploite mieux les propriétés des systèmes temps réels mais il est plus adapté

pour le modèle continu que pour le modèle discret.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-29-

IV.1.10. Synthèse

L’approche homogène repose sur deux types d’environnements :

� Nouvel environnement comme par exemple Ptolemy, Mldesigner et Modelica.

� Extensions des langages comme VHDL-Verilog et SystemC-AMS.

Le tableau 1 résume la majorité des travaux en mettant l’accent sur les avantages et les

inconvénients de chaque environnement.

Outils Avantages Inconvénients

Validation

analogique /

numérique

- Simulation de la partie numérique

assez rapide.

-Modélisation analogique au niveau

macro-modèle

- Simulation au niveau transistor

seulement.

- Modélisation reste à un niveau

beaucoup plus bas.

Extension du

langage VHDL

et Verilog

- Validation des systèmes hétérogènes

à différents niveaux d’abstractions.

- Niveau d’abstraction limité.

- Simulation conjointe des systèmes

matériels / logiciels non supporté.

- Interaction continu/discret non définie.

- Un seul solveur est utilisé pour la

résolution des EDOs.

Extension de

SystemC

- Etendre la modélisation et la

simulation des systèmes continus.

- Simulation performante.

- Simulation analogique moins puissante

au niveau de la précision.

- Manque de solveurs adéquats pour

différents domaines.

Ptolemy II

- Spécification des systèmes

hétérogènes multi-disciplines et multi-

domaines.

- Une source ouverte pour les

développeurs.

- Nécessite un temps d’apprentissage

important.

MLdesigner

- Une interface graphique proche de

celle du Simulink.

- Complexité de l’environnement.

- Nécessite un temps d’apprentissage

important.

Modelica

- Bonne capacité de modélisation et de

réutilisation en se basant sur les

concepts d’orienté objet et de non-

- Ne supporte pas la notion d’événements

discrets.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-30-

causalité.

- Existence des bibliothèques dans

plusieurs disciplines et domaines.

- Une source ouverte pour les

développeurs.

Outils basés

sur l’approche

UML

- Création du modèle à partir d’une

interface graphique.

- Le comportement est difficilement

décrit par ces langages.

Métrique

approximative

- Résoudre la complexité des EDOs.

- Simulation rapide.

- Moins de précision.

Hybride

Automata

- Exploitation des propriétés des

systèmes temps réels.

- Plus adaptée pour le modèle continu que

pour le modèle discret.

Tableau 1 : Avantages / inconvénients des outils basés sur l’approche homogène

IV.2. L’approche hétérogène

Cette approche permet de modéliser le système complet en utilisant des langages

spécifiques. La technique de co-simulation permet l'utilisation de plusieurs simulateurs pour

la validation globale de ce système. Pour cela, il faut disposer d’un modèle de communication

qui décrit la synchronisation et les interconnexions entre les différents modules. La difficulté

réside dans la construction de ce modèle. Une autre technique, la technique mono-simulateur,

consiste à traduire les langages utilisés pour la description du système entier vers une sorte de

langage unique ou un format accepté par le simulateur (Nicolescu G., 2002).

L’avantage de cette approche est que chaque module du système peut être modélisé

avec un langage spécifique et approprié. Cela permet d’intégrer les IPs et d’exploiter au

mieux les performances des langages existants.

Généralement les raisons et les avantages pour lesquels on fait recours à plus qu’un

langage sont :

� L’hétérogénéité du système qui combine plusieurs domaines physiques, par

exemples : mécanique, électronique numérique (matériel et logiciel), chimie, etc.

� Le système possède des modules qui appartiennent à plusieurs niveaux

d’abstraction, et donc l’utilisation du langage le plus adéquat pour chaque

niveau.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-31-

� Le besoin de créer des testbenchs complexes (d’habitude on utilise le langage C

et ses dérivés)

� L’exploitation des bibliothèques déjà existantes pour certains langages.

Nous allons classifier ces outils en deux catégories :

� Outils qui utilisent plusieurs langages/plusieurs simulateurs : technique de co-

simulation

� Outils qui utilisent plusieurs langages/un seul simulateur : technique mono-

simulateur

IV.2.1. Technique mono-simulateur

Avec cette technique le système est toujours composé d'un ensemble de sous-systèmes

spécifiés dans différents langages mais la simulation nécessite le passage par un langage

unifié ou un format connu par le simulateur, voir figure 5.

Figure 5. Le principe du technique mono-simulateur

La validation par simulation consiste à exécuter la spécification du système afin de

reproduire le fonctionnement du système entier. Dans la figure 5, le sous-système 1 et le sous-

système 3 sont des composants matériels modélisés par deux différents langages (comme par

exemple, VHDL et Verilog) et le sous-système 2 représente une application logicielle ou un

modèle continu (Zorzi M., 2003).

(Dubois M., 2011) propose un approche qui consiste au développement d’un simulateur

compilé multi-langage où chaque modèle peut être décrit en employant différents langages de

Sous Système 1

Langage 1

Sous Système 2

Langage 2

Sous Système 3

Langage 3

Langage unifié
(netliste,…)

Format connu
(.dll,..)

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-32-

modélisation tel que SystemC, ESyS.Net ou autres. Chaque modèle contient généralement des

modules et des moyens de communications entre eux. Les modules décrivent des

fonctionnalités propres à un système souhaité. Cette approche se base sur un seul noyau au

lieu de plusieurs et d’enlever le bus de co-simulation pour accélérer le temps de simulation.

Mais cet environnement ne supporte que le niveau RTL et TLM (Lukai, 2003).

IV.2.2. Technique de co-simulation

La co-simulation consiste à exécuter des simulateurs communicants, voir figure 6.

Chacun des simulateurs exécute un sous-système décrit dans un langage approprié. Pour

assurer l’échange correct des données et la communication entre ces sous-systèmes, le besoin

d’un modèle de synchronisation s’impose. Ce modèle prend en compte les spécificités du

modèle de simulation adopté par chaque simulateur.

Figure 6. Le principe de la co-simulation

Des interfaces de simulation assurent l’interconnexion entre les différents sous

systèmes. Ces interfaces communiquent à travers un bus de co-simulation qui peut être une

mémoire partagée avec une structure bien définie permettant des interconnexions complexes

ou autre technique de communication inter-processus. Les interfaces de simulation sont

composées par des couches de communication et de synchronisation et selon les simulateurs

utilisés ils peuvent implémenter des comportements assez complexes (Bouchhima F., 2005)

(Nicolescu G., 2002). Les avantages de la technique de co-simulation sont :

� Bénéficier au mieux des performances des langages et des simulateurs existants

(sémantique, précision de simulation, bibliothèques, etc.).

� Réutiliser des composants existants comme les IPs.

Sous Système 1

Langage 1

Sous Système 2

Langage 2

Sous Système 3

Langage 3

Interface de
simulation

Interface de
simulation

Interface de
simulation

Bus de Co-simulation

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-33-

� Eliminer le temps d'apprentissage puisque les langages utilisés sont très connus par les

concepteurs.

V. Discussion

Plusieurs outils de modélisation et de simulation ont été décrits tout le long de ce

chapitre. Essentiellement deux approches sont utilisées : approche homogène et approche

hétérogène. L’approche homogène consiste à développer des environnements supportant à la

fois le modèle continu et le modèle discret. Ce type d’outil permet une simulation rapide mais

présente plusieurs inconvénients citant :

� Non utilisation des bibliothèques et des IPs dédiées pour chaque modèle.

� Limitation au niveau d’abstraction : Il y a un manque d’environnement

supportant la description dans tous les niveaux d’abstractions conjointement

avec le modèle continu.

� Apprendre un nouveau langage.

En contre partie, la méthode de co-simulation de l’approche hétérogène permet la

synchronisation entre le simulateur continu et le simulateur discret. Nous proposons d’utiliser

l’environnement Matlab / Simulink pour la description et la simulation du modèle continu à

cause de plusieurs avantages :

� Matlab / Simulink appartient aux langages métiers (Domain Specific Languages)

(Consel C., 2004).

� Matlab / Simulink est spécialisés dans les domaines particuliers comme

l'automatique et les systèmes de contrôle (Chapoutot A, 2008).

� Le temps de simulation pour le modèle continu est considéré plus rapide que

l’environnement Ptolemy (SJÖSTEDT C., 2009).

 L’avantage de cette approche lorsqu’il est liée avec le simulateur Matlab / Simulink,

réside dans l’utilisation des simulateurs discrets existants, conçu pour tous les niveaux

d’abstraction ainsi l’utilisation des bibliothèques et IPs standards.

Dans ce cadre notre environnement propose un modèle de co-simulation continu /discret

matériel/logiciel multi niveau en ajoutant un émulateur à base d’une architecture cible

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-34-

permettant à la fois d’accélérer la simulation et la modélisation conjointe matériel/logiciel de

la partie numérique.

Les stratégies de co-simulation nous permettent donc de simuler et de vérifier des

systèmes matériels/logiciels avant la mise en place d’une plateforme réelle. Dans ce domaine,

il y a une grande variété d’approches qui utilisent des différents mécanismes de

communication pour mettre en œuvre une interface efficace entre les applications logiciels et

le simulateur matériels. Le besoin est important pour intégrer et synchroniser des simulateurs

hétérogènes, comme, par exemple, le noyau de simulation du SystemC pour les composants

matériels et le simulateur de jeu d’instruction (ISS) pour les applications logicielles.

L’objectif de cette thèse est de surmonter le problème de l’hétérogénéité des systèmes

continus/discrets tout en fournissant des simulations précises et des temps de simulation assez

satisfaisants. L’accélération de la simulation est un point clé qui impose la création

d’interfaces de synchronisation et de communication entre l’environnement de simulation et

la carte de prototypage sur FPGA.

VI. Conclusion

Nous avons présenté tout le long du premier chapitre les caractéristiques des modèles

continus, discrets et hétérogène. La simulation de tels systèmes constitue un grand défi pour

les concepteurs des environnements de CAO. En fait il existe principalement trois axes pour

la modélisation et la vérification des systèmes continus/discrets. Le premier repose sur

l’extension des langages afin d’étendre le noyau de simulation pour supporter à la fois le

modèle continu et le modèle discret. Cet axe souffre des limitations au niveau d’abstraction.

Le deuxième se base sur des nouveaux langages et environnements ce qui approuve

l’accélération de la simulation. Malheureusement, ces langages ne supportent pas les

différents niveaux d’abstractions et demande un temps important pour apprendre les nouveaux

langages. Notre contribution s’intègre dans le troisième axe basé sur la co-simulation qui

utilise les simulateurs existants pour chaque modèle et crée des interfaces de synchronisation

entre-simulateurs. Malgré le temps de simulation plus au moins important, ces outils montrent

une simulation performante à travers les différents niveaux d’abstractions. La réutilisation des

IPs ainsi développés facilite la modélisation matériel/logiciel. Nous adaptons la troisième

solution grâce aux nombreux avantages offertes par les outils basés sur la co-simulation. Le

chapitre suivant présente une étude détaillée des techniques de vérifications matériel/logiciel

ainsi l’approche de simulation/émulation utilisée.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-35-

Chapitre 2 : METHODOLOGIE DE MODELISATION ET DE VERIFICATION DES SYSTEMES

MATERIELS/LOGICIELS .. 36

I. Introduction ... 36

II. Modélisation des systèmes mono-puces ... 36

III. Les techniques de vérification .. 39
III.1. Vérification formelle .. 40
III.2. Simulation .. 41

III.3. Emulation et prototypage matériel .. 43

III.4. Co-émulation et co-simulation .. 44
III.4.1. Co-émulation en mode vecteurs de test .. 46

III.4.2. Co-émulation avec synchronisation cycle à cycle.. 47
III.4.3. Co-émulation avec synchronisation clairsemée .. 47
III.4.4. Accélération .. 47
III.4.5. Co-émulation transactionnelle ... 48

III.4.6. Emulation avec banc de test intégré .. 48

III.4.7. Emulation avec dépendances extérieures .. 49

IV. Approche de simulation/émulation matériel/logiciel .. 49

V. Moteur de simulation / émulation .. 51
V.1. Communication... 52

V.2. Modèle de synchronisation .. 54
V.2.1. Les modèles de synchronisation simulateur/émulateur .. 55
V.2.2. Les interfaces de synchronisation .. 60

VI. Conclusion .. 61

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-36-

Chapitre 2 : METHODOLOGIE DE MODELISATION ET DE

VERIFICATION DES SYSTEMES MATERIELS /LOGICIELS

I. Introduction

Vue la complexité des systèmes et le taux d’intégration croissants, la modélisation

traditionnelle des architectures matérielles/logicielles s’avère une tâche pénible, complexe,

couteuse et limitée. Cette méthode repose sur une description bas niveau (composant, porte

logique, transistor et dessin de masque) et séparer entre la partie matérielle et la partie

logicielle. Cette méthode n’assure pas la vérification matériel/logiciel au cours de

développement ce qui augmente le taux de rejet des circuits après fabrication.

La modélisation conjointe représente le fruit de plusieurs travaux de recherche afin de

supporter les systèmes numériques complexes et les systèmes mono-puces. La conception

basée sur la stratégie Co-design permet la vérification entre la partie matérielle et la partie

logicielle conjointement avant la phase de fabrication. Cependant, plusieurs techniques et

outils de modélisations et de vérifications sont décrits dans la littérature en respectant à la fois

les langages adéquats (matériels et logiciels) et les niveaux d’abstractions utilisées. Toutes ces

techniques assurent la communication et la synchronisation entre les applications logicielles et

les composants matériels. Dans ce contexte, nous proposons quatre modèles de

synchronisation basés sur un environnement de simulation/émulation afin de diminuer le

temps de simulation. La synchronisation présente le point clé de la simulation/émulation. Elle

doit prendre en compte les concepts de temps et d'activation des processus.

La première partie présente le principe de modélisation des systèmes mono-puces ainsi

les différentes méthodes de vérification utilisées. Dans la deuxième partie, nous présentons

l’approche de simulation/émulation en proposant un modèle de synchronisation entre

simulateur/émulateur et les interfaces de communication matériel/logiciel.

II. Modélisation des systèmes mono-puces

La conception des systèmes en puce se basent sur un flot qui assure un développement

parallèle des modules matériels et des modules logiciels. Ce flot se décompose en cinq étapes

comme le montre la figure 7.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-37-

� Spécification système, on s'intéresse à la fonctionnalité au niveau système,

indépendamment de l'implémentation finale (étape 1). Durant cette phase, on

recherche les algorithmes et les représentations de données les mieux adaptés

aux besoins et aux spécifications. La spécification fonctionnelle obtenue est

généralement validée par une simulation.

� Spécification fonctionnelle : C’est l’étape qui suit l’étape précédente. Le but de

la spécification fonctionnelle est la recherche d’une architecture pour

implémenter les algorithmes déterminés par la spécification systèmes. Cette

étape (étape 2) du flot de conception détermine les fonctionnalités qui seront

implémentées en matériel et celles qui seront logicielles. En général, le principe

du partitionnement se base sur la règle suivante : « les composants nécessitant

des performances élevées sont réalisés par des modules matériels alors que les

composants nécessitant essentiellement de la flexibilité sont implémentés en

logiciel ». Finalement, cette étape permet l'obtention des spécifications de

chacun des composants du système.

� La conception matérielle et logicielle (étape 3) correspond à la conception des

composants matériels et au développement des logiciels embarqués. Pour cette

étape, un gain de temps important est obtenu lorsqu’il y a utilisation des

composants existants.

� Vérification et intégration : Lorsque tous les composants matériels et logiciels

développés sont vérifiés chacun à part, la phase d’intégration et de vérification

(étape 4) assure la communication et le bon déroulement entre les différents

composants.

� Validation : Cette phase consiste à vérifier le système complet s’il répond bien

au cahier de charge et aux fonctionnalités demandées (étape 5). Enfin, une fois

cette dernière étape de conception est effectuée avec succès, on peut fabriquer le

produit en grand nombre en passant par la fonderie.

 A chaque étape de conception, les concepteurs doivent vérifier que les nouveaux composants

ou les nouveaux détails de réalisation assurent une fonctionnalité correcte.

Cette vérification s'articule autour de cinq points illustrés par la figure 7 :

• Vérification de la spécification fonctionnelle.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-38-

• Vérification de l'architecture du système.

• Vérification de l'implémentation des composants du système.

• Vérification de l'intégration des composants.

• Vérification du système complet dans son environnement de fonctionnement avant la

mise en fabrication et en production.

Figure 7. Flot de conception d'un système sur puce

La vérification peut occuper jusqu'à 70% du temps de conception, cette étape représente

un élément important dans la durée de la conception d'un système. La vérification influence

beaucoup en termes de temps ainsi qu’au niveau économique. Le coût de cette erreur est

Spécification des
parties matérielles

Conception du matériel

Composants
matériels

Spécification

système

Conception au niveau
système

Spécification
fonctionnelle

Exploration

d’architecture

Spécification
fonctionnelle

Conception du logiciel

Composants
logiciels

Intégration

logiciel-matériel

Système monopuce

(1) Vérification de
la spécification
fonctionnelle

(2) Vérification de
l’architecture du

système

(3) Vérification de
l’implémentation des

composants du
système

(4) Vérification de l’intégration de
composants hétérogène

(5) Vérification finale du système

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-39-

estimé à quatre cent millions de dollars (Evans, 2003). En général, plus vite une erreur est

détectée plus son coût de correction est faible.

Pour conclure, la vérification est une étape essentielle dans la conception des circuits

mono-puces. Un des défis actuels consiste à améliorer les techniques de vérification, à

augmenter la productivité des techniques et à réduire la durée et le coût de la vérification.

III. Les techniques de vérification

Lors d’une conception d’un système mono-puce, il existe plusieurs techniques de

vérification: la vérification formelle, la simulation, la co-émulation, l'émulation à travers le

prototypage. Chacune de ces techniques possède un modèle différent qui sera détaillé par la

suite.

Le principal but de la vérification d'un système mono-puce tout au long du flot de

conception est de prévoir les erreurs et les scénarios indésirables le plus tôt possible et par

suite diminuer le temps de mise en marché du produit désiré. Afin de comparer et de mieux

choisir la technique de vérification, des critères de comparaisons sont présentée.

Critères de comparaisons :

Chacune des techniques de vérification est caractérisée par un coût financier, une durée

de mise en œuvre, une vitesse d'exécution, un niveau d'observabilité, un niveau de

contrôlabilité et enfin un niveau de répétabilité.

Le coût financier de la vérification obéit à la règle suivante : « plus une erreur

matérielle est tardivement détectée, plus son coût de correction est élevé ». L’importance de

ce critère se présente dans la manière de maitriser le coût de vérification. L’investissement

dans les outils de vérification s’avère utile lorsque leur prix est amorti pour une seule erreur

matérielle détectée avant la fabrication du premier circuit. Cependant, les prix des outils de

vérification varient dans une large gamme de prix allant de quelques milliers de dollars pour

une licence perpétuelle (Rizatti L., 2003) au million de dollars pour une licence annuelle

(Lardière C., 2004).

La durée de mise en place de la plateforme de vérification est un autre critère

important. Selon la taille et la complexité du système, le choix de la méthode de la

vérification est fait. Parfois l’utilisation d’une méthode plus lente est mieux adaptée parce que

la mise en place de cette méthode est beaucoup plus courte par rapport au temps nécessaire

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-40-

d’une deuxième méthode qui est plus compliquée et qui demande plus de temps malgré la

rapidité de son temps de fonctionnement.

La vitesse d'exécution doit être considérée en relation avec la durée de mise en place de

la plateforme de vérification et la longueur des séquences de test. Dans le cas de vérification

temps réel avec des composants externes, la vitesse peut devenir une contrainte imposant une

solution.

L'observabilité, la contrôlabilité et la répétabilité sont des critères liés à la puissance

du débogage matériel, c'est à dire l'efficacité de la technique pour la détection des erreurs

matérielles.

L'observabilité est la capacité d'observer les interactions des différents composants du

système.

La contrôlabilité est la capacité de suspendre l'exécution du modèle, de modifier les

valeurs de certains paramètres au cours de l'exécution.

La répétabilité est le fait de reproduire un scénario de test avec un niveau de précision

donné.

Selon les paramètres déjà cités, il n'est pas facile de choisir la méthode la plus adaptée

au problème considéré. Il convient donc de présenter les différentes techniques de vérification

existantes en soulignant les avantages et les inconvénients de chaque technique.

III.1. Vérification formelle

La vérification formelle consiste à prouver mathématiquement qu'une description de

circuit possède certaines propriétés. La vérification formelle se manifeste dans le débogage de

la spécification qui vérifie si tous les besoins sont bien inclus et se manifeste aussi dans la

vérification de l'implémentation qui vérifie si la spécification est bien implémentée. Cette

technique est peu utilisée dans la conception des systèmes monopuces et possède plusieurs

points faibles. Les principaux obstacles sont :

• La complexité du processus de vérification est très grande, ce qui limite l’utilisation

aux simples applications.

• Cette technique demande une grande interaction entre concepteurs. Seuls des

spécialistes peuvent utiliser cette technique.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-41-

• Cette technique n’est pas conçue pour les systèmes matériel/logiciel. En fait, la

vérification formelle ne supporte pas le traitement d’un système synchrone parallèle (matériel)

et le traitement d’un système asynchrone séquentiel (logiciel) à la fois. En fait, le système

synchrone est basé sur le principe de simultanéité alors que le système asynchrone est basé sur

le principe de l’entrelacement ce qui explique bien la différence de formalisme entre une

architecture matérielle et les applications logicielles.

Cette technique peut se révéler très efficace pour le modèle formel qui incorpore de

nombreux paramètres. De plus, elle est très souple, très flexible puisque les modèles sont

construits à la main mais ceci est un inconvénient car la construction des modèles est un

travail difficile, fastidieux et coûteux en temps.

Dans l'industrie, cette technique est couramment utilisée au niveau composant pour

vérifier que la «netlist» obtenue après la synthèse assure bien la même fonctionnalité que celle

décrite dans les fichiers VHDL/Verilog.

III.2. Simulation

La simulation se base sur l'utilisation d'un modèle comportemental du système en cours

de développement. Un système possède plusieurs modèles selon les différents niveaux

d'abstraction. Plus la description est à bas niveau d’abstraction plus le modèle est précis, plus

les calculs pour la simulation sont nombreux et par conséquent, plus l'exécution est lente.

Cette technique de vérification est la technique la plus utilisée dans les conceptions des

circuits numériques mono-puces grâce à sa flexibilité. Elle est utilisée à six différents niveaux

d'abstraction.

