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INTRODUCTION GENERALE

I. Problématique et Motivation

Dans ces dernieres années, la conception des sgstautomatiques-embarqués est
devenue de plus en plus complexe. Cette compleaxitié est due a l'intégration des
composants hétérogenes a un niveau élevé d'alistranécessite un nouveau cadre
conceptuel pour l'adaptation entre les composa@®rbgenes ainsi que des nouvelles
méthodologies pour la vérification et la validatioohétérogénéité des composants est
devenue une nécessité a cause de l'utilisationnmiEteles en temps continu ainsi que des
modeles a événements discrets dans un modéle gldtahant une vue d’ensemble du
systeme. Dans la littérature, plusieurs systemesdgenes (ITRS, 2003), (Senturia S., 1998),
(Jie L., 2004) ont été développés. Ce travail siilhslans le domaine de la conception multi-
langages des systemes hétérogenes.

Etant donné I'hétérogénéité des concepts manipaéses deux types de modéles, la
validation globale demande un environnement spééialapable de vérifier le systéme en
cours de développement. En respectant la faciktélad modélisation et les sémantiques
nécessaires de chaque modele (continu et disarat)lenvironnement de co-vérification
hétérogéne s'impose. Cet environnement de cdhisatron met en place des interfaces de
simulation / émulation et des modeles de synchatiois entre simulateur-émulateur capable

de simuler le modéle continu et le modéle discret.

Ces systemes hétérogénes ont créé un besoin puutdés de CAO (Conception
Assistée par Ordinateur) capables de vérifier etadieler le comportement du systeme ainsi
congu. Les environnements de co-vérification éleninla détection tardive des erreurs et
réduisent le temps de conception. Il est donc séoesde définir un modele d’exécution
globale dont les éléments de base sont (Bouchhin2065), (Nicolescu G., 2002):

» Les modelesles composants du systeme hétérogene qui sontsdéariemps

continu ou bien dans le domaine a événement discret

» Les interfaces de co-vérificatiajui réalisent 'adaptation de chagque modéle au
bus de co-vérification, 'adaptation des différeptstocoles de communication

et la synchronisation entre les deux modeles.

-10-
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= Le bus de co-vérificationqui est responsable de [linterprétation des

interconnections entre les deux modeles compasetile global.

Les aspects qui rendent difficile la modélisatibmaesimulation des systemes continus
et discrets sont (Bouchhima F., 2007):

= Pour le modele discret, le temgst une notion globale pour tous les modules du
systeme, il avance discrétement en passant parskasits discrets définis par les
temps de notification des événements discrets. leomodéele continu le temps
est une variable globale qui avance par le pagédjration (fixe ou variable) et

qui intervient dans le calcul des signaux.

= Pour le modele discret, les processaost sensibles aux événements alors que,

pour le modele continu, les processus sont exéautbaque pas d’intégration.

» Pour le modéle discret, la communication est réalipar des ensembles
d’événements alors que pour le modéle continupfansunication est realisée

par des signaux continus (un signal continu poseadevaleur a tout instant).

» Chaque modele doit étre capable de détecter, @didecen temps et de réagir

aux évenements envoyes par l'autre modele.

Les techniques de vérification pour le cas desesyss matériels/logiciels sont déja
matures grace au nombre de travaux qui sont imggdigismail T.B., 1994), (Valderrama C.A,
1995), (Abid M., 1998).

Cependant, les techniques de vérification sontidaibnt exploitées pour le cas des
systemes continus/discrets a cause des difficuleéésnise en place des modéles de co-
simulation. L’environnement CODIS (Continuous D&ter Simulation), est le fruit de
plusieurs travaux de recherches dans cet axe (Boualf., 2005). CODIS se base en fait sur
la synchronisation entre un simulateur continu retsumulateur discret. Cet environnement
supporte deux modes de synchronisations: (1) sgndation complete et (2)
synchronisation d’évenements prédictibles. Dangréanier mode, I'environnement CODIS
supporte la modélisation conjointe matérielle/logle en se basant sur un simulateur de jeux
d’instructions (ISS) pour la simulation des apgimas logicielles. Dans ce cas, la simulation
de la partie discrete est lente vue l'utilisatioa HISS. Dans le deuxiéme mode, la
modélisation de la partie discrete est puremenénadie. En fait, ce mode diminue le temps

de simulation mais ne supporte pas la modélisatiatérielle/logicielle.
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lI.  Objectifs

Cette thése présente une extension de I'environme@@DIS (Bouchhima F., 2007)
afin de supporter la modélisation matériel/logigielur le modele discret et d’accélérer la

vitesse de la simulation d’autre part.

L’environnement cible doit étre capable, par cotdation/émulation, de surmonter le
probleme de la modélisation hétérogéne et mulianivdes contrdleurs numériques d’'une
part et de diminuer le temps de simulation ensatiit une carte FPGA a base d’architecture
cible d’autre part. L’accélération de la simulatrésente un point clé qui impose la création
d’interfaces de synchronisation et de communicagioime I'environnement de co-simulation

et la carte de prototypage FPGA.
Les objectifs de la these sont organisés comme suit

= Proposer un modele et un environnement de co-siionlenulti niveau basé sur
les techniques de simulation et d’émulation pour cless des systémes

matériels/logiciels.

= Proposer un modele et un environnement de simuolddatériel/Logiciel en

boucle (Hardware Software In the Lobppour les systemes de controles.

= Proposer une extension du modele et de I'enviroemeér@ODIS+ assurant la
synchronisation entre le simulateur continu d’'uaet pt le simulateur SystemC
et une carte FPGA pour le modele discret d’autre pa

= Valider I'environnement de vérification a traverssdexemples d’applications :
un systeme de reconnaissance par empreinte djgitaleégulateur de la vitesse
d’'un moteur a courant continu, un systéme de cted boucle fermée de la

vitesse d’un moteur et un systeme limiteur de sigsour voiture.

1. Contributions

Ce travail présente cing contributions :

v Une étude des environnements de vérifications wostiet discrets pour les

différents niveaux d’abstraction.
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v" Modélisation d’'un environnement de co-simulation ténials/logiciels multi
niveau tout en respectant a la fois I'accélérationtemps de simulation et la
description dans le haut niveau. Ainsi, un modéée a@bmmunication et de
synchronisation entre le simulateur SystemC et gaee FPGA a base

d’architecture cible est implémenté.

v' Modélisation d’'une interface générique entre leuateur Simulink et la carte
FPGA & base d’architecture cible respectant la Isitiom Matériel/Logiciel en

boucle.

v" Modélisation d’un moteur de synchronisation queiface et adapte le simulateur
du modeéle continu avec le simulateur/émulateur dwdéte discret.
L'environnement ainsi congu est nommé CODIS+. Le bu moteur de
synchronisation est de gérer le simulateur Simulihk domaine continu, le

simulateur SystemC et I'architecture cible du dorealiscret.

v' Développer un systeme de reconnaissance par engpuigitale pour I'utiliser

lors de la validation des environnements.

Plan de la these

Ce rapport est composé de 4 chapitres. Le prensercensacré a une étude
bibliographique sur les systemes continus, discegthétérogénes. Le deuxiéme
présente les différents environnements de vérifinatainsi la méthodologie de co-
simulation matériel/logiciel multi niveau. Danstleisieme chapitre, nous proposons
la méthodologie de vérification des systémes costiiscrets. Dans ce dernier, les
interfaces de communication et les schémas de symishtion sont décrits. Enfin
nous présentons dans le chapitre 4, a traversepigsapplications, la validation de
I'environnement de co-simulation matériel/logiciehulti niveau, la simulation
matériel/logiciel en boucle et [I'environnement deo-simulation/émulation
continu/discret (CODIS+).
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Chapitre 1 : ETAT DE L’'ART

. Introduction

Compte tenu de la diversité et de la complexité syestemes, plusieurs méthodes de
descriptions sont étudiées dans la littérature.qGbaméthode dépend de la nature des
systemes a concevoir. En fait, plusieurs outilsemtironnements de modélisation et de
vérification existent pour les systemes continugcelr les systemes discrets. En contre partie,
les outils destinés aux systemes continus/diss@i$frent encore de plusieurs lacunes. Le
temps de simulation, la modélisation dans difféyeniveaux d’abstractions et le temps de
mise en marché sont principalement les insuffissruesentes dans les environnements

supportant les systemes continus/discrets.

Dans ce chapitre, nous présentons tout d’abord deseription des meéthodes de
modélisations et de simulations du modele contihi.exemple illustre la modélisation au
niveau comportementale et fonctionnelle. Ensuit description du principe de modélisation
des systémes discrets. Finalement une étude sunddwdes de descriptions des systemes
continus/discrets basées sur I'approche homogehététogéne est détaillée. Cette derniere
section cite les différentes caractéristiques deggsoprésents en soulignant les avantages et

les inconvénients de chaque méthode.

[I.  Principe de modélisation et vérification du modeleontinu

Tout modele continu se base sur la résolution desténs différentielles ordinaires
(EDOs) (Ordinary Differential Equations). Ainsisléiagrammes de blocs utilisent ses EDOs
pour la modélisation des systémes. Une étude b&taist présentée dans cette section.

I1.1. Modélisation du modéle continu

Par définition, les systémes continus couvrent tessystemes dynamiques a variables

continus dans le temps. Leur modélisation se taitimeau comportemental ou fonctionnel.
[1.1.1. Au niveau comportemental

Le systeme continu est modélisé dans son enserabitndtionnement. Le modéle est
décrit, dans ce cas, par des EDOs. Les équatidisees sont des équations différentielles
d'ordre 1données par I'équation (1). Pour les EDOs d’ordigseur peuvent étre réduites a

un systéme d’équations différentielles d’ordre lerBque celles supérieur a 1 puissent étre
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parfois résolues directement, tres peu d’algorithreent disponibles pour le faire (Gupta
G.K., 1985).

=y

y= 0 f(xY), y(X,) =Y, ouyestunvecteur @

L’équation (1) est appelée EDO explicite. Il existee autre forme appelée EDO

compléetement implicite donnée par la forme suivante

f(xY,y)=0 @

La plupart des EDOs completement implicites peuv@&né écrites sous la forme
suivante (Gupta G.K., 1985)

;/: M(xy)  ouM estunematrice &)

La forme (3) est appelée EDO linéairement implicite

Dans le cas des systémes continus I'équation (A¢ e

x= %= £ (xut), X(t,) = %, 4.)
dy
y=g(xu,t) (42)
Ou, t représente le tempsg,représente le vecteur d'entréaeprésente le vecteur des

variables d'états et représente le vecteur de sortie. Ainsi, un esp&sats completement
spécifié par les équations (4.1) et (4.2) est abten

L'équation (4.1) représente lI'ensemble des équattatats avec une condition initiale,
et I'équation (4.2) donne l'ensemble des équatiensortie. Assumons que nous avons
variables d'étatan variables d'entrées etvariables de sorties, ces équations peuvent étre

écrites sous la forme scalaire suivante :

Il y auran équations d'états

%, = 1 (K (O X Uy (e Uy (O, %, (E) = X
43)

>2n =1, (t),....... X, (), 0, (), U (),1), X (L) = X,
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etr équations de sortie

Yy = 0, (% (),...... X, (©),ug (1), u, (t),t)
(44)

Y, =0,(%@),..... X (©),u, (), u (),t)
La linéarité :
La notion de linéarité est fondamentale dans lesailoes scientifiques et les domaines
d'ingénieur. La nature des fonctionst g, donnée par les équations (4.1) et (4.2), senea f

la nature du systeme. Ce dernier est appelé Imé&aices deux fonctions sont toutes les deux

linéaires. Dans ce cas, les équations (4.1) e} ¢&¢.2éduisent a :

X(t) = At) x(t) + B{H)u() 51)
y(t) = C(t) x(t) + D(t) u(t) 52)
A(t) (n,n) B(t) (n,m) C(t) (r,n) et D(t)(r,m) sont des matrices om, m et r sont les

mémes variables données ci-dessus. La classe dgi&sngg linéaires est en effet restreinte.

Par exemple, une simple fonction comfpe = x" (n> 1 est un entier) est non linéaire.
L 'invariance par rapport au temps :

Une autre propriété est l'invariance du modéleydtésne par rapport au temps. Dans le
cas ou les fonction§ et g ne dépendent pas explicitement du temps, le systeshalit

invariant par rapport au temps, dans ce cas lestiéns (4.1) et (4.2) se transforment en :

X(t) = f (x(t),u(t)) (61)
y(t) = g(x(t), u(t)) (62)

En assumant la propriété de l'invariance par rapmuotemps, nous pouvons restreindre
la classe des systémes linéaires en une autre@ades matriceé(t), B(t), C(t) et D(t) sont

constantes, et on obtient :

x = Ax+BU 7.1)
y=Cx+Du (7.2)

Les équations différentielles-algebriques :
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Si I'ensemble des équations qui décrivent le systétontinu sont composeées
d’équations algébriques et différentielles, elleatsaommées donc équations différentielles-
algébriques et données par (Gupta G.K., 1985)

FOCYZY) =0, Y(%) = Yo ®
F,(x %2)=0

Ou R est un ensemble de N équations edé-M équations.

Il est indéniable que la modélisation au niveau poremental s’avére une tache
pénible pour les concepteurs. C’est pourquoi la éhsation au niveau fonctionnel évolue
rapidement.

[1.1.2. Au niveau structurel

Le systeme continu est modélisé par un ensembfera¢ions, prenons par exemple :
un régulateur PID. Dans ce cas, le modeéle esttdgariun diagramme de blocs prédéfinis ou
chaque bloc est caractérisé par un ensemble denslalinéaires ou non linéaires, entre les
variables d’entrées et les variables de sortigensipar exemple: sommation, fonction de
transfert, intégration, etc. Les blocs sont intar@rctés par des chemins orientés représentant
des signaux. A ce niveau d’abstraction et a paes blocs prédéfinis, il est possible de

construire des modéles et des sous modules posysgiEgnes dynamiques complexes.

