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INTRODUCTION GENERALE  

 

I. Problématique et Motivation 

Dans ces dernières années, la conception des systèmes automatiques-embarqués est 

devenue de plus en plus complexe. Cette complexité qui est due à l’intégration des 

composants hétérogènes à un niveau élevé d’abstraction nécessite un nouveau cadre 

conceptuel pour l’adaptation entre les composants hétérogènes ainsi que des nouvelles 

méthodologies pour la vérification et la validation. L’hétérogénéité des composants est 

devenue une nécessité à cause de l’utilisation des modèles en temps continu ainsi que des 

modèles à événements discrets dans un modèle global, donnant une vue d’ensemble du 

système. Dans la littérature, plusieurs systèmes hétérogènes (ITRS, 2003), (Senturia S., 1998), 

(Jie L., 2004) ont été développés. Ce travail s’inscrit dans le domaine de la conception multi-

langages des systèmes hétérogènes. 

 Étant donné l’hétérogénéité des concepts manipulés par ces deux types de modèles, la 

validation globale demande un environnement spécialisé capable de vérifier le système en 

cours de développement. En respectant la facilité de la modélisation et les sémantiques 

nécessaires de chaque modèle (continu et discret), un environnement de co-vérification 

hétérogène s’impose.   Cet environnement de co-vérification met en place des interfaces de 

simulation / émulation et des modèles de synchronisation entre simulateur-émulateur capable 

de simuler le modèle continu et le modèle discret. 

Ces systèmes hétérogènes ont créé un besoin pour les outils de CAO (Conception 

Assistée par Ordinateur) capables de vérifier et de valider le comportement du système ainsi 

conçu. Les environnements de co-vérification éliminent la détection tardive des erreurs et 

réduisent le temps de conception. Il est donc nécessaire de définir un modèle d’exécution 

globale dont les éléments de base sont (Bouchhima F., 2005), (Nicolescu G., 2002): 

� Les modèles des composants du système hétérogène qui sont décrits en temps 

continu ou bien dans le domaine à événement discret. 

� Les interfaces de co-vérification qui réalisent l’adaptation de chaque modèle au 

bus de co-vérification, l’adaptation des différents protocoles de communication 

et la synchronisation entre les deux modèles. 
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� Le bus de co-vérification qui est responsable de l’interprétation des 

interconnections entre les deux modèles compose le modèle global. 

Les aspects qui rendent difficile la modélisation et la simulation des systèmes continus 

et discrets sont (Bouchhima F., 2007): 

� Pour le modèle discret, le temps est une notion globale pour tous les modules du 

système, il avance discrètement en passant par les instants discrets définis par les 

temps de notification des événements discrets. Pour le modèle continu le temps 

est une variable globale qui avance par le pas d’intégration (fixe ou variable) et 

qui intervient dans le calcul des signaux. 

� Pour le modèle discret, les processus sont sensibles aux événements alors que, 

pour le modèle continu, les processus sont exécutés à chaque pas d’intégration. 

� Pour le modèle discret, la communication est réalisée par des ensembles 

d’événements alors que pour le modèle continu, la communication est réalisée 

par des signaux continus (un signal continu possède une valeur à tout instant). 

� Chaque modèle doit être capable de détecter, de localiser en temps et de réagir 

aux événements envoyés par l’autre modèle. 

Les techniques de vérification pour le cas des systèmes matériels/logiciels sont déjà 

matures grâce au nombre de travaux qui sont impliqués (Ismail T.B., 1994), (Valderrama C.A, 

1995), (Abid M., 1998).  

Cependant, les techniques de vérification sont faiblement exploitées pour le cas des 

systèmes continus/discrets à cause des difficultés de mise en place des modèles de co-

simulation. L’environnement CODIS (Continuous DIscrete Simulation), est le fruit de 

plusieurs travaux de recherches dans cet axe (Bouchhima F., 2005). CODIS se base en fait sur 

la synchronisation entre un simulateur continu et un simulateur discret. Cet environnement 

supporte deux modes de synchronisations : (1) synchronisation complète et (2) 

synchronisation d’évènements prédictibles. Dans le premier mode, l’environnement CODIS 

supporte la modélisation conjointe matérielle/logicielle en se basant sur un simulateur de jeux 

d’instructions (ISS) pour la simulation des applications logicielles. Dans ce cas, la simulation 

de la partie discrète est lente vue l’utilisation de l’ISS.  Dans le deuxième mode, la 

modélisation de la partie discrète est purement matérielle. En fait, ce mode diminue le temps 

de simulation mais ne supporte pas la modélisation matérielle/logicielle. 
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II.  Objectifs 

Cette thèse présente une extension de l’environnement CODIS (Bouchhima F., 2007) 

afin de supporter la modélisation matériel/logiciel pour le modèle discret et d’accélérer la 

vitesse de la simulation d’autre part. 

L’environnement cible doit être capable, par co-simulation/émulation, de surmonter le 

problème de la modélisation hétérogène et multi-niveau des contrôleurs numériques d’une 

part et de diminuer le temps de simulation en utilisant une carte FPGA à base d’architecture 

cible d’autre part. L’accélération de la simulation présente un point clé qui impose la création 

d’interfaces de synchronisation et de communication entre l’environnement de co-simulation 

et la carte de prototypage FPGA. 

Les objectifs de la thèse sont organisés comme suit :  

� Proposer un modèle et un environnement de co-simulation multi niveau basé sur 

les techniques de simulation et d’émulation pour le cas des systèmes 

matériels/logiciels.  

� Proposer un modèle et un environnement de simulation Matériel/Logiciel en 

boucle (″Hardware Software In the Loop″) pour les systèmes de contrôles. 

� Proposer une extension du modèle et de l’environnement CODIS+ assurant la 

synchronisation entre le simulateur continu d’une part et le simulateur SystemC 

et une carte FPGA pour le modèle discret d’autre part.  

� Valider l’environnement de vérification à travers des exemples d’applications : 

un système de reconnaissance par empreinte digitale, un régulateur de la vitesse 

d’un moteur à courant continu, un système de contrôle en boucle fermée de la 

vitesse d’un moteur et un système limiteur de vitesse pour voiture.  

III.  Contributions 

 Ce travail présente cinq contributions : 

� Une étude des environnements de vérifications continus et discrets pour les 

différents niveaux d’abstraction. 
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� Modélisation d’un environnement de co-simulation matériels/logiciels multi 

niveau tout en respectant à la fois l’accélération du temps de simulation et la 

description dans le haut niveau. Ainsi, un modèle de communication et de 

synchronisation entre le simulateur SystemC et une carte FPGA à base 

d’architecture cible est implémenté. 

� Modélisation d’une interface générique entre le simulateur Simulink et la carte 

FPGA à base d’architecture cible respectant la simulation Matériel/Logiciel en 

boucle. 

� Modélisation d’un moteur de synchronisation qui interface et adapte le simulateur 

du modèle continu avec le simulateur/émulateur du modèle discret. 

L’environnement ainsi conçu est nommé CODIS+. Le but du moteur de 

synchronisation est de gérer le simulateur Simulink du domaine continu, le 

simulateur SystemC et l’architecture cible du domaine discret. 

� Développer un système de reconnaissance par empreinte digitale pour l’utiliser 

lors de la validation des environnements.  

 

IV.  Plan de la thèse 

Ce rapport est composé de 4 chapitres. Le premier est consacré à une étude 

bibliographique sur les systèmes continus, discrets et hétérogènes. Le deuxième 

présente les différents environnements de vérifications ainsi la méthodologie de co-

simulation matériel/logiciel multi niveau. Dans le troisième chapitre, nous proposons 

la méthodologie de vérification des systèmes continus/discrets. Dans ce dernier, les 

interfaces de communication et les schémas de synchronisation sont décrits. Enfin 

nous présentons dans le chapitre 4, à travers plusieurs applications, la validation de 

l’environnement de co-simulation matériel/logiciel multi niveau, la simulation 

matériel/logiciel en boucle et l’environnement de co-simulation/émulation 

continu/discret (CODIS+).  
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Chapitre 1 : ETAT  DE L’ART 

I. Introduction 

Compte tenu de la diversité et de la complexité des systèmes, plusieurs méthodes de 

descriptions sont étudiées dans la littérature. Chaque méthode dépend de la nature des 

systèmes à concevoir. En fait, plusieurs outils et environnements de modélisation et de 

vérification existent pour les systèmes continus et pour les systèmes discrets. En contre partie, 

les outils destinés aux systèmes continus/discrets souffrent encore de plusieurs lacunes. Le 

temps de simulation, la modélisation dans différents niveaux d’abstractions et le temps de 

mise en marché sont principalement les insuffisances présentes dans les environnements 

supportant les systèmes continus/discrets. 

Dans ce chapitre, nous présentons tout d’abord une description des méthodes de 

modélisations et de simulations du modèle continu. Un exemple illustre la modélisation au 

niveau comportementale et fonctionnelle. Ensuite une description du principe de modélisation 

des systèmes discrets. Finalement une étude sur les méthodes de descriptions des systèmes 

continus/discrets basées sur l’approche homogène et hétérogène est détaillée. Cette dernière 

section cite les différentes caractéristiques des outils présents en soulignant les avantages  et 

les inconvénients de chaque méthode. 

II.  Principe de modélisation et vérification du modèle continu 

Tout modèle continu se base sur la résolution des équations différentielles ordinaires 

(EDOs) (Ordinary Differential Equations). Ainsi, les diagrammes de blocs utilisent ses EDOs 

pour la modélisation des systèmes. Une étude détaillée est présentée dans cette section.  

II.1.  Modélisation du modèle continu 

Par définition, les systèmes continus couvrent tous les systèmes dynamiques à variables 

continus dans le temps. Leur modélisation se fait au niveau comportemental ou fonctionnel. 

II.1.1. Au niveau comportemental 

Le système continu est modélisé dans son ensemble de fonctionnement. Le modèle est 

décrit, dans ce cas, par des EDOs. Les équations utilisées sont des équations différentielles 

d'ordre 1 données par l’équation (1). Pour les EDOs d’ordre supérieur peuvent être réduites à 

un système d’équations différentielles d’ordre 1. Bien que celles supérieur à 1 puissent être 
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parfois résolues directement, très peu d’algorithmes sont disponibles pour le faire (Gupta 

G.K., 1985). 

)1()(),,( 00 vecteurunestyoùyxyyxf
dx

dy
y ===
•

 

L’équation (1) est appelée EDO explicite. Il existe une autre forme appelée EDO 

complètement implicite donnée par la forme suivante 

)2(0),,( =
•
yyxf  

La plupart des EDOs complètement implicites peuvent être écrites sous la forme 

suivante (Gupta G.K., 1985) 

)3(),( matriceuneestMoùyxMy =
•

 

La forme (3) est appelée EDO linéairement implicite.  

Dans le cas des systèmes continus l’équation (1) devient: 

)2.4(),,(

)1.4()(),,,( 00

tuxgy

xtxtuxf
dy

dx
x

=

===
•

 

Où, t représente le temps, u représente le vecteur d'entrée, x représente le vecteur des 

variables d'états et y représente le vecteur de sortie. Ainsi, un espace d'états complètement 

spécifié par les équations (4.1) et (4.2) est obtenu. 

L'équation (4.1) représente l'ensemble des équations d'états avec une condition initiale, 

et l'équation (4.2) donne l'ensemble des équations de sortie. Assumons que nous avons n 

variables d'états, m variables d'entrées et r variables de sorties, ces équations peuvent être 

écrites sous la forme scalaire suivante : 

Il y aura n équations d'états 

)3.4(

)(),),(.,),........(),(,),........((

.

.

)(),),(.,),........(),(,),........((

0011

10011111












==

==

•

•

nnmnnn

mn

xtxttututxtxfx

xtxttututxtxfx
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et r équations de sortie 

     

)4.4(

)),(.,),........(),(,),........((

.

.

)),(.,),........(),(,),........((

11

1111











=

=

ttututxtxgy

ttututxtxgy

mnnr

mn

 

La linéarité : 

La notion de linéarité est fondamentale dans les domaines scientifiques et les domaines 

d'ingénieur. La nature des fonctions f et g, donnée par les équations (4.1) et (4.2), sert à fixer 

la nature du système. Ce dernier est appelé linéaire si ces deux fonctions sont toutes les deux 

linéaires. Dans ce cas, les équations (4.1) et (4.2) se réduisent à : 

)2.5()()()()()(

)1.5()()()()()(

tutDtxtCty

tutBtxtAtx

+=

+=
•

•

 

A(t) (n,n), B(t) (n,m), C(t) (r,n) et D(t)(r,m) sont des matrices où n, m et r sont les 

mêmes variables données ci-dessus. La classe des systèmes linéaires est en effet restreinte. 

Par exemple, une simple fonction comme f(x) = xn (n > 1 est un entier) est non linéaire.  

L'invariance par rapport au temps : 

Une autre propriété est l'invariance du modèle du système par rapport au temps. Dans le 

cas où les fonctions f et g ne dépendent pas explicitement du temps, le système est dit 

invariant par rapport au temps, dans ce cas les équations (4.1) et (4.2) se transforment en : 

)2.6())(),(()(

)1.6())(),(()(

tutxgty

tutxftx

=

=
•

•

 

En assumant la propriété de l'invariance par rapport au temps, nous pouvons restreindre 

la classe des systèmes linéaires en une autre classe où les matrices A(t), B(t), C(t) et D(t) sont 

constantes, et on obtient : 

)2.7(

)1.7(

DuCxy

BuAxx

+=
+=

•

 

Les équations différentielles-algébriques : 
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Si l’ensemble des équations qui décrivent le système continu sont composées 

d’équations algébriques et différentielles, elles sont nommées donc équations différentielles-

algébriques et données par (Gupta G.K., 1985) 

0),,(

)8()(,0),,,(

2

001

=
==

•

zyxF

yxyyzyxF  

Où F1 est un ensemble de N équations et F2 de M équations. 

Il est indéniable que la modélisation au niveau comportemental s’avère une tâche 

pénible pour les concepteurs. C’est pourquoi la modélisation au niveau fonctionnel évolue 

rapidement. 

II.1.2. Au niveau structurel  

Le système continu est modélisé par un ensemble de fonctions, prenons par exemple : 

un régulateur PID. Dans ce cas, le modèle est décrit par un diagramme de blocs prédéfinis où 

chaque bloc est caractérisé par un ensemble de relations, linéaires ou non linéaires, entre les 

variables d’entrées et les variables de sorties, citons par exemple: sommation, fonction de 

transfert, intégration, etc. Les blocs sont interconnectés par des chemins orientés représentant 

des signaux. A ce niveau d’abstraction et à partir des blocs prédéfinis, il est possible de 

construire des modèles et des sous modules pour des systèmes dynamiques complexes.  

Actuellement, grâce à des blocs spéciaux, les EDOs modélisant un système continu au 

niveau comportemental peuvent être programmées et connectées aux autres blocs du 

diagramme. Ainsi, le formalisme du diagramme de blocs est le plus adapté puisqu’il supporte 

aussi le formalisme des EDOs. En fait, c’est plus facile de modéliser un système continu en 

utilisant le diagramme de blocs que par la résolution des EDOs.  

II.1.3. Modélisation : exemple continu 

A travers cet exemple nous présentons le formalisme de diagramme de blocs. Pour une 

meilleure explication, nous utilisons aussi le formalisme des EDOs où nous expliquons la 

technique de réduction d’ordre. Prenons l’exemple du circuit RLC représenté par la figure 1. 
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 Modélisation comportementale

Le comportement de ce circuit est décrit par l'équation différentielle

issues de la loi des mailles

eV =

Pour résoudre cette équation numériquement, nous aurons besoin de la réécrire sous un 

système équivalant d'équations 

En combinant les deux équations (9) et (10)

différentiel d’ordre 1 suivant :













=
=

=
•

•

1

2

21

/1

yV

LCy

yy

s

Par la même démarche donnée par (10) et (11), toute 

supérieur à 1, peut être réécrite sous un système équivale

1. Le même circuit peut être facilement décrit par l'espace d'états (forme (7.1) et (7.2)) donné 

par :  
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Figure 1. Circuit RLC série 

Modélisation comportementale 

comportement de ce circuit est décrit par l'équation différentielle

de la loi des mailles : 

2

s
ss V

dt

dV
RC

dt

Vd
LC ++

Pour résoudre cette équation numériquement, nous aurons besoin de la réécrire sous un 

équivalant d'équations différentielles d'ordre 1. Nous supposons : 

s

s

Vy

Vy
•

=

=

2

1 )10(
 

En combinant les deux équations (9) et (10), on obtient le système d’équations 

suivant : 

−− 12 )( yyRCVLC e

Par la même démarche donnée par (10) et (11), toute équation différentielle d'ordre 

éécrite sous un système équivalent d'équations différentielles d'ordre 

Le même circuit peut être facilement décrit par l'espace d'états (forme (7.1) et (7.2)) donné 

                               Mossaad Ben Ayed 

 

comportement de ce circuit est décrit par l'équation différentielle (9) d'ordre deux 

)9(  

Pour résoudre cette équation numériquement, nous aurons besoin de la réécrire sous un 

 

on obtient le système d’équations 

)11(

 

équation différentielle d'ordre 

nt d'équations différentielles d'ordre 

Le même circuit peut être facilement décrit par l'espace d'états (forme (7.1) et (7.2)) donné 
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Nous pouvons remarquer que les systèmes (11) et (12) sont équivalents, ainsi ils 

peuvent être facilement programmés en utilisant un éditeur de texte ou modélisés par un 

diagramme de blocs. 

Modélisation fonctionnelle 

Le diagramme de blocs : La figure 2 montre le même circuit modélisé par un seul bloc 

qui décrit sa fonction de transfert donnée par l’équation (13) 

 

 

 

 

 

 

 

Figure 2. Modélisation par diagramme de blocs (fonction de transfert) 

)13(
1

1

)(

)(
)( 2 ++

==
RCsLCssV

sV
sH

e

s  

En utilisant (12), le circuit peut être décrit par un diagramme de blocs, en utilisant des 

blocs prédéfinis appelés primitifs, qui sont l’intégrateur, l’additionneur et le gain où 

l’intégrateur représente le bloc principal (Callier F.M., 1991), voir figure 3. 

1 1 1.².

1

++ sRCsLC
 

Fonction de transfert 

Vs Ve 
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Figure 3. Modélisation par diagramme de blocs (bloc primitifs) 

Il est clair, à travers cet exemple, que la modélisation des systèmes continus par le 

diagramme de blocs est plus simple. Dans la section suivante nous introduisons le modèle de 

simulation des systèmes continus. 

II.2. Modèle de Simulation 

La simulation des systèmes continus se base sur la résolution numérique du système 

d’équations différentielles et algébriques. Plusieurs algorithmes de résolutions essaient de 

résoudre les EDOs en un temps le plus court possible afin de pouvoir traiter des problèmes de 

grande taille. Une large classe d'algorithmes discrétisent le temps en un ensemble d'instants 

discrets croissants et calculent numériquement les variables du modèle à ces instants. Un pas 

d’intégration correspond à l’intervalle entre deux instants consécutifs. Ce pas peut être fixe ou 

variable. 

Durant la simulation, le temps avance par le pas d'intégration. À chaque pas, les blocs 

qui modélisent le système continu sont exécutés (résolus) et l'ensemble des états continus sont 

mis à jour. L’ordre de résolution de ces blocs est donné par la règle de dépendance des 

données. 

La précision, la stabilité et la continuité des signaux sont les trois critères responsables 

aux choix du pas d’intégration. Lorsque la précision est le seul critère à prendre en compte 

(c’est-à-dire le système est à la fois stable et continu), on peut utiliser un algorithme à pas 

fixe. En contrepartie, l'utilisation d'un algorithme à pas variable augmente la vitesse de la 

simulation, puisque l'algorithme réduit le pas quand le modèle évolue rapidement et vice 

versa. Ceci évite tous les calculs non nécessaires et réduit le nombre total des pas 
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d'intégration. Bien que le calcul de la largeur du pas d'intégration ajoute un temps de calcul 

additionnel à chaque pas, l’impact positif de la réduction du nombre total de ces pas 

d'intégration s’impose. 

Lorsque le modèle continu présente des discontinuités et/ou des problèmes de stabilité 

alors il faut utiliser : 

• Des algorithmes à pas variable (Gear C.W., 1984), pour surmonter les problèmes de 

discontinuités observés au niveau des solutions, surtout lorsqu'il interagit avec un 

environnement discret où les signaux changent leurs valeurs d’une manière discontinue. Dans 

le cas de discontinuité, l'algorithme recalcule les solutions en raffinant les pas d'intégration 

autour de ces points de discontinuité. 

• Des algorithmes spécifiques à pas variable pour résoudre les problèmes dû aux 

méthodes numériques pour la résolution des équations différences qui sont numériquement 

instable. Ces problèmes sont appelés les problèmes stiff qui apparaissent surtout dans les 

modèles non linaires dans le cas des systèmes mécaniques, électriques, etc. Ces algorithmes 

sont conçus pour la résolution des problèmes stiff, car dans leur cas le pas d'intégration est 

contrôlé par précision plutôt que par stabilité (Gupta G.K., 1985). 

Le problème stiff apparait lorsque les variables d’états évoluent d'une manière très 

rapide sur un intervalle de temps très court par rapport au pas d'intégration. Ceci peut être 

observé au niveau de la matrice Jacobine (Sameh A.H, 1971) qui peut avoir des valeurs 

propres qui sont négatives (ou complexes avec des parties réelles négatives) avec des modules 

largement supérieurs par comparaison aux autres valeurs propres. Cela implique que des 

composants de la solution vont dégrader très vite et deviennent non significatifs. Alors, 

l'algorithme doit changer le pas d'intégration sans tenir compte des valeurs propres liées à ces 

solutions. 

III.  Principe de modélisation et vérification du modèle discret 

Nous présentons ici les concepts de base utilisés pour la modélisation et la vérification 

des systèmes discrets.  