Le niveau spécification fonctionnelle modélise le comportement global du système. Le

but de la simulation dans ce niveau d’abstraction est la vérification fonctionnelle. Puisque le

niveau d’abstraction utilisé est le plus haut alors la simulation est très rapide.

Le niveau architectural modélise le système comme étant un ensemble de modules qui

se communiquent entre eux. A ce niveau, les différentes tâches du système sont définies à des

sous-systèmes. Chaque sous-système est modélisé au niveau fonctionnel. Ce niveau est appelé

aussi niveau transactionnelle qui s’intéresse aux interactions de type transaction entre les

sous-systèmes. Ce type de simulation est utile pour l'exploration d'architecture et le

développement des parties logicielles du système. L’outil Vista (Mentor, 2012) représente un

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-42-

outil puissant de vérification matériel/logiciel au niveau architectural en adoptant le niveau

TLM 2.0.

Le niveau micro-architecture diffère de ce qui précède au niveau type d’interaction

entre les sous-systèmes. Les liaisons mis en discussion sont des signaux. La précision du

modèle est donc au cycle d'horloge prêt au niveau de la communication entre les sous-

systèmes. Ce niveau de modélisation permet la réalisation des premières mesures de

performances et le développement des pilotes de bas niveau (des logiciels embarqués).

Le niveau RTL modélise un circuit comme un ensemble de registres et de relations

logiques entre eux. Ce modèle est à bas niveau d'abstraction, le système entier est simulé au

cycle d'horloge prêt. Ce niveau est particulièrement utilisé pour la mise au point des sous-

ensembles matériels qui composent le système. Il existe plusieurs outils comme ModelSim et

Questa (Mentor, 2012).

Le niveau porte logique décrit le système complet comme un assemblage de portes

logiques. Dans la plupart des cas, ce niveau est obtenu via des outils permettant le passage du

niveau RTL vers le niveau porte logique.

Le niveau analogique est le plus bas niveau d'abstraction utilisé en simulation. A ce

niveau, existent des outils d'extraction de paramètres électriques à partir du plan de masse,

citant l’outil SPICE (SPICE, 2012). On travaille ici avec des modèles précis de transistors,

dépendants de la technologie utilisée (Rizatti L., 2003).

Il existe plusieurs méthodes dans la littérature pour simuler et vérifier les modules

logiciels. La plupart des travaux se basent sur une simulation à base d’ISS (Instruction Set

Simulator) ou bien sur une exécution natives sans ou encore avec prise en compte du système

d’exploitation.

Un "Instruction Set Simulator" (ISS) est un simulateur de jeu d’instructions qui permet

de simuler le logiciel à un bas niveau. C’est une simulation qui exécute le logiciel au niveau

instruction assembleur. Ce type de simulation est le plus précis et le plus flexible, mais ces

simulations logicielles sont lentes. De plus, pour effectuer ce type de simulation, il faut être

déjà avancé dans le flot de conception car il fait usage de détails précis (comme le jeu

d’instructions) sur le matériel simulé et d’un compilateur permettant de compiler le code pour

le processeur cible.

Exécution native sans système d’exploitation : La simulation native permet de

simuler le comportement d’un processeur. Elle utilise à la fois les codes sources des

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-43-

programmes embarqués qu’elle doit exécuter, et certaines spécifications fonctionnelles du

processeur, tels que les ports, les interruptions et leur gestion, contenues dans un composant

spécifique. Elle permet une simulation très rapide. Les inconvénients sont l’absence de

précision sur les mesures de performance, l’obligation d’avoir l’ensemble des codes sources

en langage de haut niveau et la synchronisation de haut niveau. Afin de prendre en compte le

système d’exploitation, une exécution native avec OS est présentée dans le paragraphe

suivant.

Exécution native avec systèmes d’exploitation : La simulation native avec système

d’exploitation permet une exécution multitâche. Afin que la simulation soit proche de la

réalité, l’exécution native communique avec un Ordonnanceur assurant une gestion entre les

tâches et leurs priorités.

Pour conclure, la simulation présente un outil très puissant vu son efficacité, sa

souplesse, sa grande flexibilité, observabilité, contrôlabilité et son temps de mise en œuvre

souvent court. La simulation trouve ses limites lorsqu'il faut simuler de longues séquences de

tests à un bas niveau d'abstraction (Rizatti L., 2003).

La vitesse de simulation des systèmes compliqués ne dépassera pas quelques dizaines de

cycles par secondes. Lorsque le simulateur doit simuler des centaines de millions de cycles, le

temps de simulation devient un grand problème. Pour surmonter cette limitation, des

techniques d’émulation et de prototypage matériel sont utilisées.

III.3. Emulation et prototypage matériel

Cette technique repose sur des plateformes spécifiques et reconfigurables, capables de

reproduire le comportement physique d'un circuit avec une précision au niveau du cycle

d'horloge. Ces plateformes sont basées sur l'utilisation d’une architecture permettant une

reconfigurabilité, à savoir des FPGAs (Rizatti L., 2003), des réseaux de processeurs

spécialisés (Lardière C., 2004), ou des FPGAs modifiés et adaptés aux besoins de l'émulation

comme la famille Veloce de Mentor Graphics (Mentor, 2012). L’avantage des plateformes

d’émulations et de prototypages est la grande vitesse d’exécution.

En fait, la différence entre l’émulation et le prototypage se manifeste au niveau de la

capacité de débogages.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets

Les émulateurs sont conçus pour réaliser un débogage matériel rapide et efficace

8). Elles ont des flots de mise en œuvre assez rapides

part, les émulateurs offrent une très grande observabilité, proche de celle des simulateurs

HDL (tous les signaux). L’émulateur

vitesse d'exécution est bien plus rapide et pe

émulateurs sont très coûteux, de l'ordre d

(Rizatti L., 2003).

Les plateformes de prototypage sont

composants sont reconfigurables et simples à utiliser. De plus, ils sont très répandus et donc

coûtent nettement moins cher que les composants spécifiqu

de prototypage sont donc plus abordables que les émulateurs et offrent une excellente vitesse

d'exécution, souvent supérieure à celle des émulateurs

mieux observer les registres du

partitionnement d'un circuit entre les différents FPGAs de la plateforme n'est pas aisé et

engendre des temps de mise en œuvre assez longs, pouvant atteindre plusieurs mois

1998).

I

La co-simulation est une technique qui se base sur plusieurs simulateurs

9.b, une architecture Matériel/Logiciel est divisée en module dans chacun sera simulé par

simulateur adéquat. Prenons comme exemple une architecture qui est décrite en VHDL,

SystemC et en C. Dans ce cas, les modules décrits en VHDL seront simulés par

HDL, les modules décrits en SystemC seront simulés par le simulateur SystemC et les

modules logiciels seront simulés par C/C++ simulateur.

mulation / Emulation des systèmes Continus / Discrets

-44-

Les émulateurs sont conçus pour réaliser un débogage matériel rapide et efficace

Elles ont des flots de mise en œuvre assez rapides, de l'ordre de quelques heures

part, les émulateurs offrent une très grande observabilité, proche de celle des simulateurs

émulateur a le même principe qu'un simulateur H

vitesse d'exécution est bien plus rapide et peut atteindre quelques mégahertz

, de l'ordre d’un million de dollars pour une licence annuelle

Figure 8. Principe d’émulation

Les plateformes de prototypage sont des solutions basées sur des cartes

composants sont reconfigurables et simples à utiliser. De plus, ils sont très répandus et donc

coûtent nettement moins cher que les composants spécifiques des émulateurs. Les plateformes

de prototypage sont donc plus abordables que les émulateurs et offrent une excellente vitesse

périeure à celle des émulateurs. Les meilleures solutions permettent, à

observer les registres du circuit sur une courte fenêtre temporelle. D'autre part, le

partitionnement d'un circuit entre les différents FPGAs de la plateforme n'est pas aisé et

engendre des temps de mise en œuvre assez longs, pouvant atteindre plusieurs mois

I II.4. Co-émulation et co-simulation

simulation est une technique qui se base sur plusieurs simulateurs

b, une architecture Matériel/Logiciel est divisée en module dans chacun sera simulé par

Prenons comme exemple une architecture qui est décrite en VHDL,

SystemC et en C. Dans ce cas, les modules décrits en VHDL seront simulés par

HDL, les modules décrits en SystemC seront simulés par le simulateur SystemC et les

s seront simulés par C/C++ simulateur. En fait, cette méthode offre une

 Mossaad Ben Ayed

Les émulateurs sont conçus pour réaliser un débogage matériel rapide et efficace (figure

, de l'ordre de quelques heures. D'autre

part, les émulateurs offrent une très grande observabilité, proche de celle des simulateurs

qu'un simulateur HDL sauf que sa

ut atteindre quelques mégahertz. Ainsi, les

ur une licence annuelle

des cartes FPGAs. Ces

composants sont reconfigurables et simples à utiliser. De plus, ils sont très répandus et donc

es des émulateurs. Les plateformes

de prototypage sont donc plus abordables que les émulateurs et offrent une excellente vitesse

lleures solutions permettent, à

circuit sur une courte fenêtre temporelle. D'autre part, le

partitionnement d'un circuit entre les différents FPGAs de la plateforme n'est pas aisé et

engendre des temps de mise en œuvre assez longs, pouvant atteindre plusieurs mois (Abid M.,

simulation est une technique qui se base sur plusieurs simulateurs. Dans la figure

b, une architecture Matériel/Logiciel est divisée en module dans chacun sera simulé par le

Prenons comme exemple une architecture qui est décrite en VHDL,

SystemC et en C. Dans ce cas, les modules décrits en VHDL seront simulés par le simulateur

HDL, les modules décrits en SystemC seront simulés par le simulateur SystemC et les

En fait, cette méthode offre une

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets

grande flexibilité au niveau modélisation et vérification mais elle consomme beaucoup plus

de temps de simulation. La co

un même niveau d’abstraction, alors que la conception multi

outils de co-simulation. (Hassairi W., 2012) présente un environnement de co

sur l’intégration du SystemC dans Matlab / Simulink.

possibilité de la modélisation

assuré par SystemC et les parties logiciels sont décrit par Simulink.

La co-émulation combine l'émulation/prototypage et la simulation. Il

technique couramment utilisée et caractérisée par des performances en vitesse souvent faibles

mais plus rapide que les environnements de co

d'émuler/prototyper les parties du circuit dont la desc

moins haut niveau d'abstraction.

(dans notre figure ce sont des cartes FPGAs) dont chacun un composant matériel est en

interaction avec les autres composants matériels

par d’autres simulateurs. Pour cela, la plateforme d'émulation/prototypage retenue doit être

capable de travailler conjointement avec un simulateur.

a) Principe de co-émulation

Figure 9.

Cette technique permet de bénéficier des vitesses des émulateurs et

prototypage. En outre, recourir à la co

concernant le banc de tests. Celui

d'abstraction, implémenté en C, C++ ou SystemC, ce qui est plus simple et plus rapide.

Cependant, l'environnement logiciel ne peut

l'environnement matériel donc, avec ce type d'émulation, les émulateurs/plateformes de

mulation / Emulation des systèmes Continus / Discrets

-45-

grande flexibilité au niveau modélisation et vérification mais elle consomme beaucoup plus

La co-simulation est mieux exploitable lorsque la conception est dans

un même niveau d’abstraction, alors que la conception multi-niveau présente un défi pour les

Hassairi W., 2012) présente un environnement de co

sur l’intégration du SystemC dans Matlab / Simulink. L'avantage de ce

possibilité de la modélisation multi-niveau. En fait, la conception matériel et multi

assuré par SystemC et les parties logiciels sont décrit par Simulink.

émulation combine l'émulation/prototypage et la simulation. Il

technique couramment utilisée et caractérisée par des performances en vitesse souvent faibles

mais plus rapide que les environnements de co-simulation. Le concept de base est

d'émuler/prototyper les parties du circuit dont la description est déjà simulée

moins haut niveau d'abstraction. La co-émulation (figure 9.a) se base sur plusieurs émulateurs

(dans notre figure ce sont des cartes FPGAs) dont chacun un composant matériel est en

interaction avec les autres composants matériels émulés dans d’autres FPGAs

Pour cela, la plateforme d'émulation/prototypage retenue doit être

capable de travailler conjointement avec un simulateur.

émulation b) Principe de co

. Méthode de co-simulation et co-émulation

Cette technique permet de bénéficier des vitesses des émulateurs et

prototypage. En outre, recourir à la co-émulation offre également plusieurs avantages

ant le banc de tests. Celui-ci peut en effet être décrit à un assez haut niveau

d'abstraction, implémenté en C, C++ ou SystemC, ce qui est plus simple et plus rapide.

Cependant, l'environnement logiciel ne peut pas atteindre la même vitesse d'exécution que

l'environnement matériel donc, avec ce type d'émulation, les émulateurs/plateformes de

 Mossaad Ben Ayed

grande flexibilité au niveau modélisation et vérification mais elle consomme beaucoup plus

lorsque la conception est dans

niveau présente un défi pour les

Hassairi W., 2012) présente un environnement de co-simulation basé

L'avantage de cette approche est la

En fait, la conception matériel et multi-niveau est

émulation combine l'émulation/prototypage et la simulation. Il s'agit d'une

technique couramment utilisée et caractérisée par des performances en vitesse souvent faibles

. Le concept de base est

déjà simulée, à un plus ou

émulation (figure 9.a) se base sur plusieurs émulateurs

(dans notre figure ce sont des cartes FPGAs) dont chacun un composant matériel est en

émulés dans d’autres FPGAs ou bien simulés

Pour cela, la plateforme d'émulation/prototypage retenue doit être

Principe de co-simulation

Cette technique permet de bénéficier des vitesses des émulateurs et des plateformes de

émulation offre également plusieurs avantages

ci peut en effet être décrit à un assez haut niveau

d'abstraction, implémenté en C, C++ ou SystemC, ce qui est plus simple et plus rapide.

la même vitesse d'exécution que

l'environnement matériel donc, avec ce type d'émulation, les émulateurs/plateformes de

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-46-

prototypage fonctionnent à vitesse réduite. La vitesse globale du test va alors dépendre de

plusieurs paramètres :

• Vitesse d'exécution des environnements logiciel et matériel.

• Qualité de l'interface de communication.

• Nombre des points de synchronisation entre les deux environnements.

Le mécanisme de l’interface de communication et de la synchronisation présente le

point clé pour chaque environnement de co-émulation. Certaines solutions fonctionnent en

mode dit «ping pong» : c'est-à-dire lorsqu'un simulateur ou bien un émulateur est en

exécution, l'autre est en repos. Ce mode permet une simple implémentation du modèle de

synchronisation et offre une grande répétabilité des résultats mais malheureusement il fournit

une accélération minime. D'autres solutions, au contraire, font fonctionner les deux

environnements logiciel et matériel en parallèle, chaque environnement travaillant à son

rythme, le plus rapide attendant parfois le plus lent. Cette solution est beaucoup plus rapide

que la précédente. L’inconvénient majeur se présente non seulement au niveau de difficulté

des règles définissant la synchronisation mais aussi pose des problèmes de répétabilité.

Enfin, le nombre des points de synchronisations entre les deux environnements impacte

sur les performances, surtout lorsque la co-émulation fonctionne en «ping pong». Plus les

points de synchronisation sont élevés, plus la plateforme est lente. Ce nombre des points de

synchronisations varie en fonction des types de co-émulation qui vont être présentés ensuite.

III.4.1. Co-émulation en mode vecteurs de test

Le principe de ce mode se base sur la vérification du circuit entier avec émulation. Ce

type de co-émulation est le plus simple de point de vue de l'environnement logiciel. A chaque

cycle d'horloge, on applique un vecteur d'entrée (vecteur de test) sur les ports entrant du

circuit et on compare les valeurs des ports de sorties avec le vecteur de sortie prédéterminé

(figure 10).

Figure 10. Principe de Co-émulation en mode vecteurs de test

Simulateur
Vecteur de test

Emulateur

Composant à tester

Signaux

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-47-

III.4.2. Co-émulation avec synchronisation cycle à cycle

Dans une co-émulation avec synchronisation cycle à cycle, l’environnement logiciel

représente le maître et génère les horloges du circuit émulé. L’implémentation de ce type de

co-émulation est très simple. Le problème réside dans le nombre d'interaction entre

l’environnement logiciel et matériel qui est important, ce qui provoque un ralentissement au

niveau de la vitesse de simulation. Les facteurs limitant sont principalement, le nombre des

points de synchronisation, le nombre des signaux d'entrée/sortie, la bande passante de

l'infrastructure de communication et la charge de calcul de la partie simulée. Malgré le

problème de synchronisation à chaque cycle d’horloge, cette méthode est utilisée surtout pour

tester les composants matériels.

III.4.3. Co-émulation avec synchronisation clairsemée

Afin de surmonter le problème de synchronisation à chaque cycle d’horloge, une étude

détaillée montre qu’il existe plusieurs points de synchronisation inutiles. Ces points sont

marqués par l’invariance des signaux d’entrée/sortie. Une co-émulation clairsemée vise à

réduire ces communications superflues. Pour cela, les horloges du circuit ne sont plus gérées

par l'environnement logiciel mais par l'émulateur. Des signaux de contrôle servent alors à

synchroniser l’émulateur et le simulateur. L’implémentation de cette méthode n'est pas très

facile et demande certaines conditions pour être réalisable. L’étape importante et difficile

consiste à définir les instants de synchronisation utile.

III.4.4. Accélération

On parle d'accélération lorsque le circuit et le banc de test sont décrits en langage

matériel (VHDL et/ou Verilog) et qu'une partie du code est synthétisable alors que l'autre est

non synthétisable et sera simulé à l'aide d'un simulateur HDL. Dans la figure 11, le banc de

test, Module 0 et Module 1 seront simulés par un simulateur matériel alors que Module 2 sera

prototypé sur FPGA afin d’accélérer la simulation. En pratique, l'accélération est une

technique de vérification au niveau composant, comme la co-émulation à synchronisation

cycle à cycle. Seuls les émulateurs supportent cette technique.

La principale limitation de la co-émulation à synchronisation cycle à cycle

précédemment présentée réside dans le nombre élevé des points de synchronisations entre

l’environnement logiciel et l’environnement matériel. La co-émulation clairsemée cherche à

réduire cet impact mais, la gestion des signaux échangés est souvent très complexe. L'idée de

base de la co-émulation transactionnelle est de réduire ce nombre de synchronisations au

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets

minimum nécessaire, et ceci en faisant une abstraction de la communication

d’une communication à base des signaux à une communication qui permet l’échange des

données (lire/écrire) sous forme des vale

communication à base des transactions.

Figure

III.4.5. Co

La transaction a donc complètement abstrait le protocole

l'interface d'entrée/sortie du circuit à vérifier. Lors de la mise en application de ce concept, les

utilisateurs doivent recourir à des modules matériels capables de comprendre les transactions

et de les convertir en signaux et vice

«transacteurs» (Kudlugi M., 2001)

difficulté des équipes de vérification désireuses de recourir à cette performante technique de

co-émulation. L'architecture d'une co

logiciel et un environnement matériel communiquant à l'aide de

Une norme nommée SceMi (Standard CoEmulation Modeling Interface) a standardisé ces

canaux.

Les applications les mieux adaptées à ce type de co

des flux de données comme les circuits de télécommunication.

contrainte du développement des transacteurs peut être réduite par l'utilisation

bibliothèque de transacteurs.

III.4.6. Emulation avec banc de test intégré

Dans une émulation avec banc de test intégré

sont tous deux des composants matériels émulés.

mulation / Emulation des systèmes Continus / Discrets

-48-

et ceci en faisant une abstraction de la communication

d’une communication à base des signaux à une communication qui permet l’échange des

données (lire/écrire) sous forme des valeurs algébriques. Ce type de communication est appelé

communication à base des transactions.

Figure 11. Simulation par accélération

III.4.5. Co-émulation transactionnelle

La transaction a donc complètement abstrait le protocole de communication de

l'interface d'entrée/sortie du circuit à vérifier. Lors de la mise en application de ce concept, les

utilisateurs doivent recourir à des modules matériels capables de comprendre les transactions

r en signaux et vice et versa. Ces convertisseurs matériels sont nommés

, 2001). Leur réalisation est complexe et représente la principale

difficulté des équipes de vérification désireuses de recourir à cette performante technique de

hitecture d'une co-émulation transactionnelle comporte un environnement

logiciel et un environnement matériel communiquant à l'aide des canaux de communication.

Une norme nommée SceMi (Standard CoEmulation Modeling Interface) a standardisé ces

applications les mieux adaptées à ce type de co-émulation sont les circuits gérant

des flux de données comme les circuits de télécommunication. De plus, il

développement des transacteurs peut être réduite par l'utilisation

III.4.6. Emulation avec banc de test intégré

tion avec banc de test intégré, le circuit à vérifier et son banc de test

sont tous deux des composants matériels émulés. Cette méthode représente une amélioration

 Mossaad Ben Ayed

et ceci en faisant une abstraction de la communication. En fait, on passe

d’une communication à base des signaux à une communication qui permet l’échange des

urs algébriques. Ce type de communication est appelé

de communication de

l'interface d'entrée/sortie du circuit à vérifier. Lors de la mise en application de ce concept, les

utilisateurs doivent recourir à des modules matériels capables de comprendre les transactions

versa. Ces convertisseurs matériels sont nommés

. Leur réalisation est complexe et représente la principale

difficulté des équipes de vérification désireuses de recourir à cette performante technique de

émulation transactionnelle comporte un environnement

canaux de communication.

Une norme nommée SceMi (Standard CoEmulation Modeling Interface) a standardisé ces

émulation sont les circuits gérant

De plus, il est à noter que la

développement des transacteurs peut être réduite par l'utilisation d'une

, le circuit à vérifier et son banc de test

Cette méthode représente une amélioration

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-49-

de la méthode d’accélération. L'émulateur ou la plateforme de prototypage fonctionne d’une

manière complètement autonome ce qui rend le fonctionnement en pleine vitesse. Cette

technique est donc particulièrement bien indiquée pour les vérifications nécessitant de longues

séquences de test à savoir la vérification au niveau système. Cette technique est également

bien adaptée pour la mise au point des logiciels embarqués. La principale difficulté de cette

technique d'émulation réside dans le développement du banc de test synthétisable. Cela

représente une grosse charge de travail car il faut développer un composant matériel de test

spécifique et le valider.

III.4.7. Emulation avec dépendances extérieures

Une émulation avec dépendances extérieures consiste en un émulateur connecté à un

environnement physique extérieur et le circuit fonctionne alors en temps réel. Ce mode est

utilisé avec des plateformes de prototypage pour développer essentiellement des logiciels

embarqués ou pour développer des logiciels associés au circuit (drivers).