Actuellement, grace a des blocs spéciaux, les ER@#lisant un systéme continu au
niveau comportemental peuvent étre programméesomhectées aux autres blocs du
diagramme. Ainsi, le formalisme du diagramme dedlest le plus adapté puisqu’il supporte
aussi le formalisme des EDOs. En fait, c’est phwlé de modéliser un systéme continu en

utilisant le diagramme de blocs que par la résmiuties EDOs.
11.1.3. Modélisation : exemple continu

A travers cet exemple nous présentons le formaldendiagramme de blocs. Pour une
meilleure explication, nous utilisons aussi le falisme des EDOs ou nous expliquons la

technique de réduction d’ordre. Prenons I'exempleiccuit RLC représenté par la figure 1.
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R L Vs
— NN Y Y Y ———— P
Ve(@) —C

Figure 1. Circuit RLC série

Modélisation comportementa
Le comportement de ce circuit est décrit par I'équatidférentielle (9) d'ordre deux
issuede la loi des maille :

d dv+%

V.=LCc1 s 4 rcDYs ©)
dt dt

e

Pour résoudre cette équation numériquement, naosabesoin de la réécrire sous

systemedquivalant d'équatiordifférentielles d'ordre 1. Nous supposons :
Yo =V, 10
Y. =Vs

En combinant les deux équations (9) et , on obtient le systeme d’équatic

différentiel d’ordre Isuivant

Yi=Y, @y
Y, =1/ LC(Ve - RCyz - yl)
Vs = yl

Par la méme démarche donnée par (10) et (11), équation différentielle d'ordi
supérieur a 1, peut étréécrite sous un systeme equint d'équations différentielles d'orc
1. Le méme circuit peut étre facilement décrit paspace d'états (forme (7.1) et (7.2)) do

par :
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x| [0 1/C 0
= el 02
: -1/L —-R/L|| x| |[1/L
X2
V, {Xl} ,0u x =V, et x, =1 représentat les variablesd'états
X2

Nous pouvons remarquer que les systemes (11) ¢tgd® équivalents, ainsi ils
peuvent étre facilement programmeés en utilisantediteur de texte ou modélisés par un

diagramme de blocs.
Modélisation fonctionnelle

Le diagramme de blocs : La figure 2 montre le méme circuit modélisé parsenl bloc

qui décrit sa fonction de transfert donnée paratmpn (13)

1
[C.9+RCs+l —{_1 |

Ve Vs
Fonction de transfe

Figure 2. Modélisation par diagramme de blocs (tomt de transfert)

Vi(s) _ 1

H() :Ve(s) LCs’ + RCs+1

a3

En utilisant (12), le circuit peut étre décrit par diagramme de blocs, en utilisant des
blocs prédéfinis appelés primitifs, qui sont ligtateur, I'additionneur et le gain ou

lintégrateur représente le bloc principal (CalkeM., 1991), voir figure 3.
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' 1 1
e s L2 g L
Integrateur Integrateur1
Gain
S S
Vs
Gain2
1/LC

Figure 3. Modélisation par diagramme de blocs (bpoienitifs)

Il est clair, a travers cet exemple, que la modébs des systemes continus par le
diagramme de blocs est plus simple. Dans la sestiorante nous introduisons le modéle de

simulation des systémes continus.
II.2. Modéle de Simulation

La simulation des systémes continus se base s@stdution numeérique du systeme
d’équations différentielles et algébriques. Plusiealgorithmes de résolutions essaient de
résoudre les EDOs en un temps le plus court pesafbii de pouvoir traiter des problemes de
grande taille. Une large classe d'algorithmes disant le temps en un ensemble d'instants
discrets croissants et calculent numériquementddables du modele a ces instants. Un pas
d’intégration correspond a l'intervalle entre denstants consécutifs. Ce pas peut étre fixe ou
variable.

Durant la simulation, le temps avance par le paségration. A chaque pas, les blocs
gui modélisent le systéme continu sont exécuté&®l{ng) et 'ensemble des états continus sont
mis a jour. L'ordre de résolution de ces blocs dmtiné par la regle de dépendance des
données.

La précision, la stabilité et la continuité desnsigx sont les trois critéres responsables
aux choix du pas d’intégration. Lorsque la précisést le seul critére a prendre en compte
(c’est-a-dire le systeme est a la fois stable eticn), on peut utiliser un algorithme a pas
fixe. En contrepartie, l'utilisation d'un algoritena pas variable augmente la vitesse de la
simulation, puisque l'algorithme réduit le pas qud® modéle évolue rapidement et vice

versa. Ceci évite tous les calculs non nécessaiteséduit le nombre total des pas
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d'intégration. Bien que le calcul de la largeurpdis d'intégration ajoute un temps de calcul
additionnel a chaque pas, lI'impact positif de laudion du nombre total de ces pas
d'intégration s’impose.

Lorsque le modéle continu présente des disconéisdt/ou des problémes de stabilité

alors il faut utiliser :

* Des algorithmes a pas variable (Gear C.W., 1984)r gurmonter les problemes de
discontinuités observés au niveau des solutionstowgu lorsqu'il interagit avec un
environnement discret ou les signaux changent halesirs d’'une maniére discontinue. Dans
le cas de discontinuité, I'algorithme recalcule detutions en raffinant les pas d'intégration

autour de ces points de discontinuité.

* Des algorithmes spécifiques a pas variable pououdde les problemes di aux
méthodes numériques pour la résolution des équatidférences qui sont numeériquement
instable. Ces problémes sont appelés les problétifésjui apparaissent surtout dans les
modeles non linaires dans le cas des systemes igéeanélectriques, etc. Ces algorithmes
sont congus pour la résolution des problestd§ car dans leur cas le pas dintégration est

contrélé par précision plutdt que par stabilité j@EuG.K., 1985).

Le problémestiff apparait lorsque les variables d’états évoluenhed'maniere trés
rapide sur un intervalle de temps trés court pppad au pas d'intégration. Ceci peut étre
observé au niveau de la matrice Jacobine (Sameh POH1) qui peut avoir des valeurs
propres qui sont négatives (ou complexes avec altiepréelles négatives) avec des modules
largement supérieurs par comparaison aux autresungalpropres. Cela implique que des
composants de la solution vont dégrader tres witdegiennent non significatifs. Alors,
l'algorithme doit changer le pas d'intégration damér compte des valeurs propres liées a ces

solutions.

lll.  Principe de modélisation et vérification du modeleliscret

Nous présentons ici les concepts de base utilisgslp modélisation et la vérification
des systemes discrets.

I11.1. Modélisation du modeéle discret

Par définition les systemes discrets sont tousyis®mes numériqgues ou d’une maniére
plus générale tous les systemes a événementstdisceirs comportements sont souvent
décrits par des processus concurrents en utild@sexpressions booléennes, logiques et/ou

arithmétiques selon le niveau d’abstraction. Dansiveau RTL (Regiter Transfer Level), ces
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processus sont connectés par des signaux a tilavessports d'entrée/sortie (figure 4). Ces
signhaux qui représentent un support physique, essla communication et 'échange des
évenements entre les processus. Un événement eefir§sar le couple (valeur du signal,
temps d’occurrence) est un événement di a un cheergede la valeur d’'un signal a un
instant précis. Un événement pur est un événemantse représente par son temps
d’occurrence seulement. L'exécution d’'un processisdéclenchée si un événement dans sa
liste de sensibilité est aussi déclenché. Par itiéfin une liste de sensibilité contient une liste
de signaux qui réveillent le processus lors d'iangement d'un des signaux. Si plusieurs
processus sont sensibles a un ou a plusieurs ée@t®iui ont le méme temps d’occurrence
alors, dans les deux cas, ces processus doivengxdcutés en paralléle. Le parallélisme est
un aspect qui est assuré par le modéle de simulatas qui doit étre pris en compte par le
modele. Le probleme est di a I'exécution a pariimel machine séquentielle, capable
d’exécuter une instruction a la fois, toutefoigea@hachine ne peut pas paralléliser réellement
les différents processus en méme temps. La soluépase sur une idée trés simple mais
efficace : le processus exécuté ne doit pas chdegemaleurs de sortie des processus jusqu’a
la fin de I'exécution des autres processus qusduit en paralléle. Ainsi, I'ordre d’exécution
de ces processus n’'a plus d'importance et touassgpcomme s'’ils s’exécutaient en paralléle.
Pour parvenir a ce résultat, il faut que les signdun processus conservent leurs valeurs

jusqu’a ce que tous ces processus aient fini bkeérdion (Valderrama C.A., 1995).

Module A Module E
P] Pl Modul Pz
, O C——— 1 ‘I;l“e Wy
L1 Sianau:
P’ P2\ Module
O Cle—H 5,

Figure 4. Un exemple du modéle discret
[11.2. Modéle de simulation

La simulation dans le domaine discret désigne l#iegtion d’'un modele qui évolue
dans le temps a travers des variables (grandeuestéestiques des systémes) qui ne
changent qu’en nombre fini dans le temps. Ces poagrésentent les instants ou se déroulent

les événements (changement des variables). Laatiolprend en compte les taches actives
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a des instants précis. Toute une description dé&sehts types de simulation est décrite dans

le chapitre 2.

IV. Principe de modélisation et vérification du modele

continu/discret

A I'heure actuelle, les recherches concernant Ehades, les outils formels relatifs a
analyse du comportement des systemes hétérogeinasla synthése de leurs lois de
commande en sont encore a leur début. La simulegiste donc un passage nécessaire pour la
validation du fonctionnement de ces systemes hgbriVu I'hétérogénéité des modeles a
valider, la simulation n’est pas une tache fachaur surmonter cette difficulté, deux
approches sont proposeées : 'approche homogerapptdche hétérogene.

IV.1. Approche homogene : conception et simulation

Cette approche consiste a utiliser un seul langege la spécification compléte du
fonctionnement du systeme. Cela suppose qu'il pless@e sémantique consistante et assez

riche pour qu’il puisse supporter I’hétérogéenéé thodules continus/discrets.

Une premiére solution consiste a étendre les lawagistants, en modifiant le noyau
de simulation afin de supporter I'hétérogénéitéaviantage de cette solution est que le style
d’écriture est formalisé de facon a faciliter I'ys@ formelle et la construction de nouveaux
outils. L'inconvénient majeur réside dans la diifi¢ de la construction de nouvelles
bibliothéques, mécanismes et formalismes qui desraneh temps d’apprentissage important

pour les nouveaux langages.

En citant les différents travaux et outils, on aage de les classifier selon leurs points
communs. Plusieurs travaux et outils portant sexténsion des langages matériels étaient
proposés pour enrichir ou améliorer leur capacigcdptive et simulatrice. Ces extensions
étaient pour le domaine continu et pour d’autrasaiaes discrets plus spécifiques.

IV.1.1. Validation analogique / numérique

Ce type d'outils est le sujet de plusieurs travautgnt Diana (De Man H.J., 1980),
Splice (Newton A.R., 1978), Motis (Chen C.F, 198mson (Sakallah K.A., 1985), Spice
(Banzhaf W., 1989). Ces outils se basent sur labawerson de deux algorithmes dans le
noyau de simulation : algorithme de résolution &80Os et algorithme de gestion des
événements discrets. L'important dans ces outits la&ssimulation rapide de la partie

numerique. Mais malheureusement, ces outils sugmoseulement le niveau transistor pour
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la modélisation, augmente le temps de mise en réaethrend pénible la phase de

modélisation.

D’autre travaux comme Mode Circuit Simulator (OdayiR., 1986), MAST de SABER
(Getreu IL.E., 1989), ALFA (Kazmierski T.J., 1993%+SDL (Brown A.D., 1992), Verilog-A
(Fitzpatrick F., 1998) et HDL-A (Pabst D., 1995) aétisent les modéles analogiques a plus
haut niveau (macro-modéles). Mais de méme que geéudent, les modéles analogiques

restent a un niveau beaucoup plus bas.
IV.1.2. Extension du langage VHDL et Verilog

Ce type d’outils utilisent deux noyaux différentsn pour I'analogique et l'autre pour
les événements discrets, pour simuler le comporiegiebal du systéeme. Les outils comme
VHDL-AMS (Std VHDL-AMS, 1999) développé par le stard IEEE 1076.1, (Drager S.L.,
1998), (Pécheux F., 2005) et Verilog-AMS développgéle co-standard IEEE 1364 (Frey P.,
2000), (Pécheux F., 2005) assurent la validatios sistemes hétérogenes a différents
niveaux d'abstractions. Une autre approche (Pidhori995), est fondée a la fois sur une
description par fonctions de transfert et une aypration des signaux analogiques par PWL
(Piece Wise Liner). La méme technique est emplages (Long D.l., 1997) pour étendre
VHDL. Mais la conception des circuits analogiquemetes reste a un niveau beaucoup plus
bas que celui des circuits numériques. Ces langagésent pas un niveau d’abstraction
suffisamment élevé (Vachoux A., 2003) et souhagtgimur la simulation des systémes sur
puce intégrant du matériel numérique, du logidiel’autres composants non électriques et ne
supportent pas la simulation conjointe des systamasriels / logiciels. Ces outils présentent
aussi une limitation au niveau interaction enteerteodules continus et discrets, ce qui oblige
I'utilisateur a créer d’'une maniere explicite leserfaces nécessaires. De plus, le temps de
passage du sous-modele continu au sous-modeletdetcvice versa est toujours difficile a
repérer. Ces langages sont toujours considérés esoohaitables pour la modélisation des
systemes mixtes « big-D-little-A » c'est-a-dire pdes systemes numériques intégrant une
faible composante analogique (Antao B.A., 1996)c&ntre partie, ces outils utilisent un seul
solveur pour la résolution des systemes d’équatibgebriques et différentielles ce qui rend
nécessaire d’'indiquer dans le code I'emplacementeanodéle change de fonctionnement
c'est-a-dire que la discontinuité du modéle n'eas pésolue automatiguement par le

simulateur.