III.1. Modélisation du modèle discret 

Par définition les systèmes discrets sont tous les systèmes numériques ou d’une manière 

plus générale tous les systèmes à événements discrets. Leurs comportements sont souvent 

décrits par des processus concurrents en utilisant des expressions booléennes, logiques et/ou 

arithmétiques selon le niveau d’abstraction. Dans le niveau RTL (Regiter Transfer Level), ces 
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processus sont connectés par des signaux à travers leurs ports d'entrée/sortie (figure 4). Ces 

signaux qui représentent un support physique, assurent la communication et l’échange des 

évènements entre les processus. Un événement représenté par le couple (valeur du signal, 

temps d’occurrence) est un événement dû à un changement de la valeur d’un signal à un 

instant précis. Un événement pur est un événement qui se représente par son temps 

d’occurrence seulement. L’exécution d’un processus est déclenchée si un évènement dans sa 

liste de sensibilité est aussi déclenché. Par définition, une liste de sensibilité contient une liste 

de signaux qui réveillent le processus lors d'un changement d'un des signaux. Si plusieurs 

processus sont sensibles à un ou à plusieurs événements qui ont le même temps d’occurrence 

alors, dans les deux cas, ces processus doivent être exécutés en parallèle. Le parallélisme est 

un aspect qui est assuré par le modèle de simulation mais qui doit être pris en compte par le 

modèle. Le problème est dû à l’exécution à partir d’une machine séquentielle, capable 

d’exécuter une instruction à la fois, toutefois cette machine ne peut pas paralléliser réellement 

les différents processus en même temps. La solution repose sur une idée très simple mais 

efficace : le processus exécuté ne doit pas changer les valeurs de sortie des processus jusqu’à 

la fin de l’exécution des autres processus qui lui sont en parallèle. Ainsi, l’ordre d’exécution 

de ces processus n’a plus d’importance et tout se passe comme s’ils s’exécutaient en parallèle. 

Pour parvenir à ce résultat, il faut que les signaux d'un processus conservent leurs valeurs 

jusqu’à ce que tous ces processus aient fini leur exécution (Valderrama C.A., 1995). 

 

 

 

 

 

 

Figure 4. Un exemple du modèle discret 

III.2. Modèle de simulation 

La simulation dans le domaine discret désigne la vérification d’un modèle qui évolue 

dans le temps à travers des variables (grandeurs caractéristiques des systèmes) qui ne 

changent qu’en nombre fini dans le temps. Ces points représentent les instants où se déroulent 

les événements (changement des variables). La simulation prend en compte les tâches actives 

Module 
B1 
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B2 
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à des instants précis. Toute une description des différents types de simulation est décrite dans 

le chapitre 2. 

IV.  Principe de modélisation et vérification du modèle 

continu/discret 

A l'heure actuelle, les recherches concernant les méthodes, les outils formels relatifs à 

l'analyse du comportement des systèmes hétérogènes et à la synthèse de leurs lois de 

commande en sont encore à leur début. La simulation reste donc un passage nécessaire pour la 

validation du fonctionnement de ces systèmes hybrides. Vu l’hétérogénéité des modèles à 

valider, la simulation n’est pas une tâche facile. Pour surmonter cette difficulté, deux 

approches sont proposées : l’approche homogène et l’approche hétérogène. 

IV.1. Approche homogène : conception et simulation 

Cette approche consiste à utiliser un seul langage pour la spécification complète du 

fonctionnement du système. Cela suppose qu’il possède une sémantique consistante et assez 

riche pour qu’il puisse supporter l’hétérogénéité des modules continus/discrets. 

Une première solution consiste à étendre les langages existants, en modifiant le noyau 

de simulation afin de supporter l’hétérogénéité. L’avantage de cette solution est que le style 

d’écriture est formalisé de façon à faciliter l’analyse formelle et la construction de nouveaux 

outils. L’inconvénient majeur réside dans la difficulté de la construction de nouvelles 

bibliothèques, mécanismes et formalismes qui demandent un temps d’apprentissage important 

pour les nouveaux langages. 

En citant les différents travaux et outils, on a essayé de les classifier selon leurs points 

communs. Plusieurs travaux et outils portant sur l’extension des langages matériels étaient 

proposés pour enrichir ou améliorer leur capacité descriptive et simulatrice. Ces extensions 

étaient pour le domaine continu et pour d’autres domaines discrets plus spécifiques. 

IV.1.1. Validation analogique / numérique 

Ce type d’outils est le sujet de plusieurs travaux, citant Diana (De Man H.J., 1980), 

Splice (Newton A.R., 1978), Motis (Chen C.F, 1984) Samson (Sakallah K.A., 1985), Spice 

(Banzhaf W., 1989). Ces outils se basent sur la combinaison de deux algorithmes dans le 

noyau de simulation : algorithme de résolution des EDOs et algorithme de gestion des 

événements discrets. L’important dans ces outils est la simulation rapide de la partie 

numérique. Mais malheureusement, ces outils supportent seulement le niveau transistor pour 
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la modélisation, augmente le temps de mise en marché et rend pénible la phase de 

modélisation. 

D’autre travaux comme Mode Circuit Simulator (Odryna P., 1986), MAST de SABER 

(Getreu I.E., 1989), ALFA (Kazmierski T.J., 1992), S++SDL (Brown A.D., 1992), Verilog-A 

(Fitzpatrick F., 1998) et HDL-A (Pabst D., 1995) modélisent les modèles analogiques à plus 

haut niveau (macro-modèles). Mais de même que précédemment,  les modèles analogiques 

restent à un niveau beaucoup plus bas. 

IV.1.2. Extension du langage VHDL et Verilog 

Ce type d’outils utilisent deux noyaux différents : un pour l’analogique et l’autre pour 

les événements discrets, pour simuler le comportement global du système. Les outils comme 

VHDL-AMS (Std VHDL-AMS, 1999) développé par le standard IEEE 1076.1, (Drager S.L., 

1998), (Pêcheux F., 2005)  et Verilog-AMS développé par le co-standard IEEE 1364 (Frey P., 

2000), (Pêcheux F., 2005) assurent la validation des systèmes hétérogènes à différents 

niveaux d’abstractions. Une autre approche (Pichon F., 1995),  est fondée à la fois sur une 

description par fonctions de transfert et une approximation des signaux analogiques par PWL 

(Piece Wise Liner). La même technique est employée dans (Long D.I., 1997) pour étendre 

VHDL. Mais la conception des circuits analogiques et mixtes reste à un niveau beaucoup plus 

bas que celui des circuits numériques. Ces langages n’offrent pas un niveau d’abstraction 

suffisamment élevé (Vachoux A., 2003) et souhaitable pour la simulation des systèmes sur 

puce intégrant du matériel numérique, du logiciel et d’autres composants non électriques et ne 

supportent pas la simulation conjointe des systèmes matériels / logiciels. Ces outils présentent 

aussi une limitation au niveau interaction entre les modules continus et discrets, ce qui oblige 

l’utilisateur à créer d’une manière explicite les interfaces nécessaires. De plus, le temps de 

passage du sous-modèle continu au sous-modèle discret et vice versa est toujours difficile à 

repérer. Ces langages sont toujours considérés comme souhaitables pour la modélisation des 

systèmes mixtes « big-D-little-A » c'est-à-dire pour des systèmes numériques intégrant une 

faible composante analogique (Antao B.A., 1996). En contre partie, ces outils utilisent un seul 

solveur pour la résolution des systèmes d’équations algébriques et différentielles ce qui rend 

nécessaire d’indiquer dans le code l’emplacement où le modèle change de fonctionnement 

c'est-à-dire que la discontinuité du modèle n’est pas résolue automatiquement par le 

simulateur. 

 



Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets                               Mossaad Ben Ayed 

-26- 

IV.1.3. Extension de SystemC 

Cette extension se base sur la construction d’une nouvelle bibliothèque et des solveurs 

pour la résolution des équations différentielles et algébriques SystemC-AMS (Vachoux A., 

2003), SystemC-A (Al-Junaid H., 2005), (Al-Junaid H., 2004). Dans (Vachoux A., 2003), les 

auteurs indiquent la possibilité d’utilisation d’un mécanisme de synchronisation pour 

l’intégration d’autres simulateurs et solveur pour des systèmes assez complexes et pour des 

niveaux d’abstraction qui ne sont pas couverts par SystemC-AMS, ce qui rend leur approche 

intéressante. Dans (Bonnerud T.E., 2001), d’autres travaux sont proposés pour étendre 

SystemC par classes, pour la simulation mixte d’un convertisseur pipeline 

analogique/numérique. Dans (Patel D.H., 2004), les auteurs proposent l’extension des 

capacités de description de SystemC en ajoutant un nombre de noyaux spécifiques à quelques 

domaines discrets qui sont : le domaine de Flux de données synchrones (SDF: Synchronous 

Dataflow), le domaine CSP (Communicating Sequential Processes) et le domaine de Machine 

d’états finis (FSM: Finite State Machine). 

Cette extension permet d’étendre la modélisation et la simulation des systèmes 

continus. La simulation devient plus performante spécialement dans le domaine de 

communication et de traitement de signal (Vachoux A., 2003). Les travaux cités montrent par 

quelques exemples que la précision de SystemC a été améliorée et les performances de la 

simulation ont augmenté quand les noyaux spécifiques ont été utilisés. Les auteurs créent 

aussi un ensemble d’interfaces de programmation (API : Application Programming Interface) 

pour permettre aux développeurs d’ajouter d’autres noyaux spécifiques à d’autre domaines de 

modélisation. Mais la simulation du modèle continu reste moins puissante au niveau de la 

précision de la simulation et de la disponibilité des bibliothèques par rapport à 

l’environnement complet que Matlab / Simulink (Matlab/Simulink, 2012) l’offre d’une part, 

et un manque de solveurs adéquats pour les différents domaines continus (mécanique, 

hydraulique, robotique,…) d’autre part. 

IV.1.4. Ptolemy II 

Ptolemy (Eker J., 2003) est développé au sein de l’université de Berkeley. Il utilise un 

environnement et un langage qui sont unifiés. C’est une approche hétérogène de point de vue 

composition disjointe des modèles de calcul appelé actors. Il utilise des directors qui 

implémentent les modèles de calcul et qui permette d’établir le style de communication entre 

les actors et de fixer leur ordre d’exécution. La composition des modèles de calcul dans 

Ptolemy II assure la spécification des systèmes hétérogènes multi-disciplines et multi-
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domaines. Cet outil est à source ouverte pour les développeurs et indépendant des plateformes 

grâce à la technologie Java. Les inconvénients de cet outil résident dans le temps 

d’apprentissage important et le non utilisation des bibliothèques (en particulier les composants 

matériels comme les processeurs et les accélérateurs) et IPs conçu pour chaque modèle. 

IV.1.5. MLdesigner 

MLdesigner (Mission Level designer) (Schorcht G., 2003) se base sur l’approche 

Ptolemy. C’est une plateforme unifiée, dédiée à la modélisation (fonctionnelle et 

architecturale) et à la simulation au niveau système. L’environnement établit une connexion 

par appel de service (callback) avec SatLab (Schorcht G., 2003) pour assurer des calculs de 

trajectoire ou des analyses pour les systèmes de navigation et de communication. L’utilisateur 

peut construire son modèle en utilisant une interface graphique proche de celle du Simulink 

(Matlab/Simulink, 2012). Les blocs fonctionnels fournis par la bibliothèque sont écrits par un 

langage proche de C++ et sont paramétrables. Malheureusement, les exemples fournis avec 

MLdesigner ciblent seulement les systèmes à architecture numérique mono et multi-

processeurs. De plus, Mldesigner est complexe dans son environnement et le langage utilisé 

nécessite un temps d’apprentissage important. 

IV.1.6. Modelica 

Modelica (Modelica, 1997) est un langage et environnement unifié pour la 

spécification et la modélisation des systèmes physiques. Les composants du système sont 

mathématiquement décrits par des équations différentielles et algébriques. Cet outil montre 

une bonne capacité de modélisation et de réutilisation en se basant sur les concepts d’orienté 

objet et de non-causalité. Modelica fournit un ensemble de bibliothèques dans plusieurs 

disciplines et domaines : continu, électrique, mécanique, thermique, discret et logique 

booléen, réseau de Petri, logique floue, VehicleDynamics, etc. Le langage, les librairies et les 

outils de simulation de Modelica sont à usage libre, mais il existe des environnements de 

simulation commerciaux basés sur ce langage qui sont Dymola (Ferretti G., 2006) de 

Dynasim et MathModelica (Mathmodelica, 2006) de MathCore Engineering. Mais, il est 

incapable de supporter la notion d’événements discrets exploitée dans la simulation des 

systèmes numériques. 

IV.1.7. Outils basés sur l’approche UML 

Paragon (Pinki M., 2003), (Riihimaki J., 2005) et (Kajtazovic S., 2005) peuvent 

appartenir aussi à l'approche hétérogène car ils partent avec un seul langage de modélisation 
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(UML) mais, dans la majorité des cas, après ils font appel aux langages existants (VHDL, 

SystemC, etc.). Au niveau modélisation, les auteurs décrivent la structure du système en 

utilisant des IPs (Intellectual property) mais lors de la simulation, ils utilisent la technique de 

la co-simulation. 

SysML (Azam F., 2005) (Systems Modeling language) est développé à partir de 

l’UML pour la spécification, l’analyse et la validation des systèmes matériels/logiciels et des 

systèmes d’information. Pour la vérification, SysML génère un code adéquat à un langage 

cible (comme VHDL et C) en respectant le simulateur utilisé. 

Paragon (Pinki M., 2003) qui est un outil de modélisation indépendant des langages 

matériels utilisés pour la simulation ou pour la conception. Il fournit une sémantique qui est 

capable de décrire des systèmes continus/discrets. Le fonctionnement (les expressions et les 

calculs) est décrit par MathML qui représente une application de l’XML pour la description 

des notations mathématiques. L’important ici c’est que l’utilisateur peut créer son modèle à 

partir d’une interface graphique. 

Tous ces outils sont plutôt utilisés pour décrire la structure et l'hiérarchie des systèmes. 

Le comportement est difficilement décrit par ces langages qui ne peuvent pas fournir la 

sémantique donnée par les langages matériels. 

IV.1.8. Outil basé sur les métriques approximatives 

(Antoine G., 2007) a développé un environnement qui supporte le modèle continu et le 

modèle discret en utilisant le langage d’inclusion approximative et la bisimulation 

approximative. L’utilisation de cette approche approximative qui est basée sur la machine 

d’état infinie  pour le modèle continu et la machine d’état finie pour le modèle discret, permet 

de résoudre la complexité des EDOs et d’accélérer la simulation d’une part et souffre de 

manque d’algorithme pour le calcul des fonctions linéaires et non-linéaires d’autre part. 

IV.1.9. Hybride Automata 

(Vladimeros V., 2012) a développé un outil en se basant sur la solution « Hybride 

Automata » qui permet à la fois la modélisation continu/discret. Cet outil utilise la classe 

mathématique o-minimal qui se base sur une résolution géométrique des EDOs. Une 

amélioration de la classe o-minimal est présentée par Vladimeros pour considérer le modèle 

discret. Cet outil exploite mieux les propriétés des systèmes temps réels mais il est plus adapté 

pour le modèle continu que pour le modèle discret. 
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IV.1.10. Synthèse 

L’approche homogène repose sur deux types d’environnements :  

� Nouvel environnement comme par exemple Ptolemy, Mldesigner et Modelica. 

� Extensions des langages comme VHDL-Verilog et SystemC-AMS. 

Le tableau 1 résume la majorité des travaux en mettant l’accent sur les avantages et les 

inconvénients de chaque environnement. 

Outils Avantages Inconvénients 

Validation 

analogique / 

numérique 

- Simulation de la partie numérique 

assez rapide. 

-Modélisation analogique au niveau 

macro-modèle 

- Simulation au niveau transistor 

seulement. 

- Modélisation reste à  un niveau 

beaucoup plus bas. 

Extension du 

langage VHDL 

et Verilog 

- Validation des systèmes hétérogènes 

à différents niveaux d’abstractions. 

- Niveau d’abstraction limité. 

- Simulation conjointe des systèmes 

matériels / logiciels non supporté. 

- Interaction continu/discret non définie. 

- Un seul solveur est utilisé pour la 

résolution des EDOs. 

Extension de 

SystemC 

- Etendre la modélisation et la 

simulation des systèmes continus. 

- Simulation performante. 

- Simulation analogique moins puissante 

au niveau de la précision. 

- Manque de solveurs adéquats pour 

différents domaines. 

Ptolemy II 

- Spécification des systèmes 

hétérogènes multi-disciplines et multi-

domaines. 

- Une source ouverte pour les 

développeurs. 

- Nécessite un temps d’apprentissage 

important. 

MLdesigner 

- Une interface graphique proche de 

celle du Simulink. 

- Complexité de l’environnement. 

- Nécessite un temps d’apprentissage 

important. 

Modelica 

- Bonne capacité de modélisation et de 

réutilisation en se basant sur les 

concepts d’orienté objet et de non-

- Ne supporte pas la notion d’événements 

discrets. 
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causalité. 

- Existence des bibliothèques dans 

plusieurs disciplines et domaines. 

- Une source ouverte pour les 

développeurs. 

Outils basés 

sur l’approche 

UML 

- Création du modèle à partir d’une 

interface graphique. 

- Le comportement est difficilement 

décrit par ces langages. 

Métrique 

approximative 

- Résoudre la complexité des EDOs. 

- Simulation rapide. 

- Moins de précision. 

Hybride 

Automata 

- Exploitation des propriétés des 

systèmes temps réels.   

- Plus adaptée pour le modèle continu que 

pour le modèle discret. 

Tableau 1 : Avantages / inconvénients des outils basés sur l’approche homogène 

IV.2. L’approche hétérogène 

Cette approche permet de modéliser le système complet en utilisant des langages 

spécifiques. La technique de co-simulation permet l'utilisation de plusieurs simulateurs pour 

la validation globale de ce système. Pour cela, il faut disposer d’un modèle de communication 

qui décrit la synchronisation et les interconnexions entre les différents modules. La difficulté 

réside dans la construction de ce modèle. Une autre technique, la technique mono-simulateur, 

consiste à traduire les langages utilisés pour la description du système entier vers une sorte de 

langage unique ou un format accepté par le simulateur (Nicolescu G., 2002). 

L’avantage de cette approche est que chaque module du système peut être modélisé 

avec un langage spécifique et approprié. Cela permet d’intégrer les IPs et d’exploiter au 

mieux les performances des langages existants. 

Généralement les raisons et les avantages pour lesquels on fait recours à plus qu’un 

langage sont : 

� L’hétérogénéité du système qui combine plusieurs domaines physiques, par 

exemples : mécanique, électronique numérique (matériel et logiciel), chimie, etc. 

� Le système possède des modules qui appartiennent à plusieurs niveaux 

d’abstraction, et donc l’utilisation du langage le plus adéquat pour chaque 

niveau. 
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� Le besoin de créer des testbenchs complexes (d’habitude on utilise le langage C 

et ses dérivés) 

� L’exploitation des bibliothèques déjà existantes pour certains langages. 

Nous allons classifier ces outils en deux catégories : 

� Outils qui utilisent plusieurs langages/plusieurs simulateurs : technique de co-

simulation 

� Outils qui utilisent plusieurs langages/un seul simulateur : technique mono-

simulateur 

 

IV.2.1. Technique mono-simulateur 

Avec cette technique le système est toujours composé d'un ensemble de sous-systèmes 

spécifiés dans différents langages mais la simulation nécessite le passage par un langage 

unifié ou un format connu par le simulateur, voir figure 5.  

 

 

 

 

 

 

 

 

Figure 5. Le principe du technique mono-simulateur 

La validation par simulation consiste à exécuter la spécification du système afin de 

reproduire le fonctionnement du système entier. Dans la figure 5, le sous-système 1 et le sous-

système 3 sont des composants matériels modélisés par deux différents langages (comme par 

exemple, VHDL et Verilog) et le sous-système 2 représente une application logicielle ou un 

modèle continu (Zorzi M., 2003). 

(Dubois M., 2011) propose un approche qui consiste au développement d’un simulateur 

compilé multi-langage où chaque modèle peut être décrit en employant différents langages de 
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modélisation tel que SystemC, ESyS.Net ou autres. Chaque modèle contient généralement des 

modules et des moyens de communications entre eux. Les modules décrivent des 

fonctionnalités propres à un système souhaité. Cette approche se base sur un seul noyau au 

lieu de plusieurs et d’enlever le bus de co-simulation pour accélérer le temps de simulation. 

Mais cet environnement ne supporte que le niveau RTL et TLM (Lukai, 2003). 

IV.2.2. Technique de co-simulation 

La co-simulation consiste à exécuter des simulateurs communicants, voir figure 6. 

Chacun des simulateurs exécute un sous-système décrit dans un langage approprié. Pour 

assurer l’échange correct des données et la communication entre ces sous-systèmes, le besoin 

d’un modèle de synchronisation s’impose. Ce modèle prend en compte les spécificités du 

modèle de simulation adopté par chaque simulateur.  

 

 

 

 

 

 

 

 

Figure 6. Le principe de la co-simulation 

Des interfaces de simulation assurent l’interconnexion entre les différents sous 

systèmes. Ces interfaces communiquent à travers un bus de co-simulation qui peut être une 

mémoire partagée avec une structure bien définie permettant des interconnexions complexes 

ou autre technique de communication inter-processus. Les interfaces de simulation sont 

composées par des couches de communication et de synchronisation et selon les simulateurs 

utilisés ils peuvent implémenter des comportements assez complexes (Bouchhima F., 2005) 

(Nicolescu G., 2002). Les avantages de la technique de co-simulation sont : 

� Bénéficier au mieux des performances des langages et des simulateurs existants 

(sémantique, précision de simulation, bibliothèques, etc.). 

� Réutiliser des composants existants comme les IPs. 

Sous Système 1 

Langage 1 

Sous Système 2 

Langage 2 

Sous Système 3 

Langage 3 

Interface de 
simulation 

Interface de 
simulation 

Interface de 
simulation 

Bus de Co-simulation 



Environnement de Co-Simulation / Emulation des systèmes Continus / Discrets                               Mossaad Ben Ayed 

-33- 

� Eliminer le temps d'apprentissage puisque les langages utilisés sont très connus par les 

concepteurs. 

V. Discussion  

Plusieurs outils de modélisation et de simulation ont été décrits tout le long de ce 

chapitre. Essentiellement deux approches sont utilisées : approche homogène et approche 

hétérogène. L’approche homogène consiste à développer des environnements supportant à la 

fois le modèle continu et le modèle discret. Ce type d’outil permet une simulation rapide mais 

présente plusieurs inconvénients citant :  

� Non utilisation des bibliothèques et des IPs dédiées pour chaque modèle. 

� Limitation au niveau d’abstraction : Il y a un manque d’environnement 

supportant la description dans tous les niveaux d’abstractions conjointement 

avec le modèle continu. 

� Apprendre un nouveau langage. 

En contre partie, la méthode de co-simulation de l’approche hétérogène permet la 

synchronisation entre le simulateur continu et le simulateur discret. Nous proposons d’utiliser 

l’environnement Matlab / Simulink pour la description et la simulation du modèle continu à 

cause de plusieurs avantages : 

� Matlab / Simulink appartient aux langages métiers (Domain Specific Languages) 

(Consel C., 2004). 

� Matlab / Simulink est spécialisés dans les domaines particuliers comme 

l'automatique et les systèmes de contrôle (Chapoutot A, 2008). 

� Le temps de simulation pour le modèle continu est considéré plus rapide que 

l’environnement Ptolemy (SJÖSTEDT C., 2009). 