Dans cette section, de différentes méthodes de vérification ont été citées. La méthode la

plus adéquate pour tel environnement et pour tel système continu/discret se base sur une co-

simulation accélérée par un accélérateur matériel réel. La section suivante présentera notre

approche de vérification adaptée.

IV. Approche de simulation/émulation matériel/logiciel

Nous avons montré dans le chapitre 1, que les modèles de co-simulation souffrent

encore du temps de simulation important. En effet, l’environnement CODIS donne un temps

de simulation assez important car il utilise un ISS pour simuler les parties logicielles. Notre

approche propose le remplacement de l’ISS par une architecture à base d’un processeur cible

implanté sur une carte FPGA. Il est indéniable qu’une simulation sur un processeur réal est

énormément plus rapide qu’un ISS et de l’ordre de quelques nano secondes. Les travaux

antérieurs utilisent le simulateur pour simuler les modules logiciels et l’émulateur pour

simuler les composants matériels. Deux points faibles suivent ces travaux. La première se

manifeste au niveau temps de modélisation important des composants matériels au niveau

RTL. La deuxième consiste au temps de simulation important des modules logiciels.

Afin d’étendre l’environnement CODIS et d’accélérer la simulation, nous proposons

tout d’abord une modélisation au niveau transactionnelle des composants matériels en

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-50-

utilisant SystemC. Ensuite, une simulation des modules logiciels sur l’architecture cible est

adoptée. La figure 12 résume l’approche de simulation/émulation choisie.

Figure 12. Approche de simulation/émulation

On peut résumer les avantages de notre environnement essentiellement en trois points :

� Le remplacement d’un ISS par le processeur cible accélère le temps

d’exécution des applications logicielles. Dans notre cas la simulation est basée

sur une architecture à base d’un processeur cible hard-processor implanté sur

FPGA.

� Les composants matériels sont modélisés et simulés avec SystemC, ce

qui diminue le temps de mise en marché et assure la modélisation suivant

plusieurs niveaux d’abstractions.

� Les modèles de synchronisation entre le simulateur SystemC et

l’émulateur sont adaptés au modèle de co-simulation de l’environnement

CODIS.

La section suivante présente le moteur de la simulation/émulation.

Composant
matériel 1

Module
logiciel 1

Composant
matériel 2

Module
logiciel 2

Communication

 Simulateur Emulateur

Système mono-puce (SOC)

SystemC
Carte de

prototypage

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-51-

V. Moteur de simulation / émulation

La conception d’un moteur de simulation / émulation constitue un point clé pour chaque

environnement de co-vérification. Le principal rôle de ce moteur est d’assurer à la fois la

communication et la synchronisation entre le simulateur SystemC et l’émulateur à base d’une

architecture cible implantée sur une carte FPGA.

Figure 13. Architecture du moteur de simulation / émulation

L'architecture du modèle de co-simulation est illustrée par la figure 13. Le moteur de

simulation/émulation supporte une couche de synchronisation et une couche de

communication.

• La couche de communication est chargée de transférer les données entre les

deux modèles, les conversions nécessaires des signaux et le changement de

contexte.

• La couche de synchronisation assure à la fois le contrôle et l’exécution du

simulateur/émulateur à des instants précis.

Des modèles de synchronisation sont utilisés pour exécuter le simulateur et l’émulateur

matériel/logiciel avec respect du temps d’échange de donnée.

Principalement trois difficultés ont été étudiées :

1. La détection de la fin d’un événement par l’émulateur.

2. La détection des interruptions par l’émulateur.

Composant matériel 1

Composant matériel 2

Composant matériel 3

Module logiciel 1

Module logiciel 2

Module logiciel 3

Simulateur Emulateur

Moteur de Simulation / Emulation

Communication

Synchronisation

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-52-

3. Le principe de changement de contexte qui permet le passage du simulateur vers

l’émulateur et vice versa.

Par la suite, nous présentons une description détaillée de la couche communication et de

la couche synchronisation.

V.1. Communication

Le principal objectif de la communication est l’échange sans perte de données. Dans la

littérature, deux modes de communication (série et PCI) entre simulateur/émulateur sont

utilisés (Soha H., 2005). Afin d’accélérer le temps de simulation qui est notre premier

objectif, une communication Universel Serial Bus (USB) est utilisée. Le tableau 2 montre les

différences de vitesse de transfert entre les différentes modes de communication.

 Série PCIe USB 1.0 USB 2.0

Vitesse 0.11 Mo/s 250 Mo/s 12Mo/s 480 Mo/s

Tableau 2: Vitesse de transfert

Nous proposons une communication à base d’USB 2.0 entre un ordinateur et une carte

FPGA grâce à deux avantages : (1) vitesse de transfert important (2) supporte le mode

interruption qui engendre une interruption matériel sur la carte. Pour cela, un pilote composé

d’une partie logicielle et une partie matérielle doit être développé. La figure 14 présente

l’architecture matériel/logiciel utilisée pour la communication. Il faut noter que le contrôleur

USB ne représente pas un composant de l’architecture cible.

Figure 14. Modèle de communication

� Coté logiciel :

U
S

B
 D

ev
ic

e
P

or
t

P
hi

lip
s

IS
P

13
62

Processeur
cible

Memory

Bus

Pilote matériel

Universal
Serial
Bus

Channel

Bibliothèque

Windows Driver Kit
(WDK)

Pilote logiciel

PC
FPGA

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-53-

Le pilote du côté logiciel se base sur le Windows Driver Kit (WDK) Version 7.1. Ce

Kit offre les éléments de base pour la création des pilotes sous le système d’exploitation

Windows. Nous avons développé une bibliothèque qui contient essentiellement deux

fonctions Ecrire() et Lire() pour l’échange de donnée. Ces deux fonctions utilisent quatre

fonctions de la bibliothèque Win32 :

• CreateFile: permet la connexion avec le contrôleur USB ISP1362.

• WriteFile: permet le transfert de données vers le contrôleur USB ISP1362.

• ReadFile: permet la réception des données de la part du contrôleur USB ISP1362.

• ControlIODevice: permet la configuration du pilote.

� Coté matériel :

Le côté matériel se base sur le contrôleur USB ISP1362 (ISP1362, 2002) en interaction

avec le processeur cible. Le rôle du contrôleur USB est d’assurer les fonctionnalités suivantes :

� La fonction Host Controller (HC) est basée sur un transfert avancé et

atteint une vitesse de transfert élevé avec une faible intervention du processeur.

� La fonction On-The-Go (OTG) est adoptée lorsque la liaison USB ne

demande pas l’intervention du processeur.

� La fonction Device Controller (DC) assure principalement le transfert de

donnée et laisse le rôle du contrôle au processeur.

Dans notre cas, nous avons utilisé la fonction DC pour que le processeur cible gère le

modèle de communication au lieu du contrôleur USB.

Une interruption est signalée au processeur par un signal électrique sur la borne INT0.

Lors de la réception de ce signal, le processeur traite l'interruption dès la fin de l'instruction

qu'il était en train d'exécuter. Le traitement de l'interruption consiste soit à :

• Ignorer et passer normalement à l'instruction suivante : c'est possible uniquement

 pour certaines interruptions, nommées interruptions masquables. Il est en effet

 parfois nécessaire de pouvoir ignorer les interruptions pendant un certains temps,

pour effectuer des traitements très urgents par exemple. Lorsque le traitement est

 terminé, le processeur démasque les interruptions et les prend alors en compte.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-54-

• Exécuter un traitant d'interruption (interrupt handler). Un traitant d'interruption est

 un programme qui est appelé automatiquement lorsqu'une interruption survient.

L'adresse de début du traitant est donnée par la table des vecteurs d'interruptions.

Lorsque le programme d'interruption traitant a effectué son travail, il exécute

l'instruction spéciale IRET qui permet de reprendre l'exécution à l'endroit où elle avait

été interrompue. Un ordonnanceur est mis en place pour gérer le traitant

d’interruption.

La communication ainsi décrite représente un cadre solide pour le modèle de

synchronisation présenté dans la section suivante.

V.2. Modèle de synchronisation

Vu l’importance du modèle de synchronisation et son interaction avec le noyau de

SystemC, une description de l’environnement SystemC est présentée. Nous proposons par la

suite dans une première partie les différents modèles de synchronisation possible entre le

simulateur SystemC et l’émulateur. Dans la deuxième partie, une étude sur les interfaces

matérielles / logicielles et les scénarios de synchronisation sont décrits.

SystemC

SystemC est un simulateur à noyau libre qui décrit toute une bibliothèque contenant des

composants matériaux. Son langage est une extension par classes du langage orienté objet

C++ pour la description des systèmes numériques. SystemC offre la possibilité de la

description au niveau RTL comme il la permet au niveau système (SystemC 2.0 et les

versions ultérieures) pour les systèmes implémentés en logiciel, matériel ou une combinaison

des deux. Un modèle décrit en SystemC est compilé, exécuté et débogué en utilisant les outils

standards de programmation C++. SystemC diffère aux autres langages de descriptions

matérielles comme VHDL et Verilog par la possibilité de supporter plus qu’un niveau de

description. SystemC permet de fournir encore une spécification du système à des niveaux

d'abstraction élevés et avec une meilleure vitesse de simulation. Malheureusement, SystemC

ne peut décrire que des systèmes discrets, cependant il ne supporte pas la description des

systèmes continus.

SystemC 2.0 et les versions ultérieures combinent les caractéristiques des langages

matériels existants, la technique d'orienté objet et de nouvelles méthodologies pour la

conception et le raffinement des systèmes matériels/logiciels. Sa méthodologie est inspirée du

modèle de communication introduit par Gajski (Gajski D.D., 2000). Dans cette méthodologie

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-55-

le modèle est composé par des modules et la communication entre eux est assurée par des

canaux. Un module est constitué par des méthodes et des interfaces. Les méthodes utilisées

pour la communication sont définies dans les interfaces des modules. Leur implémentation est

effectuée au niveau de ces canaux. Un module peut appeler une méthode fournie par un canal

et des événements dans le canal peuvent activer les processus du module connecté à ce canal.

Ce concept est assez générique pour décrire des systèmes en utilisant plusieurs domaines de

description comme les réseaux de Khan, les processus séquentiels communicants, les flux de

données multi-cadencés, les événements discrets, etc. Chaque module contient les processus

décrivant le comportement du système. La connexion entre les différents modules est

effectuée au niveau de la fonction sc_main () qui représente l’entête du modèle. Aujourd'hui,

plusieurs outils de conception, supportant SystemC aux différents niveaux d'abstraction, sont

disponibles sur le marché. SystemC-RTL est synthétisable et un flot de conception partant du

niveau spécification au niveau circuit est aujourd'hui disponible.

Le simulateur de SystemC est à base d’un ordonnanceur à événements discrets. Dans

SystemC, un cycle delta comporte deux phases à savoir : phase d'évaluation pour l'exécution

des processus et phase de mise à jour pour la mise à jour des signaux modifiés pendant

l'évaluation des processus, ce qui garantit l’aspect parallèle des processus (Salem A, 2003). Le

principal rôle de l’ordonnanceur est de déterminer l'ordre d'exécution des processus en

considérant leurs listes de sensibilité et les événements dans sa file d'attente. Ainsi, le premier

élément dans cette file représente le prochain événement à déclencher. Les événements sont

classés en deux types : événements différés par une durée de temps et événements différés par

un delta. Le temps d'occurrence du premier type d'événements représente le prochain temps

réel alors que le temps d'occurrence du deuxième type d'événements est constitué de deux

composants: le temps courant réel et le nombre de cycles delta; la file d'attente est ordonnée

selon ces deux composants.

V.2.1. Les modèles de synchronisation simulateur/émulateur

Nous précisons tout d’abord que le simulateur SystemC est le maître de

l’environnement de la vérification. Le modèle de synchronisation peut être décrit dans

différents niveaux d’abstraction. Dans le niveau RTL le simulateur et l’émulateur sont

connectés via des signaux ce qui augmente le nombre des points de synchronisation, figure 15

a).

En contre partie, le niveau transactionnel (TLM) est adopté pour les premières phases de

description des systèmes car il assure l’abstraction de la partie communication ce qui réduit le

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-56-

nombre des points de synchronisation. Le niveau TLM repose sur la notion de bus de

synchronisation comme l’indique la figure 15 b).

Figure 15. Bus de simulation/émulation

Le bus de la simulation/émulation implémente les caractéristiques du bus en relation avec le

processeur cible et assure des transactions de deux types d’interruptions comme l’indique la

figure 16.

Les fonctions Lire() et Ecrire() définissent les fonctions élémentaires des paquets utilisés

dans le bus de simulation/émulation. Deux types de paquets sont construits afin d’assurer le

bon fonctionnement des modèles de synchronisation : paquet d’interruption et paquet de

donnée (figure 16). Le paquet d’interruption contient un en-tête qui définit le type du paquet et

un corps composé du numéro de routine à exécuter et le temps éventuel de la fin de la tâche.

Le paquet de donnée contient aussi un en-tête qui définit à la fois le type du paquet, la taille de

donnée et un corps qui enveloppe les données à transférer.

Simulateur Emulateur

Synchronisation

Simulation / Emulation Bus

 Lire / Ecrire Lire / Ecrire

Simulateur Emulateur

Synchronisation

a) Bus de Simulation/Emulation (RTL)

Signaux

b) Bus de Simulation/Emulation (TLM)

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-57-

Figure 16. Forme de synchronisation

Quatre schémas de synchronisation possibles sont réalisés entre le simulateur et

l’émulateur :

� Schéma 1: L’application logicielle reçoit périodiquement les données de la

tâche matérielle.

Le modèle de synchronisation est basé sur les mémoires de type FIFO. L’idée de ce

modèle consiste à fixer une période de synchronisation (Tsync) entre le simulateur (SystemC) et

l’émulateur (architecture cible) (figure 17) imposé par le simulateur. Dans ce cas, le processeur

cible suit le rythme du simulateur. Une période de synchronisation est le temps qui sépare deux

points de synchronisations successifs. La période de synchronisation doit être fixée supérieure

aux temps d’exécution du tâche logicielle la plus longue.

Figure 17. Modèle de synchronisation: schéma 1

Type du paquet Numéro Routine Instant timbre

Entête Corps

Type du paquet Taille Donnée

Entête Corps

a) Paquet d’interruption

b) Paquet de donnée

Tâche 2

Matériel Logiciel

Tâche 1

Tsync
Paquet de donnée

Paquet de donnée 2 Tsync

Temps SC Temps physique

Demande

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-58-

� Schéma 2: L’application logicielle est en attente de la fin de la tâche matérielle.

Lorsque les composants matériels sont simulés en SystemC, les applications logicielles

sont en attente. Une interruption est envoyée pour indiquer la fin de la tâche lorsque le

simulateur termine les siennes. A cet instant l’émulateur commence à exécuter la routine

correspondante (figure 18) et la tâche matérielle entre en repos pour le prochain point de

synchronisation.

Figure 18. Modèle de synchronisation: schéma 2

� Schéma 3: L’application logicielle reçoit une interruption avant la terminaison

de la tâche matérielle.

Dans ce modèle (figure 19) l’application logicielle peut s’exécuter plutôt qu’elle reste en

attente lorsque la simulation des composants matériels est en cours. En effet, ce parallélisme

est assuré par le mode d’interruption matérielle de la liaison USB. L’ordonnanceur de

l’architecture cible envoie une interruption déclenchant (flèche 0) vers la tâche matérielle pour

commencer la simulation. A la fin de la simulation de la tâche 1 (flèche 1), le simulateur

SystemC envoi une interruption (flèche 2) afin d’informer l’application logicielle du prochain

éventuel instant de synchronisation.

Eventuellement, cet instant qui correspond à la fin de la tâche hardware est envoyé en

utilisant la fonction wait_for_interrupt(sc_time t) (figure 20). A cet instant l’ordonnanceur

active un temporisateur et exécute une tâche intermédiaire (flèche 3). Lorsque le temps est

atteint, la tâche intermédiaire s’arrête. L’ordonnanceur envoie une demande de donnée pour

recevoir le paquet de donnée et activer la tâche 2 (mentionné par le paquet). La figure 21

montre un modèle de code de synchronisation.

Tâche 2 : Attente

Tâche 2 : Exécution

Matériel Logiciel

Tâche 1 Paquet de donnée

Paquet de donnée
En repos :

synchronisation

Tâche 3

Temps SC Temps physique

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-59-

Figure 19. Modèle de synchronisation: schéma 3

Figure 20. Code de la fonction attente d’une interruption

Avec t une estimation de la durée d’exécution de la tâche

Figure 21. Modèle du code de synchronisation

� Schéma 4: L’application logicielle reçoit les données au hasard

Dans ce cas (figure 22), le SystemC exécute la tâche 1 et lorsque ce dernier est fini, un

paquet de donnée est envoyé vers l’application logicielle. Lorsque la tâche 2 est en exécution,

Paquet de donnée

1

2

3

5

6

7

8

0

Tâche 1

Tâche 3

Matériel Logiciel

Paquet de donnée

Paquet de donnée

Paquet d’interruption Tâche intermédiaire

Tâche 2

Temps SC Temps physique

Demande 4

void wait_for_interrupt(sc_time t)

{

wait(t);

send_interruption_packet(…..) ;

}

/* Task1 code */

Instructions

….

….

Wait_for_interrupt (t);

Switch_context();/* switch context to SC*/

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-60-

le SystemC exécute la fonction Hardware_Input_Interface. Cette fonction qui modélise les

interfaces d’entrée du composant matériel, s’exécute sans avancer le temps local du SystemC.

Hardware_Input_Interface peut générer une interruption au hasard pour informer l’application

logicielle de l’instant d’arriver d’un paquet de donnée. L’interruption est bien assurée par

l’interruption matérielle générée par l’USB.

Figure 22. Modèle de synchronisation: schéma 4

Les modèles de synchronisation ainsi présentés peuvent être utilisés ensemble en se

basant sur les fonctions dédiées de chaque modèle.

V.2.2. Les interfaces de synchronisation

Afin d’assurer la synchronisation, des interfaces logicielles et matérielles sont

implémentées. Du côté de la carte FPGA un tableau de registres est utilisé pour sauvegarder le

contexte de la synchronisation.

Les composants matériels sont décrits en SystemC, ce qui facilite le mouvement,

l’addition et la soustraction des modules. Le niveau TLM est le niveau d’abstraction adopté

pour les interfaces Interface_In, Interface_Out et pour la modélisation. Un module interface est

implémenté pour assurer une bonne synchronisation. La figure 23 montre les interfaces

utilisées.

Notre environnement de simulation / émulation possède essentiellement deux types

d’interfaces dans SystemC :

1. L’interface Interface_In : c’est une interface qui permet de lire les données

reçues de la part de l’émulateur. Cette interface implémente la couche de

communication et permet non seulement l’accès au tableau de registre partagé

Temps physique Temps SC

Attente

Tâche 2

Matériel Logiciel

Tâche 1
Paquet de donnée

Paquet de donnée

Input Interface

Paquet d’interruption

Tâche 3

En repos :
synchronisation

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-61-

pour récupérer les données désirées mais aussi d’effectuer un changement de

contexte.

2. L’interface Interface_Out : c’est une interface qui permet d’envoyer les

données vers les applications logicielles et de lancer le changement du

contexte. Cette interface implémente la même couche que l’interface

Interface_In.

Figure 23. Les interfaces de synchronisation

VI. Conclusion

Une présentation des méthodes de vérification des systèmes mono-puces basés sur une

architecture matériel / logiciel a été détaillée dans ce chapitre. En se basant sur les techniques

décrites, nous avons présenté notre modèle et environnement de simulation/émulation qui

permet d’accélérer le temps de simulation et la modélisation multi-niveau. Notre

environnement est composé d’une couche de communication à base de la liaison USB et une

couche de synchronisation. Cette dernière couche assure à la fois l’abstraction de l’échange de

Noyau d’architecture cible

Tableau de registre partagé

D1

D2

D3

D4

…..

…..

…..

…...

Lire()/Ecrire()

 Transaction

Tâche 1

Tâche 2

Tâche 3

Ordonnanceur

SystemC

Ecrire()

Module 1

Module 2

F
IF

O

Module

Interface_In

Interface_Out

TLM

Channel

Module 3

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-62-

donnée entre simulateur et émulateur sous forme de paquet et fournis les modèles de

synchronisations possibles. En fait cette abstraction permet de conserver les modèles de

synchronisations même si le type de liaison change. Seule la couche de communication sera

modifiée.

Les méthodes de synchronisation ainsi décrites sont génériques et ne demandent pas de

changement du noyau de la simulation du SystemC et ceci est grâce au mode d’interruption

assuré par la liaison USB. Ces modèles assurent à la fois une communication rapide et une

synchronisation supportant plusieurs scénarios possibles. Les résultats expérimentaux sont

présentés dans le chapitre 4.

Dans le chapitre suivant, nous proposons une extension de l’environnement de

simulation/émulation que nous avons ultérieurement présenté afin de supporter le modèle

continu sur lequel CODIS est basé. Le principe consiste à interfacer notre environnement avec

le simulateur Simulink.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-63-

Chapitre 3 : METHODOLOGIES DE MODELISATION ET DE VERIFICATION POUR LES SYSTEMES

HETEROGENES .. 64

I. Introduction ... 64

II. Simulation matériel/logiciel en boucle des contrôleurs numériques 65

II.1. Travaux antérieurs ... 65
II.1.1. Simulation utilisant une carte électronique .. 65

II.1.2. Simulation matériel en boucle ... 66

II.1.3. Simulation par carte de prototypage en boucle ... 68
II.1.4. Synthèse .. 69

II.2. La Simulation matériel/logiciel en boucle .. 69

II.2.1. Principe .. 70

II.2.2. Logiciels mis en œuvre ... 71
II.2.3. Couche de communication .. 73
II.2.4. Couche de synchronisation .. 75

III. Modèle et environnement de Co-simulation/Emulation des systèmes continu/discret
(CODIS+) ... 78

III.1. L’environnement CODIS ... 78
III.1.1. Présentation .. 78
III.1.2. Principe de l’environnement CODIS : ... 79

III.1.3. Modèle de synchronisation de l’environnement CODIS : .. 81
III.2. Discussion .. 82

III.3. Modèle de synchronisation de l’environnement CODIS+ ... 83

IV. Conclusion .. 85

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-64-

Chapitre 3 : METHODOLOGIES DE MODELISATION ET DE

VERIFICATION POUR LES SYSTEMES HETEROGENES

I. Introduction

La modélisation des systèmes hétérogènes présente un grand défi pour les concepteurs

vu l’hétérogénéité entre simulateurs qui demandent une interaction adéquate entre le modèle

continu et le modèle discret d’une part et entre la partie matérielle et la partie logicielle

d’autre part. Les systèmes de contrôle-commande sont des systèmes industriels très utilisés et

ils obéissent aux règles des systèmes hétérogènes. En fait, les systèmes de contrôle-

commande sont composés principalement de deux parties : partie commande et partie

contrôle. La partie commande est constituée par des modules continus comme les moteurs et

les réacteurs. La partie contrôle est constituée d’une unité de traitement numérique adéquate

au modèle discret. Le nombre de contrôleurs numériques ainsi leur complexité ne cesse

d'augmenter et plus d'efforts sont consacrés à la conception et à la vérification. Grâce à la

grande révolution des technologies numériques, plusieurs outils conçus pour les contrôleurs

numériques sont créés. Les plateformes de type VLSI (Very Large Scale Integration), comme

par exemples les cartes FPGAs et les ASICs (Application Specific Integrated Circuit),

réalisent des contrôleurs entièrement numériques. Par conséquent, l’unité de contrôle des

systèmes de commande implantée souvent sur une carte électronique, migre vers une

implantation sur une puce unique, offrant l'avantage d'être compact et de supporter un très

grand nombre de traitements arithmétiques. De plus, l'utilisation des cartes reconfigurables

telles que les FPGAs permet le développement et le prototypage rapide du contrôleur

numérique, (Rodriguez J.J., 2007).