-25-



Environnement de Co-Simulation / Emulation des systémes Continus / Discrets Mossaad Ben Ayed

IV.1.3. Extension de SystemC

Cette extension se base sur la construction d’ongeile bibliotheque et des solveurs
pour la résolution des équations différentiellesalgébriques SystemC-AMS (Vachoux A.,
2003), SystemC-A (Al-Junaid H., 2005), (Al-Junaid BI004). Dans (Vachoux A., 2003), les
auteurs indiquent la possibilité d'utilisation d’'umécanisme de synchronisation pour
l'intégration d’'autres simulateurs et solveur pdeas systemes assez complexes et pour des
niveaux d’abstraction qui ne sont pas couvertsSyatemC-AMS, ce qui rend leur approche
intéressante. Dans (Bonnerud T.E., 2001), d’autragaux sont proposeés pour étendre
SystemC par classes, pour la simulation mixte d'wonvertisseur pipeline
analogique/numérique. Dans (Patel D.H., 2004), deseurs proposent I'extension des
capacités de description de SystemC en ajoutanbmbre de noyaux spécifiqgues a quelques
domaines discrets qui sont : le domaine de Flugateées synchrones (SDF: Synchronous
Dataflow), le domaine CSP (Communicating SequeRtiiatesses) et le domaine de Machine
d’états finis (FSM: Finite State Machine).

Cette extension permet d'étendre la modélisationlaesimulation des systemes
continus. La simulation devient plus performanteecsglement dans le domaine de
communication et de traitement de signal (Vachoux2803). Les travaux cités montrent par
guelques exemples que la précision de SystemC anéédiorée et les performances de la
simulation ont augmenté quand les noyaux spécsicue été utilisés. Les auteurs créent
aussi un ensemble d’interfaces de programmation (APplication Programming Interface)
pour permettre aux développeurs d’ajouter d’autimsux spécifiques a d’autre domaines de
modélisation. Mais la simulation du modéle contmeste moins puissante au niveau de la
précision de la simulation et de la disponibilitéesd bibliotheques par rapport a
'environnement complet que Matlab / Simulink (MdtISimulink, 2012) l'offre d’une part,
et un manque de solveurs adéquats pour les différéoamaines continus (mécanique,

hydraulique, robotique,...) d’autre part.
IV.1.4. Ptolemy Il

Ptolemy (Eker J., 2003) est développé au seinuteviérsité de Berkeley. Il utilise un
environnement et un langage qui sont unifiés. Qlest approche hétérogene de point de vue
composition disjointe des modeles de calcul apators. Il utilise des directors qui
implémentent les modeéles de calcul et qui perntééblir le style de communication entre
les actors et de fixer leur ordre d’exécution. lamposition des modéles de calcul dans

Ptolemy Il assure la spécification des systemeerbgénes multi-disciplines et multi-
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domaines. Cet outil est a source ouverte pourdgsldppeurs et indépendant des plateformes
grace a la technologie Java. Les inconvénients ete oatil résident dans le temps
d’apprentissage important et le non utilisation biésiothéques (en particulier les composants

matériels comme les processeurs et les accélé&attuPs congcu pour chaque modele.
IV.1.5. MLdesigner

MLdesigner (Mission Level designer) (Schorcht G002) se base sur I'approche
Ptolemy. C'est une plateforme unifiée, dédiée a n@délisation (fonctionnelle et
architecturale) et a la simulation au niveau systel’environnement établit une connexion
par appel de service (callback) avec SatLab (Sbtihd@sc, 2003) pour assurer des calculs de
trajectoire ou des analyses pour les systemesvigatian et de communication. L'utilisateur
peut construire son modéle en utilisant une interfgraphique proche de celle du Simulink
(Matlab/Simulink, 2012). Les blocs fonctionnels fiois par la bibliothéque sont écrits par un
langage proche de C++ et sont paramétrables. Mahsement, les exemples fournis avec
MLdesigner ciblent seulement les systémes a aathiee numérique mono et multi-
processeurs. De plus, Mldesigner est complexe siamsenvironnement et le langage utilisé

nécessite un temps d’apprentissage important.
IV.1.6. Modelica

Modelica (Modelica, 1997) est un langage et enviesnent unifié pour la
spécification et la modélisation des systemes plgs. Les composants du systeme sont
mathématiquement décrits par des équations ditiétks et algébriques. Cet outil montre
une bonne capacité de modélisation et de réuidisa&n se basant sur les concepts d’orienté
objet et de non-causalité. Modelica fournit un emsle de bibliotheques dans plusieurs
disciplines et domaines : continu, électrique, mépee, thermique, discret et logique
booléen, réseau de Petri, logique floue, Vehicleddyics, etc. Le langage, les librairies et les
outils de simulation de Modelica sont a usage Jilbnais il existe des environnements de
simulation commerciaux basés sur ce langage qui Bymola (Ferretti G., 2006) de
Dynasim et MathModelica (Mathmodelica, 2006) de WGxdre Engineering. Mais, il est
incapable de supporter la notion d’événements a@liscexploitée dans la simulation des

systemes numeriques.
IV.1.7. Outils basés sur I'approche UML

Paragon (Pinki M., 2003), (Riihimaki J., 2005) é#ajtazovic S., 2005) peuvent
appartenir aussi a l'approche hétérogéene car iiteraavec un seul langage de modélisation
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(UML) mais, dans la majorité des cas, apres ild fppel aux langages existants (VHDL,
SystemC, etc.). Au niveau modélisation, les autelfésrivent la structure du systéme en
utilisant des IPs (Intellectual property) mais Idesla simulation, ils utilisent la technique de

la co-simulation.

SysML (Azam F., 2005) (Systems Modeling languagsl) développé a partir de
'UML pour la spécification, I'analyse et la valitien des systemes matériels/logiciels et des
systemes d’information. Pour la vérification, SysMénére un code adéquat a un langage

cible (comme VHDL et C) en respectant le simulatgilisé.

Paragon (Pinki M., 2003) qui est un outil de maghtion indépendant des langages
matériels utilisés pour la simulation ou pour la@gption. Il fournit une sémantique qui est
capable de décrire des systémes continus/distretiinctionnement (les expressions et les
calculs) est décrit par MathML qui représente upgliaation de I’XML pour la description
des notations mathématiques. L'important ici cgsé I'utilisateur peut créer son modele a

partir d'une interface graphique.

Tous ces outils sont plutét utilisés pour décrrstructure et I'hiérarchie des systemes.
Le comportement est difficilement décrit par cesgkges qui ne peuvent pas fournir la

sémantique donnée par les langages matériels.
IV.1.8. Outil basé sur les métriques approximatives

(Antoine G., 2007) a développé un environnementsgpporte le modéle continu et le
modele discret en utilisant le langage d’inclusiapproximative et la bisimulation
approximative. L'utilisation de cette approche appmative qui est basée sur la machine
d’état infinie pour le modéle continu et la maehiiétat finie pour le modéle discret, permet
de résoudre la complexité des EDOs et d’'accéléeairhulation d’'une part et souffre de

mangque d’algorithme pour le calcul des fonctiongdires et non-linéaires d’autre part.
IV.1.9. Hybride Automata

(Vladimeros V., 2012) a développé un outil en seaba sur la solution « Hybride
Automata » qui permet a la fois la modélisationtoardiscret. Cet outil utilise la classe
mathématique o-minimal qui se base sur une résalugéomeétrique des EDOs. Une
améelioration de la classe o-minimal est présensgev/adimeros pour considérer le modele
discret. Cet outil exploite mieux les propriétés dgstémes temps réels mais il est plus adapté

pour le modéle continu que pour le modeéle discret.
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IV.1.10. Synthése

L’approche homogéne repose sur deux types d’ermvéments :

v" Nouvel environnement comme par exemple PtolemygeBigher et Modelica.

v' Extensions des langages comme VHDL-Verilog et SySteAMS.

Le tableau 1 résume la majorité des travaux enamieficcent sur les avantages et les

inconvénients de chaque environnement.

Outils Avantages Inconvénients
o - Simulation de la partie numérique Simulation au niveau transistpr
Validation _
) assez rapide. seulement.
analogique / A . . e . .
. -Modélisation analogique au niveadu Modélisation reste a un niveau
numérique

macro-modele

beaucoup plus bas.

Extension du
langage VHDL
et Verilog

- Validation des systémes hétéroge

a différents niveaux d’abstractions.

nedliveau d'abstraction limité.
- Simulation conjointe des system
matériels / logiciels non supporté.
- Interaction continu/discret non définie,
- Un seul solveur est utilisé pour

résolution des EDOs.

Extension de

-Etendre la modélisation et

simulation des systemes continus.

a Simulation analogiqgue moins puissa

au niveau de la précision.

es

la

nte

our

nts

SystemC | - Simulation performante. -Manque de solveurs adéquats p
différents domaines.
- Spécification des systemes Nécessite un temps d’apprentissage
hétérogenes multi-disciplines et multiimportant.
Ptolemy Il | domaines.
-Une source ouverte pour les
développeurs.
-Une interface graphique proche |deComplexité de I'environnement.
MLdesigner | celle du Simulink. - Nécessite un temps d'apprentissage
important.
-Bonne capacité de modélisation et|dé&le supporte pas la notion d’événeme
Modelica réutilisation en se basant sur [ediscrets.

concepts d'orienté objet et de na

n-
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causalité.
-Existence des bibliotheques dg
plusieurs disciplines et domaines.

-Une source ouverte pour |

développeurs.

NS

Outils basés | -Création du modele a partir dune Le comportement est difficilement
sur I'approche | interface graphique. décrit par ces langages.
UML
Métrique -Résoudre la complexité des EDOs.| - Moins de précision.
approximative | - Simulation rapide.
Hybride -Exploitation des propriétés desPlus adaptée pour le modéle continu que
Automata | systemes temps réels. pour le modele discret.

Tableau 1 : Avantages / inconvénients des outié@baur I'approche homogéne

IV.2. L’approche hétérogéne

Cette approche permet de modéliser le systeme eongpl utilisant des langages

spécifiques. La technique de co-simulation perrugtisation de plusieurs simulateurs pour

la validation globale de ce systeme. Pour cefapuil disposer d’'un modéle de communication

qui décrit la synchronisation et les interconnesgientre les différents modules. La difficulté

réside dans la construction de ce modéle. Une teahmique, la technique mono-simulateur,

consiste a traduire les langages utilisés poueszmption du systeme entier vers une sorte de

langage unique ou un format accepté par le simuiéhicolescu G., 2002).

L'avantage de cette approche est que chaque maldukkystéme peut étre modélisé

avec un langage spécifique et approprié. Cela pgedimgégrer les IPs et d’exploiter au

mieux les performances des langages existants.

Généralement les raisons et les avantages pourelssqgn fait recours a plus qu’'un

langage sont :

v' L’hétérogénéité du systéeme qui combine plusieursaioes physiques, par

exemples : mécanique, électronique numérique (nebsdrogiciel), chimie, etc.

v’ Le systeme posséde des modules qui appartienneplusieurs niveaux

d’abstraction, et donc l'utilisation du langage pius adéquat pour chaque

niveau.
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v Le besoin de créer des testbenchs complexes (tlidabon utilise le langage C

et ses dérivés)
v' L’exploitation des bibliotheques déja existantearm®ertains langages.
Nous allons classifier ces outils en deux catégarie

v Qutils qui utilisent plusieurs langages/plusieurauateurs : technique de co-

simulation

v" Outils qui utilisent plusieurs langages/un seul Wateur : technique mono-

simulateur

IV.2.1. Technique mono-simulateur

Avec cette technigue le systeme est toujours coéngdasr ensemble de sous-systemes
spécifies dans difféerents langages mais la sinmatiécessite le passage par un langage

unifié ou un format connu par le simulateur, vajufe 5.

Sous Systeme 1 Sous Systeme 2 Sous Systéme 3
> <>
A Qg_ﬂ/

A
Langage unifié Format connu
(netliste,...) (.dli,..)

Figure 5. Le principe du techniqgue mono-simulateur

La validation par simulation consiste a exécutespécification du systeme afin de
reproduire le fonctionnement du systeme entier.sDarigure 5, le sous-systeme 1 et le sous-
systeme 3 sont des composants matériels modébsétepx différents langages (comme par
exemple, VHDL et Verilog) et le sous-systeme 2 éspnte une application logicielle ou un

modele continu (Zorzi M., 2003).

(Dubois M., 2011) propose un approche qui consigtdéveloppement d’'un simulateur

compilé multi-langage ou chaque modéle peut éteeitdgn employant différents langages de
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modélisation tel que SystemC, ESyS.Net ou autreaq@e modéle contient généralement des
modules et des moyens de communications entre ea%. modules décrivent des
fonctionnalités propres a un systéme souhaité.eGgiproche se base sur un seul noyau au
lieu de plusieurs et d’enlever le bus de co-sinmapour accélérer le temps de simulation.

Mais cet environnement ne supporte que le niveau@®TLM (Lukai, 2003).

IV.2.2. Technique de co-simulation

La co-simulation consiste a exécuter des simulat@@mmunicants, voir figure 6.
Chacun des simulateurs exécute un sous-systémé déos un langage approprié. Pour
assurer I'échange correct des données et la coroation entre ces sous-systemes, le besoin
d’'un modeéle de synchronisation s’'impose. Ce mogetand en compte les spécificités du

modéle de simulation adopté par chaque simulateur.