 L’avantage de cette approche lorsqu’il est liée avec le simulateur Matlab / Simulink, 

réside dans l’utilisation des simulateurs discrets existants, conçu pour tous les niveaux 

d’abstraction ainsi l’utilisation des bibliothèques et IPs standards.  

Dans ce cadre notre environnement propose un modèle de co-simulation continu /discret 

matériel/logiciel multi niveau en ajoutant un émulateur à base d’une architecture cible 
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permettant à la fois d’accélérer la simulation et la modélisation conjointe matériel/logiciel de 

la partie numérique. 

Les stratégies de co-simulation nous permettent donc de simuler et de vérifier des 

systèmes matériels/logiciels avant la mise en place d’une plateforme réelle. Dans ce domaine, 

il y a une grande variété d’approches qui utilisent des différents mécanismes de 

communication pour mettre en œuvre une interface efficace entre les applications logiciels et 

le simulateur matériels. Le besoin est important pour intégrer et synchroniser des simulateurs 

hétérogènes, comme, par exemple, le noyau de simulation du SystemC pour les composants 

matériels et le simulateur de jeu d’instruction (ISS) pour les applications logicielles. 

L’objectif de cette thèse est de surmonter le problème de l’hétérogénéité des systèmes 

continus/discrets tout en fournissant des simulations précises et des temps de simulation assez 

satisfaisants. L’accélération de la simulation est un point clé qui impose la création 

d’interfaces de synchronisation et de communication entre l’environnement de simulation et 

la carte de prototypage sur FPGA. 

VI.  Conclusion 

Nous avons présenté tout le long du premier chapitre les caractéristiques des modèles 

continus, discrets et hétérogène. La simulation de tels systèmes constitue un grand défi pour 

les concepteurs des environnements de CAO. En fait il existe principalement trois axes pour 

la modélisation et la vérification des systèmes continus/discrets. Le premier repose sur 

l’extension des langages afin d’étendre le noyau de simulation pour supporter à la fois le 

modèle continu et le modèle discret. Cet axe souffre des limitations au niveau d’abstraction. 

Le deuxième se base sur des nouveaux langages et environnements ce qui approuve 

l’accélération de la simulation. Malheureusement, ces langages ne supportent pas les 

différents niveaux d’abstractions et demande un temps important pour apprendre les nouveaux 

langages. Notre contribution s’intègre dans le troisième axe basé sur la co-simulation qui 

utilise les simulateurs existants pour chaque modèle et crée des interfaces de synchronisation 

entre-simulateurs. Malgré le temps de simulation plus au moins important, ces outils montrent 

une simulation performante à travers les différents niveaux d’abstractions. La réutilisation des 

IPs ainsi développés facilite la modélisation matériel/logiciel.  Nous adaptons la troisième 

solution grâce aux nombreux avantages offertes par les outils basés sur la co-simulation. Le 

chapitre suivant présente une étude détaillée des techniques de vérifications matériel/logiciel 

ainsi l’approche de simulation/émulation utilisée.  
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Chapitre 2 : METHODOLOGIE DE MODELISATION ET DE 

VERIFICATION DES SYSTEMES MATERIELS /LOGICIELS  

  

I. Introduction  

Vue la complexité des systèmes et le taux d’intégration croissants, la modélisation 

traditionnelle des architectures matérielles/logicielles s’avère une tâche pénible, complexe, 

couteuse et limitée. Cette méthode repose sur une description bas niveau (composant, porte 

logique, transistor et dessin de masque) et séparer entre la partie matérielle et la partie 

logicielle. Cette méthode n’assure pas la vérification matériel/logiciel au cours de 

développement ce qui augmente le taux de rejet des circuits après fabrication.  

La modélisation conjointe représente le fruit de plusieurs travaux de recherche afin de 

supporter les systèmes numériques complexes et les systèmes mono-puces. La conception 

basée sur la stratégie Co-design permet la vérification entre la partie matérielle et la partie 

logicielle conjointement avant la phase de fabrication. Cependant, plusieurs techniques et 

outils de modélisations et de vérifications sont décrits dans la littérature en respectant à la fois 

les langages adéquats (matériels et logiciels) et les niveaux d’abstractions utilisées. Toutes ces 

techniques assurent la communication et la synchronisation entre les applications logicielles et 

les composants matériels. Dans ce contexte, nous proposons quatre modèles de 

synchronisation basés sur un environnement de simulation/émulation afin de diminuer le 

temps de simulation. La synchronisation présente le point clé de la simulation/émulation. Elle 

doit prendre en compte les concepts de temps et d'activation des processus.  

La première partie présente le principe de modélisation des systèmes mono-puces ainsi 

les différentes méthodes de vérification utilisées. Dans la deuxième partie, nous présentons 

l’approche de simulation/émulation en proposant un modèle de synchronisation entre 

simulateur/émulateur et les interfaces de communication matériel/logiciel.  

II.  Modélisation des systèmes mono-puces 

La conception des systèmes en puce se basent sur un flot qui assure un développement 

parallèle des modules matériels et des modules logiciels. Ce flot se décompose en cinq étapes 

comme le montre la figure 7. 
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� Spécification système, on s'intéresse à la fonctionnalité au niveau système, 

indépendamment de l'implémentation finale (étape 1). Durant cette phase, on 

recherche les algorithmes et les représentations de données les mieux adaptés 

aux besoins et aux spécifications. La spécification fonctionnelle obtenue est 

généralement validée par une simulation. 

� Spécification fonctionnelle : C’est l’étape qui suit l’étape précédente. Le but de 

la spécification fonctionnelle est la recherche d’une architecture pour 

implémenter les algorithmes déterminés par la spécification systèmes. Cette 

étape (étape 2) du flot de conception détermine les fonctionnalités qui seront 

implémentées en matériel et celles qui seront logicielles. En général, le principe 

du partitionnement se base sur la règle suivante : « les composants nécessitant 

des performances élevées sont réalisés par des modules matériels alors que les 

composants nécessitant essentiellement de la flexibilité sont implémentés en 

logiciel ». Finalement, cette étape permet l'obtention des spécifications de 

chacun des composants du système. 

� La conception matérielle et logicielle (étape 3) correspond à la conception des 

composants matériels et au développement des logiciels embarqués. Pour cette 

étape, un gain de temps important est obtenu lorsqu’il y a utilisation des 

composants existants. 

� Vérification et intégration : Lorsque tous les composants matériels et logiciels 

développés sont vérifiés chacun à part, la phase d’intégration et de vérification 

(étape 4) assure la communication et le bon déroulement entre les différents 

composants. 

� Validation : Cette phase consiste à vérifier le système complet s’il répond bien 

au cahier de charge et aux fonctionnalités demandées (étape 5). Enfin, une fois 

cette dernière étape de conception est effectuée avec succès, on peut fabriquer le 

produit en grand nombre en passant par la fonderie. 

 A chaque étape de conception, les concepteurs doivent vérifier que les nouveaux composants 

ou les nouveaux détails de réalisation assurent une fonctionnalité correcte. 

Cette vérification s'articule autour de cinq points illustrés par la figure 7 : 

• Vérification de la spécification fonctionnelle. 
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• Vérification de l'architecture du système. 

• Vérification de l'implémentation des composants du système. 

• Vérification de l'intégration des composants. 

• Vérification du système complet dans son environnement de fonctionnement avant la 

mise en fabrication et en production. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Flot de conception d'un système sur puce 

La vérification peut occuper jusqu'à 70% du temps de conception, cette étape représente 

un élément important dans la durée de la conception d'un système. La vérification influence 

beaucoup en termes de temps ainsi qu’au niveau économique. Le coût de cette erreur est 
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estimé à quatre cent millions de dollars (Evans, 2003). En général, plus vite une erreur est 

détectée plus son coût de correction est faible. 

Pour conclure, la vérification est une étape essentielle dans la conception des circuits 

mono-puces. Un des défis actuels consiste à améliorer les techniques de vérification, à 

augmenter la productivité des techniques et à réduire la durée et le coût de la vérification. 

 

III.  Les techniques de vérification 

Lors d’une conception d’un système mono-puce, il existe plusieurs techniques de 

vérification: la vérification formelle, la simulation, la co-émulation, l'émulation à travers le 

prototypage. Chacune de ces techniques possède un modèle différent qui sera détaillé par la 

suite. 

Le principal but de la vérification d'un système mono-puce tout au long du flot de 

conception est de prévoir les erreurs et les scénarios indésirables le plus tôt possible et par 

suite diminuer le temps de mise en marché du produit désiré. Afin de comparer et de mieux 

choisir la technique de vérification, des critères de comparaisons sont présentée. 

Critères de comparaisons : 

Chacune des techniques de vérification est caractérisée par un coût financier, une durée 

de mise en œuvre, une vitesse d'exécution, un niveau d'observabilité, un niveau de 

contrôlabilité et enfin un niveau de répétabilité. 

Le coût financier de la vérification obéit à la règle suivante : « plus une erreur 

matérielle est tardivement détectée, plus son coût de correction est élevé ».  L’importance de 

ce critère se présente dans la manière de maitriser le coût de vérification. L’investissement 

dans les outils de vérification s’avère utile lorsque leur prix est amorti pour une seule erreur 

matérielle détectée avant la fabrication du premier circuit. Cependant, les prix des outils de 

vérification varient dans une large gamme de prix allant de quelques milliers de dollars pour 

une licence perpétuelle (Rizatti L., 2003) au million de dollars pour une licence annuelle 

(Lardière C., 2004).  

La durée de mise en place de la plateforme de vérification est un autre critère 

important. Selon la taille et la complexité du système, le choix de la méthode de la 

vérification est fait. Parfois l’utilisation d’une méthode plus lente est mieux adaptée parce que 

la mise en place de cette méthode est beaucoup plus courte par rapport au temps nécessaire 
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d’une deuxième méthode qui est plus compliquée et qui demande plus de temps malgré la 

rapidité de son temps de fonctionnement. 

La vitesse d'exécution doit être considérée en relation avec la durée de mise en place de 

la plateforme de vérification et la longueur des séquences de test. Dans le cas de vérification 

temps réel avec des composants externes, la vitesse peut devenir une contrainte imposant une 

solution. 

L'observabilité, la contrôlabilité et la répétabilité sont des critères liés à la puissance 

du débogage matériel, c'est à dire l'efficacité de la technique pour la détection des erreurs 

matérielles. 

L'observabilité est la capacité d'observer les interactions des différents composants du 

système. 

La contrôlabilité  est la capacité de suspendre l'exécution du modèle, de modifier les 

valeurs de certains paramètres au cours de l'exécution.  

La répétabilité est le fait de reproduire un scénario de test avec un niveau de précision 

donné.  

Selon les paramètres déjà cités, il n'est pas facile de choisir la méthode la plus adaptée 

au problème considéré. Il convient donc de présenter les différentes techniques de vérification 

existantes en soulignant les avantages et les inconvénients de chaque technique. 

III.1. Vérification formelle 

La vérification formelle consiste à prouver mathématiquement qu'une description de 

circuit possède certaines propriétés. La vérification formelle se manifeste dans le débogage de 

la spécification qui vérifie si tous les besoins sont bien inclus et se manifeste aussi dans la 

vérification de l'implémentation qui vérifie si la spécification est bien implémentée. Cette 

technique est peu utilisée dans la conception des systèmes monopuces et possède plusieurs 

points faibles. Les principaux obstacles sont : 

• La complexité du processus de vérification est très grande, ce qui limite l’utilisation 

aux simples applications. 

• Cette technique demande une grande interaction entre concepteurs. Seuls des 

spécialistes peuvent utiliser cette technique. 
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• Cette technique n’est pas conçue pour les systèmes matériel/logiciel. En fait, la 

vérification formelle ne supporte pas le traitement d’un système synchrone parallèle (matériel) 

et le traitement d’un système asynchrone séquentiel (logiciel) à la fois. En fait, le système 

synchrone est basé sur le principe de simultanéité alors que le système asynchrone est basé sur 

le principe de l’entrelacement ce qui explique bien la différence de formalisme entre une 

architecture matérielle et les applications logicielles. 

Cette technique peut se révéler très efficace pour le modèle formel qui incorpore de 

nombreux paramètres. De plus, elle est très souple, très flexible puisque les modèles sont 

construits à la main mais ceci est un inconvénient car la construction des modèles est un 

travail difficile, fastidieux et coûteux en temps. 

Dans l'industrie, cette technique est couramment utilisée au niveau composant pour 

vérifier que la «netlist» obtenue après la synthèse assure bien la même fonctionnalité que celle 

décrite dans les fichiers VHDL/Verilog. 

 

III.2. Simulation  

La simulation se base sur l'utilisation d'un modèle comportemental du système en cours 

de développement. Un système possède plusieurs modèles selon les différents niveaux 

d'abstraction. Plus la description est à bas niveau d’abstraction plus le modèle  est précis, plus 

les calculs pour la simulation sont nombreux et par conséquent, plus l'exécution est lente. 

Cette technique de vérification est la technique la plus utilisée dans les conceptions des 

circuits numériques mono-puces grâce à sa flexibilité. Elle est utilisée à six différents niveaux 

d'abstraction. 

Le niveau spécification fonctionnelle modélise le comportement global du système. Le 

but de la simulation dans ce niveau d’abstraction est la vérification fonctionnelle. Puisque le 

niveau d’abstraction utilisé est le plus haut alors la simulation est très rapide.  

Le niveau architectural modélise le système comme étant un ensemble de modules qui 

se communiquent entre eux. A ce niveau, les différentes tâches du système sont définies à des 

sous-systèmes. Chaque sous-système est modélisé au niveau fonctionnel. Ce niveau est appelé 

aussi niveau transactionnelle qui s’intéresse aux interactions de type transaction entre les 

sous-systèmes. Ce type de simulation est utile pour l'exploration d'architecture et le 

développement des parties logicielles du système. L’outil Vista (Mentor, 2012) représente un 
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outil puissant de vérification matériel/logiciel au niveau architectural en adoptant le niveau 

TLM 2.0. 

Le niveau micro-architecture diffère de ce qui précède au niveau type d’interaction 

entre les sous-systèmes. Les liaisons mis en discussion sont des signaux. La précision du 

modèle est donc au cycle d'horloge prêt au niveau de la communication entre les sous-

systèmes. Ce niveau de modélisation permet la réalisation des premières mesures de 

performances et le développement des pilotes de bas niveau (des logiciels embarqués). 

Le niveau RTL modélise un circuit comme un ensemble de registres et de relations 

logiques entre eux. Ce modèle est à bas niveau d'abstraction, le système entier est simulé au 

cycle d'horloge prêt. Ce niveau est particulièrement utilisé pour la mise au point des sous-

ensembles matériels qui composent le système. Il existe plusieurs outils comme ModelSim et 

Questa (Mentor, 2012). 

Le niveau porte logique décrit le système complet comme un assemblage de portes 

logiques. Dans la plupart des cas, ce niveau est obtenu via des outils permettant le passage du 

niveau RTL vers le niveau porte logique.  

Le niveau analogique est le plus bas niveau d'abstraction utilisé en simulation. A ce 

niveau, existent des outils d'extraction de paramètres électriques à partir du plan de masse, 

citant l’outil SPICE (SPICE, 2012). On travaille ici avec des modèles précis de transistors, 

dépendants de la technologie utilisée (Rizatti L., 2003). 

Il existe plusieurs méthodes dans la littérature pour simuler et vérifier les modules 

logiciels. La plupart des travaux se basent sur une simulation à base d’ISS (Instruction Set 

Simulator) ou bien sur une exécution natives sans ou encore avec prise en compte du système 

d’exploitation. 

Un "Instruction Set Simulator" (ISS) est un simulateur de jeu d’instructions qui permet 

de simuler le logiciel à un bas niveau. C’est une simulation qui exécute le logiciel au niveau 

instruction assembleur. Ce type de simulation est le plus précis et le plus flexible, mais ces 

simulations logicielles sont lentes. De plus, pour effectuer ce type de simulation, il faut être 

déjà avancé dans le flot de conception car il fait usage de détails précis (comme le jeu 

d’instructions) sur le matériel simulé et d’un compilateur permettant de compiler le code pour 

le processeur cible. 

Exécution native sans système d’exploitation : La simulation native permet de 

simuler le comportement d’un processeur. Elle utilise à la fois les codes sources des 
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programmes embarqués qu’elle doit exécuter, et certaines spécifications fonctionnelles du 

processeur, tels que les ports, les interruptions et leur gestion, contenues dans un composant 

spécifique. Elle permet une simulation très rapide. Les inconvénients sont l’absence de 

précision sur les mesures de performance, l’obligation d’avoir l’ensemble des codes sources 

en langage de haut niveau et la synchronisation de haut niveau. Afin de prendre en compte le 

système d’exploitation, une exécution native avec OS est présentée dans le paragraphe 

suivant. 

Exécution native avec systèmes d’exploitation : La simulation native avec système 

d’exploitation permet une exécution multitâche. Afin que la simulation soit proche de la 

réalité, l’exécution native communique avec un Ordonnanceur assurant une gestion entre les 

tâches et leurs priorités. 

Pour conclure, la simulation présente un outil très puissant vu son efficacité, sa 

souplesse, sa grande flexibilité, observabilité, contrôlabilité et son temps de mise en œuvre 

souvent court. La simulation trouve ses limites lorsqu'il faut simuler de longues séquences de 

tests à un bas niveau d'abstraction (Rizatti L., 2003). 

La vitesse de simulation des systèmes compliqués ne dépassera pas quelques dizaines de 

cycles par secondes. Lorsque le simulateur doit simuler des centaines de millions de cycles, le 

temps de simulation devient un grand problème. Pour surmonter cette limitation, des 

techniques d’émulation et de prototypage matériel sont utilisées.  

 

III.3. Emulation et prototypage matériel 

Cette technique repose sur des plateformes spécifiques et reconfigurables, capables de 

reproduire le comportement physique d'un circuit avec une précision au niveau du cycle 

d'horloge. Ces plateformes sont basées sur l'utilisation d’une architecture permettant une  

reconfigurabilité, à savoir des FPGAs (Rizatti L., 2003), des réseaux de processeurs 

spécialisés (Lardière C., 2004), ou des FPGAs modifiés et adaptés aux besoins de l'émulation 

comme la famille Veloce de Mentor Graphics (Mentor, 2012). L’avantage des plateformes 

d’émulations et de prototypages est la grande vitesse d’exécution. 

En fait, la différence entre l’émulation et le prototypage se manifeste au niveau de la 

capacité de débogages.  
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Les émulateurs sont conçus pour réaliser un débogage matériel rapide et efficace

8). Elles ont des flots de mise en œuvre assez rapides

part, les émulateurs offrent une très grande observabilité, proche de celle des simulateurs 

HDL (tous les signaux). L’émulateur 

vitesse d'exécution est bien plus rapide et pe

émulateurs sont très coûteux, de l'ordre d

(Rizatti L., 2003). 

Les plateformes de prototypage sont

composants sont reconfigurables et simples à utiliser. De plus, ils sont très répandus et donc 

coûtent nettement moins cher que les composants spécifiqu

de prototypage sont donc plus abordables que les émulateurs et offrent une excellente vitesse 

d'exécution, souvent supérieure à celle des émulateurs

mieux observer les registres du 

partitionnement d'un circuit entre les différents FPGAs de la plateforme n'est pas aisé et 

engendre des temps de mise en œuvre assez longs, pouvant atteindre plusieurs mois

1998). 

 

I

La co-simulation est une technique qui se base sur plusieurs simulateurs

9.b, une architecture Matériel/Logiciel est divisée en module dans chacun sera simulé par 

simulateur adéquat. Prenons comme exemple une architecture qui est décrite en VHDL, 

SystemC et en C. Dans ce cas, les modules décrits en VHDL seront simulés par 

HDL, les modules décrits en SystemC seront simulés par le simulateur SystemC et les 

modules logiciels seront simulés par C/C++ simulateur.

mulation / Emulation des systèmes Continus / Discrets                               

-44- 

Les émulateurs sont conçus pour réaliser un débogage matériel rapide et efficace

Elles ont des flots de mise en œuvre assez rapides, de l'ordre de quelques heures

part, les émulateurs offrent une très grande observabilité, proche de celle des simulateurs 

émulateur a le même principe qu'un simulateur H

vitesse d'exécution est bien plus rapide et peut atteindre quelques mégahertz

, de l'ordre d’un million de dollars pour une licence annuelle 

Figure 8. Principe d’émulation 

Les plateformes de prototypage sont des solutions basées sur des cartes 

composants sont reconfigurables et simples à utiliser. De plus, ils sont très répandus et donc 

coûtent nettement moins cher que les composants spécifiques des émulateurs. Les plateformes 

de prototypage sont donc plus abordables que les émulateurs et offrent une excellente vitesse 

périeure à celle des émulateurs. Les meilleures solutions permettent, à 

observer les registres du circuit sur une courte fenêtre temporelle. D'autre part, le 

partitionnement d'un circuit entre les différents FPGAs de la plateforme n'est pas aisé et 

engendre des temps de mise en œuvre assez longs, pouvant atteindre plusieurs mois

I II.4. Co-émulation et co-simulation 

simulation est une technique qui se base sur plusieurs simulateurs

b, une architecture Matériel/Logiciel est divisée en module dans chacun sera simulé par 

Prenons comme exemple une architecture qui est décrite en VHDL, 

SystemC et en C. Dans ce cas, les modules décrits en VHDL seront simulés par 

HDL, les modules décrits en SystemC seront simulés par le simulateur SystemC et les 

s seront simulés par C/C++ simulateur. En fait, cette méthode offre une 
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Les émulateurs sont conçus pour réaliser un débogage matériel rapide et efficace (figure 

, de l'ordre de quelques heures. D'autre 

part, les émulateurs offrent une très grande observabilité, proche de celle des simulateurs 

qu'un simulateur HDL sauf que sa 

ut atteindre quelques mégahertz. Ainsi, les 

ur une licence annuelle 

 

des cartes FPGAs. Ces 

composants sont reconfigurables et simples à utiliser. De plus, ils sont très répandus et donc 

es des émulateurs. Les plateformes 

de prototypage sont donc plus abordables que les émulateurs et offrent une excellente vitesse 

lleures solutions permettent, à 

circuit sur une courte fenêtre temporelle. D'autre part, le 

partitionnement d'un circuit entre les différents FPGAs de la plateforme n'est pas aisé et 

engendre des temps de mise en œuvre assez longs, pouvant atteindre plusieurs mois (Abid M., 

simulation est une technique qui se base sur plusieurs simulateurs. Dans la figure 

b, une architecture Matériel/Logiciel est divisée en module dans chacun sera simulé par le 

Prenons comme exemple une architecture qui est décrite en VHDL, 

SystemC et en C. Dans ce cas, les modules décrits en VHDL seront simulés par le simulateur 

HDL, les modules décrits en SystemC seront simulés par le simulateur SystemC et les 

En fait, cette méthode offre une 
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grande flexibilité au niveau modélisation et vérification mais elle consomme beaucoup plus 

de temps de simulation. La co

un même niveau d’abstraction, alors que la conception multi

outils de co-simulation. (Hassairi W., 2012) présente un environnement de co

sur l’intégration du SystemC dans Matlab / Simulink.

possibilité de la modélisation 

assuré par SystemC et les parties logiciels sont décrit par Simulink.