La méthodologie de conception et de vérification s’avère une demande exigeante à

cause de la complexité croissante des algorithmes à implanter dans ces contrôleurs

numériques et les contraintes de la mise en marché.

Ce chapitre est constitué de deux parties essentielles : dans la première nous proposons

une nouvelle technique de conception et de simulation des contrôleurs numériques nommée la

technique de simulation matériel/logiciel en boucle ("Hardware Software In the Loop"). Nous

décrivons dans la deuxième partie l’environnement CODIS+ en se basant sur les concepts de

base de l’environnement CODIS.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-65-

II. Simulation matériel/logiciel en boucle des contrôleurs numériques

La conception des contrôleurs au sein des systèmes commandes présente un défi à cause

de l’hétérogénéité du modèle. Une présentation des techniques de modélisation et de

vérification est citée dans cette section.

Dans tout système de commande, les contrôleurs numériques interagissent avec les

différents modules continus. Les différents signaux qui peuvent interagir avec ce contrôleur

rendent la conception plus difficile. On peut y distinguer les signaux reçus par le système de

commande et ceux qu’il émet. Afin d’interfacer le modèle continu et le modèle discret des

convertisseurs sont utilisés.

Les signaux émis correspondent aux ordres de commande à l'ouverture et à la fermeture

des interrupteurs des convertisseurs. De plus, le contrôleur numérique est, à part sa nature, un

système discontinu qui ne réagit avec son environnement qu'à des instants discrets. Ces

instants sont soumis à des contraintes temporelles dont l’ordre de grandeur peut varier de la

seconde à la microseconde selon la dynamique des grandeurs à réguler.

II.1. Travaux antérieurs

Plusieurs travaux se trouvent dans la littérature pour la modélisation et la vérification

des contrôleurs numériques. Cette section détaille les différentes méthodes en soulignant les

points forts et les points faibles de chaque méthode.

II.1.1. Simulation utilisant une carte électronique

Les premiers travaux réalisent le contrôleur numérique sur une carte électronique à

travers des différents composants discrets. Ces composants réalisent des fonctions

particulières plus ou moins complexes : addition, mémorisation, interfaçage, gestion

d’interruption, …etc. L’inconvénient majeur de cette technique se manifeste lors d’une erreur

de conception. Afin de la corriger, on doit ajouter des liaisons entre les composants ou bien

refaire totalement la carte électronique. Ce problème n’obéit pas à la contrainte de la mise en

marché. De plus la conception de ces cartes devient de plus en plus difficile à cause de la

complexité des contrôleurs électroniques et des composants qui deviennent nombreux. Cela

engendre une élévation du prix des cartes conçus.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-66-

II.1.2. Simulation matériel en boucle

Afin de surmonter ces lacunes, les techniques basées sur la simulation matérielle en

boucle ("Hardware In the Loop") (HIL) sont proposées pour pouvoir modifier le contrôleur

numérique sans modifier la carte électronique et diminuer le nombre de composants

numériques sur cette carte. L’évolution des technologies de fabrication de circuits numériques

permettent l’intégration d’un contrôleur numérique sur une mono-puce. La conception de tels

systèmes numériques intégrés se base sur un langage numérique de description de matériel.

Cette évolution a également ouvert la voie aux langages de haut niveau de description

de matériel, encore appelés HDLs pour "Hardware Description Languages", il s’agit en

particulier de VHDL et de Verilog. Tous deux sont supportés par un grand nombre de

logiciels. Les avantages majeurs d'une description basée sur un HDL résident dans sa

portabilité et dans son caractère exécutable. En effet, un modèle fonctionnel numérique décrit

à haut niveau par un HDL peut être vérifié par simulation, avant que la conception finale ne

soit réalisée. D’autre part, la révolution dans les outils CAO permet le passage directement

d’une description HDL synthétisable à un schéma à base de portes logiques.

Une première technique utilise un simulateur mixte analogique/numérique supportant

un HDL et intégrant un noyau de simulation unique, par exemples Advanced Design System

(ADS) d’Agilent (Agilent, 2012), ADVanceMS (Mentor, 2012), Simplorer (Simplorer, 2012)

et SMASH (Smash, 2012).

La co-simulation est la seconde technique possible. Elle est basée sur la communication

entre deux simulateurs, l’un numérique et l’autre analogique. Les modèles sont conjointement

exécutés par ces deux simulateurs, chaque simulateur modélisant une partie spécifique du

circuit à concevoir ou de son environnement. La co-simulation est basée sur une interface qui

permet non seulement l’échange de données entre les deux simulateurs tout en respectant les

contraintes de types et de tailles mais aussi en respectant la synchronisation temporelle des

deux simulateurs par exemples Modelsim/SpectreS (langages VHDL/SpectreHDL) (Aubepart

F., 2003), Modelsim/Saber (Lienhardt A.M., 2006), Modelsim/Matlab (Katrib J., 2008).

Dans ces exemples, le simulateur Modelsim simule le contrôleur numérique décrit en

langage HDL numérique. Le modèle du contrôleur s’intègre sous la forme d'un bloc

numérique dans l'environnement global. Le modèle peut être décrit à différents niveaux

d’abstraction, du plus haut niveau jusqu’au niveau synthétisable.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-67-

En résumé, les avantages de la technique basée sur un simulateur mixte supportant un

HDL sont : (1) noyau de simulation unique (2) temps de simulation réduit.

L’inconvénient majeur réside à la limitation de bibliothèques des composants

analogiques. La co-simulation surmonte l’inconvénient précédent, mais la synchronisation et

le temps de simulation représentent le grand défi.

Comme une première solution pour réduire le temps de simulation, les sociétés Altera et

Xilinx, fabricants de composants FPGAs, ont développé un code VHDL niveau synthétisable

associé aux modèles hauts niveaux de la bibliothèque Matlab/Simulink. L’outil DSP Builder

de la société Altera et l’outil System Generator de la société Xilinx permettent alors la

génération "automatique" d'une description VHDL synthétisable à partir d'un modèle dans

l’environnement de simulation Matlab/Simulink.

Cette nouvelle approche bénéficie de nombreux avantages : bibliothèques riches en

composants numériques, analogiques et possibilité de réaliser la synthèse numérique.

La simulation HIL traditionnelle, basée sur un simulateur ou bien sur une plateforme

matérielle spécifique à une application, permet entre autres aux concepteurs d’évaluer un

algorithme de commande conjointement avec le contrôleur numérique (partie matérielle) par

une simulation qui reproduit le comportement dynamique du système. Il est dès lors possible

d’évaluer l’algorithme de commande dans un environnement virtuel, non destructif où les

modifications de l’algorithme sont souvent réalisables sans itération matérielle coûteuse. Cette

technique de simulation entraîne une réduction des temps de développement ainsi que la

réduction du coût d’un projet. Ainsi, la simulation HIL permet d’évaluer la robustesse et les

performances de l’algorithme de commande et les points faibles du système.

La simulation HIL peut être réalisée en temps réel ou hors ligne, selon le type de

simulateur utilisé. Dans le cas de la simulation HIL hors ligne, à chaque pas de simulation, le

système est simulé en utilisant un simulateur "off line". Les signaux de sortie sont envoyés au

contrôleur numérique qui exécute l’algorithme implémenté. Le contrôleur retourne ensuite les

signaux de commande. À cet instant, un cycle de simulation HIL hors ligne est effectué. De ce

fait, la simulation ne peut pas être exécutée en temps réel et peut devenir très lente lorsque

l’on diminue le pas de simulation ou lorsque le système est complexe avec une dynamique

lente. En dépit de ce point faible, cette approche peut notamment être très efficace pour

évaluer un algorithme de commande, en particulier lorsque le pas de simulation est très faible.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-68-

En effet, dans ce cas, certains simulateurs temps réel ne peuvent plus simuler correctement

tels systèmes.

Dans l’autre cas, le simulateur HDL est en temps réel, le contrôleur électronique décrit

en HDL est implanté sur une carte cible (des cartes FPGA dans la plupart des cas) ce qui

réduit le temps de simulation. Un simulateur temps réel permet de modéliser et de reproduire

la dynamique et le comportement du système de sorte qu’il peut dialoguer, en temps réel, avec

le contrôleur. Ce dialogue est fait à l’aide d’interfaces entrées/sorties. Selon la complexité du

système à simuler et sa dynamique, plusieurs processeurs peuvent être utilisés pour garantir

une modélisation temps réel acceptable. Par exemple, (Harakawa, 2005) a mis en œuvre un

simulateur temps réel ayant trois processeurs pour simuler un moteur synchrone à aimants

permanents et son alimentation, avec un pas de simulation égal à 10µs.

II.1.3. Simulation par carte de prototypage en boucle

Une nouvelle méthodologie de prototypage dite simulation par carte de prototypage en

boucle ("FPGA in the loop") est utilisé récemment (Karimi S., 2009). Un composant FPGA

est un circuit intégré numérique composé d’un grand nombre de blocs logiques

programmables et reconfigurables sans modification matérielle significative. Les composants

FPGAs sont devenus nécessaires dans les systèmes numériques et sont utilisés dans de

multiples domaines d’applications en raison de nombreux avantages obtenus lors de leur

utilisation (Detrey J., 2007). Parmi tous ces avantages, on peut citer :

1- L'augmentation croissante du niveau de performance temps réel tout en réduisant le

coût et l’encombrement.

2- L’utilisation des FPGAs permet l’amélioration des performances en réduisant le

temps d’exécution d’un algorithme afin de permettre au contrôleur d’atteindre le niveau

de performance des contrôleurs analogiques, sans présenter les inconvénients de ces

derniers.

3- Leur grande souplesse de programmation permet de les réutiliser.

4- La rapidité et la facilité de reconfigurer un FPGA autant de fois que nécessaire pour

implanter les fonctionnalités désirées.

En raison de tous ces avantages, les FPGAs sont aujourd’hui utilisés dans plusieurs

applications nécessitant des traitements numériques importants tels que le traitement du signal

et de l’image, le contrôle/commande des machines électriques, la mesure de vitesse, le

contrôle des convertisseurs statiques de puissance, l’aéronautique, la télécommunication, les

équipements médicaux, les transports, la bio-informatique, l’automobile, la robotique.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-69-

II.1.4. Synthèse

La simulation HIL dans Matlab/Simulink peut être considérée comme la technique la

plus adaptée pour la simulation des contrôleurs numériques. Ce type de simulation offre

plusieurs avantages, citant :

� Le contrôleur ou le régulateur sera vérifié aux premiers stades de

développement.

� La fiabilité du contrôleur numérique (bruit, température,…etc) sera testée

rapidement.

� Les erreurs et les failles seront détectées très tôt.

Malgré ces différents avantages et la grande utilisation de la simulation HIL, plusieurs

limitations et faiblesses entour cette méthode :

� Peu de bibliothèques qui modélisent les architectures cibles sont

supportées. Le contrôleur numérique obéira à l’architecture cible

développée par Matlab/Simulink. En effet, le DSP builder d’Altera, par

exemple, ne supporte pas toutes les bibliothèques de MegaCore (DSP,

2013).

� Limitation des bibliothèques qui modélisent le contrôleur numérique.

Chaque contrôleur numérique sera intégré dans l’architecture cible.

� L’architecture cible décrite en Matlab/Simulink est peu modifiable. En

effet, les bibliothèques représentant les architectures cibles offre peu de

flexibilité pour le changement d’architecture.

� Pour chaque modification du contrôleur numérique, toute l’architecture

doit être re-implémentée sur la carte FPGA.

La section suivante présentera une nouvelle technique de vérification des contrôleurs

numériques basée sur la notion de la simulation HIL et une carte FPGA Altera pour surmonter

les problèmes et les limitations citées.

II.2. La Simulation matériel/logiciel en boucle

Afin de surmonter les limitations citées ci dessus, nous présentons une nouvelle

méthodologie de la simulation appelée simulation matériel/logiciel en boucle ("Hardware

Software In the Loop") (HSIL).

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-70-

La méthodologie sera présentée en citant tout d’abord le principe de la simulation, puis

les logiciels mis en œuvre, ensuite la couche de communication et finalement la couche de

synchronisation.

II.2.1. Principe

Vu la complexité croissante des contrôleurs numériques, la conception matériel /

logiciel devient de plus en plus exigée. Notre méthodologie propose une conception basée sur

la stratégie de la Co-design pour la modélisation des contrôleurs numériques. La figure 24

décrit l’architecture de la simulation HSIL.

L’architecture proposée est composée essentiellement de deux couches indispensables :

la couche communication et la couche synchronisation. Matlab/Simulink offre une grande

flexibilité pour une conception hétérogène. Les blocs S-Fonction permettent l’utilisation de

plusieurs langages (Matlab, C, C++, Ada) dans une même description. De l’autre coté une

architecture basée sur une architecture cible est implanté sur une carte FPGA Altera.

L’idée consiste à considérer le contrôleur numérique comme étant une application

logicielle qui s’exécute sur l’architecture cible.

Figure 24. Architecture de la simulation matériel/logiciel en boucle

La simulation HSIL, une extension de la simulation HIL, présente plusieurs avantages

citons :

� La conception des contrôleurs numériques complexes obéit à la stratégie de la Co-

design. Par la suite, la modélisation devient de plus en plus facile, flexible et le temps

de la mise en marché diminue.

S-Fonction : HSIL

Communication : USB

Carte FPGA
Contrôleur logiciel

Architecture cible

Bus

Modèle continu
Signal d’entrée Signal de sortie

Modèle discret

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-71-

� Un seul et même bloc S-Fonction permet le remplacement de tous les contrôleurs

numériques. En fait, le contrôleur sera décrit en langage C indépendamment des

blocs existants en Matlab/Simulink. Ce fait assure la portabilité et la réutilisation des

contrôleurs.

� La vérification et la correction d’un ou de plusieurs contrôleurs numériques se fait

sans modifier à chaque fois l’architecture cible.

Les sections suivantes décrivent l’architecture de la simulation HSIL et les logiciels mis

en œuvre.

II.2.2. Logiciels mis en œuvre

Dans cette section, nous présentons les logiciels utilisés pour mettre en place la simulation
HSIL.

Simulink

Simulink, très populaire pour la communauté de modélisation et de simulation, est un

environnement qui s'intègre dans Matlab. Cet environnement possède une vaste gamme

d’outils et de bibliothèques permettant de modéliser, simuler et analyser un grand nombre de

systèmes dynamiques réels (linéaires ou non linéaires) citons comme exemples : les systèmes

électriques, mécaniques, thermodynamiques, électronique de puissance etc. Simulink possède

plusieurs bibliothèques dans les domaines de l'automobile, de l’électronique de puissance, du

contrôle, etc. et des algorithmes de résolution d'équations différentielles, conçus pour les

systèmes, fournissent un bon rapport vitesse/précision de simulation.

L’environnement Simulink possède une interface graphique interactive,

particulièrement conviviale, permet à l'utilisateur de construire facilement et rapidement des

modèles à travers des blocs fonctionnels existants dans sa bibliothèque, citons par exemples :

sources, oscilloscope, intégrateur, additionneur, des composants plus complexes linéaires et

non linéaires, etc. Simulink offre la possibilité de créer des blocs non standard grâce aux blocs

personnalisables comme les S-fonctions (S-function : system function) qui consistent à

programmer les équations du système à simuler en utilisant des langages étrangers (C, C++,

Ada).

L’algorithme de résolution divise le temps de simulation en un ensemble de pas

d'intégration mineurs et pas d'intégration majeurs où le pas mineur représente une subdivision

du pas majeur. Le simulateur produit un résultat à chaque pas d'intégration majeur. Ce résultat

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-72-

utilise ceux de résolution calculés à chaque pas d'intégration mineur afin d’améliorer la

précision.

Simulink utilise la règle de dépendance de donnée pour fixer l'ordre d’exécution des

blocs durant la phase d'initialisation. Un bloc appelé direct-feedthrough est celui dont ces

sorties sont en fonction de ses entrées alors il doit être exécuté après ceux qui calculent ses

entrées (exemple: additionneur, gain). Tous les autres blocs sont appelés nondirect-

feedthrough (exemple: intégrateur). Pour assurer l’ordre d'exécution, Simulink commence à

exécuter les blocs nondirect-feedthrough, en premier lieu, dans n'importe quel ordre, puis il

exécute les blocs direct-feedthrough dans un ordre qui respecte la règle de dépendance déjà

citée.

Quartus II

Le logiciel Quartus II est un outil de CAO dédié à la programmation des CPLDs et

FPGAs du fabricant Altera. La figure 25 décrit le flot de conception sous Quartus II. Il permet

la description d'un projet, sa compilation, sa simulation logique et temporelle, son analyse

temporelle et la programmation d'un circuit cible. Quartus II permet la création des systèmes

complexes comportant des processeurs, des périphériques, des mémoires, des bus, des

arbitres, et des noyaux d’IPs. Il comprend une suite de fonctions de conception au niveau

système, permettant d’accéder à la large bibliothèque d’IP d’Altera et un moteur de placement

routage intégrant la technologie d’optimisation de la synthèse physique et des solutions de

vérification.

Figure 25. Les différentes parties du flot de conception de QUARTUS II

Quartus II est un logiciel qui travaille sous forme de projets c'est-à-dire il gère un design

sous forme d'entités hiérarchiques. Un projet est l'ensemble des fichiers d'un design sous

formes graphiques, VHDL ou de bonnes configurations des composants (affectation de pins

par exemple).

SOPC Builder

Le SOPC Builder permet, entre autres, de concevoir des microcontrôleurs spécifiques à

une application. Ces microcontrôleurs comportent donc une partie processeur à laquelle on

associe des périphériques (PIO, Timers, UART, USB, composants propriétaires, …) et de la

mémoire. Cette dernière peut-être embarquée dans le FPGA (on parle alors de RAM/ROM On

Description graphique
ou textuelle

Simulation
fonctionnelle

Simulation
temporelle

Programmation

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-73-

Chip) ou à l’extérieur du composant FPGA. La partie microprocesseur proprement dite est le

NIOS II de ALTERA, processeur de 32 bits qui se décline en trois versions : économique,

standard, rapide. La version économique, la moins puissante, utilise le moins de ressources du

FPGA. Bien sûr il est possible d’intégrer d’autres types de processeurs pour peu qu’on

dispose de leurs modèles (VHDL, Verilog, …). La création d’une application SOPC

comprend les étapes suivantes :

� Création du composant matériel (processeur + périphériques) dans l’environnement

Quartus.

� Téléchargement dans le composant FPGA (configuration).

SOPC builder peut être divisé en deux parties séparées : une interface utilisateur

graphique (GUI) et le programme générateur. Dans l'interface graphique, le concepteur

organise tout son système, ajoutant et configurant les composants. Pour le programme

générateur, il génère tous les fichiers nécessaires pour la conception.

 NIOS II

Le NIOS II est un processeur embarqué à jeu d’instruction réduit (RISC) 32 bits,

développé par Altera et conçu pour la mise en œuvre des FPGAs. Cela signifie qu'il s'agit d'un

processeur soft-core qui n'est pas produit comme un ASIC. Le NIOS II a des bus séparés pour

les données et les instructions (architecture de Harvard), vaste ensemble de possibilités de

construire en série des périphériques et des interfaces externes (hors puce) des périphériques.

II.2.3. Couche de communication

La communication représente la première couche de la simulation HSIL. La

communication est basée sur la liaison USB qui est déjà décrite dans le chapitre précédent à la

section V.1. La communication est assurée par les blocs S-Fonction du Simulink.

Les S-fonctions fournissent un mécanisme puissant pour étendre les capacités de

Simulink. Une S-fonction permet de décrire les fonctionnalités du système à l’aide d’un

langage de programmation autre que le langage Matlab comme les langages C/C++, Ada, ou

Fortran. La commande mex permet la compilation de la S-Fonction écrite en langage

étrangère pour générer une bibliothèque dynamique qui porte son nom. Une fois la S-Fonction

est compilée, le bloc peut interagir avec les autres blocs du système. Les S-fonctions utilisent

une syntaxe d’appel particulière qui permet d’interagir avec le moteur de résolution

d’équations de Simulink. Cette interaction qui est très semblable à l'interaction entre le moteur

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-74-

et les autres blocs de Simulink, utilise un cycle d’exécution spéciale. Une S-fonction est

composée par un ensemble de fonctions prédéfinies, nous nous sommes intéressés en

particulier aux fonctions citées par la figure 26.

Figure 26. Cycle de simulation d’une S-fonction

Les fonctions MdlInitializeSizes et MdlInitializeSampleTimes sont exécutées durant la

phase d’initialisation de Simulink.

La première fonction sert à :

1- Initialiser les largeurs et le nombre de ports d’entrée et de sortie.

2- Fixer le nombre de modes de temps utilisés.

3- Evaluer les paramètres de la S-fonction.

La deuxième fonction est en charge de fixer la nature des modes de temps utilisés par la

S-fonction.

Les fonctions MdlGetTimeOfNextVarHit et MdlOutputs sont exécutées à chaque pas

d’intégration durant la boucle de simulation (figure 26).