Sous Systeme 1 Sous Systeme 2 Sous Systéme 3

Qa_gy Qiy Qﬁy
I A I I A I I A I
v v v
Interface de Interface de Interface de
simulation simulation simulation

I I I

Bus de Co-simulation

)

Figure 6. Le principe de la co-simulation

Des interfaces de simulation assurent lintercoiorexentre les différents sous
systemes. Ces interfaces communiquent a travelsusirde co-simulation qui peut étre une
mémoire partagée avec une structure bien défimmegttant des interconnexions complexes
ou autre technique de communication inter-proceskas interfaces de simulation sont
composées par des couches de communication enndbreypisation et selon les simulateurs
utilisés ils peuvent implémenter des comportemastez complexes (Bouchhima F., 2005)
(Nicolescu G., 2002). Les avantages de la techriguso-simulation sont :
> Bénéficier au mieux des performances des langagesles simulateurs existants

(sémantique, précision de simulation, bibliothégets).

» Reédutiliser des composants existants comme les IPs.
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> Eliminer le temps d'apprentissage puisque les egaitilisés sont trés connus par les
concepteurs.

V. Discussion

Plusieurs outils de modélisation et de simulationt été décrits tout le long de ce
chapitre. Essentiellement deux approches sonségdi: approche homogene et approche
hétérogene. L'approche homogéne consiste a déwags environnements supportant a la
fois le modele continu et le modéle discret. Ceetglfputil permet une simulation rapide mais

présente plusieurs inconvénients citant :
v" Non utilisation des bibliothéques et des IPs dédgmir chaque modeéle.

v/ Limitation au niveau d’abstraction: Il y a un maeq d’environnement
supportant la description dans tous les niveaudkdtifactions conjointement

avec le modéle continu.
v' Apprendre un nouveau langage.

En contre partie, la méthode de co-simulation @gpioche hétérogéne permet la
synchronisation entre le simulateur continu etineusateur discret. Nous proposons d'utiliser
'environnement Matlab / Simulink pour la descrgstiet la simulation du modele continu a

cause de plusieurs avantages :

v' Matlab / Simulink appartient aux langages méti®rsnfain Specific Languages)
(Consel C., 2004).

v' Matlab / Simulink est spécialisés dans les domaipasgiculiers comme

l'automatique et les systémes de contrdle (Chapéyt2008).

v' Le temps de simulation pour le modéle continu esisitiéré plus rapide que
I'environnement Ptolemy (SJOSTEDT C., 2009).

L’avantage de cette approche lorsqu'il est liéecake simulateur Matlab / Simulink,
réside dans l'utilisation des simulateurs discretsstants, congu pour tous les niveaux

d’abstraction ainsi l'utilisation des bibliothequetsiPs standards.

Dans ce cadre notre environnement propose un mddete-simulation continu /discret

matériel/logiciel multi niveau en ajoutant un éntela a base d'une architecture cible

-33-



Environnement de Co-Simulation / Emulation des systémes Continus / Discrets Mossaad Ben Ayed

permettant a la fois d’accélérer la simulationaetmodélisation conjointe matériel/logiciel de

la partie numérique.

Les stratégies de co-simulation nous permettent dien simuler et de vérifier des
systemes matériels/logiciels avant la mise en pllaoee plateforme réelle. Dans ce domaine,
il 'y a une grande variété d’approches qui utilisetgs différents mécanismes de
communication pour mettre en ceuvre une interfaiteaet entre les applications logiciels et
le simulateur matériels. Le besoin est importantrpotégrer et synchroniser des simulateurs
hétérogénes, comme, par exemple, le noyau de gionuldu SystemC pour les composants

matériels et le simulateur de jeu d’instructionS)$our les applications logicielles.

L'objectif de cette thése est de surmonter le gnalel de I'hétérogénéité des systémes
continus/discrets tout en fournissant des simulatfarécises et des temps de simulation assez
satisfaisants. L’accélération de la simulation ast point clé qui impose la création
d’interfaces de synchronisation et de communicagintre I'environnement de simulation et

la carte de prototypage sur FPGA.

VI. Conclusion

Nous avons présenté tout le long du premier cheapes caractéristiques des modeéles
continus, discrets et hétérogene. La simulatiotetiesystémes constitue un grand défi pour
les concepteurs des environnements de CAO. Eiil f&iiste principalement trois axes pour
la modélisation et la vérification des systemestioos/discrets. Le premier repose sur
'extension des langages afin d’étendre le noyaisidaulation pour supporter a la fois le
modéle continu et le modéle discret. Cet axe seufés limitations au niveau d’abstraction.
Le deuxieme se base sur des nouveaux langagesviEbrerements ce qui approuve
'accélération de la simulation. Malheureusemerds dangages ne supportent pas les
différents niveaux d’abstractions et demande urpteimportant pour apprendre les nouveaux
langages. Notre contribution s’intéegre dans lestéone axe basé sur la co-simulation qui
utilise les simulateurs existants pour chaque nedekrée des interfaces de synchronisation
entre-simulateurs. Malgré le temps de simulatiars jglu moins important, ces outils montrent
une simulation performante a travers les differamnteaux d’abstractions. La réutilisation des
IPs ainsi développés facilite la modélisation matéogiciel. Nous adaptons la troisieme
solution grace aux nombreux avantages offertedgsaoutils basés sur la co-simulation. Le
chapitre suivant présente une étude détailléeatdmigues de vérifications matériel/logiciel

ainsi I'approche de simulation/émulation utilisée.
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Chapitre 2 : METHODOLOGIE DE MODELISATION ET DE
VERIFICATION DES SYSTEMES MATERIELS /LOGICIELS

l. Introduction

Vue la complexité des systemes et le taux dintémgracroissants, la modélisation
traditionnelle des architectures matérielles/Iagies s’'avére une tache pénible, complexe,
couteuse et limitée. Cette méthode repose sur agerigtion bas niveau (composant, porte
logique, transistor et dessin de masque) et séparie la partie matérielle et la partie
logicielle. Cette méthode n’assure pas la vérifizat matériel/logiciel au cours de
développement ce qui augmente le taux de rejetidmsts apres fabrication.

La modélisation conjointe représente le fruit despurs travaux de recherche afin de
supporter les systemes numériques complexes etyk#émes mono-puces. La conception
basée sur la stratégie Co-design permet la véiditantre la partie matérielle et la partie
logicielle conjointement avant la phase de fabrcat Cependant, plusieurs techniques et
outils de modélisations et de vérifications sortride dans la littérature en respectant a la fois
les langages adéquats (matériels et logiciel®sehiveaux d’abstractions utilisées. Toutes ces
techniques assurent la communication et la syncdatan entre les applications logicielles et
les composants matériels. Dans ce contexte, nowgpogons quatre modeles de
synchronisation basés sur un environnement de atronlémulation afin de diminuer le
temps de simulation. La synchronisation présenpmiet clé de la simulation/émulation. Elle

doit prendre en compte les concepts de tempsativdaon des processus.

La premiére partie présente le principe de mod@isales systtmes mono-puces ainsi
les différentes méthodes de vérification utilisdeans la deuxieme partie, nous présentons
'approche de simulation/émulation en proposant mndele de synchronisation entre

simulateur/émulateur et les interfaces de commtinicanatériel/logiciel.
[I.  Modélisation des systemes mono-puces

La conception des systemes en puce se basent $lot gni assure un développement
paralléle des modules matériels et des modulesiddg)i Ce flot se décompose en cing étapes
comme le montre la figure 7.
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= Spécification systeme, on s'intéresse a la fonctibte au niveau systeme,
indépendamment de l'implémentation finale (étapeDLyant cette phase, on
recherche les algorithmes et les représentationdodaées les mieux adaptés
aux besoins et aux spécifications. La spécificafimmctionnelle obtenue est

généralement validée par une simulation.

= Spécification fonctionnelle : C’est I'étape quitsbiétape précédente. Le but de
la spécification fonctionnelle est la recherche né'u architecture pour
implémenter les algorithmes déterminés par la fipation systemes. Cette
étape (étape 2) du flot de conception déterminefdestionnalités qui seront
implémentées en matériel et celles qui seront ieldgs. En général, le principe
du partitionnement se base sur la régle suivartkes composants nécessitant
des performances élevées sont réalisés par deslesadatériels alors que les
composants nécessitant essentiellement de la ifiexisont implémentés en
logiciel ». Finalement, cette étape permet I'olibentdes spécifications de
chacun des composants du systéme.

= La conception matérielle et logicielle (étape 3jrespond a la conception des
composants matériels et au développement des étgjiembarqués. Pour cette
étape, un gain de temps important est obtenu loksgua utilisation des

composants existants.

= Vérification et intégration : Lorsque tous les camgnts matériels et logiciels
développés sont vérifiés chacun a part, la phaséédration et de vérification
(étape 4) assure la communication et le bon démeré¢ entre les différents

composants.

= Validation : Cette phase consiste a vérifier let&aye complet s’il répond bien
au cahier de charge et aux fonctionnalités deman@ape 5). Enfin, une fois
cette derniere étape de conception est effectuge succes, on peut fabriquer le
produit en grand nombre en passant par la fonderie.

A chaque étape de conception, les concepteurgmtoiérifier que les nouveaux composants

ou les nouveaux détails de réalisation assurenfanmionnalité correcte.
Cette vérification s'articule autour de cing poititsstrés par la figure 7 :

« Vérification de la spécification fonctionnelle.
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« Vérification de I'architecture du systeme.
« Vérification de I'implémentation des composanisystéme.
« Vérification de l'intégration des composants.

* Vérification du systéme complet dans son enviesn@nt de fonctionnement avant la

mise en fabrication et en production.

Spécification

systéme

\ 4
Conception au niveau

systeme e
Y (1) Vérification de
la spécification
A 4 fonctionnelle

Spécification
fonctionnelle

A 4

Exploration
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parties matérielles
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\ 4 \ 4
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(3) Vérification de
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Y

Composants Composants
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matériels logiciels .
systéme
\ Intégration
(4) Vérification de l'intégration de
logiciel-matériel composants hétérogéne
-

(5) Vérification finale du systéme

Figure 7. Flot de conception d'un systéme sur puce

La vérification peut occuper jusqu'a 70% du tempsahception, cette étape représente
un élément important dans la durée de la concepliom systeme. La vérification influence

beaucoup en termes de temps ainsi qu’au niveauogtqune. Le colt de cette erreur est
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estimé a quatre cent millions de dollars (Evan€320En général, plus vite une erreur est

détectée plus son codt de correction est faible.

Pour conclure, la vérification est une étape egdentdans la conception des circuits

mono-puces. Un des défis actuels consiste a amelies techniques de vérification, a

augmenter la productivité des techniques et a rédmidurée et le colt de la vérification.

lll. Les techniques de vérification

Lors d'une conception d'un systeme mono-puce, iktexplusieurs techniques de
vérification: la vérification formelle, la simulath, la co-émulation, I'émulation a travers le
prototypage. Chacune de ces techniques possededglerdifférent qui sera détaillé par la

suite.

Le principal but de la vérification d'un systemenoguce tout au long du flot de
conception est de prévoir les erreurs et les stEnardésirables le plus tét possible et par
suite diminuer le temps de mise en marché du prathsiré. Afin de comparer et de mieux

choisir la technique de vérification, des critedlescomparaisons sont présenteée.

Critéres de comparaisons :

Chacune des techniques de vérification est carsééepar un codt financier, une durée
de mise en ceuvre, une vitesse d'exécution, un wikabservabilité, un niveau de

contrélabilité et enfin un niveau de répétabilité.

Le colt financier de la vérification obéit a la régle suivante : kaspune erreur
matérielle est tardivement détectée, plus son deldorrection est élevé ». L’'importance de
ce critere se présente dans la maniére de maitesaw(t de vérification. L’investissement
dans les outils de vérification s’avere utile larsdeur prix est amorti pour une seule erreur
matérielle détectée avant la fabrication du prerieuit. Cependant, les prix des outils de
vérification varient dans une large gamme de pltenade quelques milliers de dollars pour
une licence perpétuelle (Rizatti L., 2003) au moillide dollars pour une licence annuelle
(Lardiére C., 2004).

La durée de mise en placade la plateforme de vérification est un autreéceit
important. Selon la taille et la complexité du sysé, le choix de la méthode de la
vérification est fait. Parfois l'utilisation d’'un@éthode plus lente est mieux adaptée parce que

la mise en place de cette méthode est beaucou@lute par rapport au temps nécessaire
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d’'une deuxieme meéthode qui est plus compliguéeuedgmande plus de temps malgré la

rapidité de son temps de fonctionnement.

La vitesse d'exécutiordoit étre considérée en relation avec la durémide en place de
la plateforme de vérification et la longueur degusices de test. Dans le cas de vérification
temps réel avec des composants externes, la vijessaevenir une contrainte imposant une

solution.

L'observabilité, la controlabilité et larépétabilité sont des critéres liés a la puissance
du débogage matériel, c'est a dire I'efficacitéadéechnique pour la détection des erreurs

matérielles.

L'observabilité est la capacité d'observer les interactions déSrelnts composants du

systéme.

La contrblabilité est la capacité de suspendre I'exécution du modeélenodifier les

valeurs de certains parametres au cours de I'amécut

La répétabilité est le fait de reproduire un scénario de test avesiveau de précision

donné.

Selon les parametres déja cités, il n'‘est pasefalchoisir la méthode la plus adaptée
au probléme considéré. Il convient donc de préséegalifférentes techniques de vérification

existantes en soulignant les avantages et leswéognts de chaque technique.
[11.1. Vérification formelle

La vérification formelle consiste a prouver mathémement qu'une description de
circuit posseéde certaines propriétés. La verificatormelle se manifeste dans le débogage de
la spécification qui vérifie si tous les besoingitsbien inclus et se manifeste aussi dans la
vérification de l'implémentation qui vérifie si Epécification est bien implémentée. Cette
technique est peu utilisée dans la conception getermes monopuces et possede plusieurs

points faibles. Les principaux obstacles sont :

» La complexité du processus de vérification et ggrande, ce qui limite I'utilisation

aux simples applications.