La co-émulation combine l'émulation/prototypage et la simulation. Il 

technique couramment utilisée et caractérisée par des performances en vitesse souvent faibles

mais plus rapide que les environnements de co

d'émuler/prototyper les parties du circuit dont la desc

moins haut niveau d'abstraction.

(dans notre figure ce sont des cartes FPGAs) dont chacun un composant matériel est en 

interaction avec les autres composants matériels

par d’autres simulateurs. Pour cela, la plateforme d'émulation/prototypage retenue doit être 

capable de travailler conjointement avec un simulateur.

a) Principe de co-émulation

Figure 9. 

Cette technique permet de bénéficier des vitesses des émulateurs et 

prototypage. En outre, recourir à la co

concernant le banc de tests. Celui

d'abstraction, implémenté en C, C++ ou SystemC, ce qui est plus simple et plus rapide. 

Cependant, l'environnement logiciel ne peut 

l'environnement matériel donc, avec ce type d'émulation, les émulateurs/plateformes de 
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grande flexibilité au niveau modélisation et vérification mais elle consomme beaucoup plus 

La co-simulation est mieux exploitable lorsque la conception est dans

un même niveau d’abstraction, alors que la conception multi-niveau présente un défi pour les 

Hassairi W., 2012) présente un environnement de co

sur l’intégration du SystemC dans Matlab / Simulink. L'avantage de ce

possibilité de la modélisation multi-niveau. En fait, la conception matériel et multi

assuré par SystemC et les parties logiciels sont décrit par Simulink. 

émulation combine l'émulation/prototypage et la simulation. Il 

technique couramment utilisée et caractérisée par des performances en vitesse souvent faibles

mais plus rapide que les environnements de co-simulation. Le concept de base est 

d'émuler/prototyper les parties du circuit dont la description est déjà simulée

moins haut niveau d'abstraction. La co-émulation (figure 9.a) se base sur plusieurs émulateurs 

(dans notre figure ce sont des cartes FPGAs) dont chacun un composant matériel est en 

interaction avec les autres composants matériels émulés dans d’autres FPGAs

Pour cela, la plateforme d'émulation/prototypage retenue doit être 

capable de travailler conjointement avec un simulateur. 

 

émulation    b) Principe de co

. Méthode de co-simulation et co-émulation 

Cette technique permet de bénéficier des vitesses des émulateurs et 

prototypage. En outre, recourir à la co-émulation offre également plusieurs avantages 

ant le banc de tests. Celui-ci peut en effet être décrit à un assez haut niveau 

d'abstraction, implémenté en C, C++ ou SystemC, ce qui est plus simple et plus rapide. 
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prototypage fonctionnent à vitesse réduite. La vitesse globale du test va alors dépendre de 

plusieurs paramètres : 

• Vitesse d'exécution des environnements logiciel et matériel. 

• Qualité de l'interface de communication. 

• Nombre des points de synchronisation entre les deux environnements. 

Le mécanisme de l’interface de communication et de la synchronisation présente le 

point clé pour chaque environnement de co-émulation. Certaines solutions fonctionnent en 

mode dit «ping pong» : c'est-à-dire lorsqu'un simulateur ou bien un émulateur est en 

exécution, l'autre est en repos. Ce mode permet une simple implémentation du modèle de 

synchronisation et offre une grande répétabilité des résultats mais malheureusement il fournit 

une accélération minime. D'autres solutions, au contraire, font fonctionner les deux 

environnements logiciel et matériel en parallèle, chaque environnement travaillant à son 

rythme, le plus rapide attendant parfois le plus lent. Cette solution est beaucoup plus rapide 

que la précédente. L’inconvénient majeur se présente non seulement au niveau de difficulté 

des règles définissant la synchronisation mais aussi pose des problèmes de répétabilité.  

Enfin, le nombre des points de synchronisations entre les deux environnements impacte 

sur les performances, surtout lorsque la co-émulation fonctionne en «ping pong». Plus les 

points de synchronisation sont élevés, plus la plateforme est lente. Ce nombre des points de 

synchronisations varie en fonction des types de co-émulation qui vont être présentés ensuite. 

III.4.1. Co-émulation en mode vecteurs de test 

Le principe de ce mode se base sur la vérification du circuit entier avec émulation. Ce 

type de co-émulation est le plus simple de point de vue de l'environnement logiciel. A chaque 

cycle d'horloge, on applique un vecteur d'entrée (vecteur de test) sur les ports entrant du 

circuit et on compare les valeurs des ports de sorties avec le vecteur de sortie prédéterminé 

(figure 10). 

 

 

 

 

Figure 10. Principe de Co-émulation en mode vecteurs de test 
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III.4.2. Co-émulation avec synchronisation cycle à cycle 

Dans une co-émulation avec synchronisation cycle à cycle, l’environnement logiciel 

représente le maître et génère les horloges du circuit émulé. L’implémentation de ce type de 

co-émulation est très simple. Le problème réside dans le nombre d'interaction entre 

l’environnement logiciel et matériel qui est important, ce qui provoque un ralentissement au 

niveau de la vitesse de simulation. Les facteurs limitant sont principalement, le nombre des 

points de synchronisation, le nombre des signaux d'entrée/sortie, la bande passante de 

l'infrastructure de communication et la charge de calcul de la partie simulée. Malgré le 

problème de synchronisation à chaque cycle d’horloge, cette méthode est utilisée surtout pour 

tester les composants matériels. 

III.4.3. Co-émulation avec synchronisation clairsemée 

Afin de surmonter le problème de synchronisation à chaque cycle d’horloge, une étude 

détaillée montre qu’il existe plusieurs points de synchronisation inutiles. Ces points sont 

marqués par l’invariance des signaux d’entrée/sortie. Une co-émulation clairsemée vise à 

réduire ces communications superflues. Pour cela, les horloges du circuit ne sont plus gérées 

par l'environnement logiciel mais par l'émulateur. Des signaux de contrôle servent alors à 

synchroniser l’émulateur et le simulateur. L’implémentation de cette méthode n'est pas très 

facile et demande certaines conditions pour être réalisable. L’étape importante et difficile 

consiste à définir les instants de synchronisation utile.  

III.4.4. Accélération 

On parle d'accélération lorsque le circuit et le banc de test sont décrits en langage 

matériel (VHDL et/ou Verilog) et qu'une partie du code est synthétisable alors que l'autre est 

non synthétisable et sera simulé à l'aide d'un simulateur HDL. Dans la figure 11, le banc de 

test, Module 0 et Module 1 seront simulés par un simulateur matériel alors que Module 2 sera 

prototypé sur FPGA afin d’accélérer la simulation.  En pratique, l'accélération est une 

technique de vérification au niveau composant, comme la co-émulation à synchronisation 

cycle à cycle. Seuls les émulateurs supportent cette technique. 

La principale limitation de la co-émulation à synchronisation cycle à cycle 

précédemment présentée réside dans le nombre élevé des points de synchronisations entre 

l’environnement logiciel et l’environnement matériel. La co-émulation clairsemée cherche à 

réduire cet impact mais, la gestion des signaux échangés est souvent très complexe. L'idée de 

base de la co-émulation transactionnelle est de réduire ce nombre de synchronisations au 
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d’une communication à base des signaux à une communication qui permet l’échange des 

données (lire/écrire) sous forme des vale
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et ceci en faisant une abstraction de la communication

d’une communication à base des signaux à une communication qui permet l’échange des 

données (lire/écrire) sous forme des valeurs algébriques. Ce type de communication est appelé 

communication à base des transactions.  

Figure 11. Simulation par accélération 
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de la méthode d’accélération. L'émulateur ou la plateforme de prototypage fonctionne d’une 

manière complètement autonome ce qui rend le fonctionnement en pleine vitesse. Cette 

technique est donc particulièrement bien indiquée pour les vérifications nécessitant de longues 

séquences de test à savoir la vérification au niveau système. Cette technique est également 

bien adaptée pour la mise au point des logiciels embarqués. La principale difficulté de cette 

technique d'émulation réside dans le développement du banc de test synthétisable. Cela 

représente une grosse charge de travail car il faut développer un composant matériel de test 

spécifique et le valider. 

III.4.7. Emulation avec dépendances extérieures 

Une émulation avec dépendances extérieures consiste en un émulateur connecté à un 

environnement physique extérieur et le circuit fonctionne alors en temps réel. Ce mode est 

utilisé avec des plateformes de prototypage pour développer essentiellement des logiciels 

embarqués ou  pour développer des logiciels associés au circuit (drivers). 

Dans cette section, de différentes méthodes de vérification ont été citées. La méthode la 

plus adéquate pour tel environnement et pour tel système continu/discret se base sur une co-

simulation accélérée par un accélérateur matériel réel. La section suivante présentera notre 

approche de vérification adaptée. 

IV.  Approche de simulation/émulation matériel/logiciel 

Nous avons montré dans le chapitre 1, que les modèles de co-simulation souffrent 

encore du temps de simulation important. En effet, l’environnement CODIS donne un temps 

de simulation assez important car il utilise un ISS pour simuler les parties logicielles. Notre 

approche propose le remplacement de l’ISS par une architecture à base d’un processeur cible 

implanté sur une carte FPGA. Il est indéniable qu’une simulation sur un processeur réal est 

énormément plus rapide  qu’un ISS et de l’ordre de quelques nano secondes. Les travaux 

antérieurs utilisent le simulateur pour simuler les modules logiciels et l’émulateur pour 

simuler les composants matériels. Deux points faibles suivent ces travaux. La première se 

manifeste au niveau temps de modélisation important des composants matériels au niveau 

RTL. La deuxième consiste au temps de simulation important des modules logiciels. 

Afin d’étendre l’environnement CODIS et d’accélérer la simulation, nous proposons 

tout d’abord une modélisation au niveau transactionnelle des composants matériels en 
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utilisant SystemC. Ensuite, une simulation des modules logiciels sur l’architecture cible est 

adoptée. La figure 12 résume l’approche de simulation/émulation choisie.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Approche de simulation/émulation 

On peut résumer les avantages de notre environnement essentiellement en trois points : 

� Le remplacement d’un ISS par le processeur cible accélère le temps 

d’exécution des applications logicielles. Dans notre cas la simulation est basée 

sur une architecture à base d’un processeur cible hard-processor implanté sur 

FPGA. 

� Les composants matériels sont modélisés et simulés avec SystemC, ce 

qui diminue le temps de mise en marché et assure la modélisation suivant 

plusieurs niveaux d’abstractions. 

� Les modèles de synchronisation entre le simulateur SystemC et 

l’émulateur sont adaptés au modèle de co-simulation de l’environnement 

CODIS. 

La section suivante présente le moteur de la simulation/émulation. 
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V. Moteur de simulation / émulation 

La conception d’un moteur de simulation / émulation constitue un point clé pour chaque 

environnement de co-vérification. Le principal rôle de ce moteur est d’assurer à la fois la 

communication et la synchronisation entre le simulateur SystemC et l’émulateur à base d’une 

architecture cible implantée sur une carte FPGA.  

 

 

 

 
 
 
 

 
 
 
 
 
 
 
 

Figure 13. Architecture du moteur de simulation / émulation 

L'architecture du modèle de co-simulation est illustrée par la figure 13. Le moteur de 

simulation/émulation supporte une couche de synchronisation et une couche de 

communication. 

• La couche de communication est chargée de transférer les données entre les 

deux modèles, les conversions nécessaires des signaux et le changement de 

contexte. 

• La couche de synchronisation assure à la fois le contrôle et l’exécution du 

simulateur/émulateur à des instants précis. 

Des modèles de  synchronisation sont utilisés pour exécuter le simulateur et l’émulateur 

matériel/logiciel avec respect du temps d’échange de donnée. 

Principalement trois difficultés ont été étudiées : 

1. La détection de la fin d’un événement par l’émulateur. 

2. La détection des interruptions par l’émulateur. 
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3. Le principe de changement de contexte qui permet le passage du simulateur vers 

l’émulateur et vice versa. 

Par la suite, nous présentons une description détaillée de la couche communication et de 

la couche synchronisation. 

V.1. Communication 

Le principal objectif de la communication est l’échange sans perte de données. Dans la 

littérature, deux modes de communication (série et PCI) entre simulateur/émulateur sont 

utilisés (Soha H., 2005). Afin d’accélérer le temps de simulation qui est notre premier 

objectif, une communication Universel Serial Bus (USB) est utilisée. Le tableau 2 montre les 

différences de vitesse de transfert entre les différentes modes de communication. 

 Série PCIe USB 1.0 USB 2.0 

Vitesse 0.11 Mo/s 250 Mo/s 12Mo/s 480 Mo/s 

Tableau 2: Vitesse de transfert 

Nous proposons une communication à base d’USB 2.0 entre un ordinateur et une carte 

FPGA grâce à deux avantages : (1) vitesse de transfert important (2) supporte le mode 

interruption qui engendre une interruption matériel sur la carte. Pour cela, un pilote composé 

d’une partie logicielle et une partie matérielle doit être développé. La figure 14 présente 

l’architecture matériel/logiciel utilisée pour la communication. Il faut noter que le contrôleur 

USB ne représente pas un composant de l’architecture cible. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Modèle de communication 
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Le pilote du côté logiciel se base sur le Windows Driver Kit (WDK) Version 7.1. Ce 

Kit offre les éléments de base pour la création des pilotes sous le système d’exploitation 

Windows. Nous avons développé une bibliothèque qui contient essentiellement deux 

fonctions Ecrire( ) et Lire( ) pour l’échange de donnée. Ces deux fonctions utilisent quatre 

fonctions de la bibliothèque Win32 :  

• CreateFile: permet la connexion avec le contrôleur USB ISP1362. 

• WriteFile: permet le transfert de données vers le contrôleur USB ISP1362. 

•  ReadFile: permet la réception des données de la part du contrôleur USB ISP1362. 

• ControlIODevice: permet la configuration du pilote. 

� Coté matériel : 

Le côté matériel se base sur le contrôleur USB ISP1362 (ISP1362, 2002) en interaction 

avec le processeur cible. Le rôle du contrôleur USB est d’assurer les fonctionnalités suivantes : 

� La fonction Host Controller (HC) est basée sur un transfert avancé et 

atteint une vitesse de transfert élevé avec une faible intervention du processeur.   

� La fonction On-The-Go (OTG) est adoptée lorsque la liaison USB ne 

demande pas l’intervention du processeur. 

� La fonction Device Controller (DC) assure principalement le transfert de 

donnée et laisse le rôle du contrôle au processeur.  

Dans notre cas, nous avons utilisé la fonction DC pour que le processeur cible gère le 

modèle de communication au lieu du contrôleur USB.  

Une interruption est signalée au processeur par un signal électrique sur la borne INT0. 

Lors de la réception de ce signal, le processeur traite l'interruption dès la fin de l'instruction 

qu'il était en train d'exécuter. Le traitement de l'interruption consiste soit à : 

• Ignorer et passer normalement à l'instruction suivante : c'est possible uniquement 

   pour certaines    interruptions, nommées interruptions masquables.  Il  est  en  effet 

 parfois  nécessaire  de  pouvoir  ignorer  les interruptions pendant un certains temps, 

pour effectuer des traitements très urgents  par  exemple.  Lorsque  le  traitement  est 

 terminé,  le  processeur démasque les interruptions et les prend alors en compte. 
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• Exécuter un  traitant d'interruption  (interrupt handler). Un traitant d'interruption  est 

 un  programme  qui  est  appelé  automatiquement lorsqu'une interruption survient. 

L'adresse de début du traitant est donnée  par  la  table  des vecteurs  d'interruptions. 

Lorsque le programme d'interruption traitant a effectué son travail, il exécute 

l'instruction spéciale IRET qui permet de reprendre l'exécution à l'endroit où elle avait 

été interrompue. Un ordonnanceur est mis en place pour gérer le traitant 

d’interruption. 

La communication ainsi décrite représente un cadre solide pour le modèle de 

synchronisation présenté dans la section suivante. 

V.2. Modèle de synchronisation 

Vu l’importance du modèle de synchronisation et son interaction avec le noyau de 

SystemC, une description de l’environnement SystemC est présentée. Nous proposons par la 

suite dans une première partie les différents modèles de synchronisation possible entre le 

simulateur SystemC et l’émulateur. Dans la deuxième partie, une étude sur les interfaces 

matérielles / logicielles  et les scénarios de synchronisation sont décrits.  

SystemC 

SystemC est un simulateur à noyau libre qui décrit toute une bibliothèque contenant des 

composants matériaux. Son langage est une extension par classes du langage orienté objet 

C++ pour la description des systèmes numériques. SystemC offre la possibilité de la 

description au niveau RTL comme il la permet au niveau système (SystemC 2.0 et les 

versions ultérieures) pour les systèmes implémentés en logiciel, matériel ou une combinaison 

des deux. Un modèle décrit en SystemC est compilé, exécuté et débogué en utilisant les outils 

standards de programmation C++. SystemC diffère aux autres langages de descriptions 

matérielles comme VHDL et Verilog par la possibilité de supporter plus qu’un niveau de 

description. SystemC permet de fournir encore une spécification du système à des niveaux 

d'abstraction élevés et avec une meilleure vitesse de simulation. Malheureusement, SystemC 

ne peut décrire que des systèmes discrets, cependant il ne supporte pas la description des 

systèmes continus. 

SystemC 2.0 et les versions ultérieures combinent les caractéristiques des langages 

matériels existants, la technique d'orienté objet et de nouvelles méthodologies pour la 

conception et le raffinement des systèmes matériels/logiciels. Sa méthodologie est inspirée du 

modèle de communication introduit par Gajski (Gajski D.D., 2000). Dans cette méthodologie 
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le modèle est composé par des modules et la communication entre eux est assurée par des 

canaux. Un module est constitué par des méthodes et des interfaces. Les méthodes utilisées 

pour la communication sont définies dans les interfaces des modules. Leur implémentation est 

effectuée au niveau de ces canaux. Un module peut appeler une méthode fournie par un canal 

et des événements dans le canal peuvent activer les processus du module connecté à ce canal. 

Ce concept est assez générique pour décrire des systèmes en utilisant plusieurs domaines de 

description comme les réseaux de Khan, les processus séquentiels communicants, les flux de 

données multi-cadencés, les événements discrets, etc. Chaque module contient les processus 

décrivant le comportement du système. La connexion entre les différents modules est 

effectuée au niveau de la fonction sc_main () qui représente l’entête du modèle. Aujourd'hui, 

plusieurs outils de conception, supportant SystemC aux différents niveaux d'abstraction, sont 

disponibles sur le marché. SystemC-RTL est synthétisable et un flot de conception partant du 

niveau spécification au niveau circuit est aujourd'hui disponible. 

Le simulateur de SystemC est à base d’un ordonnanceur à événements discrets. Dans 

SystemC, un cycle delta comporte deux phases à savoir : phase d'évaluation pour l'exécution 

des processus et phase de mise à jour pour la mise à jour des signaux modifiés pendant 

l'évaluation des processus, ce qui garantit l’aspect parallèle des processus (Salem A, 2003). Le 

principal rôle de l’ordonnanceur est de déterminer l'ordre d'exécution des processus en 

considérant leurs listes de sensibilité et les événements dans sa file d'attente. Ainsi, le premier 

élément dans cette file représente le prochain événement à déclencher. Les événements sont 

classés en deux types : événements différés par une durée de temps et événements différés par 

un delta. Le temps d'occurrence du premier type d'événements représente le prochain temps 

réel alors que le temps d'occurrence du deuxième type d'événements est constitué de deux 

composants: le temps courant réel et le nombre de cycles delta; la file d'attente est ordonnée 

selon ces deux composants. 

V.2.1. Les modèles de synchronisation simulateur/émulateur 

Nous précisons tout d’abord que le simulateur SystemC est le maître de 

l’environnement de la vérification. Le modèle de synchronisation peut être décrit dans 

différents niveaux d’abstraction. Dans le niveau RTL le simulateur et l’émulateur sont 

connectés via des signaux ce qui augmente le nombre des points de synchronisation, figure 15 

a).  

En contre partie, le niveau transactionnel (TLM) est adopté pour les premières phases de 

description des systèmes car il assure l’abstraction de la partie communication ce qui réduit le 
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nombre des points de synchronisation. Le niveau TLM repose sur la notion de bus de 

synchronisation comme l’indique la figure 15 b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Bus de simulation/émulation 

 

Le bus de la simulation/émulation implémente les caractéristiques du bus en relation avec le 

processeur cible et assure des transactions de deux types d’interruptions comme l’indique la 

figure 16. 

Les fonctions Lire() et Ecrire() définissent les fonctions élémentaires des paquets utilisés 

dans le bus de simulation/émulation. Deux types de paquets sont construits afin d’assurer le 

bon fonctionnement des modèles de synchronisation : paquet d’interruption et paquet de 

donnée (figure 16). Le paquet d’interruption contient un en-tête qui définit le type du paquet et 

un corps composé du numéro de routine à exécuter et le temps éventuel de la fin de la tâche. 

Le paquet de donnée contient aussi un en-tête qui définit à la fois le type du paquet, la taille de 

donnée et un corps qui enveloppe les données à transférer. 
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Figure 16. Forme de synchronisation 

Quatre  schémas de synchronisation possibles sont réalisés entre le simulateur et 

l’émulateur : 

� Schéma 1: L’application logicielle reçoit périodiquement les données de la 

tâche matérielle.  

Le modèle de synchronisation est basé sur les mémoires de type FIFO. L’idée de ce 

modèle consiste à fixer une période de synchronisation (Tsync) entre le simulateur (SystemC) et 

l’émulateur (architecture cible) (figure 17) imposé par le simulateur. Dans ce cas, le processeur 

cible suit le rythme du simulateur. Une période de synchronisation est le temps qui sépare deux 

points de synchronisations successifs. La période de synchronisation doit être fixée supérieure 

aux temps d’exécution du tâche logicielle la plus longue. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Modèle de synchronisation: schéma 1 
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� Schéma 2: L’application logicielle est en attente de la fin de la tâche matérielle. 

Lorsque les composants matériels sont simulés en SystemC, les applications logicielles 

sont en attente. Une interruption est envoyée pour indiquer la fin de la tâche lorsque le 

simulateur termine les siennes. A cet instant l’émulateur commence à exécuter la routine 

correspondante (figure 18) et la tâche matérielle entre en repos pour le prochain point de 

synchronisation. 