La première fonction sert à fixer le prochain temps d’exécution de la S-fonction. Elle est

utilisée seulement si la S-fonction possède le mode de temps VARIABLE_SAMPLE_TIME.

La deuxième fonction, MdlOutputs calcule les signaux de sortie de la S-fonction.

Début de la simulation

MdlInitializeSizes

MdlInitializeSampleTime

MdlGetTimeOfNextVarHit

MdlOutputs

MdlTerminate

B
ou

cl
e

de
 s

im
ul

at
io

n

In
iti

al
is

at
io

n

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-75-

Finalement, la fonction MdlTerminate est appelée à libérer la mémoire, à détruire des

objets, etc.

Une partie des fonctionnalités de ces fonctions peut être accomplie par l’appel des

méthodes existantes dans la bibliothèque SimStruct de Simulink. Cette dernière fournit un

ensemble assez vaste de méthodes très utiles lors de la programmation, exemple : ssGetT ()

qui retourne le temps courant, ssGetOutputPortRealSignal() qui permet d’accéder aux ports

de sortie de la S-fonction. L’utilisateur peut ajouter son code à l’intérieur des fonctions

prédéfinies. Lors de la création d’une S-Fonction, un squelette de code utilisant les fonctions

prédéfinies ainsi citées peut être modifié en appelant des méthodes par exemple.

II.2.4. Couche de synchronisation

Vue l’hétérogénéité du modèle continu et du modèle discret, des convertisseurs

analogique-numérique et numérique-analogique doivent être insérés. La S-Fonction qui

supporte la simulation HSIL est composée comme suit (figure 27) :

Figure 27. Structure de la S-Fonction synchronisation

Convertisseur Analogique-Numérique (CAN) :

 Un convertisseur analogique-numérique permet de convertir un signal

analogique vers un signal discret. Cette conversion est basée sur deux phases

nécessaires : échantillonnage et quantification.

Un signal analogique, X(t) continu en temps et en amplitude est échantillonné à une

période d’échantillonnage constante Tech respectant le théorème de Shannon (Fech/2 >

Fmax). On obtient alors un signal échantillonné Xech(k.Tech) discret en temps et continu en

amplitude.

Ce dernier est ensuite quantifié, pour obtenir un signal numérique X[k] discret en

temps et en amplitude. On définit le quantum q (figure 28), ou LSB (Least Significant Bit)

le bit de poids faible comme étant la dimension de ces plages avec :

q = LSB = X/2N avec N présente le nombre de bits dont le convertisseur est codé. (14)

Y(t)

Synchronisation (S-Fonction)

Traitement
numérique

 X(t)
X[k] Y[k]

N N
CAN CNA

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-76-

Xk = k.q k∈{1,…,7}

Figure 28. Caractéristique du Convertisseur Analogique-Numérique

Traitement numérique :

Le noyau du traitement numérique se base sur l’envoie de donnée sous forme de

paquet respectant le modèle de synchronisation adapté. Le paquet est composé d’un en-

tête et un corps comme l’indique la figure 29. L’en-tête informe l’ordonnanceur du

contrôleur à exécuter ainsi de la taille des données envoyées. Ici notre module de

synchronisation peut être utilisé pour différents contrôleurs numériques en changeant

seulement le numéro de routine à exécuter qui correspond à l’algorithme du contrôleur

désiré. Quand aux corps, ils contiennent les données envoyées et le temps de

synchronisation.

Figure 29. Forme du paquet

Les paquets présentent un point clé d’échange entre le simulateur Simulink et

l’architecture cible implanté sur la carte FPGA.

La figure 30 décrit le modèle de synchronisation utilisé dans la simulation HSIL.

Numéro Routine Taille Donnée Etiquette de temps

Entête Corps

Entrée analogique
 0 X1 X2 X3 X4

Sortie numérique

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-77-

Le modèle de synchronisation qui se base sur l’interruption matérielle USB

s’exécute en mode « Ping Pong ». La figure 30 montre que lorsque le simulateur continu

est en exécution l’émulateur est en repos. Lorsque ce dernier reçoit un paquet de donnée

du simulateur, il décode le paquet, change le contexte et exécute le contrôleur désiré.

Figure 30. Schéma de synchronisation de la simulation matériel/logiciel en boucle

Convertisseur Numérique-Analogique (CNA) :

Un convertisseur numérique-analogique permet de convertir un signal discret vers

un signal analogique comme l’indique la figure 31.

Figure 31. Principe du Convertisseur Numérique-Analogique

Chacun des 2N mots binaires pouvant être appliqué en entrée est associé à un signal

de sortie analogique, telle que:

Y= (b1.2
N-1+b2.2

N-2+….+bN.20). (X/(2N-1)) avec b1 est le MSB et bn le LSB.
(15)

b1

b2

b3

bN

N bits Y(t) CNA

Tâche discret:

Contrôleur

Simulateur

Modèle continu

Emulateur

Modèle discret

Tâche continu

Paquet de donnée

Paquet de donnée

Temps Temps physique

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-78-

On définit le LSB, ou quantum, comme étant la plus petite variation possible du

signal de sortie correspondant à un changement du bit de poids faible :

1 LSB = X / (2N – 1). (16)

III. Modèle et environnement de Co-simulation/Emulation des

systèmes continu/discret (CODIS+)

Nous présentons dans cette section en premier lieu l’environnement CODIS. Ensuite,

une étude détaillée de l’environnement global CODIS+ qui supporte d’une part le simulateur

Simulink pour le modèle continu et d’autre part le simulateur SystemC et la carte FPGA pour

le modèle discret décrite.

III.1. L’environnement CODIS

Une description selon le modèle de synchronisation utilisé est décrite dans cette partie.

III.1.1. Présentation

L'une des plus grandes difficultés lors de la simulation continue/discrète est la

synchronisation du temps entre la simulation à événements discrets et l'intégration

numérique du simulateur continu.

La synchronisation est un point clé qui influence la précision et la vitesse de

simulation. Il existe deux approches fondamentales de synchronisation : l'approche

optimiste et l'approche pessimiste (Langeanu D., 2001).

L’approche optimiste permet à chaque simulateur d'effectuer quelques pas

optimistes. Si un simulateur génère un événement avant la fin de ces pas, l'autre

simulateur doit être capable de reculer son temps.

Dans le cas de l'approche pessimiste, les simulateurs avancent avec le même pas de

temps, ce qui évite tout besoin de recul. À partir du modèle de synchronisation basé sur

l’approche pessimiste nous définissons un modèle de synchronisation supportant à la fois

le simulateur continu et le simulateur/émulateur discret présenté dans le chapitre 2.

 L’environnement COntinuous DIscrete Simulation (CODIS) (Bouchhima F., 2007)

présente un environnement de modélisation et simulation des systèmes continus/discrets. Une

présentation de cet environnement est décrite en se basant sur le principe de simulation et les

modèles de synchronisation utilisés.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-79-

III.1.2. Principe de l’environnement CODIS :

Figure 32. Schéma global de l’environnement CODIS

La figure 32 montre le schéma global qui relie le modèle continu et le modèle

discret ainsi les interfaces utilisées dans l’environnement CODIS.

Pour Simulink les interfaces peuvent être paramétrées à partir de leurs boites de

dialogue. CODIS possède principalement trois types d’interfaces dans Simulink :

� L’interface Inter_In : c’est une interface qui permet de lire les données reçues de la

part du modèle discret. Cette interface implémente la couche de communication et

permet de détecter les événements discrets pour effectuer le changement de contexte.

Cette dernière étape est responsable de détecter le passage du temps de simulateur par

les étiquettes de temps des événements d’échantillonnage. Cette interface a comme

paramètre :

1. Le nom, le nombre et le type des données des ports d’entrée du modèle discret.

2. Les périodes d’échantillonnage.

3. Le mode utilisé.

� L’interface Inter_Out : c’est une interface qui permet d’envoyer les données vers le

modèle discret et de lancer le changement du contexte. Cette interface implémente la

même couche que l’interface Inter_In et a comme paramètre :

1. Le nom, le nombre et le type de données des ports de sorties du modèle discret.

2. Le mode utilisé.

� L’interface Sync : Cette interface implémente la partie la plus importante de la phase

de la détection des événements discrets. Elle crée les points d’arrêt que l’algorithme de

résolution doit atteindre sans dépassement. Ces points sont les étiquettes de temps des

Modèle continu Inter_In Inter_Out

Modèle discret

Simulink

SystemC

Sync

Inter_In Inter_Out

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-80-

événements reçus. Quand un événement est reçu, l’interface fixe son prochain temps

d’activation égal à l’étiquette de temps de cet événement, ceci grâce au mode de temps

de la S-fonction de l’interface Sync. Une fois ce temps est atteint, l’interface Inter_In

ou Inter_Out est exécutée pour se synchroniser avec l’événement et pour changer le

contexte vers le simulateur discret. Une fois que Simulink reprend l’exécution,

l’interface Sync est exécutée pour fixer son prochain temps d’exécution égal à

l’étiquette de temps du nouvel événement reçu. L’interface est exécutée au temps égal

zéro pour fixer son premier prochain temps.

Ces interfaces sont manipulées comme n’importe quel bloc de la bibliothèque de

Simulink. Leurs ports d’entrée ou de sortie sont compatibles avec les ports du modèle continu

et peuvent être connectés directement en utilisant les signaux de Simulink. L’utilisateur doit

placer les interfaces à partir de la bibliothèque des interfaces dans la fenêtre du modèle

continu, puis il fixe leurs paramètres et finalement il les connecte avec les ports d’entrée et de

sortie du modèle continu. Durant la phase d’initialisation de la simulation, Simulink charge

les fonctionnalités de ces interfaces à partir de la bibliothèque dynamique (.dll). Les interfaces

sont générées automatiquement par un outil de génération de code qui a comme entrée les

paramètres définis par l’utilisateur.

Pour SystemC les interfaces peuvent être appelées à partir de la bibliothèque de

simulation. CODIS possède principalement deux types d’interfaces :

� L’interface Inter_In : c’est une interface qui permet de lire les données reçues de la

part du modèle continu. Cette interface implémente la couche de communication et

assure l’échange de données, la conversion des signaux et le changement de contexte

en envoyant des étiquettes du temps des événements d’échantillonnage. Elle assure

aussi la synchronisation avec les données échantillonnées à l’entrée du modèle discret

grâce aux horloges d’échantillonnage.

� L’interface Inter_Out : c’est une interface qui permet d’envoyer les données vers le

modèle continu et lancer le changement du contexte au niveau du noyau de SystemC.

Pour SystemC, l’outil génère aussi la fonction ‘sc_main’ (ou la modifie si elle existe

déjà) qui connecte les interfaces avec le modèle discret. Le modèle est compilé et l’éditeur de

lien appelle la bibliothèque de SystemC et la bibliothèque statique, appelé bibliothèque de

simulation.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-81-

III.1.3. Modèle de synchronisation de l’environnement CODIS :

Une fois les interfaces générées et connectées aux modèles, le concepteur simule son

système en exploitant les outils de débogage des deux simulateurs intégrés par

l’environnement. Dans cette section, une description du modèle de synchronisation pessimiste

est présentée.

La figure 33 présente le modèle de synchronisation. Ce modèle est utilisé lorsque le

modèle continu est en avance par rapport au modèle discret et respecte l'algorithme canonique

(Ghasemi H.R., 2005). Dans cet algorithme, le simulateur continu prend en considération

l'occurrence d'un événement discret à son tour le simulateur discret tient en compte les

événements d'état envoyés par le simulateur continu.

Dans la figure 33, le simulateur continu et le simulateur discret sont synchronisés à

l'instant A. Ce dernier simulateur commence à exécuter tous les processus qui sont sensibles

aux événements déclenchés à l'instant courant A et met à jour les signaux sans avancer le

temps, ce qui constitue un cycle de simulation. Il faut souligner que le noyau de SystemC

modifié permet l’exécution des processus sans avancer le temps sauf lorsqu’un changement

de contexte du simulateur continu vers le simulateur discret est effectué. Ensuite, le

simulateur discret envoie au simulateur continu le temps d'occurrence de son prochain

événement de sortie (point B: prochain événement), il change le contexte de simulation vers le

simulateur continu (flèche 1). Ce dernier calcule les signaux en résolvant les équations

différentielles du modèle jusqu'à atteindre avec précision le temps envoyé par le simulateur

discret (point C : temps d'événement discret atteint). Deux cas se présentent:

• Le temps du point C représente le temps d'occurrence d'un événement

d'échantillonnage. Dans ce cas, le simulateur continu met à jour les signaux de sortie

avec leurs valeurs calculées à cet instant et change le contexte vers le simulateur

discret (flèche 3). Ce dernier avance pour le temps d'occurrence de l'événement

d'échantillonnage (flèche 4) et commence un nouveau cycle de simulation.

• Le temps du point C est le temps d'occurrence d'un événement de mise à jour

des signaux. Dans ce cas, le simulateur continu change le contexte vers le simulateur

discret qui avancera pour le temps d'occurrence de l'événement indiqué, calcule les

signaux et envoie leurs valeurs et le temps d'occurrence du prochain événement.

Finalement, il change le contexte vers le simulateur continu qui va lire les nouvelles

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-82-

valeurs des signaux et procède pour le prochain temps d'événement discret et le cycle

recommence (flèche 5 et 6).

 Avancement de la simulation Synchronisation

 Evénement déclenché/prochain

Temps d’événement discret atteint

 Evénement d’état généré par le

simulateur continu

 Evénement d’état considéré par le

simulateur discret

L’avancement du simulateur discret si l’événement n’a pas eu lieu

Figure 33. Le modèle de synchronisation pessimiste

Le modèle continu peut générer un événement d'état. Dans ce cas, le simulateur continu

indique sa présence, envoie son temps d'occurrence au simulateur discret et change le

contexte de simulation (flèche 7). Le simulateur discret doit considérer cet événement en

avançant le temps vers son temps d'occurrence et d'exécuter les processus qui lui sont

sensibles.

III.2. Discussion

Cet environnement a été validé par plusieurs applications hétérogènes. CODIS est un

environnement de vérification des systèmes hétérogènes basé sur une co-simulation entre le

simulateur Simulink et le simulateur SystemC. L’environnement CODIS présente plusieurs

avantages citant :

� Utilisation des langages Matlab/Simulink pour le modèle continu et SystemC pour le

modèle discret. Ces deux langages sont classés comme étant les premiers langages a

utilisés dans les premiers phases de conception afin de vérifier le fonctionnement du

système à réaliser. Ce point permet d’utiliser les bibliothèques existantes conçues pour

les modèles continus et discrets.

Simulateur discret

Simulateur continu

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-83-

� CODIS utilise le SystemC pour modéliser les parties matériels au lieu de VHDL ou

Verilog. Ceci permet d’accélérer à la fois le temps de la mise en marché et le temps de

simulation ainsi plusieurs niveaux d’abstraction peuvent être utilisés.

Comme les autres environnements CODIS possède quelques limitations, citons :

� Les temps de simulation et plus important par rapport aux nouveaux environnements

qui supportent à la fois les modèles continu/discret.

� L’environnement CODIS ne supporte pas la stratégie du Co-design lors de la

modélisation des contrôleurs numériques. Ce qui rend CODIS non efficace pour les

contrôleurs complexes.

La méthodologie qui sera présentée par la suite à pour but d’adapter CODIS à la

stratégie Co-design et d’accélérer le temps de simulation en utilisant une carte FPGA dont

l’architecture cible est implantée.

III.3. Modèle de synchronisation de l’environnement CODIS+

Nous présentons dans cette section le modèle de synchronisation global proposé (figure

34). Ce modèle se base d’une part sur le modèle de synchronisation pessimiste entre le

simulateur Simulink et le simulateur SystemC et d’autre part entre le simulateur SystemC et

une architecture cible implantée sur une carte FPGA pour la modélisation conjointe faite dans

le chapitre 2. Le temps de synchronisation représente le point clé à décrire et on va ignorer les

types de paquets échangés entre les différents simulateurs et émulateurs.

Figure 34. Modèle de synchronisation de l’environnement CODIS+

Carte FPGA

SystemC

Simulink

t

t

t

Attente Attente

1

2

3

4

5

6 12

11

159 13

7

8

10 14 18

17 19

16En repos 20

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-84-

A l’instant t=0s, le processeur cible implanté sur la carte FPGA déclenche la co-

simulation émulation ainsi un changement de contexte vers le simulateur SystemC est

effectué (flèche 1). Ce dernier commence à exécuter les modules sensibles sans avancer le

temps de simulation. Une fois l’exécution est finie, le simulateur discret envoie le prochain

temps éventuel de synchronisation vers le simulateur continu. Un changement de contexte est

accompli par la suite (flèche 2). Lorsque le Simulink reçoit le prochain temps de

synchronisation, il commence à exécuter le modèle continu. Deux cas peuvent se présenter :

1- le temps étiquette est atteint avant la génération d’un pas d’intégration.

2- Un pas d’intégration est généré avant l’atteinte du temps étiquette.

On s’intéresse à ce stade là au premier cas. Lorsque le temps est atteint (flèche 3), le

simulateur Simulink fait un changement de contexte vers le simulateur SystemC (flèche 4). A

cet instant SystemC avance son temps (flèche 5) d’où un cycle de simulation est terminé.

Puis, une tâche logicielle est simulée par la carte (flèche 7) et le simulateur SystemC entre

dans une phase de repos. Lorsque l’émulateur termine sa tâche, un changement de contexte

vers le simulateur Simulink est fait à travers le SystemC (flèche 8 et flèche 9) en envoyant le

temps étiquette qui correspond au temps d’exécution de la tâche logicielle. Dans ce cas

Simulink continue l’exécution du modèle continu jusqu’à atteindre le nouveau temps étiquette

envoyé (flèche 10) et se bloque pour donner l’accès au SystemC. Ensuite, le SystemC exécute

une tâche matérielle sans avancer son temps et envoie le prochain temps de synchronisation

vers le simulateur continu. Lorsque le changement de contexte est accompli le modèle continu

commence à s’exécuter jusqu’à l’apparition d’un événement d’intégration, et avant que le

temps d’étiquette soit atteint, c’est le deuxième cas. Dans ce cas, Simulink envoie le temps

d’apparition de l’événement d’intégration (temps étiquette) vers le SystemC pour que ce

dernier avance son temps de simulation jusqu’au temps d’étiquette ainsi un changement de

contexte est fait. Ce cas représente un cas critique car il perturbe le parallélisme de

l’exécution des simulateurs. Le mécanisme décrit permet de conserver le bon fonctionnement

des simulateurs ainsi les échanges des instants. Le Simulink poursuit l’exécution jusqu’au

nouvel instant (flèche 18). Ce cas n’a pas d’influence sur l’émulateur car il est en phase

d’attente.

Le simulateur SystemC représente le maître de l’environnement de co-simulation /

émulation vue le mécanisme du noyau de la simulation (initialisation puis exécution) et vue la

possibilité de la modification du noyau. L’émulation (déjà décrite dans le chapitre 2) est

assurée à travers des fonctions qui seront intégrées dans le code de haut niveau et ne nécessite

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-85-

pas la modification du noyau de la simulation de SystemC grâce à l’interruption matérielle

faite par la liaison USB.

Les interfaces utilisées pour Simulink sont les mêmes interfaces faites par

l’environnement CODIS. La seule modification est réalisée au niveau du type de paquet

échangé.

Pour SystemC deux nouvelles interfaces sont ajoutées :

� Interface_In : Cette interface fait appelle aux fonctions de la bibliothèque de la

simulation/émulation. Elle implémente la couche de communication et permet

de lire les paquets envoyés de la part du processeur cible.

� Interface_Out : Cette interface fait appelle aux fonctions de la bibliothèque de la

simulation/émulation. Elle implémente la couche de communication et permet

d’envoyer les paquets vers le processeur cible.

IV. Conclusion

Dans ce chapitre, nous avons détaillé les différentes méthodologies adaptées. En

premier lieu, une présentation de la simulation matériel/logiciel en boucle est annoncée pour

le cas de la simulation des contrôleurs numériques. Cette technique est une extension de la

fameuse technique HIL utilisée dans Matlab/Simulink. Notre technique respecte la conception

Co-design non utilisée dans la conception des contrôleurs numériques. La simulation

matériel/logiciel en boucle représente une technique efficace pour les contrôleurs complexes

et diminue le temps de la mise en marché.

En deuxième lieu, une extension de l’environnement CODIS est proposée afin

d’accélérer le temps de simulation et de supporter des systèmes plus complexes. En fait,

l’environnement CODIS souffre essentiellement du temps de simulation important lors de

l’utilisation de l’ISS et n’obéit pas à la stratégie de conception Co-design pour les systèmes

numériques. Notre environnement résolu ces deux problèmes en utilisant une carte de

prototypage.

Dans le chapitre suivant, une implémentation de l’environnement simulateur/émulateur,

de la simulation HSIL et de l’environnement de co-simulation/ émulation est validé à travers

plusieurs exemples d’application.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-86-

Chapitre 4 : EXPERIMENTATION : APPLICATIONS ET ENVIRONNEMENTS................................ 87

I. Introduction ... 87

II. Implémentation de l’architecture cible sur FPGA ... 87

III. Expérimentation de l’environnement de Simulation/Emulation matériel/logiciel 88
III.1. Application : Système de reconnaissance par empreinte digitale ... 88

III.1.1. Phase de prétraitement ... 88
III.1.2. Phase d’extraction .. 92
III.1.3. Phase de comparaison .. 95
III.1.4. Validation et performance: .. 97

III.2. Validation de la Simulation/Emulation ... 98

III.3. Résultats de la Simulation/Emulation ... 100

IV. Expérimentation de la simulation matériel/logiciel en boucle 100

IV.1. Présentation des applications de test ... 101

IV.1.1. Régulateur de la vitesse d’un moteur à courant continu ... 101
IV.1.2. Système de contrôle en boucle fermée de la vitesse du moteur .. 103

IV.2. Validation de la simulation matériel/logiciel en boucle.. 106
IV.3. Résultats de la simulation matériel/logiciel en boucle .. 108

V. Expérimentation de l’environnement CODIS+ .. 110
V.1. Application : système limiteur de vitesse .. 110

V.2. Implémentation et résultats ... 111

VI. Conclusion .. 112

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-87-

Chapitre 4 : EXPERIMENTATION : APPLICATIONS ET

ENVIRONNEMENTS

I. Introduction

Les environnements de co-simulations présentent une nécessité croissante pour la

modélisation des systèmes continus/discrets. En fait, ces environnements non seulement

facilitent la tâche de la modélisation et accélère la phase de conception mais aussi diminue le

coût de fabrication des systèmes. L’environnement de co-simulation/émulation présenté dans

le chapitre précédent représente un outil puissant pour la simulation continu/discret vu le

schéma de synchronisation qui assure un temps de simulation minime et offre la possibilité de

modéliser les systèmes numériques conjointement et à différent niveau d’abstraction.