» Cette technique demande une grande interactidre ezoncepteurs. Seuls des

spécialistes peuvent utiliser cette technique.
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» Cette technique n’est pas concue pour les systamegériel/logiciel. En fait, la
vérification formelle ne supporte pas le traitem@nnh systéme synchrone paralléle (matériel)
et le traitement d’'un systeme asynchrone séquethbigiciel) a la fois. En fait, le systéme
synchrone est basé sur le principe de simultaa&ité que le systeme asynchrone est baseé sur
le principe de I'entrelacement ce qui explique bierdifférence de formalisme entre une

architecture matérielle et les applications lodiese

Cette technique peut se révéler trés efficace pounodéle formel qui incorpore de
nombreux parametres. De plus, elle est tres sotngle,flexible puisque les modeles sont
construits a la main mais ceci est un inconvéngamtla construction des modéles est un

travail difficile, fastidieux et colteux en temps.

Dans lindustrie, cette technique est courammeilisé¢ au niveau composant pour
vérifier que la «netlist» obtenue apres la syntlasseire bien la méme fonctionnalité que celle

décrite dans les fichiers VHDL/Verilog.

111.2. Simulation

La simulation se base sur l'utilisation d'un moda&mportemental du systeme en cours
de développement. Un systéme possede plusieurslesodélon les différents niveaux
d'abstraction. Plus la description est a bas nidkastraction plus le modele est précis, plus

les calculs pour la simulation sont nombreux etgqoaiséquent, plus I'exécution est lente.

Cette technique de veérification est la techniquplies utilisée dans les conceptions des
circuits numériques mono-puces grace a sa fletabitlle est utilisée a six différents niveaux

d'abstraction.

Le niveau spécification fonctionnellenodélise le comportement global du systéme. Le
but de la simulation dans ce niveau d’abstract&ina vérification fonctionnelle. Puisque le

niveau d’abstraction utilisé est le plus haut alarsimulation est tres rapide.

Le niveau architectural modélise le systéme comme étant un ensemble del@soglui
se communiguent entre eux. A ce niveau, les diftésetaches du systéme sont définies a des
sous-systemes. Chaque sous-systeme est modéhséeau fonctionnel. Ce niveau est appelé
aussi niveau transactionnelle qui s’intéresse aueractions de type transaction entre les
sous-systemes. Ce type de simulation est utile pexploration d'architecture et le

développement des parties logicielles du systenoeitiL Vista (Mentor, 2012) représente un
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outil puissant de vérification matériel/logiciel aiveau architectural en adoptant le niveau
TLM 2.0.

Le niveau micro-architecture difféere de ce qui précéde au niveau type d’intévact
entre les sous-systemes. Les liaisons mis en discusont des signaux. La précision du
modele est donc au cycle d'horloge prét au niveadadcommunication entre les sous-
systemes. Ce niveau de modélisation permet lased@mh des premiéres mesures de
performances et le développement des pilotes daibesu (des logiciels embarqués).

Le niveau RTL modélise un circuit comme un ensemble de registede relations
logiques entre eux. Ce modele est a bas niveastdiahon, le systeme entier est simulé au
cycle d'horloge prét. Ce niveau est particuliereémaitisé pour la mise au point des sous-
ensembles matériels qui composent le systemeistleeglusieurs outils comme ModelSim et
Questa (Mentor, 2012).

Le niveau porte logiquedécrit le systeme complet comme un assemblage despo
logiques. Dans la plupart des cas, ce niveau ésholyia des outils permettant le passage du

niveau RTL vers le niveau porte logique.

Le niveau analogiqueest le plus bas niveau d'abstraction utilisé erukition. A ce
niveau, existent des outils d'extraction de pareeséélectriques a partir du plan de masse,
citant I'outil SPICE (SPICE, 2012). On travaillé mvec des modeles précis de transistors,
dépendants de la technologie utilisée (RizatttD03).

Il existe plusieurs méthodes dans la littératurerpgimuler et vérifier les modules
logiciels. La plupart des travaux se basent sursimeilation a base d’'ISS (Instruction Set
Simulator) ou bien sur une exécution natives sansnzore avec prise en compte du systeme

d’exploitation.

Un "Instruction Set Simulator” (ISS) est un simelatde jeu d’instructions qui permet
de simuler le logiciel a un bas niveau. C’est uneukation qui exécute le logiciel au niveau
instruction assembleur. Ce type de simulation egillis précis et le plus flexible, mais ces
simulations logicielles sont lentes. De plus, peffectuer ce type de simulation, il faut étre
déja avancé dans le flot de conception car il f@dge de détails précis (comme le jeu
d’instructions) sur le matériel simulé et d’'un calafgur permettant de compiler le code pour

le processeur cible.

Exécution native sans systeme d’exploitation La simulation native permet de

simuler le comportement d'un processeur. Elle sdilia la fois les codes sources des
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programmes embarqués qu’elle doit exécuter, ehioet spécifications fonctionnelles du
processeur, tels que les ports, les interruptiorisue gestion, contenues dans un composant
spécifique. Elle permet une simulation trés rapibdes inconvénients sont I'absence de
précision sur les mesures de performance, I'obtigad’avoir 'ensemble des codes sources
en langage de haut niveau et la synchronisatidmadé niveau. Afin de prendre en compte le
systeme d’exploitation, une exécution native aves €t présentée dans le paragraphe

suivant.

Exécution native avec systemes d’exploitationLa simulation native avec systeme
d’exploitation permet une exécution multitache. mPAfjue la simulation soit proche de la
réalité, I'exécution native communigue avec un @Qrdinceur assurant une gestion entre les

taches et leurs priorités.

Pour conclure, la simulation présente un outil tpegssant vu son efficacité, sa
souplesse, sa grande flexibilité, observabilitéticdabilité et son temps de mise en ceuvre
souvent court. La simulation trouve ses limitesdoril faut simuler de longues séquences de

tests & un bas niveau d'abstraction (Rizatti L0320

La vitesse de simulation des systemes compliquéepassera pas quelques dizaines de
cycles par secondes. Lorsque le simulateur doilsindes centaines de millions de cycles, le
temps de simulation devient un grand probleme. Paaurmonter cette limitation, des
techniques d’émulation et de prototypage matéaet gtilisées.

[11.3. Emulation et prototypage matériel

Cette technique repose sur des plateformes spée#figt reconfigurables, capables de
reproduire le comportement physique d'un circukcaune précision au niveau du cycle
d'horloge. Ces plateformes sont basées sur laitdis d’'une architecture permettant une
reconfigurabilité, a savoir des FPGAs (Rizatti 2003), des réseaux de processeurs
spécialisés (Lardiére C., 2004), ou des FPGAs n#&zdédt adaptés aux besoins de I'émulation
comme la famille Veloce de Mentor Graphics (Men012). L’avantage des plateformes

d’émulations et de prototypages est la grandesate&xécution.

En fait, la différence entre I'émulation et le miypage se manifeste au niveau de la

capacité de débogages.
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Les émulateurs sont congus pour réaliser un déleogaderiel rapide et effica (figure
8). Elles ont des flots de mise en ceuvre assez ri, de l'ordre de quelques hel. D'autre
part, les émulateurs offrent une trés grande obbdié, proche de celle des simulate
HDL (tous les signaux). Emulateura le méme principgu'un simulateur DL sauf que sa
vitesse d'exécution est bien plus rapide eut atteindre quelgues mégah. Ainsi, les
émulateurs sont tres codtewe I'ordre 'un million de dollars par une licence annuel
(Rizatti L., 2003).

Design logique Emulateur

i]‘>1+ -
-

< >

Figure 8. Principe d’émulation

/

2R2

Les plateformes de prototypage ¢ des solutions basées dlgs carteFPGAs. Ces
composants sont reconfigurables et simples aeitili3e plus, ils sont tres répandus et ¢
codtent nettement moins cher que les composantffignes des émulateurs. Les plateforr
de prototypage sont donc plus abordables que lesaérars et offrent une excellente vite
d'exécution, souvent périeure a celle des émulate. Les melleures solutions permettent
mieux observer les registres ccircuit sur une courte fenétre temporelle. D'aydeet, le
partitionnement d'un circuit entre les différenlB@As de la plateforme n'est pas aisi
engendre des temps de mise en ceuvre assez longanpatteindre plusieurs m (Abid M.,
1998).

[11.4. Co-émulation et co-simulation

La cosimulation est une technique qui se base sur pitsse@mulateul. Dans la figure
9.b, une architecture Matériel/Logiciel est diviséemnsodule dans chacun sera simulé le
simulateur adéquafrenons comme exemple une architecture qui esiteléam VHDL,
SystemC et en C. Dans ce cas, les modules déorit$1®L seront simulés péde simulateur
HDL, les modules décrits en SystemC seront simplfis le simulateur SystemC et
modules logicied seront simulés par C/C++ simulat En fait, cette méthode offre u
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grande flexibilité au niveau modélisation et véation mais elle consomme beaucoup |
de temps de simulatioha cc-simulation est mieux exploitablersque la conception est di
un méme niveau d’abstraction, alors que la congeptiult-niveau présente un défi pour
outils de co-simulationHassairi W., 2012) présente un environnement -simulation basé
sur l'intégration du SystemC dans Matlab / Simu L'avantage de tte approche est la
possibilité de la modélisaticmulti-niveau.En fait, la conception matériel et m-niveau est

assuré par SystemC et les parties logiciels samitgh@ar Simulink

La co€mulation combine I'émulation/prototypage et la wation. Il s'agit d'une
technique couramment utilisée et caractérisée @apdrformances en vitesse souvent fa
mais plus rapide que les environnements d-simulation Le concept de base ¢
d'émuler/prototyper les parties du circuit dond&sription estdéja simulé, a un plus ou
moins haut niveau d'abstracti La co€mulation (figure 9.a) se base sur plusieurs éruta
(dans notre figure ce sont des cartes FPGAs) doatun un composant matériel est
interaction avec les autres composants mat émulés dans d’autres FPC ou bien simulés
par d’autres simulateur®our cela, la plateforme d'émulation/prototypagemae doit étr

capable de travailler conjointement avec un sineul

FPGAO @ ® FPGA 1 ISso @ ® (551
[ \ /. [ \ /.
Co-eémulation Co-smmulation
¢ /. \ ¢ ® ./ \ ®
FPGA2 @ ® FPGA 3 1552 @ ® 1583
a) Principe de coémulatior b)Principe de c-simulation

Figure 9 Méthode de co-simulation et co-émulation

Cette technique permet de bénéficier des vitessg®uhulateurs «es plateformes de
prototypage. En outre, recourir a la-émulation offre également plusieurs avante
concerant le banc de tests. Ceci peut en effet étre décrit a un assez haut ni
d'abstraction, implémenté en C, C++ ou SystemCgquieest plus simple et plus rapic
Cependant, I'environnement logiciel ne ppas atteindréa méme vitesse d'exécution c

I'environnement matériel donc, avec ce type d'énamales émulateurs/plateformes
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prototypage fonctionnent a vitesse réduite. Lasgieglobale du test va alors dépendre de

plusieurs parametres :
* Vitesse d'exécution des environnements logitietaériel.
* Qualité de l'interface de communication.
* Nombre des points de synchronisation entre leg davironnements.

Le mécanisme de l'interface de communication etadsynchronisation présente le
point clé pour chaque environnement de co-émula@ertaines solutions fonctionnent en
mode dit «ping pong» : c'est-a-dire lorsqu'un sateur ou bien un émulateur est en
exécution, l'autre est en repos. Ce mode permetsimgle implémentation du modele de
synchronisation et offre une grande répétabilit® msultats mais malheureusement il fournit
une accélération minime. D'autres solutions, autraoe, font fonctionner les deux
environnements logiciel et matériel en paralléleague environnement travaillant a son
rythme, le plus rapide attendant parfois le plug.|€ette solution est beaucoup plus rapide
gue la précédente. L'inconvénient majeur se préseah seulement au niveau de difficulté

des régles définissant la synchronisation mais @ase des problemes de répétabilité.

Enfin, le nombre des points de synchronisationsedes deux environnements impacte
sur les performances, surtout lorsque la co-énauafibonctionne en «ping pong». Plus les
points de synchronisation sont élevés, plus laefilane est lente. Ce nombre des points de
synchronisations varie en fonction des types dématation qui vont étre présentés ensuite.

I11.4.1. Co-émulation en mode vecteurs de test

Le principe de ce mode se base sur la vérificadiorircuit entier avec émulation. Ce
type de co-émulation est le plus simple de poimiukede I'environnement logiciel. A chaque
cycle d'horloge, on appligue un vecteur d'entréect@ur de test) sur les ports entrant du
circuit et on compare les valeurs des ports deesodvec le vecteur de sortie prédéterminé
(figure 10).

Simulateur Emulateur
Vecteur de test > Composant a testel
Sighaux

Figure 10. Principe de Co-émulation en mode ve&telgr test
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[11.4.2. Co-émulation avec synchronisation cyclecgcle

Dans une co-émulation avec synchronisation cyctyce, I'environnement logiciel
représente le maitre et génére les horloges duitcémulé. L'implémentation de ce type de
co-émulation est trés simple. Le probleme résidasdee nombre d'interaction entre
'environnement logiciel et matériel qui est im@ott, ce qui provoque un ralentissement au
niveau de la vitesse de simulation. Les facteungtdnt sont principalement, le nombre des
points de synchronisation, le nombre des signaextmrde/sortie, la bande passante de
l'infrastructure de communication et la charge d&w de la partie simulée. Malgré le
probleme de synchronisation a chaque cycle d’herlogtte méthode est utilisée surtout pour

tester les composants matériels.
[11.4.3. Co-émulation avec synchronisation clairseie

Afin de surmonter le probleme de synchronisatiahaque cycle d’horloge, une étude
détaillée montre qu’il existe plusieurs points dachronisation inutiles. Ces points sont
marqués par l'invariance des signaux d’entréeksottine co-émulation clairsemée vise a
réduire ces communications superflues. Pour cetahbdrloges du circuit ne sont plus gérées
par I'environnement logiciel mais par I'émulateDes signaux de contréle servent alors a
synchroniser I'émulateur et le simulateur. L'impkmation de cette méthode n'est pas trés
facile et demande certaines conditions pour étadisable. L'étape importante et difficile
consiste a définir les instants de synchronisatida.