 

 

 

 

 

 

 

Figure 18. Modèle de synchronisation: schéma 2 

� Schéma 3: L’application logicielle reçoit une interruption avant la terminaison 

de la tâche matérielle. 

Dans ce modèle (figure 19) l’application logicielle peut s’exécuter plutôt qu’elle reste en 

attente lorsque la simulation des composants matériels est en cours. En effet, ce parallélisme 

est assuré par le mode d’interruption matérielle de la liaison USB. L’ordonnanceur de 

l’architecture cible envoie une interruption déclenchant (flèche 0) vers la tâche matérielle pour 

commencer la simulation. A la fin de la simulation de la tâche 1 (flèche 1), le simulateur 

SystemC envoi une interruption (flèche 2) afin d’informer l’application logicielle du prochain 

éventuel instant de synchronisation.  

Eventuellement, cet instant qui correspond à la fin de la tâche hardware est envoyé en 

utilisant la fonction wait_for_interrupt(sc_time t) (figure 20). A cet instant l’ordonnanceur 

active un temporisateur et exécute une tâche intermédiaire (flèche 3). Lorsque le temps est 

atteint, la tâche intermédiaire s’arrête. L’ordonnanceur envoie une demande de donnée pour 

recevoir le paquet de donnée et activer la tâche 2 (mentionné par le paquet). La figure 21 

montre un modèle de code de synchronisation.  
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Figure 19. Modèle de synchronisation: schéma 3 

 

 

 

 

Figure 20. Code de la fonction attente d’une interruption 
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Figure 21. Modèle du code de synchronisation 

� Schéma 4: L’application logicielle reçoit les données au hasard  

Dans ce cas (figure 22), le SystemC exécute la tâche 1 et lorsque ce dernier est fini, un 

paquet de donnée est envoyé vers l’application logicielle. Lorsque la tâche 2 est en exécution, 
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void wait_for_interrupt(sc_time t)   

{  

wait(t); 

send_interruption_packet(…..) ;  

} 

 

/* Task1 code */  

Instructions 

…. 

…. 

Wait_for_interrupt (t); 

Switch_context();/* switch context to SC*/ 
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le SystemC exécute la fonction Hardware_Input_Interface. Cette fonction qui modélise les 

interfaces d’entrée du composant matériel, s’exécute sans avancer le temps local du SystemC. 

Hardware_Input_Interface peut générer une interruption au hasard pour informer l’application 

logicielle de l’instant d’arriver d’un paquet de donnée. L’interruption est bien assurée par 

l’interruption matérielle générée par l’USB. 

 

 

 

 

 

 

 

 

Figure 22. Modèle de synchronisation: schéma 4 

Les modèles de synchronisation ainsi présentés peuvent être utilisés ensemble en se 

basant sur les fonctions dédiées de chaque modèle. 

V.2.2. Les interfaces de synchronisation 

Afin d’assurer la synchronisation, des interfaces logicielles et matérielles sont 

implémentées. Du côté de la carte FPGA un tableau de registres est utilisé pour sauvegarder le 

contexte de la synchronisation. 

Les composants matériels sont décrits en SystemC, ce qui facilite le mouvement, 

l’addition et la soustraction des modules. Le niveau TLM est le niveau d’abstraction adopté 

pour les interfaces Interface_In, Interface_Out et pour la modélisation. Un module interface est 

implémenté pour assurer une bonne synchronisation. La figure 23 montre les interfaces 

utilisées. 

Notre environnement de simulation / émulation possède essentiellement deux types 

d’interfaces dans SystemC : 

1. L’interface Interface_In : c’est une interface qui permet de lire les données 

reçues de la part de l’émulateur. Cette interface implémente la couche de 

communication et permet non seulement l’accès au tableau de registre partagé 
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pour récupérer les données désirées mais aussi d’effectuer un changement de 

contexte.  

2. L’interface Interface_Out : c’est une interface qui permet d’envoyer les 

données vers les applications logicielles et de lancer le changement du 

contexte. Cette interface implémente la même couche que l’interface 

Interface_In.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Les interfaces de synchronisation 

VI.  Conclusion  

Une présentation des méthodes de vérification des systèmes mono-puces basés sur une 

architecture matériel / logiciel a été détaillée dans ce chapitre. En se basant sur les techniques 

décrites, nous avons présenté notre modèle et environnement de simulation/émulation qui 

permet d’accélérer le temps de simulation et la modélisation multi-niveau. Notre 
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donnée entre simulateur et émulateur sous forme de paquet et fournis les modèles de 

synchronisations possibles. En fait cette abstraction permet de conserver les modèles de 

synchronisations même si le type de liaison change. Seule la couche de communication sera 

modifiée.  

Les méthodes de synchronisation ainsi décrites sont génériques et ne demandent pas de 

changement du noyau de la simulation du SystemC et ceci est grâce au mode d’interruption 

assuré par la liaison USB. Ces modèles assurent à la fois une communication rapide et une 

synchronisation supportant plusieurs scénarios possibles. Les résultats expérimentaux sont 

présentés dans le chapitre 4.  

Dans le chapitre suivant, nous proposons une extension de l’environnement de 

simulation/émulation que nous avons ultérieurement présenté afin de supporter le modèle 

continu sur lequel CODIS est basé. Le principe consiste à interfacer notre environnement avec 

le simulateur Simulink. 
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Chapitre 3 : METHODOLOGIES DE MODELISATION ET DE 

VERIFICATION POUR LES SYSTEMES HETEROGENES  

 

I. Introduction 

La modélisation des systèmes hétérogènes présente un grand défi pour les concepteurs 

vu l’hétérogénéité entre simulateurs qui demandent une interaction adéquate entre le modèle 

continu et le modèle discret d’une part et entre la partie matérielle et la partie logicielle 

d’autre part.  Les systèmes de contrôle-commande sont des systèmes industriels très utilisés et 

ils obéissent aux règles des systèmes hétérogènes. En fait, les systèmes de contrôle-

commande sont composés principalement de deux parties : partie commande et partie 

contrôle. La partie commande est constituée par des modules continus comme les moteurs et 

les réacteurs. La partie contrôle est constituée d’une unité de traitement numérique adéquate 

au modèle discret. Le nombre de contrôleurs numériques ainsi leur complexité ne cesse 

d'augmenter et plus d'efforts sont consacrés à la conception et à la vérification. Grâce à la 

grande révolution des technologies numériques, plusieurs outils conçus pour les contrôleurs 

numériques sont créés. Les plateformes de type VLSI (Very Large Scale Integration), comme 

par exemples les cartes FPGAs et les ASICs (Application Specific Integrated Circuit), 

réalisent des contrôleurs entièrement numériques.  Par conséquent, l’unité de contrôle des 

systèmes de commande implantée souvent sur une carte électronique, migre vers une 

implantation sur une puce unique, offrant l'avantage d'être compact et de supporter un très 

grand nombre de traitements arithmétiques. De plus, l'utilisation des cartes reconfigurables 

telles que les FPGAs permet le développement et le prototypage rapide du contrôleur 

numérique, (Rodriguez J.J., 2007). 

La méthodologie de conception et de vérification s’avère une demande exigeante à 

cause de la complexité croissante des algorithmes à implanter dans ces contrôleurs 

numériques et les contraintes de la mise en marché. 

Ce chapitre est constitué de deux parties essentielles : dans la première nous proposons 

une nouvelle technique de conception et de simulation des contrôleurs numériques nommée la 

technique de simulation matériel/logiciel en boucle ("Hardware Software In the Loop"). Nous 

décrivons dans la deuxième partie l’environnement CODIS+ en se basant sur les concepts de 

base de l’environnement CODIS.  
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II.  Simulation matériel/logiciel en boucle des contrôleurs numériques 

La conception des contrôleurs au sein des systèmes commandes présente un défi à cause 

de l’hétérogénéité du modèle. Une présentation des techniques de modélisation et de 

vérification est citée dans cette section. 

Dans tout système de commande, les contrôleurs numériques interagissent avec les 

différents modules continus.  Les différents signaux qui peuvent interagir avec ce contrôleur 

rendent la conception plus difficile. On peut y distinguer les signaux reçus par le système de 

commande et ceux qu’il émet. Afin d’interfacer le modèle continu et le modèle discret des 

convertisseurs sont utilisés.  

Les signaux émis correspondent aux ordres de commande à l'ouverture et à la fermeture 

des interrupteurs des convertisseurs. De plus, le contrôleur numérique est, à part sa nature, un 

système discontinu qui ne réagit avec son environnement qu'à des instants discrets. Ces 

instants sont soumis à des contraintes temporelles dont l’ordre de grandeur peut varier de la 

seconde à la microseconde selon la dynamique des grandeurs à réguler. 

II.1. Travaux antérieurs 

Plusieurs travaux se trouvent dans la littérature pour la modélisation et la vérification 

des contrôleurs numériques. Cette section détaille les différentes méthodes en soulignant les 

points forts et les points faibles de chaque méthode. 

II.1.1. Simulation utilisant une carte électronique 

Les premiers travaux réalisent le contrôleur numérique sur une carte électronique à 

travers des différents composants discrets. Ces composants réalisent des fonctions 

particulières plus ou moins complexes : addition, mémorisation, interfaçage, gestion 

d’interruption, …etc. L’inconvénient  majeur de cette technique se manifeste lors d’une erreur 

de conception. Afin de la corriger, on doit ajouter des liaisons entre les composants ou bien 

refaire totalement la carte électronique. Ce problème n’obéit pas à la contrainte de la mise en 

marché. De plus la conception de ces cartes devient de plus en plus difficile à cause de la 

complexité des contrôleurs électroniques et des composants qui deviennent nombreux. Cela 

engendre une élévation du prix des cartes conçus. 
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II.1.2. Simulation matériel en boucle 

Afin de surmonter ces lacunes, les techniques basées sur la simulation matérielle en 

boucle ("Hardware In the Loop") (HIL) sont proposées pour pouvoir modifier le contrôleur 

numérique sans modifier la carte électronique et diminuer le nombre de composants 

numériques sur cette carte. L’évolution des technologies de fabrication de circuits numériques 

permettent l’intégration d’un contrôleur numérique sur une mono-puce. La conception de tels 

systèmes numériques intégrés se base sur un langage numérique de description de matériel.  

Cette évolution a également ouvert la voie aux langages de haut niveau de description 

de matériel, encore appelés HDLs pour "Hardware Description Languages", il s’agit en 

particulier de VHDL et de Verilog. Tous deux sont supportés par un grand nombre de 

logiciels. Les avantages majeurs d'une description basée sur un HDL résident dans sa 

portabilité et dans son caractère exécutable. En effet, un modèle fonctionnel numérique décrit 

à haut niveau par un HDL peut être vérifié par simulation, avant que la conception finale ne 

soit réalisée. D’autre part, la révolution dans les outils CAO permet le passage directement 

d’une description HDL synthétisable à un schéma à base de portes logiques.  

Une première technique utilise un simulateur mixte analogique/numérique supportant 

un HDL et intégrant un noyau de simulation unique, par exemples Advanced Design System 

(ADS) d’Agilent (Agilent, 2012), ADVanceMS (Mentor, 2012), Simplorer (Simplorer, 2012) 

et SMASH (Smash, 2012). 

La co-simulation est la seconde technique possible. Elle est basée sur la communication 

entre deux simulateurs, l’un numérique et l’autre analogique. Les modèles sont conjointement 

exécutés par ces deux simulateurs, chaque simulateur modélisant une partie spécifique du 

circuit à concevoir ou de son environnement. La co-simulation est basée sur une interface qui 

permet non seulement l’échange de données entre les deux simulateurs tout en respectant les 

contraintes de types et de tailles mais aussi en respectant la synchronisation temporelle des 

deux simulateurs par exemples Modelsim/SpectreS (langages VHDL/SpectreHDL) (Aubepart 

F., 2003), Modelsim/Saber (Lienhardt A.M., 2006), Modelsim/Matlab (Katrib J., 2008). 

Dans ces exemples, le simulateur Modelsim simule le contrôleur numérique décrit en 

langage HDL numérique. Le modèle du contrôleur s’intègre sous la forme d'un bloc 

numérique dans l'environnement global. Le modèle peut être décrit à différents niveaux 

d’abstraction, du plus haut niveau jusqu’au niveau synthétisable.  
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En résumé, les avantages de la technique basée sur un simulateur mixte supportant un 

HDL sont : (1) noyau de simulation unique (2) temps de simulation réduit. 

L’inconvénient majeur réside à la limitation de bibliothèques des composants 

analogiques. La co-simulation surmonte l’inconvénient précédent, mais la synchronisation et 

le temps de simulation représentent le grand défi. 

Comme une première solution pour réduire le temps de simulation, les sociétés Altera et 

Xilinx, fabricants de composants FPGAs, ont développé un code VHDL niveau synthétisable 

associé aux modèles hauts niveaux de la bibliothèque Matlab/Simulink. L’outil DSP Builder 

de la société Altera et l’outil System Generator de la société Xilinx permettent alors la 

génération "automatique" d'une description VHDL synthétisable à partir d'un modèle dans 

l’environnement de simulation Matlab/Simulink. 

Cette nouvelle approche bénéficie de nombreux avantages : bibliothèques riches en 

composants numériques, analogiques et possibilité de réaliser la synthèse numérique. 

La simulation HIL traditionnelle, basée sur un simulateur ou bien sur une plateforme 

matérielle spécifique à une application, permet entre autres aux concepteurs d’évaluer un 

algorithme de commande conjointement avec le contrôleur numérique (partie matérielle) par 

une simulation qui reproduit le comportement dynamique du système. Il est dès lors possible 

d’évaluer l’algorithme de commande dans un environnement virtuel, non destructif où les 

modifications de l’algorithme sont souvent réalisables sans itération matérielle coûteuse. Cette 

technique de simulation entraîne une réduction des temps de développement ainsi que la 

réduction du coût d’un projet. Ainsi, la simulation HIL permet d’évaluer la robustesse et les 

performances de l’algorithme de commande et les points faibles du système.  

La simulation HIL peut être réalisée en temps réel ou hors ligne, selon le type de 

simulateur utilisé. Dans le cas de la simulation HIL hors ligne, à chaque pas de simulation, le 

système est simulé en utilisant un simulateur "off line". Les signaux de sortie sont envoyés au 

contrôleur numérique qui exécute l’algorithme implémenté. Le contrôleur retourne ensuite les 

signaux de commande. À cet instant, un cycle de simulation HIL hors ligne est effectué. De ce 

fait, la simulation ne peut pas être exécutée en temps réel et peut devenir très lente lorsque 

l’on diminue le pas de simulation ou lorsque le système est complexe avec une dynamique 

lente. En dépit de ce point faible, cette approche peut notamment être très efficace pour 

évaluer un algorithme de commande, en particulier lorsque le pas de simulation est très faible. 
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En effet, dans ce cas, certains simulateurs temps réel ne peuvent plus simuler correctement 

tels systèmes. 

Dans l’autre cas, le simulateur HDL est en temps réel, le contrôleur électronique décrit 

en HDL est implanté sur une carte cible (des cartes FPGA dans la plupart des cas) ce qui 

réduit le temps de simulation. Un simulateur temps réel permet de modéliser et de reproduire 

la dynamique et le comportement du système de sorte qu’il peut dialoguer, en temps réel, avec 

le contrôleur. Ce dialogue est fait à l’aide d’interfaces entrées/sorties. Selon la complexité du 

système à simuler et sa dynamique, plusieurs processeurs peuvent être utilisés pour garantir 

une modélisation temps réel acceptable. Par exemple, (Harakawa, 2005) a mis en œuvre un 

simulateur temps réel ayant trois processeurs pour simuler un moteur synchrone à aimants 

permanents et son alimentation, avec un pas de simulation égal à 10µs.  

II.1.3. Simulation par carte de prototypage en boucle 

Une nouvelle méthodologie de prototypage dite simulation par carte de prototypage en 

boucle ("FPGA in the loop") est utilisé récemment (Karimi S., 2009). Un composant FPGA 

est un circuit intégré numérique composé d’un grand nombre de blocs logiques 

programmables et reconfigurables sans modification matérielle significative. Les composants 

FPGAs sont devenus nécessaires dans les systèmes numériques et sont utilisés dans de 

multiples domaines d’applications en raison de nombreux avantages obtenus lors de leur 

utilisation (Detrey J., 2007). Parmi tous ces avantages, on peut citer : 

1- L'augmentation croissante du niveau de performance temps réel tout en réduisant le 

coût et l’encombrement. 

2- L’utilisation des FPGAs permet l’amélioration des performances en  réduisant le 

temps d’exécution d’un algorithme afin de permettre au contrôleur d’atteindre le niveau 

de performance des contrôleurs analogiques, sans présenter les inconvénients de ces 

derniers. 

3- Leur grande souplesse de programmation permet de les réutiliser.  

4- La rapidité et la facilité de reconfigurer un FPGA autant de fois que nécessaire pour 

implanter les fonctionnalités désirées. 

En raison de tous ces avantages, les FPGAs sont aujourd’hui utilisés dans plusieurs 

applications nécessitant des traitements numériques importants tels que le traitement du signal 

et de l’image, le contrôle/commande des machines électriques, la mesure de vitesse, le 

contrôle des convertisseurs statiques de puissance, l’aéronautique, la télécommunication, les 

équipements médicaux, les transports, la bio-informatique, l’automobile, la robotique.  
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II.1.4. Synthèse 

La simulation HIL dans Matlab/Simulink peut être considérée comme la technique la 

plus adaptée pour la simulation des contrôleurs numériques. Ce type de simulation offre 

plusieurs avantages, citant : 

� Le contrôleur ou le régulateur sera vérifié aux premiers stades de 

développement. 

� La fiabilité du contrôleur numérique (bruit, température,…etc) sera testée 

rapidement. 

� Les erreurs et les failles seront détectées très tôt.   

Malgré ces différents avantages et la grande utilisation de la simulation HIL, plusieurs 

limitations et faiblesses entour cette méthode : 

� Peu de bibliothèques qui modélisent les architectures cibles sont 

supportées. Le contrôleur numérique obéira à l’architecture cible 

développée par Matlab/Simulink. En effet, le DSP builder d’Altera, par 

exemple, ne supporte pas toutes les bibliothèques de MegaCore (DSP, 

2013).  

� Limitation des bibliothèques qui modélisent le contrôleur numérique. 

Chaque contrôleur numérique sera intégré dans l’architecture cible.  

� L’architecture cible décrite en Matlab/Simulink est peu modifiable. En 

effet, les bibliothèques représentant les architectures cibles offre peu de 

flexibilité pour le changement d’architecture. 

� Pour chaque modification du contrôleur numérique, toute l’architecture 

doit être re-implémentée sur la carte FPGA. 

La section suivante présentera une nouvelle technique de vérification des contrôleurs 

numériques basée sur la notion de la simulation HIL et une carte FPGA Altera pour surmonter 

les problèmes et les limitations citées. 

II.2. La Simulation matériel/logiciel en boucle  

Afin de surmonter les limitations citées ci dessus, nous présentons une nouvelle 

méthodologie de la simulation appelée simulation matériel/logiciel en boucle ("Hardware 

Software In the Loop")  (HSIL). 
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La méthodologie sera présentée en citant tout d’abord le principe de la simulation, puis 

les logiciels mis en œuvre, ensuite la couche de communication et finalement la couche de 

synchronisation. 

II.2.1. Principe 

Vu la complexité croissante des contrôleurs numériques, la conception matériel / 

logiciel devient de plus en plus exigée. Notre méthodologie propose une conception basée sur 

la stratégie de la Co-design  pour la modélisation des contrôleurs numériques. La figure 24 

décrit l’architecture de la simulation HSIL. 

L’architecture proposée est composée essentiellement de deux couches indispensables : 

la couche communication et la couche synchronisation. Matlab/Simulink offre une grande 

flexibilité pour une conception hétérogène. Les blocs S-Fonction permettent l’utilisation de 

plusieurs langages (Matlab, C, C++, Ada) dans une même description. De l’autre coté une 

architecture basée sur une architecture cible est implanté sur une carte FPGA Altera. 

L’idée consiste à considérer le contrôleur numérique comme étant une application 

logicielle qui s’exécute sur l’architecture cible. 

  

 

 

 

 

 

 

 

 

Figure 24. Architecture de la simulation matériel/logiciel en boucle 

La simulation HSIL, une extension de la simulation HIL, présente plusieurs avantages 

citons : 

� La conception des contrôleurs numériques complexes obéit à la stratégie de la Co-

design. Par la suite, la modélisation devient de plus en plus facile, flexible et le temps 

de la mise en marché diminue. 

S-Fonction : HSIL  

Communication : USB  

Carte FPGA 
Contrôleur logiciel 

Architecture cible 

Bus 

Modèle continu 
Signal d’entrée Signal de sortie 

Modèle discret 
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� Un seul et même bloc S-Fonction permet le remplacement de tous les contrôleurs 

numériques. En fait, le contrôleur sera décrit en langage C indépendamment des 

blocs existants en Matlab/Simulink. Ce fait assure la portabilité et la réutilisation des 

contrôleurs. 

� La vérification et la correction d’un ou de plusieurs contrôleurs numériques se fait 

sans modifier à chaque fois l’architecture cible. 

Les sections suivantes décrivent l’architecture de la simulation HSIL et les logiciels mis 

en œuvre. 

II.2.2. Logiciels mis en œuvre 

Dans cette section, nous présentons les logiciels utilisés pour mettre en place la simulation 
HSIL. 

Simulink  

Simulink, très populaire pour la communauté de modélisation et de simulation, est un 

environnement qui s'intègre dans Matlab. Cet environnement possède une vaste gamme 

d’outils et de bibliothèques permettant de modéliser, simuler et analyser un grand nombre de 

systèmes dynamiques réels (linéaires ou non linéaires) citons comme exemples : les systèmes 

électriques, mécaniques, thermodynamiques, électronique de puissance etc. Simulink possède 

plusieurs bibliothèques dans les domaines de l'automobile, de l’électronique de puissance, du 

contrôle, etc. et des algorithmes de résolution d'équations différentielles, conçus pour les 

systèmes, fournissent un bon rapport vitesse/précision de simulation. 

L’environnement Simulink possède une interface graphique interactive, 

particulièrement conviviale, permet à l'utilisateur de construire facilement et rapidement des 

modèles à travers des blocs fonctionnels existants dans sa bibliothèque, citons par exemples : 

sources, oscilloscope, intégrateur, additionneur, des composants plus complexes linéaires et 

non linéaires, etc. Simulink offre la possibilité de créer des blocs non standard grâce aux blocs 

personnalisables comme les S-fonctions (S-function : system function) qui consistent à 

programmer les équations du système à simuler en utilisant des langages étrangers (C, C++, 

Ada). 