Dans ce chapitre, nous présentons plusieurs applications pour valider les

environnements détaillés précédemment, citons : le système de reconnaissance par empreinte

digitale, un système de régulateur de la vitesse d’un moteur à courant continu, un système de

contrôle en boucle fermée de la vitesse d’un moteur et un système de contrôle de vitesse d’un

véhicule en se basant sur une identification biométrique. Une étude algorithmique d’un

système de reconnaissance par empreinte digitale est décrite au cours de la première partie de

ce chapitre. L’objectif de ces applications est la validation de l’environnement de

simulation/émulation matériels/logiciels, de la technique de simulation matériel/logiciel en

boucle et l’environnement CODIS+ de co-simulation/émulation des systèmes

continus/discrets.

II. Implémentation de l’architecture cible sur FPGA

La communication étudiée dans les chapitres précédents était basée sur une architecture

cible. On fixera dans cette section que l’architecture cible est composé du processeur NIOS II,

du bus Avalon et des mémoires.

On ajoute à cette architecture le contrôleur USB ISP1362 de la carte DE2-70 (famille

Altera) qui représente l’arbitre de la communication et n’appartient pas à l’architecture cible.

A l’aide de l’outil SOPC Builder l’architecture cible est implémenté (figure 35).

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-88-

Figure 35. Modélisation de l’architecture cible

III. Expérimentation de l’environnement de Simulation/Emulation
matériel/logiciel

Dans cette section nous présentons dans la première partie une étude algorithmique du

système de reconnaissance par empreinte digitale. L’implémentation de l’application et les

résultats de la simulation/émulation sont exploitées dans la deuxième partie.

III.1. Application : Système de reconnaissance par empreinte digitale

La reconnaissance par empreinte digitale est le système biométrique le plus répandu

dans le monde sécuritaire. Il est indéniable qu’un tel système de reconnaissance soit le

meilleur non seulement grâce à son faible coût par rapport à d’autre modalité mais aussi grâce

à sa sureté. La figure 36 montre les principales phases de reconnaissance par empreinte

digitale.

III.1.1. Phase de prétraitement

La phase de prétraitement présente une phase essentielle pour l’amélioration de
l’image de l’empreinte. Cette phase est constituée de l’étape de filtrage, de la binarisation et
de la squelettisation.

III.1.1.1. Filtrage

Toute image de basse qualité provoque de gros problèmes dans le domaine de

traitement d’images. Dans ce cadre la plupart des images d’une empreinte digitales

demandent un filtrage afin d’extraire ses informations utiles.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets

Figure

Le filtre de base que nous avons utilisé est un filtre de Gabor à symé

à 0 degré.

,,,(ϕyxh

Pour obtenir les autres orientations, il suffit d'effectuer






−
=









y

x

i

i

sin(

cos(

Selon les différents blocs de l’image, le filtre peut avoir plusieurs directions privilégiées. Dans

ce cas-là, le filtre final est une somme de filtre

Phase de prétraitement

Phase d’extraction

Phase de comparaison

mulation / Emulation des systèmes Continus / Discrets

-89-

Figure 36. Chaine de reconnaissance

Le filtre de base que nous avons utilisé est un filtre de Gabor à symé

)2cos(.)
)(

2

1
2

2

2

ϕ
δδ π

ϕϕ

fxef
é
yx

yx
+−

= (16)

Pour obtenir les autres orientations, il suffit d'effectuer une rotation des axes coordonnés:














y

x

ii

ii .
)cos(sin(

)sin()cos(

θθ
θθ

 (17)

Selon les différents blocs de l’image, le filtre peut avoir plusieurs directions privilégiées. Dans

là, le filtre final est une somme de filtres de base placée à chaque direction.

∑=
i

iib yxhh),((18)

Filtre de Gabor

Squelettisation

Extraction des minuties

Binarisation

Comparaison
Base de données

Phase de prétraitement

Phase de comparaison

 Mossaad Ben Ayed

Le filtre de base que nous avons utilisé est un filtre de Gabor à symétrie paire et orienté

(16)

une rotation des axes coordonnés:

(17)

Selon les différents blocs de l’image, le filtre peut avoir plusieurs directions privilégiées. Dans

à chaque direction.

Base de données

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-90-

∑ ∑
=

=

=

=

−−=
2

2

2

2

),()].,(),,(,,[),(

wx
u

wx
v

wy
u

wy
v

vjuiNjiFjiovuhjiE (19)

Où -E (i, j): nouvelle valeur du pixel (i, j).

-F (i, j): la fréquence du pixel (i, j).

-O (i, j): direction du pixel (i, j).

Sélection des paramètres de Gabor

Pour l’extraction de la réponse des crêtes et des vallées de diverses orientations du filtre

de Gabor, les paramètres f et θ sont fixés aux valeurs suivantes:

� La fréquence f correspond à la distance inter-crêtes dans l’image de l'empreinte

digitale. Après plusieurs essais, on l’a fixée à 0,3.

� Les orientations examinées correspondantes aux valeurs de θ sont: 30°, 45°, 60°

et 90°. Pour les images présentées, on a fixé θ à 60°.

� Les paramètres écarts types σx et σy contrôlent la bande passante du filtre, ils

doivent être convenablement choisis, vu leurs effets significatifs sur

l’amélioration des résultats.

� La valeur de σx détermine le degré d’amélioration de contraste entre les rides et

les vallées alors que σy détermine le degré de lissage appliqué aux rides tout au

long d’une orientation locale.

III.1.2. Binarisation

La binarisation de l’image est le processus qui transforme une image en niveau de gris

en une autre noir et blanc. Dans une image en niveau de gris, un pixel peut prendre 256

valeurs d’intensité différentes tandis qu’un pixel dans une image noire et blanche ne peut être

aussi que noir ou blanc. Cette transformation est faite en appliquant un seuillage à l’image. La

valeur 1 signifie que le pixel est blanc alors que la valeur zéro indique que le pixel est noir.

L’échelle de gris est formée par des valeurs décimales entre 0 et 1. Lorsque le seuil est

appliqué à l’image, tous les pixels sont comparés à la valeur du seuil qui est calculée à travers

les seuils des couleurs RGB. N’importe quelle valeur de pixel inférieure au seuil prend zéro,

et n’importe quelle valeur de pixel supérieure au seuil prend 1. À la fin de ce processus, toutes

les valeurs des pixels sont soit zéro soit un. Ainsi, l’image sera transformée en format binaire

avec la valeur 0 pour les crêtes et la valeur 1 pour les vallées. Après cette opération, les crêtes

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-91-

dans l'empreinte digitale sont accentuées avec la couleur noire tandis que les vallées sont

blanches.

Dans le processus de binarisation, le choix de la valeur seuil calculé par l’équation

suivante est critique.

ncnl

jiM
Seuil

*

),(∑= (20)

Avec M(i,j) la matrice de l’image, nl:nombre de ligne, nc: nombre de colonnes

Il existe deux approches pour le calcul de seuil :

- Seuil Global : Le principe est de calculer la valeur moyenne de toute l’image.

L’avantage est que cette solution est très rapide ; alors qu’elle cause des problèmes si

l’image présente une hétérogénéité au niveau luminance.

- Seuil Local : Le principe est calculer la valeur moyenne par masque. Le

principal avantage de cette méthode est la bonne qualité issue de la binarisation mais

le temps de calcul est très important.

La figure 37 montre le résultat de binarisation par seuil global et local et prouve que la

binarisation avec un seuil local est le plus adéquat pour une image d’empreinte.

a) Image capturée b) Seuillage global c) Seuillage local

Figure 37. Les méthodes de Binarisation

III.1.3. Squelettisation

Après la binarisation, un autre processus important doit être appliqué à l’image: Il s’agit

de la squelettisation. Ce processus réduit l’épaisseur de toutes les rides à un pixel.

Squelettisation à base de « Neighborhood » :

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets

Cette méthode est basée sur le principe

algorithme d'amincissement. Cet algorithme se base sur les valeurs de poids c

nombre de pixel noir autour du pixel en question. Nous utilisons ainsi une fenêtre de taille 3 ×

3. Tous les types de relation (256) formé

partir de ces cas, un groupe de règles

Cet algorithme est un algorithme itératif et s’arrête lorsque le long d’un traitement

aucune modification n’est faite.

Le majeur problème lors de la squelettisation se manifeste via l’occurrence d’effet de

ZIGZAG sur la strie. Ce problème cause la détection de fausse minutie. Nous proposons

comme solution d’amélioration, d’appliquer le filtre de lissage sur l’image

l’expérience montre une image résultante am

squelettisation sans/avec le filtre de lissage.

a) Squelettisation sans filtr

Figure

III.1.2. Phase d’extraction

L’extraction des minuties à partir d’une empreinte squelettisée nécessite une méthode

capable de distinguer et de classer les différentes formes et types de minuties. Donc il s’agit

d’un problème de classification. Nous proposons d’appliquer une méthode de

basée sur la distance de Hamming appelée DECOC. Cette méthode développée dans ce

chapitre est basée sur le travail de

Motivé par les nouvelles solutions de la décomposition multi

extensions de la méthode ECOC, on propose l’exploitation d’une nouvelle méthode appelée

Data-driven ECOC (DECOC) pour résoudre le problème de classification dans le cas de

l’empreinte digitale.

Principe de base de la méthode ECOC

mulation / Emulation des systèmes Continus / Discrets

-92-

Cette méthode est basée sur le principe d’élimination qui représente le noyau d'un

algorithme d'amincissement. Cet algorithme se base sur les valeurs de poids c

nombre de pixel noir autour du pixel en question. Nous utilisons ainsi une fenêtre de taille 3 ×

lation (256) formés par 8 pixels voisins de l'objet ont été examinés. À

partir de ces cas, un groupe de règles d'élimination peut être obtenu.

Cet algorithme est un algorithme itératif et s’arrête lorsque le long d’un traitement

faite.

Le majeur problème lors de la squelettisation se manifeste via l’occurrence d’effet de

ZIGZAG sur la strie. Ce problème cause la détection de fausse minutie. Nous proposons

comme solution d’amélioration, d’appliquer le filtre de lissage sur l’image

l’expérience montre une image résultante améliorée. La figure 38 décrit la méthode de

squelettisation sans/avec le filtre de lissage.

Squelettisation sans filtre de lissage b) Squelettisation avec filtr

Figure 38. Squelettisation sans/avec filtrage

Phase d’extraction

L’extraction des minuties à partir d’une empreinte squelettisée nécessite une méthode

capable de distinguer et de classer les différentes formes et types de minuties. Donc il s’agit

d’un problème de classification. Nous proposons d’appliquer une méthode de

basée sur la distance de Hamming appelée DECOC. Cette méthode développée dans ce

chapitre est basée sur le travail de Jie Zhou (Jie Z., 2007).

Motivé par les nouvelles solutions de la décomposition multi-classe qui sont des

la méthode ECOC, on propose l’exploitation d’une nouvelle méthode appelée

driven ECOC (DECOC) pour résoudre le problème de classification dans le cas de

Principe de base de la méthode ECOC

 Mossaad Ben Ayed

d’élimination qui représente le noyau d'un

algorithme d'amincissement. Cet algorithme se base sur les valeurs de poids c’est-à-dire le

nombre de pixel noir autour du pixel en question. Nous utilisons ainsi une fenêtre de taille 3 ×

par 8 pixels voisins de l'objet ont été examinés. À

Cet algorithme est un algorithme itératif et s’arrête lorsque le long d’un traitement

Le majeur problème lors de la squelettisation se manifeste via l’occurrence d’effet de

ZIGZAG sur la strie. Ce problème cause la détection de fausse minutie. Nous proposons

comme solution d’amélioration, d’appliquer le filtre de lissage sur l’image squelette. En effet,

décrit la méthode de

Squelettisation avec filtre de lissage

L’extraction des minuties à partir d’une empreinte squelettisée nécessite une méthode

capable de distinguer et de classer les différentes formes et types de minuties. Donc il s’agit

d’un problème de classification. Nous proposons d’appliquer une méthode de classification

basée sur la distance de Hamming appelée DECOC. Cette méthode développée dans ce

classe qui sont des

la méthode ECOC, on propose l’exploitation d’une nouvelle méthode appelée

driven ECOC (DECOC) pour résoudre le problème de classification dans le cas de

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-93-

Error correcting output codes (ECOC) est utilisé dans les domaines de la

communication et de la théorie de l’information dans le but d'améliorer la fiabilité de la

transmission de signaux binaires et de maintenir l'intégrité des informations. Son principe est

d’ajouter des bits de parité pour chaque redondance de l’information. La distance entre deux

mots est définie à l’aide de la distance Hamming, qui représente le nombre de différence de

bits dans les deux mots. Enfin, un processus de décodage examine les distances de Hamming

entre les binaires reçus et valide l'ensemble des mots pour détecter et récupérer les erreurs.

ECOC est basée sur la plus courte distance de Hamming formulé comme suit :

y = argmink H(wk,w(x)), k = 1, … , K (21)

Avec Wk est la kème ligne de la matrice. H (Wk, W(x)) est la fonction qui permet de

calculer la distance de Hamming. Nous attribuons le label de classe codé de la plus proche,

c'est-à-dire, avec la plus courte distance de Hamming, à l'échantillon de test.

 Principe de la méthode DECOC

Nous proposons Data-driven ECOC (DECOC) pour concevoir le code de la matrice

ECOC en utilisant les données représentées par les pixels de l’image. L'idée clé de DECOC

est de sélectionner certaines bases binaires dans la matrice selon son score de confiance. Cette

mesure nous aidera à déterminer comment nous allons probablement inclure la matrice sous

test dans l'ensemble.

Avant de présenter le score de confiance, il faut tout d'abord définir le critère de

séparabilité d'un groupe de plusieurs classes, avec G présente le groupe qui contient les

classes de même famille.

11
,0

),(
2
2

)(−≠≠∑
∈≠−

=





KGandG
Gkcjckj

kcjcd
GG

GS (22)

Avec d(Cj, Ck) est la distance entre deux classes Cj et Ck, qui est la distance de

Hamming entre les vecteurs de même classe; | G | est la taille du groupe, c'est-à-dire, le

nombre de motifs de même classe ; 2 / (| G |2 - | G |) est le facteur de normalisation.

La confiance d'une base binaire DECOC est alors définie comme:

11;
))(())((

))((
)(/ −≠≠













+
= ++

−+

−+ KGandG
fGSfGS

fGS
fC (23)

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-94-

G+(f) est l'ensemble des classes qui ont une distance Hamming minimale par rapport

aux pixels noirs de la classe f, G-(f) est l'ensemble des classes, qui ont une distance Hamming

minimale par rapport aux pixels blancs. S (G + / - (f)) est égale à la distance entre la matrice

sous test et tous les patterns d’une classe en calculant le nombre de pixels blancs non utilisés.

Le principe du flot d’apprentissage de la figure 39 se base sur le calcul de la distance de

Hamming entre le bloc en question et chaque classe. Ensuite, on calcule le S(G+(f)) pour la

classe dont la distance de Hamming est minimale et on calcule le S(G+/-(f)). Ainsi on calcule

le score confidentiel pour le cas de la terminaison, de la bifurcation et du non minutie. Le

score qui possède la valeur maximale présente le type du bloc en question. D’où la décision.

Figure 39. Flot d’apprentissage de l’algorithme DECOC

Bloc d’entrée accepté Classes

Calculer toute les distances Hamming
entre le bloc d’entrée et les classes :
terminaison, bifurcation et non minutie

Extraire des groupes de patterns des
différentes classes selon la distance
minimale

Calculer le critère de séparabilité

Calculer le score de confiance

Trier le score de confiance

Choisir le score maximal

Décision

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-95-

Afin de choisir les bons motifs pour chaque classe, on a utilisé plusieurs empreintes

squelettisées différentes. On a trouvé le total de 357 motifs dont 32 pour la classe terminaison,

104 pour la classe bifurcation et 221 pour la classe non minutie. Le commun entre ces motifs

est que le centre de la fenêtre (bloc) est un pixel noir et représente le point terminaison ou

bifurcation.

La figure 40 illustre quelques exemples pour chaque classe.

Figure 40. Exemples de chaque classe

III.1.3. Phase de comparaison

Plusieurs méthodes de comparaison sont traitées dans la littérature. La plus connue se

base sur les cordonnées de chaque point minutie, le type et l’orientation. Les grands

problèmes de cette méthode consistent au déplacement, à la rotation et à la pression de

l’empreinte. Afin de résoudre ces problèmes, plusieurs travaux se basent sur la recherche du

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-96-

centre de l’empreinte. Mais ces travaux manquent encore de précision lors de la détection du

centre.

Nous proposons comme solution de ces problèmes une méthode qui se base sur la

relation entre point minutie et indépendante des cordonnées.

La méthode de comparaison se base sur le calcul de la distance Euclidienne de

l’équation suivante entre deux points minuties successives en se balayant verticalement

(figure 41).

2
12

2
12)2,1()()(tan yyxxceDis MM −−−= (24)

Figure 41. Méthode de comparaison

Notre méthode se base aussi sur le type de minutie et la direction entre deux points

successifs. Les équations illustrent la méthode.

)25(
12

12
)2,1(xx

yy
Direction MM −

−
=

)26(

nTerminaisonTerminaiso00

nBifurcationTerminaiso01

nTerminaisonBifurcatio10

nBifurcationBifurcatio11

)2,1(













−
−

−
−

=MMType

avec M1(x1,y1) et M2(x2,y2)

 Minutie Terminaison Minutie Bifurcation

 Distance entre deux minuties

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-97-

Afin d’optimiser l’algorithme de comparaison, nous avons proposé de remplacer la

direction par un calcul d’orientation comme l’indique l’équation de la direction et la figure 42

pour gagner en terme de mémoire et en terme de calcul.

Alpha = |arctan(direction1)| + |arctan(direction2)| (27)

Figure 42. Angle entre trois minuties

III.1.4. Validation et performance:

Afin de valider la méthode de classification DECOC pour ce type de classification, on a

utilisé la base de données universelle FVC2004 DB3_B.

La performance d’un système biométrique basé sur l’empreinte digitale n’est validée

qu’à travers certaine taux, pour cela on définit les termes suivants :

� « False Acceptance Rate » (FAR) : Ce facteur présente le taux des fausses

reconnaissances. Plus ce taux est faible plus la méthode est meilleure.

� « False Rejection Rate » (FRR) : Ce facteur présente le taux d’élimination de correcte

empreinte. Plus ce taux est faible plus la méthode est meilleure.

Le tableau 3 compare tous le système de reconnaissance par rapport à quelques travaux

antérieurs.

 FAR FRR

Méthode de (HAO G., 2005) 4.18% 9.93%

Méthode de (Omer S., 2009) 1,12% Not indicated

Méthode de (Ying HAO) 1% 2.5%

Méthode de (Jiong Z, 2008) 0.04% 1.31%

 M1

M2

M3

α

Direction1

Direction2

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-98-

La nouvelle méthode 0% 0.02%

Tableau 3 : Comparaison entre différentes méthodes de reconnaissance par empreinte
digitale

Notre système de reconnaissance d’une part montre des bons résultats au niveau du taux

d’acceptation et d’autre part atteint un taux de reconnaissance de 88.88% avec un temps

d’exécution globale de 7s sur un ordinateur core 2 duo 1.66 Ghz.

III.2. Validation de la Simulation/Emulation

La première étape de l’implémentation représente la phase du partitionnement. Cette

étape a pour but de diviser le système en des modules logiciels et d’autres modules comme

étant des composants matériels. Le principe de partitionnement est basé en grande partie sur le

critère temps d’exécution : « Le module qui consomme beaucoup plus de temps sera sous

forme matérielle afin d’atténuer le temps d’exécution».

Figure 43. Rapport de temps d’exécution

Un calcul de rapport entre le temps d’exécution de chaque étape de la chaine de

reconnaissance par empreinte digitale (sauf le module extraction) par rapport au temps

d’exécution du module extraction des minuties (qui représente le temps d’exécution minimal)

est effectué. La figure 43 représente l’histogramme correspondant du rapport.

En se basant sur ces résultats, on partitionne notre système statiquement comme suit :

Composants matériels

- Lecture de l’empreinte

- Filtrage

- Binarisation

0

1

2

3

4

5

6

7

8

Filtre Binarisation Squelettisation Comparaison

T
em

ps
 d

uM
od

ul
e

/ T
em

ps
 d

u
m

od
ul

e
E

xc
tr

ac
tio

n
de

s
m

un
iti

e

Temps d'exécution de l'extraction des munitie

Modules

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-99-

- Comparaison

Figure 44. Implémentation de l’application

Lecture de l’empreinte

Filtre

Squelettisation

Extraction des Minutie en
utilisant le classifieur DECOC

Horloge

Fin_Lecture

Fin_Filtre

 Lire ()

Fin_Bin

Donnée1

Donnée2

Donnée3

….

….

….

….

Ecrire(data)

ReadEndpoint()

Lire ()

WriteEndpoint()

Save data

Fin_Inteface_In

Décision

Carte

SystemC

Flux

Flux

F
IF

O

Flux

Flux

F
IF

O

Binarisation

Flux

Flux

F
IF

O

Flux

Flux

F
IF

O

Interface

Interface_Out Interface_In

Comparaison

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-100-

Applications logicielles

- Squelettisation

- Extraction des minuties

La figure 44, détaille l’implémentation de l’application selon les interfaces décrit dans le
chapitre 2

III.3. Résultats de la Simulation/Emulation

La validation de l’environnement de simulation/émulation matériel/logiciel se base sur

le temps de simulation global. Le tableau 4 décrit le temps de simulation de chaque module et

montre une grande opportunité de tel environnement. En fait, les deux points clé qui

soulignent le temps de simulation court de notre environnement sont la liaison USB et le

modèle de synchronisation.

 Module Temps (s)

Composant
matériel

Lecture de
l’empreinte

0.03 Filtre

Binarisation

Comparaison

Interface Interface 0.5

Application
logicielle

Squelettisation 0.01

Extraction des
Minutia

Simulation 0.54

Tableau 4: Temps de simulation de l’application

IV. Expérimentation de la simulation matériel/logiciel en boucle

Deux applications sont utilisées pour valider la simulation HSIL décrite dans le chapitre
précédent.

� La première application désigne la régulation et le contrôle de la vitesse d’un
moteur à courant continu.