I11.4.4. Accélération

On parle d'accélération lorsque le circuit et ledbae test sont décrits en langage
matériel (VHDL et/ou Verilog) et qu'une partie dode est synthétisable alors que l'autre est
non synthétisable et sera simulé a l'aide d'un lsitewr HDL. Dans la figure 11, le banc de
test, Module 0 et Module 1 seront simulés par omutteur matériel alors que Module 2 sera
prototypé sur FPGA afin d'accélérer la simulatiorEn pratique, l'accélération est une
technique de vérification au niveau composant, centanco-émulation & synchronisation

cycle a cycle. Seuls les émulateurs supporterd tathnique.

La principale limitation de la co-émulation a syraisation cycle a cycle
précédemment présentée réside dans le nombre @ébsv@oints de synchronisations entre
'environnement logiciel et I'environnement matériea co-émulation clairsemée cherche a
réduire cet impact mais, la gestion des sighauargés est souvent trés complexe. L'idée de

base de la co-émulation transactionnelle est dairgéde nombre de synchronisations au
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minimum nécessair@t ceci en faisant une abstraction de la commuan. En fait, on passe
d’'une communication a base des signaux a une comatiom qui permet I'échange d
données (lire/écrire) sous forme des urs algébriques. Ce type de communication est

communication a base des transact

Environnement de simulation Accélérateur matériel
Banc de test
Module 0 | | Module 1 Module 2
L1 est prototypé dans
FPGA
Module 2
e

Figure 11. Simulation par accélération
111.4.5. Co-émulation transactionnelle

La transaction a donc completement abstrait le opodé¢ de communication d
I'interface d'entrée/sortie du circuit a vérifiears de la mise en application de ce concepl
utilisateurs doivent recourir a des modules madtdapables de comprendre les transact
et de les convertien signaux et vic et versa. Ces convertisseurs matériels sont non
«transacteurs» (Kudlugi M2001. Leur réalisation est complexe et représente itecipale
difficulté des équipes de vérification désireusegetourir a cette performante technique
co-émulation. L'araitecture d'une -émulation transactionnelle comporte un environner
logiciel et un environnement matériel communiquartide ds canaux de communicatio
Une norme nommée SceMi (Standard CoEmulation Mogéelinterface) a standardisé ¢

canaux.

Les applications les mieux adaptées a ce type ~émulation sont les circuits gére
des flux de données comme les circuits de télécamuation De plus, ilest a noter que la
contrainte dudéveloppement des transacteurs peut étre réduttel'ydisatior d'une

bibliothéque de transacteurs.

[11.4.6. Emulation avec banc de test intéc

Dans une émutepn avec banc de test inté, le circuit a vérifier et son banc de t

sont tous deux des composants matériels énmCette méthode représente une ameliore
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de la méthode d’accélération. L'émulateur ou laefdame de prototypage fonctionne d’une
maniére complétement autonome ce qui rend le fomoéiment en pleine vitesse. Cette
technique est donc particulierement bien indiguse fes vérifications nécessitant de longues
séquences de test a savoir la vérification au niwasteme. Cette technique est également
bien adaptée pour la mise au point des logicielsaequés. La principale difficulté de cette
technique d'émulation réside dans le développerdanbanc de test synthétisable. Cela
représente une grosse charge de travail car ildéutlopper un composant matériel de test

spécifique et le valider.

[11.4.7. Emulation avec dépendances extérieures

Une émulation avec dépendances extérieures comsisten émulateur connecté a un
environnement physique extérieur et le circuit fammne alors en temps réel. Ce mode est
utilisé avec des plateformes de prototypage poweldpper essentiellement des logiciels

embarqués ou pour développer des logiciels assadgig&ircuit (drivers).

Dans cette section, de différentes méthodes déocation ont été citées. La méthode la
plus adéquate pour tel environnement et pour t&ksye continu/discret se base sur une co-
simulation accélérée par un accélérateur matékml La section suivante présentera notre

approche de vérification adaptée.

IV. Approche de simulation/émulation matériel/logiciel

Nous avons montré dans le chapitre 1, que les resd# co-simulation souffrent
encore du temps de simulation important. En efieyironnement CODIS donne un temps
de simulation assez important car il utilise un |8fir simuler les parties logicielles. Notre
approche propose le remplacement de I'ISS par toigtecture a base d’'un processeur cible
implanté sur une carte FPGA. Il est indéniable ge’'simulation sur un processeur réal est
enormément plus rapide qu'un ISS et de l'ordreqdelques nano secondes. Les travaux
antérieurs utilisent le simulateur pour simuler hesdules logiciels et I'émulateur pour
simuler les composants matériels. Deux points dailduivent ces travaux. La premiére se
manifeste au niveau temps de modélisation imporast composants matériels au niveau

RTL. La deuxiéme consiste au temps de simulatiggomant des modules logiciels.

Afin d’étendre I'environnement CODIS et d’accélétarsimulation, nous proposons
tout d’abord une modélisation au niveau transangtia des composants matériels en
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utilisant SystemC. Ensuite, une simulation des resdiogiciels sur I'architecture cible est

adoptée. La figure 12 résume lI'approche de simari&mulation choisie.

Systéme mor-puce (SOC

Composant Module
matériel 1 logiciel 1
Composant Module
matériel 2 logiciel 2

Carte de

protoypage

Simulateur Emulateut

Figure 12. Approche de simulation/émulation
On peut résumer les avantages de notre environnersgentiellement en trois points :

=Le remplacement d’'un ISS par le processeur ciliélace le temps
d’exécution des applications logicielles. Dans aatas la simulation est basée
sur une architecture a base d’'un processeur cést&pprocessor implanté sur
FPGA.

»Les composants matériels sont modélisés et simukis SystemC, ce
qui diminue le temps de mise en marché et assumnedtklisation suivant

plusieurs niveaux d’abstractions.

»Les modeles de synchronisation entre le simul&@gatemC et
I’émulateur sont adaptés au modéle de co-simula#olienvironnement
CODIs.

La section suivante présente le moteur de la stmalgémulation.
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V. Moteur de simulation / émulation

La conception d’'un moteur de simulation / émulatonstitue un point clé pour chaque
environnement de co-vérification. Le principal r@le ce moteur est d’assurer a la fois la
communication et la synchronisation entre le siteulaSystemC et I'émulateur & base d’'une

architecture cible implantée sur une carte FPGA.

Composant matériel 3 Module logiciel 3
Composant matériel 2 Module logiciel 2
Composant matériel 1 Module logiciel 1

Simulateur Emulateur

Synchronisation

Moteur de Simulation / Emulation

Figure 13. Architecture du moteur de simulatiommugation

L'architecture du modéle de co-simulation est itkes par la figure 13. Le moteur de
simulation/émulation supporte une couche de symisation et une couche de

communication.

e La couche de communication est chargée de tramdiE&sedonnées entre les
deux modéles, les conversions nécessaires desusigriale changement de

contexte.

e La couche de synchronisation assure a la fois Hr@e et I'exécution du

simulateur/émulateur a des instants précis.

Des modeles de synchronisation sont utilisés préacuter le simulateur et 'émulateur

matériel/logiciel avec respect du temps d’échargdahnée.
Principalement trois difficultés ont été étudiees :
1. La détection de la fin d’un événement par |'éuedr.

2. La détection des interruptions par I'émulateur.
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3. Le principe de changement de contexte qui petenglassage du simulateur vers

I’émulateur et vice versa.

Par la suite, nous présentons une descriptionliéétaie la couche communication et de
la couche synchronisation.

V.1. Communication

Le principal objectif de la communication est I'édge sans perte de données. Dans la
littérature, deux modes de communication (sérid?€@t) entre simulateur/émulateur sont
utilisés (Soha H., 2005). Afin d'accélérer le tenges simulation qui est notre premier
objectif, une communication Universel Serial BUSR) est utilisée. Le tableau 2 montre les
différences de vitesse de transfert entre lesréift€s modes de communication.

Série PCle USB 1.0 USB 2.0

Vitesse 0.11 Mo/s 250 Mols 12Mols 480 Mols

Tableau 2: Vitesse de transfert

Nous proposons une communication a base d’'USBr#r@ en ordinateur et une carte
FPGA grace a deux avantages: (1) vitesse de ¢ransfiportant (2) supporte le mode
interruption qui engendre une interruption matésial la carte. Pour cela, un pilote composé
d'une partie logicielle et une partie matérielleitd&tre développé. La figure 14 présente
I'architecture matériel/logiciel utilisée pour laramunication. Il faut noter que le contrdleur

USB ne représente pas un composant de I'architectble.

= Bus
o g3
Bibliotheque ° a || Processeur
. . _ Universal 2 % cible
Windows Driver Kit > : > SR e
Serial o g
WDK =
( ) Bus oz —  Memory
- o
Pilote logicie Channe Pilote matérie
g %
- ~ - I
PC FPGA

Figure 14. Modéle de communication

= Coté logiciel :
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Le pilote du c6té logiciel se base sur le Windows/& Kit (WDK) Version 7.1. Ce
Kit offre les éléments de base pour la création plestes sous le systeme d’exploitation
Windows. Nous avons développé une bibliothéque cpmtient essentiellement deux
fonctionsEcrire( ) et Lire( ) pour I'échange de donnée. Ces deux fonctionsseiiti quatre

fonctions de la bibliotheque Win32 :

CreateFile permet la connexion avec le contréleur USB ISR136

WriteFile: permet le transfert de données vers le contr@J&B ISP1362.

ReadFile permet la réception des données de la part duétear USB ISP1362.

ControllODevice permet la configuration du pilote.
= Coté matériel :

Le c6té matériel se base sur le controleur USB 36P1ISP1362, 2002) en interaction

avec le processeur cible. Le réle du controleur @SBl’assurer les fonctionnalités suivantes :

> La fonction Host Controller (HC) est basée sur tamgfert avanceé et

atteint une vitesse de transfert élevé avec ubkefaitervention du processeur.

> La fonction On-The-Go (OTG) est adoptée lorsquédison USB ne

demande pas l'intervention du processeur.

> La fonction Device Controller (DC) assure princgrakent le transfert de

donnée et laisse le réle du contrble au processeur.

Dans notre cas, nous avons utilisé la fonction Qrmue le processeur cible gere le

modele de communication au lieu du contréleur USB.

Une interruption est signalée au processeur paigmal électrique sur la bornRTO.
Lors de la réception de ce signal, le processeaitetfinterruption dés la fin de l'instruction

qu'il était en train d'exécuter. Le traitement aedrruption consiste soit a :

* Ignorer et passer normalement a l'instruction su&a c'est possible uniguement
pour certaines interruptions, nommeées inptions masquables. Il est en effet
parfois nécessaire de pouvoir ignorer lesrioptions pendant un certains temps,
pour effectuer des traitements tres urgents pa&ample. Lorsque le traitement est
terminé, le processeur démastaginterruptions et les prend alors en compte.
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» Exécuter un traitant d'interruptiointerrupt handler). Un traitant d'interruptiont es
un programme qui est appelé automatiquen@sgli'une interruption survient.
L'adresse de début du traitant est donnée patabe des vecteurs d'interruptions.
Lorsque le programme d'interruption traitant a &ffé son travail, il exécute
I'instruction spécialéRET qui permet de reprendre I'exécution a I'endroielbe avait
été interrompue. Un ordonnanceur est mis en placar pmérer le traitant

d’interruption.

La communication ainsi décrite représente un casbbde pour le modeéle de

synchronisation présenté dans la section suivante.
V.2. Modéle de synchronisation

Vu limportance du modéle de synchronisation et surraction avec le noyau de
SystemC, une description de I'environnement SystasiCprésentée. Nous proposons par la
suite dans une premiere partie les différents nesdde synchronisation possible entre le
simulateur SystemC et I'émulateur. Dans la deuxigradie, une étude sur les interfaces
matérielles / logicielles et les scénarios de bymisation sont décrits.

SystemC

SystemC est un simulateur a noyau libre qui déauite une bibliotheque contenant des
composants matériaux. Son langage est une extepaionlasses du langage orienté objet
C++ pour la description des systemes numériquesteByC offre la possibilité de la
description au niveau RTL comme il la permet aueaiv systeme (SystemC 2.0 et les
versions ultérieures) pour les systémes implémaaridegiciel, matériel ou une combinaison
des deux. Un modele décrit en SystemC est comgitEguté et débogué en utilisant les outils
standards de programmation C++. SystemC differe autxes langages de descriptions
matérielles comme VHDL et Verilog par la possikilide supporter plus gu'un niveau de
description. SystemC permet de fournir encore yeeiication du systeme a des niveaux
d'abstraction élevés et avec une meilleure vitdessimulation. Malheureusement, SystemC
ne peut décrire que des systemes discrets, cegdeihdan supporte pas la description des

systemes continus.