L’algorithme de résolution divise le temps de simulation en un ensemble de pas 

d'intégration mineurs et pas d'intégration majeurs où le pas mineur représente une subdivision 

du pas majeur. Le simulateur produit un résultat à chaque pas d'intégration majeur. Ce résultat 
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utilise ceux de résolution calculés à chaque pas d'intégration mineur afin d’améliorer la 

précision. 

Simulink utilise la règle de dépendance de donnée pour fixer l'ordre d’exécution des 

blocs durant la phase d'initialisation. Un bloc appelé direct-feedthrough est celui dont ces 

sorties sont en fonction de ses entrées alors il doit être exécuté après ceux qui calculent ses 

entrées (exemple: additionneur, gain). Tous les autres blocs sont appelés nondirect-

feedthrough (exemple: intégrateur). Pour assurer l’ordre d'exécution, Simulink commence à 

exécuter les blocs nondirect-feedthrough, en premier lieu, dans n'importe quel ordre, puis il 

exécute les blocs direct-feedthrough dans un ordre qui respecte la règle de dépendance déjà 

citée.  

Quartus II 

Le logiciel Quartus II est un outil de CAO dédié à la programmation des CPLDs et 

FPGAs du fabricant Altera. La figure 25 décrit le flot de conception sous Quartus II. Il permet 

la description d'un projet, sa compilation, sa simulation logique et temporelle, son analyse 

temporelle et la programmation d'un circuit cible. Quartus II permet la création des systèmes 

complexes comportant des processeurs, des périphériques, des mémoires, des bus, des 

arbitres, et des noyaux d’IPs. Il comprend une suite de fonctions de conception au niveau 

système, permettant d’accéder à la large bibliothèque d’IP d’Altera et un moteur de placement 

routage intégrant la technologie d’optimisation de la synthèse physique et des solutions de 

vérification.    

 

 

Figure 25. Les différentes parties du flot de conception de QUARTUS II 

Quartus II est un logiciel qui travaille sous forme de projets c'est-à-dire il gère un design 

sous forme d'entités hiérarchiques. Un projet est l'ensemble des fichiers d'un design sous 

formes graphiques, VHDL ou de bonnes configurations des composants (affectation de pins 

par exemple).  

SOPC Builder 

Le SOPC Builder permet, entre autres, de concevoir des microcontrôleurs spécifiques à 

une application. Ces  microcontrôleurs comportent donc une partie processeur à laquelle on 

associe des périphériques (PIO, Timers, UART, USB, composants propriétaires, …) et de la 

mémoire. Cette dernière peut-être embarquée dans le FPGA (on parle alors de RAM/ROM On 
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Simulation 
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Chip) ou à l’extérieur du composant FPGA. La partie microprocesseur proprement dite est le 

NIOS II de ALTERA, processeur de 32 bits qui se décline en trois versions : économique, 

standard, rapide. La version économique, la moins puissante, utilise le moins de ressources du 

FPGA. Bien sûr il est possible d’intégrer d’autres types de processeurs pour peu qu’on 

dispose de leurs modèles (VHDL, Verilog, …). La création d’une application SOPC 

comprend les étapes suivantes : 

� Création du composant matériel (processeur + périphériques) dans l’environnement 

Quartus. 

� Téléchargement dans le composant FPGA (configuration). 

SOPC builder peut être divisé en deux parties séparées : une interface utilisateur 

graphique (GUI) et le programme générateur. Dans l'interface graphique, le concepteur 

organise tout son système, ajoutant et configurant les composants. Pour le programme 

générateur, il génère tous les fichiers nécessaires pour la conception. 

 NIOS II  

Le NIOS II est un processeur embarqué à jeu d’instruction réduit (RISC) 32 bits, 

développé par Altera et conçu pour la mise en œuvre des FPGAs. Cela signifie qu'il s'agit d'un 

processeur soft-core qui n'est pas produit comme un ASIC. Le NIOS II a des bus séparés pour 

les données et les instructions (architecture de Harvard), vaste ensemble de possibilités  de 

construire en série des périphériques et des interfaces externes (hors puce) des périphériques. 

II.2.3. Couche de communication 

La communication représente la première couche de la simulation HSIL. La 

communication est basée sur la liaison USB qui est déjà décrite dans le chapitre précédent à la 

section V.1. La communication est assurée par les blocs S-Fonction du Simulink. 

Les S-fonctions fournissent un mécanisme puissant pour étendre les capacités de 

Simulink. Une S-fonction permet de décrire les fonctionnalités du système à l’aide d’un 

langage de programmation autre que le langage Matlab comme les langages C/C++, Ada, ou 

Fortran. La commande mex permet la compilation de la S-Fonction écrite en langage 

étrangère pour générer une bibliothèque dynamique qui porte son nom. Une fois la S-Fonction 

est compilée, le bloc peut interagir avec les autres blocs du système. Les S-fonctions utilisent 

une syntaxe d’appel particulière qui permet d’interagir avec le moteur de résolution 

d’équations de Simulink. Cette interaction qui est très semblable à l'interaction entre le moteur 
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et les autres blocs de Simulink, utilise un cycle d’exécution spéciale. Une S-fonction est 

composée par un ensemble de fonctions prédéfinies, nous nous sommes intéressés en 

particulier aux fonctions citées par la figure 26. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 26. Cycle de simulation d’une S-fonction 

Les fonctions MdlInitializeSizes et MdlInitializeSampleTimes sont exécutées durant la 

phase d’initialisation de Simulink.  

La première fonction sert à : 

1- Initialiser les largeurs et le nombre de ports d’entrée et de sortie.  

2- Fixer le nombre de modes de temps utilisés. 

3- Evaluer les paramètres de la S-fonction.  

La deuxième fonction est en charge de fixer la nature des modes de temps utilisés par la 

S-fonction. 

Les fonctions MdlGetTimeOfNextVarHit et MdlOutputs sont exécutées à chaque pas 

d’intégration durant la boucle de simulation (figure 26).  

La première fonction sert à fixer le prochain temps d’exécution de la S-fonction. Elle est 

utilisée seulement si la S-fonction possède le mode de temps VARIABLE_SAMPLE_TIME. 

La deuxième fonction, MdlOutputs calcule les signaux de sortie de la S-fonction. 
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Finalement, la fonction MdlTerminate est appelée à libérer la mémoire, à détruire des 

objets, etc.  

Une partie des fonctionnalités de ces fonctions peut être accomplie par l’appel des 

méthodes existantes dans la bibliothèque SimStruct de Simulink. Cette dernière fournit un 

ensemble assez vaste de méthodes très utiles lors de la programmation, exemple : ssGetT () 

qui retourne le temps courant, ssGetOutputPortRealSignal() qui permet d’accéder aux ports 

de sortie de la S-fonction. L’utilisateur peut ajouter son code à l’intérieur des fonctions 

prédéfinies. Lors de la création d’une S-Fonction, un squelette de code utilisant les fonctions 

prédéfinies ainsi citées peut être modifié en appelant des méthodes par exemple. 

II.2.4. Couche de synchronisation 

Vue l’hétérogénéité du modèle continu et du modèle discret, des convertisseurs 

analogique-numérique et numérique-analogique doivent être insérés. La S-Fonction qui 

supporte la simulation HSIL est composée comme suit (figure 27) : 

 

 

 

 

Figure 27. Structure de la S-Fonction synchronisation 

Convertisseur Analogique-Numérique (CAN) : 

 Un convertisseur analogique-numérique permet de convertir un signal 

analogique vers un signal discret. Cette conversion est basée sur deux phases 

nécessaires : échantillonnage et quantification. 

Un signal analogique, X(t) continu en temps et en amplitude est échantillonné à une 

période d’échantillonnage constante Tech respectant le théorème de Shannon (Fech/2 > 

Fmax). On obtient alors un signal échantillonné Xech(k.Tech) discret en temps et continu en 

amplitude. 

Ce dernier est ensuite quantifié, pour obtenir un signal numérique X[k] discret en 

temps et en amplitude. On définit le quantum q (figure 28), ou LSB (Least Significant Bit) 

le bit de poids faible comme étant la dimension de ces plages avec : 

q = LSB = X/2N  avec N présente le nombre de bits dont le convertisseur est codé. (14) 

Y(t) 
 

 

Synchronisation (S-Fonction) 
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Xk = k.q  k∈{1,…,7} 

 

 

Figure 28. Caractéristique du Convertisseur Analogique-Numérique 

Traitement numérique : 

Le noyau du traitement numérique se base sur l’envoie de donnée sous forme de 

paquet respectant le modèle de synchronisation adapté. Le paquet est composé d’un en-

tête et un corps comme l’indique la figure 29. L’en-tête informe l’ordonnanceur du 

contrôleur à exécuter ainsi  de la taille des données envoyées. Ici notre module de 

synchronisation peut être utilisé pour différents contrôleurs numériques en changeant 

seulement le numéro de routine à exécuter qui correspond à l’algorithme du contrôleur 

désiré. Quand aux corps, ils contiennent les données envoyées et le temps de 

synchronisation. 

 

 

 

Figure 29. Forme du paquet 

Les paquets présentent un point clé d’échange entre le simulateur Simulink et 

l’architecture cible implanté sur la carte FPGA. 

La figure 30 décrit le modèle de synchronisation utilisé dans la simulation HSIL. 
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Le modèle de synchronisation qui se base sur l’interruption matérielle USB 

s’exécute en mode « Ping Pong ». La figure 30 montre que lorsque le simulateur continu 

est en exécution l’émulateur est en repos. Lorsque ce dernier reçoit un paquet de donnée 

du simulateur, il décode le paquet, change le contexte et exécute le contrôleur désiré. 

 

 

 

 

 

 

 

 

 

 

Figure 30. Schéma de synchronisation de la simulation matériel/logiciel en boucle 

Convertisseur Numérique-Analogique (CNA) : 

Un convertisseur numérique-analogique permet de convertir un signal discret vers 

un signal analogique comme l’indique la figure 31. 

 

 

 

 

 

Figure 31. Principe du Convertisseur Numérique-Analogique  

Chacun des 2N  mots binaires pouvant être appliqué en entrée est  associé à un signal 

de sortie analogique, telle que: 

Y= (b1.2
N-1+b2.2

N-2+….+bN.20). (X/(2N-1))        avec b1 est le MSB et bn le LSB.   
(15) 
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On définit le LSB, ou quantum, comme étant la plus petite variation possible du 

signal de sortie correspondant à un changement du bit de poids faible : 

1 LSB = X / (2N – 1). (16) 

III.  Modèle et environnement de Co-simulation/Emulation des 

systèmes continu/discret (CODIS+) 

Nous présentons dans cette section en premier lieu l’environnement CODIS. Ensuite, 

une étude détaillée de l’environnement global CODIS+ qui supporte d’une part le simulateur 

Simulink pour le modèle continu et d’autre part le simulateur SystemC et la carte FPGA pour 

le modèle discret décrite. 

III.1. L’environnement CODIS 

Une description selon le modèle de synchronisation utilisé est décrite dans cette partie. 

III.1.1. Présentation 

L'une des plus grandes difficultés lors de la simulation continue/discrète est la 

synchronisation du temps entre la simulation à événements discrets et l'intégration 

numérique du simulateur continu. 

La synchronisation est un point clé qui influence la précision et la vitesse de 

simulation. Il existe deux approches fondamentales de synchronisation : l'approche 

optimiste et l'approche pessimiste (Langeanu D., 2001). 

L’approche optimiste permet à chaque simulateur d'effectuer quelques pas 

optimistes. Si un simulateur génère un événement avant la fin de ces pas, l'autre 

simulateur doit être capable de reculer son temps. 

Dans le cas de l'approche pessimiste, les simulateurs avancent avec le même pas de 

temps, ce qui évite tout besoin de recul. À partir du modèle de synchronisation basé sur 

l’approche pessimiste nous définissons un modèle de synchronisation supportant à la fois 

le simulateur continu et le simulateur/émulateur discret présenté dans le chapitre 2.  

  L’environnement COntinuous DIscrete Simulation (CODIS) (Bouchhima F., 2007) 

présente un environnement de modélisation et simulation des systèmes continus/discrets. Une 

présentation de cet environnement est décrite en se basant sur le principe de simulation et les 

modèles de synchronisation utilisés. 
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III.1.2. Principe de l’environnement CODIS : 

 

 

 

 

 

 

 

 

 

 

Figure 32. Schéma global de l’environnement CODIS 

La figure 32 montre le schéma global qui relie le modèle continu et le modèle 

discret ainsi les interfaces utilisées dans l’environnement CODIS. 

Pour Simulink  les interfaces peuvent être paramétrées à partir de leurs boites de 

dialogue. CODIS possède principalement trois types d’interfaces dans Simulink : 

� L’interface Inter_In : c’est une interface qui permet de lire les données reçues de la 

part du modèle discret. Cette interface implémente la couche de communication et 

permet de détecter les événements discrets pour effectuer le changement de contexte. 

Cette dernière étape est responsable de détecter le passage du temps de simulateur par 

les étiquettes de temps des événements d’échantillonnage. Cette interface a comme 

paramètre : 

1. Le nom, le nombre et le type des données des ports d’entrée du modèle discret. 

2. Les périodes d’échantillonnage. 

3. Le mode utilisé. 

� L’interface Inter_Out : c’est une interface qui permet d’envoyer les données vers le 

modèle discret et de lancer le changement du contexte. Cette interface implémente la 

même couche que l’interface Inter_In et a comme paramètre : 

1. Le nom, le nombre et le type de données des ports de sorties du modèle discret. 

2. Le mode utilisé. 

� L’interface Sync : Cette interface implémente la partie la plus importante de la phase 

de la détection des événements discrets. Elle crée les points d’arrêt que l’algorithme de 

résolution doit atteindre sans dépassement. Ces points sont les étiquettes de temps des 
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événements reçus. Quand un événement est reçu, l’interface fixe son prochain temps 

d’activation égal à l’étiquette de temps de cet événement, ceci grâce au mode de temps 

de la S-fonction de l’interface Sync. Une fois ce temps est atteint, l’interface Inter_In 

ou Inter_Out est exécutée pour se synchroniser avec l’événement et pour changer le 

contexte vers le simulateur discret. Une fois que Simulink reprend l’exécution, 

l’interface Sync est exécutée pour fixer son prochain temps d’exécution égal à 

l’étiquette de temps du nouvel événement reçu. L’interface est exécutée au temps égal 

zéro pour fixer son premier prochain temps.  

Ces interfaces sont manipulées comme n’importe quel bloc de la bibliothèque de 

Simulink. Leurs ports d’entrée ou de sortie sont compatibles avec les ports du modèle continu 

et peuvent être connectés directement en utilisant les signaux de Simulink. L’utilisateur doit 

placer les interfaces à partir de la bibliothèque des interfaces dans la fenêtre du modèle 

continu, puis il fixe leurs paramètres et finalement il les connecte avec les ports d’entrée et de 

sortie du modèle continu. Durant la phase d’initialisation de la simulation, Simulink charge 

les fonctionnalités de ces interfaces à partir de la bibliothèque dynamique (.dll). Les interfaces 

sont générées automatiquement par un outil de génération de code qui a comme entrée les 

paramètres définis par l’utilisateur. 

Pour SystemC les interfaces peuvent être appelées à partir de la bibliothèque de 

simulation. CODIS possède principalement deux types d’interfaces : 

� L’interface Inter_In : c’est une interface qui permet de lire les données reçues de la 

part du modèle continu. Cette interface implémente la couche de communication et 

assure l’échange de données, la conversion des signaux et le changement de contexte 

en envoyant des étiquettes du temps des événements d’échantillonnage. Elle assure 

aussi la synchronisation avec les données échantillonnées à l’entrée du modèle discret 

grâce aux horloges d’échantillonnage. 

� L’interface Inter_Out : c’est une interface qui permet d’envoyer les données vers le 

modèle continu et lancer le changement du contexte au niveau du noyau de SystemC. 

Pour SystemC, l’outil génère aussi la fonction ‘sc_main’ (ou la modifie si elle existe 

déjà) qui connecte les interfaces avec le modèle discret. Le modèle est compilé et l’éditeur de 

lien appelle la bibliothèque de SystemC et la bibliothèque statique, appelé bibliothèque de 

simulation. 
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III.1.3. Modèle de synchronisation de l’environnement CODIS : 

Une fois les interfaces générées et connectées aux modèles, le concepteur simule son 

système en exploitant les outils de débogage des deux simulateurs intégrés par 

l’environnement. Dans cette section, une description du modèle de synchronisation pessimiste 

est présentée. 

La figure 33 présente le modèle de synchronisation. Ce modèle est utilisé lorsque le 

modèle continu est en avance par rapport au modèle discret et respecte l'algorithme canonique 

(Ghasemi H.R., 2005). Dans cet algorithme, le simulateur continu prend en considération 

l'occurrence d'un événement discret à son tour le simulateur discret tient en compte les 

événements d'état envoyés par le simulateur continu.  

Dans la figure 33, le simulateur continu et le simulateur discret sont synchronisés à 

l'instant A. Ce dernier simulateur commence à exécuter tous les processus qui sont sensibles 

aux événements déclenchés à l'instant courant A et met à jour les signaux sans avancer le 

temps, ce qui constitue un cycle de simulation. Il faut souligner que le noyau de SystemC 

modifié permet l’exécution des processus sans avancer le temps sauf lorsqu’un changement 

de contexte du simulateur continu vers le simulateur discret est effectué.  Ensuite, le 

simulateur discret envoie au simulateur continu le temps d'occurrence de son prochain 

événement de sortie (point B: prochain événement), il change le contexte de simulation vers le 

simulateur continu (flèche 1). Ce dernier calcule les signaux en résolvant les équations 

différentielles du modèle jusqu'à atteindre avec précision le temps envoyé par le simulateur 

discret (point C : temps d'événement discret atteint). Deux cas se présentent: 

• Le temps du point C représente le temps d'occurrence d'un événement 

d'échantillonnage. Dans ce cas, le simulateur continu met à jour les signaux de sortie 

avec leurs valeurs calculées à cet instant et change le contexte vers le simulateur 

discret (flèche 3). Ce dernier avance pour le temps d'occurrence de l'événement 

d'échantillonnage (flèche 4) et commence un nouveau cycle de simulation. 

• Le temps du point C est le temps d'occurrence d'un événement de mise à jour 

des signaux. Dans ce cas, le simulateur continu change le contexte vers le simulateur 

discret qui avancera pour le temps d'occurrence de l'événement indiqué, calcule les 

signaux et envoie leurs valeurs et le temps d'occurrence du prochain événement. 

Finalement, il change le contexte vers le simulateur continu qui va lire les nouvelles 
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valeurs des signaux et procède pour le prochain temps d'événement discret et le cycle 

recommence (flèche 5 et 6). 

 

 Avancement de la simulation  Synchronisation 

 Evénement déclenché/prochain 
 

Temps d’événement discret atteint 

 Evénement d’état généré par le 

simulateur continu 

 Evénement d’état considéré par le 

simulateur discret 

L’avancement du simulateur discret si l’événement n’a pas eu lieu 

 
Figure 33. Le modèle de synchronisation pessimiste 

Le modèle continu peut générer un événement d'état. Dans ce cas, le simulateur continu 

indique sa présence, envoie son temps d'occurrence au simulateur discret et change le 

contexte de simulation (flèche 7). Le simulateur discret doit considérer cet événement en 

avançant le temps vers son temps d'occurrence et d'exécuter les processus qui lui sont 

sensibles.  

III.2. Discussion 

Cet environnement a été validé par plusieurs applications hétérogènes. CODIS est un 

environnement  de vérification des systèmes hétérogènes basé sur une co-simulation entre le 

simulateur Simulink et le simulateur SystemC. L’environnement CODIS présente plusieurs 

avantages citant : 

� Utilisation des langages Matlab/Simulink pour le modèle continu et SystemC pour le 

modèle discret. Ces deux langages sont classés comme étant les premiers langages a 

utilisés dans les premiers phases de conception afin de vérifier le fonctionnement du 

système à réaliser. Ce point permet d’utiliser les bibliothèques existantes conçues pour 

les modèles continus et discrets. 

Simulateur discret 

Simulateur continu 
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� CODIS utilise le SystemC pour modéliser les parties matériels au lieu de VHDL ou 

Verilog. Ceci permet d’accélérer à la fois le temps de la mise en marché et le temps de 

simulation ainsi plusieurs niveaux d’abstraction peuvent être utilisés. 

Comme les autres environnements CODIS possède quelques limitations, citons : 

� Les temps de simulation et plus important par rapport aux nouveaux environnements 

qui supportent à la fois les modèles continu/discret. 

� L’environnement CODIS ne supporte pas la stratégie du Co-design lors de la 

modélisation des contrôleurs numériques. Ce qui rend CODIS non efficace pour les 

contrôleurs complexes. 

La méthodologie qui sera présentée par la suite à pour but d’adapter CODIS à la 

stratégie Co-design et d’accélérer le temps de simulation en utilisant une carte FPGA dont 

l’architecture cible est implantée. 

III.3. Modèle de synchronisation de l’environnement CODIS+ 

Nous présentons dans cette section le modèle de synchronisation global proposé (figure 

34). Ce modèle se base d’une part sur le modèle de synchronisation pessimiste entre le 

simulateur Simulink et le simulateur SystemC et d’autre part  entre le simulateur SystemC et 

une architecture cible implantée sur une carte FPGA pour la modélisation conjointe faite dans 

le chapitre 2. Le temps de synchronisation représente le point clé à décrire et on va ignorer les 

types de paquets échangés entre les différents simulateurs et émulateurs. 

 

Figure 34. Modèle de synchronisation de l’environnement CODIS+ 
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A l’instant t=0s, le processeur cible implanté sur la carte FPGA déclenche la co-

simulation émulation ainsi un changement de contexte vers le simulateur SystemC est 

effectué (flèche 1). Ce dernier commence à exécuter les modules sensibles sans avancer le 

temps de simulation. Une fois l’exécution est finie, le simulateur discret envoie le prochain 

temps éventuel de synchronisation vers le simulateur continu. Un changement de contexte est 

accompli par la suite (flèche 2). Lorsque le Simulink reçoit le prochain temps de 

synchronisation, il commence à exécuter le modèle continu. Deux cas peuvent se présenter : 

1- le temps étiquette est atteint avant la génération d’un pas d’intégration. 

2- Un pas d’intégration est généré avant l’atteinte du temps étiquette. 

On s’intéresse à ce stade là au premier cas. Lorsque le temps est atteint (flèche 3), le 

simulateur Simulink fait un changement de contexte vers le simulateur SystemC (flèche 4). A 

cet instant SystemC avance son temps (flèche 5)  d’où un cycle de simulation est terminé. 