� La deuxième présente un système de contrôle en boucle fermée de la vitesse du
moteur.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-101-

IV.1. Présentation des applications de test

Nous avons utilisé dans cette section deux applications pour valider la simulation

matériel/logiciel en boucle : un régulateur de la vitesse d’un moteur à courant continu et un

système de contrôle en boucle fermée de la vitesse du moteur.

IV.1.1. Régulateur de la vitesse d’un moteur à courant continu

Les systèmes de contrôle moteur à courant continu (figure 45) se basent sur un

actionneur commun qui fournit un mouvement de rotation. Le circuit électrique équivalent de

l'induit et du rotor sont présentés dans la figure suivante.

Figure 45. Schéma équivalent d’un moteur à courant continu

On considère que V est la tension d’entrée appliquée sur le moteur et la vitesse de

rotation de l’arbre est la sortie du système. Le rotor et l’arbre sont supposés rigides.

Les EDOs

Les paramètres du système sont :

- θ : La vitesse du moteur exprimée en tr.min-1

- Ke : Gain statique exprimé en tr.min-1.V-1

- Kt : Force électromotrice.

- J : Moment d’inertie du rotor exprimé en Kg.m2.s-2

- b : Rapport d’amortissement du système mécanique.

Champs
fixe

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-102-

- R : Résistance électrique exprimée en Ohm.

- L : Inductance électrique exprimée en H.

- V : Voltage d’entrée du moteur.

Les relations issues du système décrit sont :

Le moment du torque prend l’équation suivante : iKT t= (28)

La force contre-électromotrice est proportionnelle à la vitesse angulaire de l'arbre :

•
= θeKe

(29)

D’après les Lois de Newton et de Kirchhoff on obtient :

 KibJ =+
•••
θθ (30)

•
−=+ θKVRi

dt

di
L (31)

On Applique par la suite le transformé de Laplace :

)()()(sKIsbJss =Θ+ (32)

)()()()(sKssVsIRLs Θ−=+ (33)

La fonction de transfert en boucle ouverte du système est le suivant :

 






+++
=Θ=

•

V

rad

KRLsbJs

K

sV

s
sP

sec/

))(()(

)(
)(

2 (34)

Les figures 46 et 47 montrent le schéma bloc du système Simulink et l’implémentation

sous Matlab/Simulink avec :

 RSL +.

1
 tK

-
+ -

+ SK
S

K
K d

i
p .++

-
+

LT

Ta

i

eK

V

e r y

y

θ

Modèle du moteur continu Régulateur PID

bSJ +.

1

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-103-

Figure 46. Diagramme de bloc d’un régulateur de vitesse d’un moteur continu

Figure 47. Implémentation du système en Simulink

IV.1.2. Système de contrôle en boucle fermée de la vitesse du moteur

Cet exemple qui est décrit dans la démonstration de Simulink présente le model d’un

moteur. Le collecteur d’admission déclenche le transfert de l’air-carburant vers les cylindres

par l’intermédiaire des soupapes à événements discrets. En même temps, les processus à

temps continu flux d’admission, la génération de couple et l’accélération sont en exécution.

L’actionneur de papillon de gaz assure la régulation de la vitesse.

Ce modèle est basé sur les résultats publiés par Crossley et Cook (Crossley P.R., 1991).

Il décrit la simulation d'un moteur à quatre cylindres à allumage par étincelle interne. Le

travail Crossley et Cook montre aussi comment une simulation basée sur ce modèle a été

validée par des données d'essais dynamométriques. Le modèle est composé essentiellement de

cinq modules :

1. Accélérateur ("Throttle")

2. Collecteur d'admission ("Intake manifold")

3. Débit massique d’admission ("Intake Mass Flow Rate")

4. Course de compression ("Compression Stroke")

5. Génération de couple et d'accélération ("Torque Generation and Acceleration")

Accélérateur ("Throttle")

d/dt(i) i

d/dt(theta)d2/dt2(theta)

0.1

damping

V

Sum1

Sum Scope

Kd.s +Kp.s+Ki2

s

Régulateur PID

1

Resistance

-K-

Kt

-K-

Ke

1
s

Integrator1

1
s

Integrator

-K-

Inertia

-K-

Inductance

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-104-

Le premier élément du modèle est l’accélérateur. L'entrée de commande est l'angle de la

plaque et à vitesse à laquelle le modèle introduit de l'air dans le collecteur d'admission. La

vitesse peut être exprimée comme le produit de deux fonctions:

1. une fonction empirique de l'angle de papillon des gaz.

2. une fonction de la pression atmosphérique et de collecteur.

En cas de pression sur le collecteur, le débit qui traverse le module accélérateur est en

fonction de l'angle d’accélération. Ce modèle tient compte de ce comportement à basse

pression avec un état de commutation dans les équations de compressibilité indiquées dans

l'équation 35.

(g/s) collecteur le dans massiquedébit)().(==
•

mai Pgfm θ (35)

avec
32 .00063.0.10299.0.05231.0821.2)(θθθθ −+−=f

2/;1)(ambmm PPSiPg ≤=

ambmambmambm
amb

m PPPSiPPP
P

Pg ≤≤−= 2/;
2

)(2

ambmambmambm
amb

m PPPSiPPP
P

Pg 2;
2

)(2 ≤≤−−=

mambm PPSiPg ≤−= 2;1)(

(deg)onaccélératid'Angle:θ

)(collecteurduPression: barPm

)(ique)(atmosphérambiantePression: barPamb

Collecteur d’admission ("Intake manifold")

Le modèle du collecteur d'admission se base sur une équation différentielle de la

pression d'admission. La différence dans les taux d'entrée et de sortie de débit massique

représente le taux de changement net de la masse d'air par rapport au temps. Cette quantité,

selon la loi des gaz parfaits, est proportionnelle à la dérivée temporelle de la pression du

collecteur (voir équation 36). Notez que, contrairement au modèle de Crossley et Cook, ce

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-105-

modèle ne tient pas compte de la recirculation des gaz d'échappement, mais cela peut

facilement être ajouté.

)(
•••

−= aoai
m

m mm
V

RT
P (36)

Avec

R : Constant du gaz.

T : température (K).

Vm : Volume du collecteur (m3).

.collecteurdusortiedeairl'demassiqueDébit:
•

aom

.)/(collecteurledanspressiondechangementdeTaux: sbarPm

•

Débit massique d'admission ("Intake Mass Flow Rate")

Le débit massique de l'air que les pompes des cylindres du collecteur est décrit par

l'équation 37. Cette équation est dérivée d’une manière empirique. Ce taux est une fonction de

la masse de la pression d'admission et de la vitesse du moteur.

•

+−+−= mmmao PNPNPNm ..0001.0..0337.0..08979.0366.0 22
 (37)

Avec

N : Vitesse angulaire du moteur (rad/s).

Pm : Pression du collecteur (bar).

Pour déterminer le volume d'air total dans les cylindres, la simulation intègre le débit

massique à partir du collecteur d'admission. Ceci permet de déterminer la masse d'air totale

qui est présente dans chaque cylindre après la course d'admission et avant la compression.

Course de compression ("Compression Stroke")

Le vilebrequin assure le déclenchement des cylindres du moteur un par un. Le passage

d’un cylindre à un autre est indiqué par une tour de manivelle. Dans ce modèle, l'admission, la

compression, la combustion, et l’échappement se produisent simultanément. Pour prendre en

considération la compression, la combustion est retardée de 180 degrés lors de la rotation du

vilebrequin.

Génération du couple et d'accélération ("Torque Generation and Acceleration")

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-106-

Le dernier élément de la simulation décrit le couple développé par le moteur. Une

relation empirique dépendante de la masse de l'air, du rapport air / carburant et de la vitesse

du moteur est utilisée pour le calcul du couple (voir équation 38).

aa

aeng

mmNN

N
F

A

F

A
mTorque

..05.0..55.2..00048.0.000107.0

.027.0.0028.0.26.0.85.0.91.21.36.3793.181

22

2
2

σσσ

σσ

−++−

+−+






−






++−=

(38)

ma : Masse de l’air dans le cylindre (g).










F

A
 : Rapport air-carburant.

σ : Avance de l’allumage.

Torqueeng : Couple développé par le moteur (Nm).

Puis l’accélération angulaire du moteur est calculée en utilisant l’équation 39.

loadeng TorqueTorqueNJ −=
•

 (39)

J : Moment d’inertie du moteur (kg.m²).

•
N : Accélération angulaire du moteur (rad/s²).

Modèle en boucle fermé

La figure 48 décrit le modèle du système au niveau fonctionnel.

Figure 48. Modèle en boucle fermé d’un contrôleur de la vitesse d’un moteur

IV.2. Validation de la simulation matériel/logiciel en boucle

Closed-Loop Engine Speed Control

Copyright 1990-2005 The MathWorks Inc.

1

crank speed
(rad/sec)

Nedge180

valve timing

throttle deg (purple)
load torque Nm (yellow)

30/pi

rad/s
to rpm

Load

drag torque

Teng

Tload

N

Vehicle
Dynamics

Throttle Ang.

Engine Speed, N

trigger

mass(k+1)

Throttle & Manifold

Speed
Setpoint

?

Engine
Speed (rpm)

Desired rpm

N

Throttle Ang.

Controller

mass(k+1)

mass(k)

trigger

Compression

Air Charge

N

Torque

Combustion

Engine
Speed

Throttle
Degrees

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-107-

1ère Application : Régulateur de la vitesse d’un moteur à courant continu

Les intégrateurs de moteur et le régulateur PID sont les contrôleurs numériques à

simuler en utilisant la simulation HSIL. Pour cela une intégration du bloc Synchronisation est

faite dans la figure 49.

Figure 49. Modèle bloc de l’application 1 basé sur la simulation HSIL

2ème Application: Contrôle en boucle fermée de la vitesse du moteur

Deux blocs sont considérés comme des contrôleurs numériques : "controller" et

"compression". Ces deux blocs sont implantés comme des applications logicielles. La figure

50 montre le modèle en utilisant la technique HSIL.

d/dt(i)

d/dt(theta)d2/dt2(theta)

0.1

damping

V

Sum1

Sum Scope

Synchronization

Régulateur PID

1

Resistance

-K-

Kt

-K-

Ke

Synchronization

Integrator1

Synchronization

Integrator

-K-

Inertia

-K-

Inductance

Closed-Loop Engine Speed Control

1

crank speed
(rad/sec)

Nedge180

valve timing

throttle deg (purple)
load torque Nm (yellow)

30/pi

rad/s
to rpm

Load

drag torque

synchronization

controller Teng

Tload

N

Vehicle
Dynamics

Throttle Ang.

Engine Speed, N

trigger

mass(k+1)

Throttle & Manifold

Speed
Setpoint

?

Engine
Speed (rpm)

synchronization1

Compression

Air Charge

N

Torque

Combustion

Engine
Speed

Throttle
Degrees

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-108-

Figure 50. Modèle bloc de l’application 2 basé sur la simulation HSIL

IV.3. Résultats de la simulation matériel/logiciel en boucle

1ère Application : Régulateur de la vitesse d’un moteur à coudant continu

La simulation est basée sur l’environnement Matlab/Simulink et l’environnement NIOS II
(figure 51).

Figure 51. Environnement Simulink/NIOSII pour la simulation HSIL

Afin de valider la technique HSIL proposée deux points de vérification clés sont

indispensables :

o Fiabilité du système : Ceci est vérifié en comparant les courbes d’entrées / sorties pour

chaque bloc de synchronisation par rapport au modèle prédéfini. La figure 52 montre

les différents signaux utilisés.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-109-

a) Signal de la vitesse du moteur b) Signal d’intensité i

c) Signal du sortie régulateur

Figure 52. Les signaux critiques utilisés pour la vérification de l’application 1

o Le temps de simulation est 1 seconde.

2ème Application: Contrôle en boucle fermée de la vitesse du moteur

De même que l’application 1, la simulation de l’application 2 est vérifiée surtout par les

signaux de sortie des blocs "controller" et "compression" (figure 53).

Le temps de simulation global du modèle en boucle fermée est 2 secondes.

a) Signal d’accélération b) Accélération angulaire

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-110-

c) Débit massique d'admission

Figure 53. Les signaux critiques utilisés pour la vérification de l’application 2

V. Expérimentation de l’environnement CODIS+

Les systèmes de sécurité et de contrôle pour les automobiles deviennent de plus en plus

complexes grâce à la grande révolution des technologies numériques. Afin de valider

l’environnement CODIS+, nous proposons un système limiteur de vitesse d’un véhicule.

V.1. Application : système limiteur de vitesse

Figure 54. Graphe fonctionnel du système

Système de

reconnaissance par

empreinte digitale

Système de contrôle

d’accélération du

moteur

Empreinte

(Reconnu, vitesse maximale)

Non reconnu

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-111-

Il existe plusieurs systèmes mécatroniques qui traite le problème de contrôle de vitesse

d’un véhicule. Il existe essentiellement deux types : contrôle obligatoire et contrôle facultatif.

Nous proposons dans ce contexte un système qui limite la vitesse du moteur selon le

conducteur. Pour cela une identification du conducteur par empreinte digitale permet de fixer

la valeur maximale que le conducteur peut atteindre.

Le système limiteur de vitesse représente le couplage entre le système de contrôle du

moteur ainsi décrit dans la section précédente et le système de reconnaissance par empreinte

digitale. La figure 54 donne le graphe fonctionnel du modèle.

V.2. Implémentation et résultats

Le cycle de la simulation commence à partir du SystemC. Les modules matériels seront

simulés par le noyau de SystemC et les applications logicielles seront simulées sur

l’architecture cible implantée sur la carte FPGA. Lorsqu’une personne est identifiée par le

système de reconnaissance par empreinte digitale l’interface Interface_Out envoie un signal

déclencheur vers le bloc Inter_In et un changement de contexte vers l’environnement

Simulink est procédé.

Le bloc Inter_In est lié directement à la position 2 d’un commutateur. Ce dernier joue le

rôle d’un déclencheur pour le système de contrôle d’accélération du moteur. Une personne

n’est pas reconnue, le système a pour vitesse d’entrée égale à 0 (position 1 du commutateur).

Lorsque l’identification d’une personne est réussie l’entrée 2 du commutateur, qui correspond

à la sortie du Inter_In, prend la valeur vrai ce qui permet le changement de position vers 3 et

le système de contrôle d’accélération du moteur commence son cycle de simulation. La figure

55 a) montre l’implémentation de l’application dans notre environnement CODIS+ :co-

simulation/émulation continu/discret. La zone 1 représente la description matérielle de l’étape

de filtrage, binarisation et comparaison en SystemC. La zone 2 décrit les applications

logicielles – squelettisation et extraction des minuties – en utilisant l’outil NIOSII IDE. La

zone 3 et la figure 55 b) décrit le schéma de bloc du système de contrôle d’accélération du

moteur dans Simulink.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-112-

a) L’environnement CODIS+ : Co-simulation/émulation des systèmes continus/discrets

b) schéma bloc du système de contrôle d’accélération du moteur dans Simulink

Figure 55. Implémentation de l’application

Notre système permet à la fois d’utiliser les modèles de synchronisation

matériel/logiciel, la simulation HSIL et le modèle de synchronisation continu/discret présenté

dans le chapitre précédent à la section III.2.

Le temps de simulation global est 2.55s.

VI. Conclusion

Dans la première partie de ce chapitre, nous avons validé l’environnement de

Simulation/Emulation. Nous avons développé pour cela le système de reconnaissance par

1

crank speed
(rad/sec)

Nedge180

valve timing

throttle deg (purple)
load torque Nm (yellow)

30/pi

rad/s
to rpm

Load

drag torque

Teng

Tload

N

Vehicle
Dynamics

Throttle Ang.

Engine Speed, N

trigger

mass(k+1)

Throttle & Manifold

Switch

Speed
Setpoint

sync

S-Function

Engine
Speed (rpm)

synchronization

Controller

0

Constant

synchronization1

Compression

inter_in

Commande
Air Charge

N

Torque

Combustion

Engine
Speed

Throttle
Degrees

1 2

3

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-113-

empreinte digitale puisque tel système est considéré comme étant un système complexe qui se

compose nécessairement des composants matériels et des applications logicielles.

Dans la deuxième partie, l’implémentation de la technique de la simulation

matériel/logiciel en boucle est présentée. L’application de régulation de la vitesse d’un moteur

à courant continu et l’application de contrôle en boucle fermée de la vitesse du moteur sont

utilisées pour valider la simulation HSIL.

Dans la troisième partie de ce chapitre, nous avons implémenté l’environnement

CODIS+ de co-simulation/émulation des systèmes continu/discret. Le système limiteur de

vitesse a été utilisé pour exploiter CODIS+. Les résultats trouvés prouvent l’importance de

notre environnement.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-114-

CONCLUSION GENERALE

I. Conclusion

L’hétérogénéité présente une caractéristique indispensable dans les systèmes actuels.

Les systèmes continus/discrets représente l’intérêt de notre travail. La validation globale de

ces systèmes demande des langages fournissant les formalismes nécessaires pour la

modélisation et la demande des outils de simulation précis et performants. Actuellement, il

existe plusieurs langages et outils pour chaque domaine. Le grand problème c’est que les

concepteurs appartenant à chaque domaine utilisent ces outils pour simuler leurs modèles

mais sans avoir une validation globale du système entier. Pour résoudre ce problème, ce

travail a proposé une extension de l’environnement CODIS afin d’accélérer le temps de

simulation d’une part et d’ajouter d’autre fonctionnalité pour supporter la complexité

croissante du domaine discret d’autre part. Notre environnement utilise SystemC et une carte

FPGA à base d’une architecture cible pour le domaine discret et le simulateur Simulink pour

le modèle continu. Ceci permet de bénéficier de toute l’expertise de leurs langages et des

outils de débogage, et permet également d’exploiter les modèles et les bibliothèques existants.

Le premier chapitre a présenté le principe de modélisation et de simulation de chaque

domaine (discret, continu). Une étude approfondie sur les solutions et les travaux antérieurs

pour la modélisation et la simulation des systèmes hétérogènes. En s’appuyant sur cet état de

l’art, nous avons fixé le meilleur chemin à suivre pour la modélisation et la simulation.

Le chapitre 2 a abordé les différentes méthodes de simulation d’un modèle discret dans

la première partie. Plusieurs modèles de synchronisation entre le simulateur SystemC et une

architecture cible sont proposés. En fait, cette architecture est implantée sur une carte FPGA

afin de remplacer l’ISS par le processeur cible et d’accélérer le temps de simulation. La

communication qui se base sur la liaison USB assure le transfert des paquets en mode

interruption (interruption matérielle).

Dans la première partie du chapitre 3 nous avons annoncé une nouvelle technique de

simulation pour les contrôleurs numériques. La simulation matériel/logiciel en boucle permet

de surmonter le problème de la complexité des contrôleurs en adaptant la stratégie de Co-

design pour la modélisation. En fait, cette technique diminue le temps de mise en marché et

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-115-

facilite la modélisation. Une interface est utilisée dans Simulink pour assurer la

synchronisation avec l’architecture cible implantée dans la carte.

Dans sa deuxième partie, une présentation de l’environnement CODIS permet de

proposer un modèle de synchronisation global qui englobe les deux simulateurs et

l’émulateur. Une étude théorique d’un exemple est détaillée afin de démontrer tous les

scénarios possibles lors d’une simulation.

Dans le chapitre 4, dans un premier lieu, nous avons présenté le système de

reconnaissance par empreinte digitale comme étant une partie de l’application globale. Une

étude détaillée sur l’apport ajouté dans la phase d’extraction (utilisation du classifieur

DECOC) durant la présentation de l’application. Afin de valider les différents

environnements, une architecture à base du processor NIOS II est implantée sur la carte. Dans

un deuxième lieu, nous avons validé l’environnement de simulation/émulation

matériel/logiciel, la simulation HSIL et l’environnement de co-simulation/émulation

continu/discret. Les expérimentations ont montré une excellente précision et une vitesse de

simulation acceptable.

En conclusion, le niveau de difficulté d’implémentation des modèles de vérification

réside dans la nature des simulateurs utilisés. Dans le cas des simulateurs commercialisés

(fermés), cette implémentation devient difficile surtout si le constructeur ne fournit pas

d’outils supplémentaires à son simulateur. Elle est plus facile dans le cas des simulateurs à

source ouverte.

II. Perspectives

Il existe plusieurs outils de CAO pour la modélisation et la vérification des systèmes.

Chaque outil possède des avantages et des inconvénients. La meilleure solution consiste à

utiliser les avantages de chaque outil et à éviter ces limites. En fait, cette solution se base sur

des interfaces génériques et assurant la communication et la synchronisation entre différents

simulateur.

Dans ce contexte nous proposons de

� Voir l’intégration des simulateurs continus à source libre (Modelica, Scilab,

PtolemyII), ce qui va permettre de voir d’autres implémentations plus optimisées des

interfaces dans le cas du simulateur continu.

� Proposer un modèle de synchronisation matériel/logiciel multi-niveau entre le

simulateur SystemC et la carte dont des composants décrit en bas niveau. En effet, le

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-116-

modèle doit supporter la bibliothèque SCE-MI (Standard Co-Emulation Modeling

Interface) afin d’assurer la communication entre deux processus dans différent niveau

d’abstraction.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-117-

BIBLIOGRAPHIES

(Abid M., 1998) Abid M., « Rapid prototyping environment for design of

hardware/software electronic systems Electronics », IEEE

International Conference on Circuits and Systems, 1998, vol.1, p. 531

– 535.

(Agilent, 2012) Simulateur d’Agilent, disponible à http://www.home.agilent.com

(Al-Junaid H., 2004) Al-Junaid H. and Kazmierski T. J., « SEAMS - a SystemC

Environment with Analog and Mixed- Signal Extensions », IEEE

International Symposium on Circuits and Systems, 2004.

(Al-Junaid H., 2005) Al-Junaid H., Kazmierski T., « Analogue and mixed-signal

extension to SystemC », IEE Proceedings of Circuits, Devices and

Systems, 9 Dec. 2005, p. 682 – 690.

(Antao B. A., 1996) Antao B. A. A., « AHD languages- A Must for Time-Critical

Designs », IEEE Circuits and Devices Magazine, Volume 12, Issue

4, July 1996, p. 12 – 17.

(Antoine G., 2007) Antoine Girard and George J. Pappas, “ Approximation Metrics for

Discrete and Continuous Systems », IEEE Transactions On

Automatic Control, Vol. 52, No. 5, May 2007, p.782-798

(Aubepart F., 2003) Aubepart F., P. Poure, Y.A. Chapuis, C. Girerd, F. Braun, "HDL-

based

methodology for VLSI design of AC motor" IEE Proceedings

Circuits, Devices and Systems, vol. 150, no. 1, pp. 38 – 44, Feb.