SystemC 2.0 et les versions ultérieures combinesitchractéristiques des langages
matériels existants, la technique d'orienté obfetde nouvelles méthodologies pour la
conception et le raffinement des systemes matAagisiels. Sa méthodologie est inspirée du

modeéle de communication introduit par Gajski (GaiBlD., 2000). Dans cette méthodologie
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le modele est composé par des modules et la coroation entre eux est assurée par des
canaux. Un module est constitué par des méthoddsseinterfaces. Les méthodes utilisées
pour la communication sont définies dans les iatax$ des modules. Leur implémentation est
effectuée au niveau de ces canaux. Un module ppelex une méthode fournie par un canal
et des événements dans le canal peuvent activprdesssus du module connecté a ce canal.
Ce concept est assez générique pour décrire dEs®s en utilisant plusieurs domaines de
description comme les réseaux de Khan, les prosessquentiels communicants, les flux de
données multi-cadencés, les événements discretSCleaque module contient les processus
décrivant le comportement du systéme. La connexotre les différents modules est
effectuée au niveau de la fonctisa_main ()qui représente I'entéte du modeéle. Aujourd'hui,
plusieurs outils de conception, supportant SystemZCdifférents niveaux d'abstraction, sont
disponibles sur le marché. SystemC-RTL est syrgaiéke et un flot de conception partant du

niveau spécification au niveau circuit est aujdwrddisponible.

Le simulateur de SystemC est a base d’'un ordonnaricévénements discrets. Dans
SystemC, un cycle delta comporte deux phases arsgvoase d'évaluation pour I'exécution
des processus et phase de mise a jour pour la anjear des signaux modifies pendant
I'évaluation des processus, ce qui garantit I'aspaxallele des processus (Salem A, 2003). Le
principal r6le de l'ordonnanceur est de détermibherdre d'exécution des processus en
considérant leurs listes de sensibilité et les ér@mnts dans sa file d'attente. Ainsi, le premier
elément dans cette file représente le prochaineduént a déclencher. Les événements sont
classés en deux types : evénements différés patwrge de temps et événements différés par
un delta. Le temps d'occurrence du premier typeéd&ments représente le prochain temps
réel alors que le temps d'occurrence du deuxiepe t€vénements est constitué de deux
composants: le temps courant réel et le nombreydesdelta; la file d'attente est ordonnée

selon ces deux composants.
V.2.1. Les modeles de synchronisation simulateundgteur

Nous précisons tout dabord que le simulateur $ySteest le maitre de
'environnement de la vérification. Le modéle dendyronisation peut étre décrit dans
différents niveaux d’abstraction. Dans le niveauLRE& simulateur et I'émulateur sont
connectés via des signaux ce qui augmente le nodasrpoints de synchronisation, figure 15

a).

En contre partie, le niveau transactionnel (TLM)astopté pour les premiéres phases de

description des systemes car il assure I'abstracteola partie communication ce qui réduit le
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nombre des points de synchronisation. Le niveau Tigddose sur la notion de bus de

synchronisation comme l'indique la figure 15 b).

Simulateur Emulateur

T T T Signaux T T T

Synchronisation

a) Bus de Simulation/Emulation (RTL)

Simulateur Emulateur

Lire/ Fcrire Lire / Fcrire

Simulation / Emulation Bt

Synchronisation

b) Bus de Simulation/Emulation (TLI

Figure 15. Bus de simulation/émulation

Le bus de la simulation/émulation implémente leadgristiques du bus en relation avec le
processeur cible et assure des transactions detgeesx d’interruptions comme lindique la
figure 16.

Les fonctionsLire() et Ecrire() définissent les fonctions élémentaires des paqu#ises
dans le bus de simulation/émulation. Deux typegatpiets sont construits afin d’assurer le
bon fonctionnement des modeéles de synchronisatjgequet d’interruption et paquet de
donnée (figure 16). Le paquet d’interruption camttien en-téte qui définit le type du paquet et
un corps composé du numéro de routine a exécutertemps éventuel de la fin de la tache.
Le paquet de donnée contient aussi un en-tétedfinitca la fois le type du paquet, la taille de

donnée et un corps qui enveloppe les donnéessidran
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Type du paquet| Numéro Routine| Instant timbre

- Nh— —
~—

Entéte Corps

a) Paquet d’interruption

Type du paquet Taille Donnée
— AL — J
Entéte Corps

b) Paquet de donnée
Figure 16. Forme de synchronisation
Quatre schémas de synchronisation possibles salisés entre le simulateur et

I’émulateur :

» Schéma 1: L’application logicielle recoit périodiqement les données de la

tache matérielle.

Le modéle de synchronisation est basé sur les mésnde type FIFO. L'idée de ce
modéle consiste a fixer une période de synchraaiséls,) entre le simulateur (SystemC) et
I'émulateur (architecture cible) (figure 17) impqss le simulateur. Dans ce cas, le processeur
cible suit le rythme du simulateur. Une périodesgechronisation est le temps qui sépare deux
points de synchronisations successifs. La péri@dgydchronisation doit étre fixée supérieure

aux temps d’exécution du tache logicielle la pargjue.

Matériel Logiciel

Tache

Paquet de donnégi

syn(
Demande R > Tache 2
2 Tsym Paquetde donnéel

v

Temps SC Temps physique

Figure 17. Modéle de synchronisation: schéma 1
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» Schéma 2: L’application logicielle est en attentealla fin de la tAche matérielle.

Lorsque les composants matériels sont simulés ste®€, les applications logicielles
sont en attente. Une interruption est envoyée madiguer la fin de la tache lorsque le
simulateur termine les siennes. A cet instant |'@&tewr commence a exécuter la routine
correspondante (figure 18) et la tache matériatigeeen repos pour le prochain point de

synchronisation.

Matériel Logiciel

Tach Paquet de donné Tache :: Attente
En repos : '
synchronisatio Paquet de donné Tache | : Exécutiol
Tach

Tem|‘o's SC Temps physique
Figure 18. Modéle de synchronisation: schéma 2

» Schéma 3: L'application logicielle recoit une interuption avant la terminaison

de la tache matérielle.

Dans ce modele (figure 19) I'application logicighleut s’exécuter plutt qu’elle reste en
attente lorsque la simulation des composants negéest en cours. En effet, ce parallélisme
est assuré par le mode d’interruption matérielle laldiaison USB. L’ordonnanceur de
I'architecture cible envoie une interruption décleant (fleche 0) vers la tache matérielle pour
commencer la simulation. A la fin de la simulatide la tache 1 (fleche 1), le simulateur
SystemC envoi une interruption (fleche 2) afin finmer I'application logicielle du prochain

éventuel instant de synchronisation.

Eventuellement, cet instant qui correspond a lad@na tache hardware est envoyé en
utilisant la fonctionwait_for_interrupt(sc_time t)figure 20). A cet instant I'ordonnanceur
active un temporisateur et exécute une tache igdiaime (fleche 3). Lorsque le temps est
atteint, la tache intermédiaire s’arréte. L'ordamceur envoie une demande de donnée pour
recevoir le paquet de donnée et activer la taclmehtionné par le paquet). La figure 21

montre un modeéle de code de synchronisation.
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Matériel Logiciel
Paquet de donnée

@ \rache intermédiaire

Tache 1
O

Tache 3

Tache 2
€ P,

7

Paquet de donnée

i " |

y

v A
Temps SC Temps physique

Figure 19. Modele de synchronisation: schéma 3

void wait_for_interrupt(sc_time t)
{

wait(t);
send_interruption_packet(.....) ;

}

Figure 20. Code de la fonction attente d’une intgtron

Avect une estimation de la durée d’'exécution de la tache

/* Taskl code */
Instructions

Wait_for_interrupt (t);
Switch_context();/* switch context to SC*/

Figure 21. Modele du code de synchronisation
» Schéma 4: L’application logicielle recoit les donrgs au hasard

Dans ce cas (figure 22), le SystemC exécute laetdcbt lorsque ce dernier est fini, un

paquet de donnée est envoyé vers I'applicatiorcielg. Lorsque la tache 2 est en exécution,
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le SystemC exécute la fonctidtardware Input_InterfaceCette fonction qui modélise les
interfaces d’entrée du composant matériel, s’ex@sans avancer le temps local du SystemC.
Hardware_Input_Interfac@eut générer une interruption au hasard pourrmdod’application
logicielle de linstant d’arriver d'un paquet de ra@e. L’interruption est bien assurée par

l'interruption matérielle générée par 'USB.

Matérie Logiciel

Tache <t Attente
—Paquet de donn,,

Input Interfac=——
En repos : Wr > Tache

synchronisatign
Jj Racuet de donn PTache:

v
Temps St Temps physiqt

Figure 22. Modéle de synchronisation: schéma 4

Les modeles de synchronisation ainsi présentésepéwdtre utilisés ensemble en se

basant sur les fonctions dédiées de chaque modéle.
V.2.2. Les interfaces de synchronisation

Afin d’assurer la synchronisation, des interfacegidielles et matérielles sont
implémentées. Du c6té de la carte FPGA un tableaegistres est utilisé pour sauvegarder le

contexte de la synchronisation.

Les composants matériels sont décrits en SysteraCquc facilite le mouvement,
I'addition et la soustraction des modules. Le nivdaM est le niveau d’abstraction adopté
pour les interfacemterface_InInterface_Outt pour la modélisation. Un module interface est
implémenté pour assurer une bonne synchronisatianfigure 23 montre les interfaces
utilisées.

Notre environnement de simulation / émulation pdesssentiellement deux types
d’interfaces dans SystemcC :
1. L’interface Interface_In: c’est une interface qui permet de lire les dasné
recues de la part de I'émulateur. Cette interfanplémente la couche de

communication et permet non seulement I'accés laleda de registre partagé
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pour récupérer les données désirées mais austaliedr un changement de
contexte.

2. L'interfacelnterface_Out c’est une interface qui permet d’envoyer les
données vers les applications logicielles et dedale changement du

contexte. Cette interface implémente la méme coqgakd’interface

Interface_In
Tableau de registre partagé
D1
Module 1
Tache 1
D2
TLM MOdUle D3
) . . Tache 2
r ChannelF>ID Interface_In Lire()/Ecrire( D4
|
I Interface_ Qut| |- Tache 3
|
|
. .
I a
| n
. .
|
I
|
|
|
i t t
v v
Ordonnanceur
Module 3
— /) N\ J
Y Y
System( Noyau d’architecture cib

Figure 23. Les interfaces de synchronisation
VI.  Conclusion

Une présentation des méthodes de vérification giegrses mono-puces basés sur une
architecture matériel / logiciel a été détailléaslae chapitre. En se basant sur les techniques
décrites, nous avons présenté notre modéle etoemament de simulation/émulation qui
permet d'accélérer le temps de simulation et la étisation multi-niveau. Notre
environnement est composé d’'une couche de comniiomca base de la liaison USB et une

couche de synchronisation. Cette derniére couchieas la fois I'abstraction de I'échange de
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donnée entre simulateur et émulateur sous formeatpiet et fournis les modeles de
synchronisations possibles. En fait cette abstracfiermet de conserver les modéles de
synchronisations méme si le type de liaison cha8gele la couche de communication sera
modifiée.

Les méthodes de synchronisation ainsi décritesgamériques et ne demandent pas de
changement du noyau de la simulation du Systems@atest grace au mode d’interruption
assuré par la liaison USB. Ces modeles assuremffdisl une communication rapide et une
synchronisation supportant plusieurs scénariosilgless Les résultats expérimentaux sont

présentés dans le chapitre 4.

Dans le chapitre suivant, nous proposons une dartende l'environnement de
simulation/émulation que nous avons ultérieurenm@senté afin de supporter le modéle
continu sur lequel CODIS est basé. Le principe isb&is interfacer notre environnement avec

le simulateur Simulink.
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Chapitre 3 : METHODOLOGIES DE MODELISATION ET DE VERIFICATION POUR LES SYSTEMES
HETEROGENES
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Chapitre 3 : METHODOLOGIES DE MODELISATION ET DE
VERIFICATION POUR LES SYSTEMES HETEROGENES

l. Introduction

La modélisation des systemes hétérogenes présergeand défi pour les concepteurs
vu I'hétérogénéité entre simulateurs qui demandeetinteraction adéquate entre le modele
continu et le modéle discret d'une part et entrgpdatie matérielle et la partie logicielle
d’autre part. Les systémes de controle-commanaiedss systemes industriels trés utilisés et
ils obéissent aux regles des systemes hétérog&medait, les systemes de contrOle-
commande sont composés principalement de deuxegartpartie commande et partie
contrble. La partie commande est constituée panu®hiles continus comme les moteurs et
les réacteurs. La partie contrbéle est constituéeelunité de traitement numérique adéquate
au modele discret. Le nombre de contrbleurs numeésicainsi leur complexité ne cesse
d'augmenter et plus d'efforts sont consacrés @iaeption et a la vérification. Grace a la
grande révolution des technologies numeériques,jiquts outils concus pour les contréleurs
numeériques sont créés. Les plateformes de type YW&ly Large Scale Integration), comme
par exemples les cartes FPGAs et les ASICs (AgmitaSpecific Integrated Circuit),
réalisent des contréleurs entierement numériquear conséquent, I'unité de contréle des
systemes de commande implantée souvent sur une ékattronique, migre vers une
implantation sur une puce unique, offrant I'avaatd@tre compact et de supporter un tres
grand nombre de traitements arithmétiques. De plutdjsation des cartes reconfigurables
telles que les FPGAs permet le développement girdéotypage rapide du contréleur
numerique, (Rodriguez J.J., 2007).

La méthodologie de conception et de vérificatioavete une demande exigeante a
cause de la complexité croissante des algorithmesn@anter dans ces contrbleurs

numeériques et les contraintes de la mise en marché.

Ce chapitre est constitué de deux parties esdestieflans la premiére nous proposons
une nouvelle technique de conception et de sinmates contréleurs numeériques nommeée la
technique de simulation matériel/logiciel en boutlardware Software In the Loop"). Nous
décrivons dans la deuxiéme partie I'environnemedDES+ en se basant sur les concepts de

base de I'environnement CODIS.

-64-



Environnement de Co-Simulation / Emulation des systémes Continus / Discrets Mossaad Ben Ayed

lI.  Simulation matériel/logiciel en boucle des contréle&s numériques

La conception des contréleurs au sein des systéammandes présente un défi a cause
de I'hétérogénéité du modele. Une présentation tdebniques de modélisation et de
vérification est citée dans cette section.