Puis, une tâche logicielle est simulée par la carte (flèche 7) et le simulateur SystemC entre 

dans une phase de repos. Lorsque l’émulateur termine sa tâche, un changement de contexte 

vers le simulateur Simulink est fait à travers le SystemC (flèche 8 et flèche 9) en envoyant le 

temps étiquette qui correspond au temps d’exécution de la tâche logicielle. Dans ce cas 

Simulink continue l’exécution du modèle continu jusqu’à atteindre le nouveau temps étiquette 

envoyé (flèche 10) et se bloque pour donner l’accès au SystemC. Ensuite, le SystemC exécute 

une tâche matérielle sans avancer son temps et envoie le prochain temps de synchronisation 

vers le simulateur continu. Lorsque le changement de contexte est accompli le modèle continu 

commence à s’exécuter jusqu’à l’apparition d’un événement d’intégration, et avant que le 

temps d’étiquette soit atteint, c’est le deuxième cas. Dans ce cas, Simulink envoie le temps 

d’apparition de l’événement d’intégration (temps étiquette) vers le SystemC pour que ce 

dernier avance son temps de simulation jusqu’au temps d’étiquette ainsi un changement de 

contexte est fait. Ce cas représente un cas critique car il perturbe le parallélisme de 

l’exécution des simulateurs. Le mécanisme décrit permet de conserver le bon fonctionnement 

des simulateurs ainsi les échanges des instants. Le Simulink poursuit l’exécution jusqu’au 

nouvel instant (flèche 18). Ce cas n’a pas d’influence sur l’émulateur car il est en phase 

d’attente. 

Le simulateur SystemC représente le maître de l’environnement de co-simulation / 

émulation vue le mécanisme du noyau de la simulation (initialisation puis exécution) et vue la 

possibilité de la modification du noyau. L’émulation (déjà décrite dans le chapitre 2) est 

assurée à travers des fonctions qui seront intégrées dans le code de haut niveau et ne nécessite 
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pas la modification du noyau de la simulation de SystemC grâce à l’interruption matérielle 

faite par la liaison USB. 

Les interfaces utilisées pour Simulink sont les mêmes interfaces faites par 

l’environnement CODIS. La seule modification est  réalisée au niveau du type de paquet 

échangé. 

Pour SystemC deux nouvelles interfaces sont ajoutées : 

� Interface_In : Cette interface fait appelle aux fonctions de la bibliothèque de la 

simulation/émulation. Elle implémente la couche de communication et permet 

de lire les paquets envoyés de la part du processeur cible.  

� Interface_Out : Cette interface fait appelle aux fonctions de la bibliothèque de la 

simulation/émulation. Elle implémente la couche de communication et permet 

d’envoyer les paquets vers le processeur cible.  

IV.  Conclusion 

Dans ce chapitre, nous avons détaillé les différentes méthodologies adaptées. En 

premier lieu, une présentation de la simulation matériel/logiciel en boucle est annoncée pour 

le cas de la simulation des contrôleurs numériques. Cette technique est une extension de la 

fameuse technique HIL utilisée dans Matlab/Simulink. Notre technique respecte la conception 

Co-design non utilisée dans la conception des contrôleurs numériques. La simulation 

matériel/logiciel en boucle représente une technique efficace pour les contrôleurs complexes 

et diminue le temps de la mise en marché.  

En deuxième lieu, une extension de l’environnement CODIS est proposée afin 

d’accélérer le temps de simulation et de supporter des systèmes plus complexes. En fait, 

l’environnement CODIS souffre essentiellement du temps de simulation important lors de 

l’utilisation de l’ISS et n’obéit pas à la stratégie de conception Co-design pour les systèmes 

numériques. Notre environnement résolu ces deux problèmes en utilisant une carte de 

prototypage.  

Dans le chapitre suivant, une implémentation de l’environnement simulateur/émulateur, 

de la simulation HSIL et de l’environnement de co-simulation/ émulation est validé à travers 

plusieurs exemples d’application.   
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Chapitre 4 : EXPERIMENTATION  : APPLICATIONS ET 

ENVIRONNEMENTS  

 

I. Introduction  

Les environnements de co-simulations présentent une nécessité croissante pour la 

modélisation des systèmes continus/discrets. En fait, ces environnements non seulement 

facilitent la tâche de la modélisation et accélère la phase de conception mais aussi diminue le 

coût de fabrication des systèmes. L’environnement de co-simulation/émulation présenté dans 

le chapitre précédent représente un outil puissant pour la simulation continu/discret vu le 

schéma de synchronisation qui assure un temps de simulation minime et offre la possibilité de 

modéliser les systèmes numériques conjointement et à différent niveau d’abstraction.  

Dans ce chapitre, nous présentons plusieurs applications pour valider les 

environnements détaillés précédemment, citons : le système de reconnaissance par empreinte 

digitale, un système de régulateur de la vitesse d’un moteur à courant continu, un système de 

contrôle en boucle fermée de la vitesse d’un moteur et un système de contrôle de vitesse d’un 

véhicule en se basant sur une identification biométrique. Une étude algorithmique d’un 

système de reconnaissance par empreinte digitale est décrite au cours de la première partie de 

ce chapitre. L’objectif de ces applications est la validation de l’environnement de 

simulation/émulation matériels/logiciels, de la technique de simulation matériel/logiciel en 

boucle et l’environnement CODIS+ de co-simulation/émulation des systèmes 

continus/discrets.  

II.  Implémentation de l’architecture cible sur FPGA 

La communication étudiée dans les chapitres précédents était basée sur une architecture 

cible. On fixera dans cette section que l’architecture cible est composé du processeur NIOS II, 

du bus Avalon et des mémoires. 

On ajoute à cette architecture le contrôleur USB ISP1362 de la carte DE2-70 (famille 

Altera) qui représente l’arbitre de la communication et n’appartient pas à l’architecture cible. 

A l’aide de l’outil SOPC Builder l’architecture cible est implémenté (figure 35). 
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Figure 35. Modélisation de l’architecture cible 

III.  Expérimentation de l’environnement de Simulation/Emulation 
matériel/logiciel 

Dans cette section nous présentons dans la première partie une étude algorithmique du 

système de reconnaissance par empreinte digitale. L’implémentation de l’application et les 

résultats de la simulation/émulation sont exploitées dans la deuxième partie. 

III.1. Application : Système de reconnaissance par empreinte digitale 

La reconnaissance par empreinte digitale est le système biométrique le plus répandu 

dans le monde sécuritaire. Il est indéniable qu’un tel système de reconnaissance soit le 

meilleur non seulement grâce à son faible coût par rapport à d’autre modalité mais aussi grâce 

à sa sureté. La figure 36 montre les principales phases de reconnaissance par empreinte 

digitale. 

III.1.1. Phase de prétraitement 

La phase de prétraitement présente une phase essentielle pour l’amélioration de 
l’image de l’empreinte. Cette phase est constituée de l’étape de filtrage, de la binarisation et 
de la squelettisation. 

III.1.1.1. Filtrage 

Toute image de basse qualité provoque de gros problèmes dans le domaine de 

traitement d’images. Dans ce cadre la plupart des images d’une empreinte digitales 

demandent un filtrage afin d’extraire ses informations utiles.  
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Figure 

Le filtre de base que nous avons utilisé est un filtre de Gabor à symé

à 0 degré. 
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Pour obtenir les autres orientations, il suffit d'effectuer 
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Selon les différents blocs de l’image, le filtre peut avoir plusieurs directions privilégiées. Dans 

ce cas-là, le filtre final est une somme de filtre

Phase de prétraitement

Phase d’extraction 

Phase de comparaison
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Figure 36. Chaine de reconnaissance 

Le filtre de base que nous avons utilisé est un filtre de Gabor à symé
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Pour obtenir les autres orientations, il suffit d'effectuer une rotation des axes coordonnés:
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Selon les différents blocs de l’image, le filtre peut avoir plusieurs directions privilégiées. Dans 

là, le filtre final est une somme de filtres de base placée à chaque direction.
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i
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Filtre de Gabor 

Squelettisation 

Extraction des minuties 

Binarisation 

 

Comparaison 
Base de données

Phase de prétraitement 

Phase de comparaison 
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Le filtre de base que nous avons utilisé est un filtre de Gabor à symétrie paire et orienté 

(16) 

une rotation des axes coordonnés: 

(17) 

Selon les différents blocs de l’image, le filtre peut avoir plusieurs directions privilégiées. Dans 

à chaque direction. 

Base de données 
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Où -E (i, j): nouvelle valeur du pixel (i, j).  

-F (i, j): la fréquence du pixel (i, j).  

-O (i, j): direction du pixel (i, j).  

Sélection des paramètres de Gabor  

Pour l’extraction de la réponse des crêtes et des vallées de diverses orientations du filtre 

de Gabor, les paramètres f et θ sont fixés aux valeurs suivantes:  

� La fréquence f correspond à la distance inter-crêtes dans l’image de l'empreinte 

digitale. Après plusieurs essais, on l’a fixée à 0,3.  

� Les orientations examinées correspondantes aux valeurs de θ sont: 30°, 45°, 60° 

et 90°. Pour les images présentées, on a fixé θ à 60°.  

� Les paramètres écarts types σx et σy contrôlent la bande passante du filtre, ils 

doivent être convenablement choisis, vu leurs effets significatifs sur 

l’amélioration des résultats.  

� La valeur de σx détermine le degré d’amélioration de contraste entre les rides et 

les vallées alors que σy détermine le degré de lissage appliqué aux rides tout au 

long d’une orientation locale.  

III.1.2. Binarisation 

La binarisation de l’image est le processus qui transforme une image en niveau de gris 

en une autre noir et blanc. Dans une image en niveau de gris, un pixel peut prendre 256 

valeurs d’intensité différentes tandis qu’un pixel dans une image noire et blanche ne peut être 

aussi que noir ou blanc. Cette transformation est faite en appliquant un seuillage à l’image. La 

valeur 1 signifie que le pixel est blanc alors que la valeur zéro indique que le pixel est noir. 

L’échelle de gris est formée par des valeurs décimales entre 0 et 1. Lorsque le seuil est 

appliqué à l’image, tous les pixels sont comparés à la valeur du seuil qui est calculée à travers 

les seuils des couleurs RGB. N’importe quelle valeur de pixel inférieure au seuil prend zéro, 

et n’importe quelle valeur de pixel supérieure au seuil prend 1. À la fin de ce processus, toutes 

les valeurs des pixels sont soit zéro soit un. Ainsi, l’image sera transformée en format binaire 

avec la valeur 0 pour les crêtes et la valeur 1 pour les vallées. Après cette opération, les crêtes 
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dans l'empreinte digitale sont accentuées avec la couleur noire tandis que les vallées sont 

blanches.  

Dans le processus de binarisation, le choix de la valeur seuil calculé par l’équation 

suivante est critique. 

ncnl

jiM
Seuil

*

),(∑=   (20) 

Avec M(i,j) la matrice de l’image, nl:nombre de ligne, nc: nombre de colonnes 

Il existe deux approches pour le calcul de seuil : 

- Seuil Global : Le principe est de calculer la valeur moyenne de toute l’image. 

L’avantage est que cette solution est très rapide ; alors qu’elle cause des problèmes si 

l’image présente une hétérogénéité au niveau luminance. 

- Seuil Local : Le principe est calculer la valeur moyenne par masque. Le 

principal avantage de cette méthode est la bonne qualité issue de la binarisation mais 

le temps de calcul est très important.  

La figure 37 montre le résultat de binarisation par seuil global et local et prouve que la 

binarisation avec un seuil local est le plus adéquat pour une image d’empreinte. 

   

a) Image capturée b) Seuillage global c) Seuillage local 

Figure 37. Les méthodes de Binarisation 

III.1.3. Squelettisation 

Après la binarisation, un autre processus important doit être appliqué à l’image: Il s’agit 

de la squelettisation. Ce processus réduit l’épaisseur de toutes les rides à un pixel.  

Squelettisation à base de « Neighborhood » :  
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Cette méthode est basée sur le principe

algorithme d'amincissement. Cet algorithme se base sur les valeurs de poids c

nombre de pixel noir autour du pixel en question. Nous utilisons ainsi une fenêtre de taille 3 × 

3. Tous les types de relation (256) formé

partir de ces cas, un groupe de règles

Cet algorithme est un algorithme itératif et s’arrête lorsque le long d’un traitement 

aucune modification n’est faite. 

Le majeur problème lors de la squelettisation se manifeste via l’occurrence d’effet de 

ZIGZAG sur la strie. Ce problème cause la détection de fausse minutie. Nous proposons 

comme solution d’amélioration, d’appliquer le filtre de lissage sur l’image

l’expérience montre une image résultante am

squelettisation sans/avec le filtre de lissage.

a) Squelettisation sans filtr

Figure 

III.1.2. Phase d’extraction

L’extraction des minuties à partir d’une empreinte squelettisée nécessite une méthode 

capable de distinguer et de classer les différentes formes et types de minuties. Donc il s’agit 

d’un problème de classification. Nous proposons d’appliquer une méthode de

basée sur la distance de Hamming appelée DECOC. Cette méthode développée dans ce 

chapitre est basée sur le travail de 

Motivé par les nouvelles solutions de la décomposition multi

extensions de la méthode ECOC, on propose l’exploitation d’une nouvelle méthode appelée 

Data-driven ECOC (DECOC) pour résoudre le problème de classification dans le cas de 

l’empreinte digitale. 

Principe de base de la méthode ECOC 
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Cette méthode est basée sur le principe d’élimination qui représente le noyau d'un 

algorithme d'amincissement. Cet algorithme se base sur les valeurs de poids c

nombre de pixel noir autour du pixel en question. Nous utilisons ainsi une fenêtre de taille 3 × 

lation (256) formés par 8 pixels voisins de l'objet ont été examinés. À 

partir de ces cas, un groupe de règles d'élimination peut être obtenu.  

Cet algorithme est un algorithme itératif et s’arrête lorsque le long d’un traitement 

faite.  

Le majeur problème lors de la squelettisation se manifeste via l’occurrence d’effet de 

ZIGZAG sur la strie. Ce problème cause la détection de fausse minutie. Nous proposons 

comme solution d’amélioration, d’appliquer le filtre de lissage sur l’image

l’expérience montre une image résultante améliorée. La figure 38 décrit la méthode de 

squelettisation sans/avec le filtre de lissage. 

 

Squelettisation sans filtre de lissage b) Squelettisation avec filtr

Figure 38. Squelettisation sans/avec filtrage 

Phase d’extraction 

L’extraction des minuties à partir d’une empreinte squelettisée nécessite une méthode 

capable de distinguer et de classer les différentes formes et types de minuties. Donc il s’agit 

d’un problème de classification. Nous proposons d’appliquer une méthode de

basée sur la distance de Hamming appelée DECOC. Cette méthode développée dans ce 

chapitre est basée sur le travail de Jie Zhou (Jie Z., 2007).  

Motivé par les nouvelles solutions de la décomposition multi-classe qui sont des 

la méthode ECOC, on propose l’exploitation d’une nouvelle méthode appelée 

driven ECOC (DECOC) pour résoudre le problème de classification dans le cas de 

Principe de base de la méthode ECOC  
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d’élimination qui représente le noyau d'un 

algorithme d'amincissement. Cet algorithme se base sur les valeurs de poids c’est-à-dire le 

nombre de pixel noir autour du pixel en question. Nous utilisons ainsi une fenêtre de taille 3 × 

par 8 pixels voisins de l'objet ont été examinés. À 

Cet algorithme est un algorithme itératif et s’arrête lorsque le long d’un traitement 

Le majeur problème lors de la squelettisation se manifeste via l’occurrence d’effet de 

ZIGZAG sur la strie. Ce problème cause la détection de fausse minutie. Nous proposons 

comme solution d’amélioration, d’appliquer le filtre de lissage sur l’image squelette. En effet, 

décrit la méthode de 

 

Squelettisation avec filtre de lissage 

L’extraction des minuties à partir d’une empreinte squelettisée nécessite une méthode 

capable de distinguer et de classer les différentes formes et types de minuties. Donc il s’agit 

d’un problème de classification. Nous proposons d’appliquer une méthode de classification 

basée sur la distance de Hamming appelée DECOC. Cette méthode développée dans ce 

classe qui sont des 

la méthode ECOC, on propose l’exploitation d’une nouvelle méthode appelée 

driven ECOC (DECOC) pour résoudre le problème de classification dans le cas de 
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Error correcting output codes (ECOC) est utilisé dans les domaines de la 

communication et de la théorie de l’information dans le but d'améliorer la fiabilité de la 

transmission de signaux binaires et de maintenir l'intégrité des informations. Son principe est 

d’ajouter des bits de parité pour chaque redondance de l’information. La distance entre deux 

mots est définie à l’aide de la distance Hamming, qui représente le nombre de différence de 

bits dans les deux mots. Enfin, un processus de décodage examine les distances de Hamming 

entre les binaires reçus et valide l'ensemble des mots pour détecter et récupérer les erreurs. 

ECOC est basée sur la plus courte distance de Hamming formulé comme suit :  

y = argmink H(wk,w(x)), k = 1, … , K  (21) 

Avec Wk est la kème ligne de la matrice. H (Wk, W(x)) est la fonction qui permet de 

calculer la distance de Hamming. Nous attribuons le label de classe codé de la plus proche, 

c'est-à-dire, avec la plus courte distance de Hamming, à l'échantillon de test.   

 Principe de la méthode DECOC  

Nous proposons Data-driven ECOC (DECOC) pour concevoir le code de la matrice 

ECOC en utilisant les données représentées par les pixels de l’image. L'idée clé de DECOC 

est de sélectionner certaines bases binaires dans la matrice selon son score de confiance. Cette 

mesure nous aidera à déterminer comment nous allons probablement inclure la matrice sous 

test dans l'ensemble.  

Avant de présenter le score de confiance, il faut tout d'abord définir le critère de 

séparabilité d'un groupe de plusieurs classes, avec G présente le groupe qui contient les 

classes de même famille.  

11
,0

),(
2
2

)( −≠≠∑
∈≠−

=





KGandG
Gkcjckj

kcjcd
GG

GS   (22) 

Avec d(Cj, Ck) est la distance entre deux classes Cj et Ck, qui est la distance de 

Hamming entre les vecteurs de même classe; | G | est la taille du groupe, c'est-à-dire, le 

nombre de motifs de même classe ; 2 / (| G |2 - | G |) est le facteur de normalisation.  

La confiance d'une base binaire DECOC est alors définie comme: 

11;
))(())((

))((
)( / −≠≠













+
= ++
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G+(f) est l'ensemble des classes qui ont une distance Hamming minimale par rapport 

aux pixels noirs de la classe f, G-(f) est l'ensemble des classes, qui ont une distance Hamming 

minimale par rapport aux pixels blancs. S (G + / - (f)) est égale à la distance entre la matrice 

sous test et tous les patterns d’une classe en calculant le nombre de pixels blancs non utilisés. 

Le principe du flot d’apprentissage de la figure 39 se base sur le calcul de la distance de 

Hamming entre le bloc en question et chaque classe. Ensuite, on calcule le S(G+(f)) pour la 

classe dont la distance de Hamming est minimale et on calcule le S(G+/-(f)). Ainsi on calcule 

le score confidentiel pour le cas de la terminaison, de la bifurcation et du non minutie. Le 

score qui possède la valeur maximale présente le type du bloc en question. D’où la décision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. Flot d’apprentissage de l’algorithme DECOC 

Bloc d’entrée accepté Classes 

Calculer toute les distances Hamming 
entre le bloc d’entrée et les classes : 
terminaison, bifurcation et non minutie 

Extraire des groupes de patterns des 
différentes classes selon la distance 
minimale 

Calculer le critère de séparabilité 

Calculer le score de confiance 

Trier le score de confiance 

Choisir le score maximal 

Décision 
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Afin de choisir les bons motifs pour chaque classe, on a utilisé plusieurs empreintes 

squelettisées différentes. On a trouvé le total de 357 motifs dont 32 pour la classe terminaison, 

104 pour la classe bifurcation et 221 pour la classe non minutie. Le commun entre ces motifs 

est que le centre de la fenêtre (bloc) est un pixel noir et représente le point terminaison ou 

bifurcation. 

La figure 40 illustre quelques exemples pour chaque classe. 

 

 

Figure 40. Exemples de chaque classe 

III.1.3. Phase de comparaison 

Plusieurs méthodes de comparaison sont traitées dans la littérature. La plus connue se 

base sur les cordonnées de chaque point minutie, le type et l’orientation. Les grands 

problèmes de cette méthode consistent au déplacement, à la rotation et à la pression de 

l’empreinte. Afin de résoudre ces problèmes, plusieurs travaux se basent sur la recherche du 
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centre de l’empreinte. Mais ces travaux manquent encore de précision lors de la détection du 

centre.  

Nous proposons comme solution de ces problèmes une méthode qui se base sur la 

relation entre point minutie et indépendante des cordonnées.  

La méthode de comparaison se base sur le calcul de la distance Euclidienne de 

l’équation suivante entre deux points minuties successives en se balayant verticalement 

(figure 41).  

2
12

2
12)2,1( )()(tan yyxxceDis MM −−−=  (24) 

 

 

 

 

 

 

 

 

Figure 41. Méthode de comparaison 

Notre méthode se base aussi sur le type de minutie et la direction entre deux points 

successifs. Les équations illustrent la méthode. 
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Afin d’optimiser l’algorithme de comparaison, nous avons proposé de remplacer la 

direction par un calcul d’orientation comme l’indique l’équation de la direction et la figure 42 

pour gagner en terme de mémoire et en terme de calcul. 

Alpha = |arctan(direction1)| + |arctan(direction2)|  (27) 

 

 

   

 

Figure 42. Angle entre trois minuties 

 

 

III.1.4. Validation et performance: 

Afin de valider la méthode de classification DECOC pour ce type de classification, on a 

utilisé la base de données universelle FVC2004 DB3_B.  

La performance d’un système biométrique basé sur l’empreinte digitale n’est validée 

qu’à travers certaine taux, pour cela on définit les termes suivants :  

� « False Acceptance Rate » (FAR) : Ce facteur présente le taux des fausses 

reconnaissances. Plus ce taux est faible plus la méthode est meilleure. 

� « False Rejection Rate » (FRR) : Ce facteur présente le taux d’élimination de correcte 

empreinte. Plus ce taux est faible plus la méthode est meilleure. 

Le tableau 3 compare tous le système de reconnaissance par rapport à quelques travaux 

antérieurs. 

 FAR FRR 

Méthode de (HAO G., 2005)  4.18% 9.93% 

Méthode de (Omer S., 2009)  1,12% Not indicated 

Méthode de (Ying HAO)   1% 2.5% 

Méthode de (Jiong Z, 2008)  0.04% 1.31% 

 

 M1 

M2 

M3 

α 

Direction1 

Direction2 
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La nouvelle méthode 0% 0.02% 

Tableau 3 : Comparaison entre différentes méthodes de reconnaissance par empreinte 
digitale 

Notre système de reconnaissance d’une part montre des bons résultats au niveau du taux 

d’acceptation et d’autre part atteint un taux de reconnaissance de 88.88% avec un temps 

d’exécution globale de 7s sur un ordinateur core 2 duo 1.66 Ghz. 