2003.

(Azam F., 2005) Azam F., Zhang Li, Ahmad R., « Using UML profile for

connecting information architecture and detailed information design

», Proceedings of the IEEE Symposium on Emerging Technologies,

17-18 Sept. 2005, p. 423 – 428.

(Banzhaf W., 1989) Banzhaf W., Computer-aided circuit analysis using SPICE, Prentice

Hall, 1989.

(Bonnerud T.E., 2001) Bonnerud T.E., Hernes B., Ytterdal, T., « A mixed-signal,

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-118-

functional level simulation framework based on SystemC for

system-on-a-chip applications », IEEE Conference on

CustomIntegrated Circuits, 2001, p. 541 – 544.

(Bouchhima F., 2005) Bouchhima F., Nicolescu, G., Aboulhamid M., Abid M., «

Discrete-continuous simulation model for accurate validation in

component-based heterogeneous SoC design », The 16th IEEE

International Workshop on Rapid System Prototyping, 8-10 June

2005, p.181 – 187.

(Bouchhima F., 2007) Bouchhima F., Gabriela Nicolescu, El Mostapha Aboulhamid,

Mohamed Abid. Generic discrete-continuous simulation model for

accurate validation in heterogeneous systems design.

Microelectronics Journal, Volume 38, Number 1, January 2007, pp.

805-815.

(Brown A. D., 1992) Brown A. D. et al., « The Design of a Language for Mixed-Mode

Circuit Simulation », Research Journal: Department of Electronics

and Computer Science, University of Southampton, 1992, p. 103-

105.

(Callier F.M., 1991) Callier F. M., Desoer C. A., Linear System Theory, Germany,

Springer-Verlag, 1991.

(Chang W.T., 1997) Chang W. T., Ha S., Lee E. A., « Heterogeneous simulation -

mixing discrete-event models with dataflow », Journal of VLSI

Signal Processing Systems for Signal, Image, and Video

Technology, v 15, n 1-2, 1997, p 127-144.

(Chapoutot A, 2008) Chapoutot Alexandre, « Simulation abstraite : une analyse statique

de modèles Simulink », rapport de thèse, 2008.

(Chen C.F., 1984) Chen C. F., Lo C. Y., Nham H. N., Subramaniam P., « The Seconde

Generation MOTIS Mixed-Mode Simulation », The 21st

IEEE/ACM Design Automation Conference, p. 10-16, 1984.

(Consel C., 2004) Consel Charles, “Generative Programming from a Domain-Specific

Language Viewpoint”. In Unconventional Programming Paradigms

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-119-

(UPP'04), 2004.

(Crossley P.R., 1991) Crossley P. R.and J. A. A. Cook. A nonlinear engine model for

drive train system developement. InProc.IEE Int. Conf., Control’91,

2:921–925, Edinburgh,UK, (1991). Conference publication 332.

(De Man H.J., 1980) De Man H. J., Rabaey J., Arnout G., Vandewalle J. « Practical

implementation of a general computer aided design technique for

switched-capacitor circuits », IEEE Journal of Solide State Circuits

SC-15, 1980, p. 190-200.

(Detrey J., 2007) Detrey J., "Arithmétiques réelles sur FPGA, virgule fixe, virgule

flottante et système logarithmique", Thèse de doctorat de l’École

Normale Supérieure de Lyon, France,2007.

(Drager S.L., 1998) Drager S.L., Carter H.W., Hirsch H.L, « A VHDL-AMS mixed-

signal, mixed-technology design tool », IEEE National Aerospace

and Electronics Conference, 1998.

(DSP, 2013) DSP Builder Handbook, Volume 2: DSP Builder Standard

Blockset, Mai 2013.

(Dubois M., 2011) Dubois Mathieu, “Simulateur compilé d’une description multi-

langage des systèmes hétérogènes", Université de Montréal Faculté

des arts et des sciences, Juin 2011.

(Eker J., 2003) Eker J. et al. « Taming heterogeneity - the Ptolemy approach »,

Proceedings of the IEEE Volume 91, Issue 1, Jan. 2003, p.127 –

144.

(Evans, 2003) Evans Data Corporation - «Embedded Systems Development

Survey» - Volume 1, 2003,

(Ferretti G., 2006) Ferretti G., Magnani, G., Rocco, P., Vigano, L., «Modelling and

simulation of a gripper with Dymola » Mathematical and Computer

Modelling of Dynamical Systems, v 12, n 1, Feb. 2006, p. 89-102.

(Fitzpatrick D., 1998) Fitzpatrick D., Miller I., Analog Behavioral Modeling with the

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-120-

Verilog-A Language, Kluwer Academic Publishers, 1998

(Frey P., 2000) Frey P., O'Riordan D., « Verilog-AMS: Mixed-signal simulation

and cross domain connect modules », IEEE/ACM International

Workshop on Behavioral Modeling and Simulation, 2000, p. 103 –

108.

(Gajski D.D., 2000) Gajski D. D., Zhu J., Dömer R., Gerstlauer A., Zhao S., SpecC

Specification Language and Methodology, Kluwer Academic

Publisher, 2000.

(Gear C.W., 1985) Gear C. W., Osterby O., « Solving Ordinary Differential Equations

with Discontinuities », ACM Transaction on Mathematical

Software, vol. 10, 1984, pp. 23- 44.

(Getreu I.E, 1989) Getreu I. E., « Behavioral Modeling of Analog Blocks Using the

SABER Simulator », 32nd Midwest Symposium on CAS, 1989, p.

977-980.

(Ghasemi H.R., 2005) Ghasemi H.R., Navabi, Z., « An effective VHDL-AMS simulation

algorithm with event », International Conference on VLSI Design,

2005, p. 762-767.

(Gupta G.K.,1985) Gupta G. K., Sacks-Davis R., Tescher P. E., « A review of recent

developments in solving ODEs », ACM Computing Surveys

(CSUR), Volume 17 Issue 1, 1985.

(Hassairi W., 2012) Walid Hassairi, Moncef Bousselmi, Mohamed ABID, Carlos

Valderrama ”MATLAB/SYSTEMC FOR THE NEW CO-

SIMULATION ENVIRONMENT BY JPEG ALGORITHM ”

INTECH volume 2 chapitre 6 page119,138 , 2012.

(Hao G., 2005) HAO GUO “A Hidden Markov Model Fingerprint Matching

Approach”, Proceedings of the Fourth International Conference on

Machine Learning and Cybernetics, Guangzhou, IEEE Print ISBN:

0-7803- 9091-1 , 5055 - 5059 Vol. 8 , August 2005.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-121-

(Harakawa M., 2005) Harakawa M., H. Yamasaki, T. Nagano, S. Abourida, C. Dufour, J.

Bélanger, "Real-Time simulation of a complete PMSM drive at 10

ms time step”, International Power Electronics Conference,

IPEC’05, April 2005.

(Ismail T.B., 1994) Ismail T.B., Abid M., O'Brien K., Jerraya A. «An approach for

hardware-software codesign», Rapid System Prototyping, 1994, p.

73-80.

(ITRS, 2003) International Technology Roadmap for Semiconductor Design,

2003 disponible en ligne à http://public.itrs.net/

(ISP1362, 2002) ISP1362 Embedded Programming Guide Version 9 June 2002.

(Jie L., 2004) Jie L., Eker J., Janneck J.W, Xiaojun L., Lee E.A., « Actor-oriented

control system design: a responsible framework perspective » IEEE

Transactions on Control Systems Technology, Volume 12, Issue 2,

March 2004, p. 250 – 262.

(Jie Z., 2007) Jie Zhou, Hanchuan Peng, Ching Y Suen , “Data Driven

Decomposition for Multi-class Classification”, published on Pattern

Recognition, 2007.

(Jiong Z., 2008) Jiong Zang, Jie Yuan, Fei Shi, Si-dan Du “A Fingerprint Matching

Algorithm of Minutia Based on Local Characteristic”, ISBN 978-0-

7695-3304-9/08, IEEE 2008.

(Kajtazovic S., 2005) Kajtazovic S., Steger C., Pistauer M., « A HDL-independent

modeling methodology for heterogeneous system designs », IEEE

Behavioral Modeling and Simulation Workshop, 22-23 Sept. 2005,

p. 88 – 93.

(Karimi S ., 2009) Karimi Shahrem, “Continuité de service des convertisseurs

triphasés de puissance et prototypage "FPGA in the

loop":application au filtre actif parallèle“, Rapport de thèse, Janvier

2009.

(Katrib J., 2008) Katrib J., P. Poure, S. Karimi, S. Saadate, "Design methodology of

VLSI power electronics digital controller based on Matlab-

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-122-

Modelsim co-simulation", IEEE, International Symposium on

Industrial Electronics, pp. 1751-1756, June-July 2008.

(Kazmierski T. J.,
1992)

Kazmierski T. J., Brown A. D., Nicolas K. G., Zwolinski M., « A

General Purpose Network Solving System », IFIP Trans. AI

VLASI-91, 1992, p. 147-156.

(Kudlugi M., 2001) Kudlugi M., S. Hassoun, C. Selvidge, D. Pryor - «A Transaction-

Based Unified Simulation/Emulation Architecture for Functional

Verification» - IEEE Transactions on Design Automation

Conference (DAC), 2001, pages 623 – 628.

(Langeanu D., 2001) Langeanu D. et al. « Distributed event-driven simulation of VHDL-

SPICE mixed-signal circuits » Int. Conference on Computer Design

ICCD, 2001, p 302-307.

(Lardière C., 2004) Lardière Cédric - «Système d'émulation et d'accélération : l'habit ne

fait plus le moine» - Electronique Internationnal, N576 – 28

Octobre 2004, pages 27.

(Lienhardt A.M., 2006) Lienhardt A.M, G. Gateau, T.A. Meynard, "Cosimulation tool for

FPGAbased algorithm validation" IEEE International Conference

on Industrial Technology, Dec. 2006.

(Long D.I., 1997) Long D.I., « Behavioural modelling of mixed-signal circuits using

PWL waveforms », IEE Colloquium on Mixed-Signal

AHDL/VHDL Modelling and Synthesis, 1997.

(Matlab/Simulink, 2012) Matlab/Simulink, disponible à www.mathworks.com

(Mathmodelica, 2006) Mathmodelica, disponible à

http://www.mathcore.com/products/mathmo-delica/

(Mentor, 2012) Mentor http://www.mentor.com/products/fv/emulation/ , 2012.

(Modelica, 1997) Modelica - A unified object-oriented language for physical systems

modeling, specifications report, September 1997, version 1.0,

disponible à www.modelica.org.

(Newton A.R., 1978) Newton A. R., Pederson D. O., «A Simulation Program with Large-

Scale Integrated Circuit Empahsis», IEEE International Symposium

on Circuit and Systems, New York, 1978, p. 1-4.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-123-

(Nicolescu G., 2002) Nicolescu G. et al, « Desiderata pour la spécification et la

conception des systèmes électroniques », Journal Technique et

Science Informatiques, 2002, volume 21- n 3.

(Odryna P.,1986) Odryna P., Nazareth K., Christensen C., « A Workstation-Based

Mixed Mode Circuit Simulator », 23 rd IEEE/ACM DAC, 1986, p.

186-192.

(Omer S., 2009) Omer Saeed, Atif Bin Mansoor, and M Asif Afzal Butt “A Novel

Contourlet Based Online Fingerprint Identification”,BioID

MultiComm2009, Springer-Verlag, LNCS 5707, 2009, pp. 308–

317.

(Pabst D., 1995) Pabst D., « HDL-A VHDL-Based Analog and Mixed signal Model

Description Language », Tutorial TI of Simulation Congress

EUROSIM’95, 1995.

(Patel D.H., 2004) Patel D.H, Shukla S. K., SystemC Kernel – Extensions for

heterogeneous System Modeling, Kluwer Academic Publishers,

Boston, 2004

(Pêcheux F., 2005) Pêcheux F., Lallement C., Vachoux A., « VHDL-AMS and

Verilog-AMS as Alternative Hardware Description Languages for

Efficient Modeling of Multidiscipline Systems », IEEE transactions

on computer-aided design of integrated circuits and systems, vol.

24, no. 2, 2005.

(Pichon F.,1995) Pichon F. et al. « Mixed-Signal Modeling in VHDL for System-on-

Chip Applications », European Design and Test Conference, 1995.

ED&TC, 1995, p. 218 – 222

(Pinki M., 2003) Pinki M., Francis M., Chandrasekhar V., Austin A., Mantooth, H.A,

« Achieving language independence with Paragon », International

Workshop on Behavioral Modeling and Simulation, 2003, p. 149-

153.

(Riihimaki J., 2005) Riihimaki J., Kukkala P., Kangas T., Hannikainen M., Hamalainen

T.D., « Interfacing UML 2.0 for Multiprocessor System-on-Chip

Design Flow », International Symposium on System-on- Chip,

2005, p. 108-111.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-124-

(Rizatti L., 2003) Rizzatti Lauro - «Choosing an emulation tool», 2003

http://www.eetimes.fr/bus/news/showArticle.jhtml?articleID=1712

02288

(Rodriguez J.J., 2007) Rodriguez-Andina J.J., M. J. Moure, M. D. Valdes, "Features,

design tools, and application domains of FPGAs", IEEE

Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1810-

1823, Aug. 2007.

(Sakallah K.A., 1985) Sakallah K. A., Director S. W., « SAMSON2: An event driven

VLSI circuit simulator », IEEE Trans. CAD 4, 1985, p. 668-684.

(Salem A, 2003) Salem Ashraf, “Formal Semantics of Synchronous SystemC”,

Design, Automation and Test in Europe Conference and Exhibition,

2003, 376-381.

(Sameh A.H, 1971) A.H. Sameh. On Jacobi and Jacobi-Like Algorithms for a Parallel

Computer. Mathematics of Computation, 25(579–590), 1971.

(Schorcht G., 2003) Schorcht G. et al., « System-level simulation modeling with

MLDesigner, Modeling, Analysis and Simulation of Computer

Telecommunications Systems », MASCOTS'03, 11th IEEE/ACM

International Symposium, 2003, p 207 – 212.

(Senturia S., 1998) Senturia S.D., « CAD challenges for microsensors, microactuators,

and Microsystems », Proceedings of the IEEE, Volume 86, Issue 8,

Aug. 1998, p. 1611 – 1626.

(Simplorer, 2012) Simplorer, disponible à www.ansoft.com/products/em/simplorer/,

2012

(SJÖSTEDT C., 2009) SJÖSTEDT CARL-JOHAN, « Modeling and Simulation of

Physical Systems in a Mechatronic Context », rapport de thèse,

2009.

(Smash, 2012) Smash, disponible à

www.dolphin.fr/medal/smash/smash_overview.html, 2012.

(Soha H., 2005) Soha Hassoun, Murali Kudlugi, Duaine Pryor, and Charles Selvidge

“A Transaction-Based Unified Architecture for Simulation and

Emulation” IEEE transactions on very large scale integration

(VLSI) systems, vol. 13, no 2, 2005.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-125-

(SPICE, 2012) http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/

(Std VHDL-AMS,

1999)

Std VHDL-AMS, IEEE Standard VHDL Analog and Mixed-Signal

Extensions, IEEE Std 1076.1- 1999, 23 Dec. 1999

(Lukai, 2003) Lukai C. and Gajski D., “Transaction Level Modeling: An

Overview”, International Conference on Hardware/Software

Codesign and System Synthesis, CODES+ISSS’03, October 1–3,

2003.

(Vachoux A., 2003) Vachoux A. Grimm C. Einwich K., « SystemC-AMS requirements,

design objectives and rationale », Design, Automation and Test in

Europe Conference and Exhibition, 2003, p. 388 – 393.

(Valderrama C.A.,

1995)

Valderrama C.A., Changuel, A., Raghavan P.V., Abid, M., Ben

Ismail T., Jerraya, A.A., « A unified model for co-simulation and

co-synthesis of mixed hardware/software systems », European

Design and Test Conference, 1995, p.180-184.

(Vladimeros V., 2012) Vladimeros Vladimerou, Pavithra Prabhakar, Mahesh Viswanathan,

and Geir Dullerud, “Verification of Bounded Discrete Horizon

Hybrid Automata », IEEE Transactions On Automatic Control, Vol.

57, No. 6, June 2012.

(Ying Hao) Ying HAO, Tieniu TAN, Yunhong WANG “AN EFFECITVE

ALGORITHM FOR FINGERPRINT MATCHING” National Lab of

Pattern Recognition, CAS, Institute of Automation, Beijing, P. R.

China, 100080.

(Zorzi M., 2003) Zorzi M., Franze F., Speciale N., « Construction of VHDL-AMS

simulator in Matlab » International Workshop on Behavioral

Modeling and Simulation, 7-8 Oct. 2003, p. 113 – 117.

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-126-

PUBLICATIONS

� Journaux internationaux

� Mossaad Ben Ayed, Faouzi Bouchhima, Mohamed Abid, “A Fast Simulation

Emulation Engine”, Informacije MIDEM - Journal of Microelectronics, Electronic

Components and Materials. Vol. 43, No. 3(2013), 162 – 172. IF=0.27 indexed by

ISI Thomson.

� Mossaad Ben Ayed, Faouzi Bouchhima, Mohamed Abid, “Automated Fingerprint

Recognition Using the DECOC Classifier”, International Journal of Computer

Information Systems and Industrial Management Applications. ISSN 2150-7988

Volume 4 (2012) pp. 546-553. “Articles in IJCISIM are indexed or abstracted in:

INSPEC Database”.

� Mossaad Ben Ayed, Faouzi Bouchhima, Mohamed Abid, “A novel verification

technique for control units”, The International Journal of Engineering and

Technology (IJET) Volume 5 N°2 (2013) pp. 1990-1999. Indexed by Scopus.

� Conférences internationales

� Mossaad Ben Ayed, Faouzi Bouchhima, Mohamed Abid, “A Novel Application of

the Classifier DECOC Based on Fingerprint Identification”, Interactive Multimodal

 Pattern Recognition in Embedded Systems IMPRESS 2010 Workshop on Database

and Expert Systems Applications DEXA 2010. 1 September 2010 University of

Deusto, Spain. “All accepted conference papers will be published in IEEE Xplore

Digital library”. (Classe B)

� Mossaad Ben Ayed, Faouzi Bouchhima, Mohamed Abid, “Classifier DECOC based

Minutiae Extraction”, 10th International conference on Sciences and Techniques of

Automatic control & computer engineering STA 2009.

� Mossaad Ben Ayed, Faouzi Bouchhima, Mohamed Abid, “A Fast

Hardware/Software Co-Verification Method using a real hardware acceleration”, the

Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets Mossaad Ben Ayed

-127-

24th International Conference of Microelectronics ICM2012. IEEE conference and

indexed by Scopus.

� Mossaad Ben Ayed, Faouzi Bouchhima, Mohamed Abid, “A Hardware Software In

the Loop architecture for control units”, the International Conference on Control,

Engineering & Information Technology (CEIT’13).

 Ecole Doctorale
 Sciences et Technologies

Thèse de DOCTORAT
ISI

N° d’ordre: 2013 −−−− 297

République Tunisienne
Ministère de l’Enseignement Supérieur, de

la Recherche Scientifique
et de la Technologie

Université de Sfax

École Nationale d’Ingénieurs de Sfax

Environnement de Co-Simulation / Emulation
des systèmes Continus/Discrets

Mossaad BEN AYED

ات ا����ة، :ا�������

رتون�� �� ا�� �� ����
�ا
ا�� �� ذات ا
&%�$# ا
"�� �! �ن���
أدى ھ(ا . و ��)� ا

ر إ
0 ظ.
ر�!
�9�درة 078
�6ا�5 ��س� 3�ج� ا��%!
�!>;: �� أداا
و ا��
 .ABC@ 8�م ء ھ(ه ا

�� �
ع ھ(ه ا�ط�و3F
�� 078 GA)�H�و� I���� ذج

�>�K�ة د�9;� co-simulation/émulation ن�L
 ���ذات ن
 ��(�&
7%� 078 أس�س/ ةا
��!��اH�� ر�6!�N5 ا��ن�C CODIS . ،ء ا�ولG
� ذات �>�K�ة ن�
ذج ;!�حن�� ا��7

Qون��!A
7%� �� � �ل ا
���AوإH��
� �>�K�ة ج���ة ن�6ز�� ا
 Gء ا
R�ن�، . ا
&%�$# ا��;�"Hardware Software
In the Loop "�A<!
� ا��� ا9!�اح و وأ���ا، �!�. �ن<(�� :;<!
� co-simulation/émulation ن�
ذج ا��7

��!��
7%� اس!��دا إ
0 ن�
ذج ا
/ ةاH��CODIS.
Résumé : Dans ces dernières années, plusieurs intérêts sont orientés vers les systèmes
continus/discrets. Ces systèmes ont crée un besoin pour des outils de CAO capables de
modéliser et de vérifier leur fonctionnement global.
Le sujet de cette thèse porte sur la définition et la mise en œuvre d’un modèle de co-
simulation/émulation pour une simulation précise de systèmes continus/discrets en se basant
sur l’environnement CODIS. En première partie, un modèle de simulation/émulation
matériel/logiciel est proposé. En deuxième partie, une nouvelle technique de
simulation"Hardware Software In the Loop" pour les systèmes de contrôle est présentée.
Finalement, un modèle de co-simulation/émulation continu/discret basé sur le modèle de
l’environnement CODIS est validé.
Abstract: In the last years, several interests have been oriented to the heterogeneous
systems. Among these systems, the continuous/discrete systems received an attention in the
Microsystems, the analog/digital systems and the control systems. These systems created a
need for CAD tools, able to validate their global behavioural.
The main goal of thesis is to define and to implement a co-simulation / emulation model for
an accurate simulation of continuous/discrete systems. The first step, presents a
simulation/emulation environment for Hardawre/Software design. Then, a new simulation
technique titled Hardware Software In the Loop for designing and verifying the controller
unit is described. Finally, an environment based on CODIS tool and the two described
environments is presented.

��	
 CODIS, Simulink, SystemC ,ن�
ذج �Gا��, ن�
ذج �>�K�ة :ا����
ت ا���
 , CODISation, SystemC, SimulinksynchronisModèles de simulation, modèles de : Mots clés

Key-words: Simulation models, synchronization models, SystemC, Simulink, CODIS

	gardeth_final1
	Remerciement
	rapport8doc
	gardeth_final2