III.2. Validation de la Simulation/Emulation 

La première étape de l’implémentation représente la phase du partitionnement. Cette 

étape a pour but de diviser le système en des modules logiciels et d’autres modules comme 

étant des composants matériels. Le principe de partitionnement est basé en grande partie sur le 

critère temps d’exécution : «  Le module qui consomme beaucoup plus de temps sera sous 

forme matérielle afin d’atténuer le temps d’exécution».  

 

Figure 43. Rapport de temps d’exécution 

Un calcul de rapport entre le temps d’exécution de chaque étape de la chaine de 

reconnaissance par empreinte digitale (sauf le module extraction) par rapport au temps 

d’exécution du module extraction des minuties (qui représente le temps d’exécution minimal) 

est effectué. La figure 43 représente l’histogramme correspondant du rapport. 

En se basant sur ces résultats, on partitionne notre système statiquement comme suit : 

Composants matériels 

- Lecture de l’empreinte 

- Filtrage 

- Binarisation 
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- Comparaison 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44. Implémentation de l’application 
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Applications logicielles 

- Squelettisation 

- Extraction des minuties 

La figure 44, détaille l’implémentation de l’application selon les interfaces décrit dans le 
chapitre 2 

III.3. Résultats de la Simulation/Emulation 

La validation de l’environnement de simulation/émulation matériel/logiciel se base sur 

le temps de simulation global. Le tableau 4 décrit le temps de simulation de chaque module et 

montre une grande opportunité de tel environnement. En fait, les deux points clé qui 

soulignent le temps de simulation court de notre environnement sont la liaison USB et le 

modèle de synchronisation.  

 Module Temps (s) 

Composant 
matériel 

Lecture de 
l’empreinte 

0.03 Filtre 

Binarisation 

Comparaison 

Interface Interface 0.5 

Application 
logicielle 

Squelettisation 0.01 

Extraction des 
Minutia 

Simulation 0.54 

Tableau 4: Temps de simulation de l’application 

IV.  Expérimentation de la simulation matériel/logiciel en boucle 

Deux applications sont utilisées pour valider la simulation HSIL décrite dans le chapitre 
précédent. 

� La première application désigne la régulation et le contrôle de la vitesse d’un 
moteur à courant continu.  

� La deuxième présente un système de contrôle en boucle fermée de la vitesse du 
moteur. 
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IV.1. Présentation des applications de test  

Nous avons utilisé dans cette section deux applications pour valider la simulation 

matériel/logiciel en boucle : un régulateur de la vitesse d’un moteur à courant continu et un 

système de contrôle en boucle fermée de la vitesse du moteur.   

IV.1.1. Régulateur de la vitesse d’un moteur à courant continu 

Les systèmes de contrôle moteur à courant continu (figure 45) se basent sur un 

actionneur commun qui fournit un mouvement de rotation. Le circuit électrique équivalent de 

l'induit et du rotor sont présentés dans la figure suivante. 

 

Figure 45. Schéma équivalent d’un moteur à courant continu 

On considère que V est la tension d’entrée appliquée sur le moteur et la vitesse de 

rotation de l’arbre est la sortie du système. Le rotor et l’arbre sont supposés rigides. 

Les EDOs 

Les paramètres du système sont : 

- θ : La vitesse du moteur exprimée en tr.min-1 

- Ke : Gain statique exprimé en tr.min-1.V-1 

- Kt : Force électromotrice. 

- J : Moment d’inertie du rotor exprimé en Kg.m2.s-2 

- b : Rapport d’amortissement du système mécanique. 

Champs 
fixe 
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- R : Résistance électrique exprimée en Ohm. 

- L : Inductance électrique exprimée en H. 

- V : Voltage d’entrée du moteur. 

Les relations issues du  système décrit sont : 

Le moment du torque prend l’équation suivante : iKT t=  (28) 

La force contre-électromotrice est proportionnelle à la vitesse angulaire de l'arbre :

•
= θeKe     

(29) 

D’après les Lois de Newton et de Kirchhoff on obtient : 

 KibJ =+
•••
θθ   (30) 

 

•
−=+ θKVRi

dt

di
L   (31) 

On Applique par la suite le transformé de Laplace : 

 )()()( sKIsbJss =Θ+    (32) 

 )()()()( sKssVsIRLs Θ−=+   (33) 

La fonction de transfert en boucle ouverte du système est le suivant : 

 
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Les figures 46 et 47  montrent le schéma bloc du système Simulink et l’implémentation 

sous Matlab/Simulink avec : 
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Figure 46. Diagramme de bloc d’un régulateur de vitesse d’un moteur continu 

 

Figure 47. Implémentation du système en Simulink 

IV.1.2. Système de contrôle en boucle fermée de la vitesse du moteur 

Cet exemple qui est décrit dans la démonstration de Simulink présente le model d’un 

moteur. Le collecteur d’admission déclenche le transfert de l’air-carburant vers les cylindres 

par l’intermédiaire des soupapes à événements discrets. En même temps, les processus à 

temps continu flux d’admission, la génération de couple et l’accélération sont en exécution. 

L’actionneur de papillon de gaz assure la régulation de la vitesse. 

Ce modèle est basé sur les résultats publiés par Crossley et Cook (Crossley P.R., 1991). 

Il décrit la simulation d'un moteur à quatre cylindres à allumage par étincelle interne. Le 

travail Crossley et Cook montre aussi comment une simulation basée sur ce modèle a été 

validée par des données d'essais dynamométriques. Le modèle est composé essentiellement de 

cinq modules : 

1. Accélérateur ("Throttle") 

2. Collecteur d'admission ("Intake manifold") 

3. Débit massique d’admission ("Intake Mass Flow Rate") 

4. Course de compression ("Compression Stroke" ) 

5. Génération de couple et d'accélération ("Torque Generation and Acceleration") 
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Le premier élément du modèle est l’accélérateur. L'entrée de commande est l'angle de la 

plaque et à vitesse à laquelle le modèle introduit de l'air dans le collecteur d'admission. La 

vitesse peut être exprimée comme le produit de deux fonctions: 

1. une fonction empirique de l'angle de papillon des gaz. 

2. une fonction de la pression atmosphérique et de collecteur. 

En cas de pression sur le collecteur, le débit qui traverse le module accélérateur est en 

fonction de l'angle d’accélération. Ce modèle tient compte de ce comportement à basse 

pression avec un état de commutation dans les équations de compressibilité indiquées dans 

l'équation 35. 

(g/s) collecteur le dans massiquedébit )().( ==
•

mai Pgfm θ  (35) 

 

avec 
32 .00063.0.10299.0.05231.0821.2)( θθθθ −+−=f  
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ambmambmambm
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m PPPSiPPP
P

Pg ≤≤−= 2/;
2

)( 2
 

ambmambmambm
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m PPPSiPPP
P

Pg 2;
2

)( 2 ≤≤−−=  

mambm PPSiPg ≤−= 2;1)(  

(deg)onaccélératid'Angle:θ  

)(collecteurduPression: barPm  

)(ique)(atmosphérambiantePression: barPamb  

Collecteur d’admission ("Intake manifold") 

Le modèle du collecteur d'admission se base sur une équation différentielle de la 

pression d'admission. La différence dans les taux d'entrée et de sortie de débit massique 

représente le taux de changement net de la masse d'air par rapport au temps. Cette quantité, 

selon la loi des gaz parfaits, est proportionnelle à la dérivée temporelle de la pression du 

collecteur (voir équation 36). Notez que, contrairement au modèle de Crossley et Cook, ce 
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modèle ne tient pas compte de la recirculation des gaz d'échappement, mais cela peut 

facilement être ajouté. 

)(
•••

−= aoai
m

m mm
V

RT
P    (36) 

Avec 

R : Constant du gaz. 

T : température (K). 

Vm : Volume du collecteur (m3). 

.collecteurdusortiedeairl'demassiqueDébit:
•

aom  

.)/(collecteurledanspressiondechangementdeTaux: sbarPm

•
 

Débit massique d'admission ("Intake Mass Flow Rate") 

Le débit massique de l'air que les pompes des cylindres du collecteur est décrit par 

l'équation 37. Cette équation est dérivée d’une manière empirique. Ce taux est une fonction de 

la masse de la pression d'admission et de la vitesse du moteur. 

•

+−+−= mmmao PNPNPNm ..0001.0..0337.0..08979.0366.0 22
 (37) 

Avec 

N : Vitesse angulaire du moteur (rad/s). 

Pm : Pression du collecteur (bar). 

Pour déterminer le volume d'air total dans les cylindres, la simulation intègre le débit 

massique à partir du collecteur d'admission. Ceci permet de déterminer la masse d'air totale 

qui est présente dans chaque cylindre après la course d'admission et avant la compression. 

Course de compression ("Compression Stroke") 

Le vilebrequin assure le déclenchement des cylindres du moteur un par un. Le passage 

d’un cylindre à un autre est indiqué par une tour de manivelle. Dans ce modèle, l'admission, la 

compression, la combustion, et l’échappement se produisent simultanément. Pour prendre en 

considération la compression, la combustion est retardée de 180 degrés lors de la rotation du 

vilebrequin. 

Génération du couple et d'accélération ("Torque Generation and Acceleration") 
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Le dernier élément de la simulation décrit le couple développé par le moteur. Une 

relation empirique dépendante de la masse de l'air, du rapport air / carburant et de la vitesse 

du moteur est utilisée pour le calcul du couple (voir équation 38). 
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(38) 
 
ma : Masse de l’air dans le cylindre (g). 










F

A
 : Rapport air-carburant. 

σ : Avance de l’allumage. 

Torqueeng : Couple développé par le moteur (Nm). 

Puis l’accélération angulaire du moteur est calculée en utilisant l’équation 39. 

loadeng TorqueTorqueNJ −=
•

 (39) 

J : Moment d’inertie du moteur (kg.m²). 

•
N  : Accélération angulaire du moteur (rad/s²). 

Modèle en boucle fermé 

La figure 48 décrit le modèle du système au niveau fonctionnel. 

 

Figure 48. Modèle en boucle fermé d’un contrôleur de la vitesse d’un moteur 

IV.2. Validation de la simulation matériel/logiciel en boucle 
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1ère Application : Régulateur de la vitesse d’un moteur à courant continu 

Les intégrateurs de moteur et le régulateur PID sont les contrôleurs numériques à 

simuler en utilisant la simulation HSIL. Pour cela une intégration du bloc Synchronisation est 

faite dans la figure 49. 

 

Figure 49. Modèle bloc de l’application 1 basé sur la simulation HSIL 

2ème Application: Contrôle en boucle fermée de la vitesse du moteur  

Deux blocs sont considérés comme des contrôleurs numériques : "controller" et 

"compression". Ces deux blocs sont implantés comme des applications logicielles. La figure 

50 montre le modèle en utilisant la technique HSIL. 
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Figure 50. Modèle bloc de l’application 2 basé sur la simulation HSIL 

IV.3. Résultats de la simulation matériel/logiciel en boucle 

1ère Application : Régulateur de la vitesse d’un moteur à coudant continu 

La simulation est basée sur l’environnement Matlab/Simulink et l’environnement NIOS II 
(figure 51). 

 

Figure 51. Environnement Simulink/NIOSII pour la simulation HSIL 

Afin de valider la technique HSIL proposée deux points de vérification clés sont 

indispensables : 

o Fiabilité du système : Ceci est vérifié en comparant les courbes d’entrées / sorties pour 

chaque bloc de synchronisation par rapport au modèle prédéfini. La figure 52 montre 

les différents signaux utilisés. 
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a) Signal de la vitesse du moteur b) Signal d’intensité i 

 

c) Signal du sortie régulateur 

Figure 52. Les signaux critiques utilisés pour la vérification de l’application 1 

o Le temps de simulation est 1 seconde. 

2ème Application: Contrôle en boucle fermée de la vitesse du moteur 

De même que l’application 1, la simulation de l’application 2 est vérifiée surtout par les 

signaux de sortie des blocs "controller" et "compression" (figure 53). 

Le temps de simulation global du modèle en boucle fermée est 2 secondes. 

  

a) Signal d’accélération  b) Accélération angulaire 
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c) Débit massique d'admission 

Figure 53. Les signaux critiques utilisés pour la vérification de l’application 2 

V. Expérimentation de l’environnement CODIS+ 

Les systèmes de sécurité et de contrôle pour les automobiles deviennent de plus en plus 

complexes grâce à la grande révolution des technologies numériques. Afin de valider 

l’environnement CODIS+, nous proposons un système limiteur de vitesse d’un véhicule.  

V.1. Application : système limiteur de vitesse 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 54. Graphe fonctionnel du système 
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Il existe plusieurs systèmes mécatroniques qui traite le problème de contrôle de vitesse 

d’un véhicule. Il existe essentiellement deux types : contrôle obligatoire et contrôle facultatif. 

Nous proposons dans ce contexte un système qui limite la vitesse du moteur selon le 

conducteur. Pour cela une identification du conducteur par empreinte digitale permet de fixer 

la valeur maximale que le conducteur peut atteindre. 

Le système limiteur de vitesse représente le couplage entre  le système de contrôle du 

moteur ainsi décrit dans la section précédente et le système de reconnaissance par empreinte 

digitale. La figure 54 donne le graphe fonctionnel du modèle. 

V.2. Implémentation et résultats 

Le cycle de la simulation commence à partir du SystemC. Les modules matériels seront 

simulés par le noyau de SystemC et les applications logicielles seront simulées sur 

l’architecture cible implantée sur la carte FPGA. Lorsqu’une personne est identifiée par le 

système de reconnaissance par empreinte digitale l’interface Interface_Out envoie un signal 

déclencheur vers le bloc Inter_In et un changement de contexte vers l’environnement 

Simulink est procédé. 

Le bloc Inter_In est lié directement à la position 2 d’un commutateur. Ce dernier joue le 

rôle d’un déclencheur pour le système de contrôle d’accélération du moteur. Une personne 

n’est pas reconnue, le système a pour vitesse d’entrée égale à 0 (position 1 du commutateur). 

Lorsque l’identification d’une personne est réussie l’entrée 2 du commutateur, qui correspond 

à la sortie du Inter_In, prend la valeur vrai ce qui permet le changement de position vers 3 et 

le système de contrôle d’accélération du moteur commence son cycle de simulation. La figure 

55 a) montre l’implémentation de l’application dans notre environnement CODIS+ :co-

simulation/émulation continu/discret. La zone 1 représente la description matérielle de l’étape 

de filtrage, binarisation et comparaison en SystemC. La zone 2 décrit les applications 

logicielles – squelettisation et extraction des minuties – en utilisant l’outil NIOSII IDE. La 

zone 3 et la figure 55 b) décrit le schéma de bloc du système  de contrôle d’accélération du 

moteur dans Simulink. 
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a) L’environnement CODIS+ : Co-simulation/émulation des systèmes continus/discrets 

 

b) schéma bloc du système de contrôle d’accélération du moteur dans Simulink 

Figure 55. Implémentation de l’application 

Notre système permet à la fois d’utiliser les modèles de synchronisation 

matériel/logiciel, la simulation HSIL et le modèle de synchronisation continu/discret présenté 

dans le chapitre précédent à la section III.2. 

Le temps de simulation global est 2.55s. 

VI.  Conclusion  

Dans la première partie de ce chapitre, nous avons validé l’environnement de 
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empreinte digitale puisque tel système est considéré comme étant un système complexe qui se 

compose nécessairement des composants matériels et des applications logicielles.  

Dans la deuxième partie, l’implémentation de la technique de la simulation 

matériel/logiciel en boucle est présentée. L’application de régulation de la vitesse d’un moteur 

à courant continu et l’application de contrôle en boucle fermée de la vitesse du moteur sont 

utilisées pour valider la simulation HSIL.  

Dans la troisième partie de ce chapitre, nous avons implémenté l’environnement 

CODIS+ de co-simulation/émulation des systèmes continu/discret. Le système limiteur de 

vitesse a été utilisé pour exploiter CODIS+. Les résultats trouvés prouvent l’importance de 

notre environnement. 
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CONCLUSION GENERALE  

 

I. Conclusion 

L’hétérogénéité présente une caractéristique indispensable dans les systèmes actuels. 

Les systèmes continus/discrets représente l’intérêt de notre travail. La validation globale de 

ces systèmes demande des langages fournissant les formalismes nécessaires pour la 

modélisation et la demande des outils de simulation précis et performants. Actuellement, il 

existe plusieurs langages et outils pour chaque domaine. Le grand problème c’est que les 

concepteurs appartenant à chaque domaine utilisent ces outils pour simuler leurs modèles 

mais sans avoir une validation globale du système entier. Pour résoudre ce problème, ce 

travail a proposé une extension de l’environnement CODIS afin d’accélérer le temps de 

simulation d’une part et d’ajouter d’autre fonctionnalité pour supporter la complexité 

croissante du domaine discret d’autre part. Notre environnement utilise SystemC et une carte 

FPGA à base d’une architecture cible pour le domaine discret et le simulateur Simulink pour 

le modèle continu. Ceci permet de bénéficier de toute l’expertise de leurs langages et des 

outils de débogage, et permet également d’exploiter les modèles et les bibliothèques existants.  

Le premier chapitre a présenté le principe de modélisation et de simulation de chaque 

domaine (discret, continu). Une étude approfondie sur les solutions et les travaux antérieurs 

pour la modélisation et la simulation des systèmes hétérogènes. En s’appuyant sur cet état de 

l’art, nous avons fixé le meilleur chemin à suivre pour la modélisation et la simulation. 

Le chapitre 2 a abordé les différentes méthodes de simulation d’un modèle discret dans 

la première partie. Plusieurs modèles de synchronisation entre le simulateur SystemC et une 

architecture cible sont proposés. En fait, cette architecture est implantée sur une carte FPGA 

afin de remplacer l’ISS par le processeur cible et d’accélérer le temps de simulation. La 

communication qui se base sur la liaison USB assure le transfert des paquets en mode 

interruption (interruption matérielle). 

Dans la première partie du chapitre 3 nous avons annoncé une nouvelle technique de 

simulation pour les contrôleurs numériques. La simulation matériel/logiciel en boucle permet 

de surmonter le problème de la complexité des contrôleurs en adaptant la stratégie de Co-

design pour la modélisation. En fait, cette technique diminue le temps de mise en marché et 
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facilite la modélisation. Une interface est utilisée dans Simulink pour assurer la 

synchronisation avec l’architecture cible implantée dans la carte.  

Dans sa deuxième partie, une présentation de l’environnement CODIS permet de 

proposer un modèle de synchronisation global qui englobe les deux simulateurs et 

l’émulateur. Une étude théorique d’un exemple est détaillée afin de démontrer tous les 

scénarios possibles lors d’une simulation.  

Dans le chapitre 4, dans un premier lieu, nous avons présenté le système de 

reconnaissance par empreinte digitale comme étant une partie de l’application globale. Une 

étude détaillée sur l’apport ajouté dans la phase d’extraction (utilisation du classifieur 

DECOC) durant la présentation de l’application. Afin de valider les différents 

environnements, une architecture à base du processor NIOS II est implantée sur la carte. Dans 

un deuxième lieu, nous avons validé l’environnement de simulation/émulation 

matériel/logiciel, la simulation HSIL et l’environnement de co-simulation/émulation 

continu/discret. Les expérimentations ont montré une excellente précision et une vitesse de 

simulation acceptable.  

En conclusion, le niveau de difficulté d’implémentation des modèles de vérification 

réside dans la nature des simulateurs utilisés. Dans le cas des simulateurs commercialisés 

(fermés), cette implémentation devient difficile surtout si le constructeur ne fournit pas 

d’outils supplémentaires à son simulateur. Elle est plus facile dans le cas des simulateurs à 

source ouverte. 

II.  Perspectives 

Il existe plusieurs outils de CAO pour la modélisation et la vérification des systèmes. 

Chaque outil possède des avantages et des inconvénients. La meilleure solution consiste à 

utiliser les avantages de chaque outil et à éviter ces limites. En fait, cette solution se base sur 

des interfaces génériques et assurant la communication et la synchronisation entre différents 

simulateur. 

Dans ce contexte nous proposons de  

� Voir l’intégration des simulateurs continus à source libre (Modelica, Scilab, 

PtolemyII), ce qui va permettre de voir d’autres implémentations plus optimisées des 

interfaces dans le cas du simulateur continu. 

� Proposer un modèle de synchronisation matériel/logiciel multi-niveau entre le 

simulateur SystemC et la carte dont des composants décrit en bas niveau. En effet, le 
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modèle doit supporter la bibliothèque SCE-MI (Standard Co-Emulation Modeling 

Interface) afin d’assurer la communication entre deux processus dans différent niveau 

d’abstraction. 
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Résumé : Dans ces dernières années, plusieurs intérêts sont orientés vers les systèmes 
continus/discrets. Ces systèmes ont crée un besoin pour des outils de CAO capables de 
modéliser et de vérifier leur fonctionnement global. 
Le sujet de cette thèse porte sur la définition et la mise en œuvre d’un modèle de co-
simulation/émulation pour une simulation précise de systèmes continus/discrets en se basant 
sur l’environnement CODIS. En première partie, un modèle de simulation/émulation 
matériel/logiciel est proposé. En deuxième partie, une nouvelle technique de 
simulation"Hardware Software In the Loop" pour les systèmes de contrôle est présentée. 
Finalement, un modèle de co-simulation/émulation continu/discret basé sur le modèle de 
l’environnement CODIS est validé.  
Abstract:  In the last years, several interests have been oriented to the heterogeneous 
systems. Among these systems, the continuous/discrete systems received an attention in the 
Microsystems, the analog/digital systems and the control systems. These systems created a 
need for CAD tools, able to validate their global behavioural. 
The main goal of thesis is to define and to implement a co-simulation / emulation model for 
an accurate simulation of continuous/discrete systems. The first step, presents a 
simulation/emulation environment for Hardawre/Software design. Then, a new simulation 
technique titled Hardware Software In the Loop for designing and verifying the controller 
unit is described. Finally, an environment based on CODIS tool and the two described 
environments is presented.  

��	
 CODIS, Simulink, SystemC  ,ن�
ذج �Gا��, ن�
ذج �>�K�ة :ا����
ت ا���
 , CODISation, SystemC, SimulinksynchronisModèles de simulation, modèles de : Mots clés 

Key-words: Simulation models, synchronization models, SystemC, Simulink, CODIS 


	gardeth_final1
	Remerciement
	rapport8doc
	gardeth_final2