Dans tout systtme de commande, les contrbleurs nqueé interagissent avec les
différents modules continus. Les différents signgui peuvent interagir avec ce controleur
rendent la conception plus difficile. On peut ytitiguer les signaux recus par le systeme de
commande et ceux qu’il émet. Afin d’interfacer l@dgle continu et le modele discret des

convertisseurs sont utilisés.

Les signaux émis correspondent aux ordres de conerafiouverture et a la fermeture
des interrupteurs des convertisseurs. De pluhyig@eur numérique est, a part sa nature, un
systeme discontinu qui ne réagit avec son envinmen¢ qu'a des instants discrets. Ces
instants sont soumis a des contraintes temporedias I'ordre de grandeur peut varier de la
seconde a la microseconde selon la dynamique daedeurs a réguler.

I1.1. Travaux antérieurs

Plusieurs travaux se trouvent dans la littératurer ga modélisation et la vérification
des contrdleurs numériques. Cette section déladlaifferentes méthodes en soulignant les

points forts et les points faibles de chaque méthod
[1.1.1. Simulation utilisant une carte électronique

Les premiers travaux réalisent le contréleur nuquérisur une carte électronique a
travers des difféerents composants discrets. Cespasamts réalisent des fonctions
particulieres plus ou moins complexes : additionénmarisation, interfacage, gestion
d’interruption, ...etc. L'inconvénient majeur deteetechnique se manifeste lors d’'une erreur
de conception. Afin de la corriger, on doit ajouties liaisons entre les composants ou bien
refaire totalement la carte électronique. Ce prokl@’'obéit pas a la contrainte de la mise en
marché. De plus la conception de ces cartes dedeemtlus en plus difficile a cause de la
complexité des contrbéleurs électroniques et desposants qui deviennent nombreux. Cela

engendre une élévation du prix des cartes congus.
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[1.1.2. Simulation matériel en boucle

Afin de surmonter ces lacunes, les technigues basdela simulation matérielle en
boucle ("Hardware In the Loop") (HIL) sont proposémur pouvoir modifier le contréleur
numeérique sans modifier la carte électronique ebirdier le nombre de composants
numeriques sur cette carte. L’évolution des teabgiek de fabrication de circuits numériques
permettent I'intégration d’un contrdleur numéricgig une mono-puce. La conception de tels

systemes numeériques intégrés se base sur un langaggique de description de matériel.

Cette évolution a également ouvert la voie auxdgeg de haut niveau de description
de matériel, encore appelés HDLs pour "Hardwareci@sn Languages”, il s’agit en
particulier de VHDL et de Verilog. Tous deux somtpportés par un grand nombre de
logiciels. Les avantages majeurs d'une descriptiagée sur un HDL résident dans sa
portabilité et dans son caractére exécutable. ten, @h modéle fonctionnel numérique décrit
a haut niveau par un HDL peut étre vérifié par $ation, avant que la conception finale ne
soit réalisée. D’autre part, la révolution dansdesils CAO permet le passage directement
d’une description HDL synthétisable a un schémaselole portes logiques.

Une premiére technique utilise un simulateur mixtalogique/numérique supportant
un HDL et intégrant un noyau de simulation unicques, exemples Advanced Design System
(ADS) d’Agilent (Agilent, 2012), ADVanceMS (Mento2012), Simplorer (Simplorer, 2012)
et SMASH (Smash, 2012).

La co-simulation est la seconde technique posdiile.est basée sur la communication
entre deux simulateurs, I'un numérique et I'autralagique. Les modéles sont conjointement
exécutés par ces deux simulateurs, chaque simulatedélisant une partie spécifique du
circuit a concevoir ou de son environnement. Laiowdlation est basée sur une interface qui
permet non seulement I'échange de données entoelessimulateurs tout en respectant les
contraintes de types et de tailles mais aussi gpmentant la synchronisation temporelle des
deux simulateurs par exemples Modelsim/Spectrefgdiges VHDL/SpectreHDL) (Aubepart
F., 2003), Modelsim/Saber (Lienhardt A.M., 2006 pdé¢lsim/Matlab (Katrib J., 2008).

Dans ces exemples, le simulateur Modelsim simuleolgréleur numérique décrit en
langage HDL numérique. Le modéle du contréleur t&fre sous la forme d'un bloc
numeérique dans l'environnement global. Le modelet @dre décrit a différents niveaux

d’abstraction, du plus haut niveau jusqu’au niveythétisable.
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En résumé, les avantages de la technique basés simulateur mixte supportant un

HDL sont : (1) noyau de simulation unique (2) terdpssimulation réduit.

L'inconvénient majeur réside a la limitation de Imtheques des composants
analogiques. La co-simulation surmonte I'inconvahigrécédent, mais la synchronisation et

le temps de simulation représentent le grand défi.

Comme une premiére solution pour réduire le tengpsimiulation, les sociétés Altera et
Xilinx, fabricants de composants FPGAs, ont dévedopn code VHDL niveau synthétisable
associé aux modeles hauts niveaux de la biblioth&datlab/Simulink. L’outil DSP Builder
de la société Altera et I'outil System Generator lalesociété Xilinx permettent alors la
génération "automatique" d'une description VHDL thgtisable a partir d'un modéle dans

I'environnement de simulation Matlab/Simulink.

Cette nouvelle approche bénéficie de nombreux agast : bibliothéques riches en

composants numériques, analogiques et possibditéaliser la synthése numérique.

La simulation HIL traditionnelle, basée sur un diateur ou bien sur une plateforme
matérielle spécifique a une application, permetecautres aux concepteurs d’évaluer un
algorithme de commande conjointement avec le clairumeérique (partie matérielle) par
une simulation qui reproduit le comportement dyrgareidu systeme. Il est des lors possible
d’évaluer l'algorithme de commande dans un envieoment virtuel, non destructif ou les
modifications de I'algorithme sont souvent réalisalsans itération matérielle colteuse. Cette
technique de simulation entraine une réduction tdeyps de développement ainsi que la
réduction du colt d’'un projet. Ainsi, la simulatibliL permet d’évaluer la robustesse et les

performances de I'algorithme de commande et lestpdaibles du systéme.

La simulation HIL peut étre réalisée en temps w@elhors ligne, selon le type de
simulateur utilisé. Dans le cas de la simulatioh Hbors ligne, a chaque pas de simulation, le
systeme est simulé en utilisant un simulateur [io&". Les signaux de sortie sont envoyés au
contréleur numérique qui exécute I'algorithme inmpéité. Le contrdleur retourne ensuite les
signaux de commande. A cet instant, un cycle delsiion HIL hors ligne est effectué. De ce
fait, la simulation ne peut pas étre exécutée pipseréel et peut devenir trés lente lorsque
'on diminue le pas de simulation ou lorsque let&yse est complexe avec une dynamique
lente. En dépit de ce point faible, cette appropkat notamment étre tres efficace pour

évaluer un algorithme de commande, en particutiesglue le pas de simulation est tres faible.
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En effet, dans ce cas, certains simulateurs teéglsne peuvent plus simuler correctement

tels systemes.

Dans l'autre cas, le simulateur HDL est en temps$ té contrbleur électronique décrit
en HDL est implanté sur une carte cible (des ca&feGA dans la plupart des cas) ce qui
réduit le temps de simulation. Un simulateur temged permet de modéliser et de reproduire
la dynamique et le comportement du systéme de qalilepeut dialoguer, en temps réel, avec
le contréleur. Ce dialogue est fait a I'aide d’'nfidees entrées/sorties. Selon la complexité du
systeme a simuler et sa dynamique, plusieurs peaes peuvent étre utilisés pour garantir
une modeélisation temps réel acceptable. Par exertipdgakawa, 20053 mis en ceuvre un
simulateur temps réel ayant trois processeurs pmouler un moteur synchrone a aimants

permanents et son alimentation, avec un pas ddaiomuégal aQus.
[1.1.3. Simulation par carte de prototypage en bdeic

Une nouvelle méthodologie de prototypage dite satimh par carte de prototypage en
boucle ("FPGA in the loop") est utilisé récemmeafarimi S., 2009). Un composant FPGA
est un circuit intégré numérique composé dun grammmbre de blocs logiques
programmables et reconfigurables sans modificatiatérielle significative. Les composants
FPGAs sont devenus nécessaires dans les systemewiques et sont utilisés dans de
multiples domaines d’applications en raison de neomb avantages obtenus lors de leur
utilisation (Detrey J., 2007). Parmi tous ces aages, on peut citer :

1- L'augmentation croissante du niveau de perfoo@aemps réel tout en réduisant le

cout et 'encombrement.

2- L'utilisation des FPGAs permet I'améliorationsdperformances en réduisant le

temps d’exécution d’un algorithme afin de permeginecontréleur d’atteindre le niveau

de performance des contrbleurs analogiques, sa&semter les inconvénients de ces
derniers.

3- Leur grande souplesse de programmation permesdéutiliser.

4- La rapidité et la facilité de reconfigurer unG#R autant de fois que nécessaire pour

implanter les fonctionnalités désirées.

En raison de tous ces avantages, les FPGAs samtrdijui utilisés dans plusieurs
applications nécessitant des traitements numériguasrtants tels que le traitement du signal
et de l'image, le contréle/commande des machinestré&ues, la mesure de vitesse, le
contrble des convertisseurs statiques de puissdaésnautique, la télécommunication, les

equipements médicaux, les transports, la bio-inédice, I'automobile, la robotique.
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[1.1.4. Synthése

La simulation HIL dans Matlab/Simulink peut étrensmérée comme la technique la
plus adaptée pour la simulation des contrdleurs énigmes. Ce type de simulation offre
plusieurs avantages, citant :

= Le controleur ou le régulateur sera vérifié aux npegs stades de

développement.

» La fiabilité du contrdleur numérique (bruit, temaitire,...etc) sera testée

rapidement.
= Les erreurs et les failles seront détectées ttes to

Malgré ces différents avantages et la grande affiis de la simulation HIL, plusieurs
limitations et faiblesses entour cette méthode :
= Peu de bibliotheques qui modélisent les architestucibles sont
supportées. Le contréleur numeérique obéira a liecture cible
développée par Matlab/Simulink. En effet, le DSRideu d’Altera, par
exemple, ne supporte pas toutes les bibliotheqeedlegaCore (DSP,
2013).

= Limitation des bibliotheques qui modélisent le colgur numeérique.

Chaque contrdleur numérique sera intégré danditacture cible.

= L’architecture cible décrite en Matlab/Simulink gstu modifiable. En
effet, les bibliotheques représentant les architest cibles offre peu de

flexibilité pour le changement d’architecture.

= Pour chague modification du contrdleur numériqueite I'architecture

doit étre re-implémentée sur la carte FPGA.

La section suivante présentera une nouvelle teabnig vérification des contréleurs
numériques basée sur la notion de la simulationétlline carte FPGA Altera pour surmonter
les problemes et les limitations citées.

[1.2. La Simulation matériel/logiciel en boucle

Afin de surmonter les limitations citées ci dessoeus présentons une nouvelle
méthodologie de la simulation appelée simulatiorténig/logiciel en boucle ("Hardware
Software In the Loop™) (HSIL).
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La méthodologie sera présentée en citant tout daleoprincipe de la simulation, puis
les logiciels mis en ceuvre, ensuite la couche denaanication et finalement la couche de

synchronisation.
11.2.1. Principe

Vu la complexité croissante des contréleurs numésg la conception matériel /
logiciel devient de plus en plus exigée. Notre mmdttogie propose une conception basée sur
la stratégie de la Co-design pour la modélisatiea controleurs numériques. La figure 24

décrit I'architecture de la simulation HSIL.

L’architecture proposée est composeée essentielledeedeux couches indispensables :
la couche communication et la couche synchronisafidatiab/Simulink offre une grande
flexibilité pour une conception hétérogene. Leschl&-Fonction permettent I'utilisation de
plusieurs langages (Matlab, C, C++, Ada) dans uéenendescription. De l'autre coté une

architecture basée sur une architecture ciblexgdainté sur une carte FPGA Altera.

by

L'idée consiste a considérer le contrdleur numérigemme étant une application

logicielle qui s’exécute sur I'architecture cible.

Modeéle discret

Signal d’entrée Signal dsortie
S-Fonction HSIL

7 N
e ~
' ~
7 ~
N

Modéle continu

Y

v

R Communication : USB S

Carte FPGA

Contrdleur logiciel

Bus

Architecture cible

Figure 24. Architecture de la simulation matériegficiel en boucle

La simulation HSIL, une extension de la simulati$ih, présente plusieurs avantages

citons :
= La conception des contrbleurs numériques complekéd a la stratégie de la Co-
design. Par la suite, la modélisation devient ds ph plus facile, flexible et le temps

de la mise en marché diminue.
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= Un seul et méme bloc S-Fonction permet le remplacérde tous les contréleurs
numériques. En fait, le contréleur sera décrit @amghge C indépendamment des
blocs existants en Matlab/Simulink. Ce fait asdarportabilité et la réutilisation des

contrbleurs.

= La vérification et la correction d’'un ou de plugiewontréleurs numeériques se fait

sans modifier a chaque fois I'architecture cible.

Les sections suivantes décrivent I'architecturéad@mulation HSIL et les logiciels mis

en ceuvre.

[1.2.2. Logiciels mis en ceuvre
Dans cette section, nous présentons les logici#isés pour mettre en place la simulation
HSIL.

Simulink

Simulink, tres populaire pour la communauté de rfisalgon et de simulation, est un
environnement qui s'integre dans Matlab. Cet enwiemment possede une vaste gamme
d’outils et de bibliothéques permettant de modglisinuler et analyser un grand nombre de
systemes dynamiques réels (linéaires ou non legaaitons comme exemples : les systemes
électrigues, mécaniques, thermodynamiques, élaqtrerde puissance etc. Simulink possede
plusieurs bibliotheques dans les domaines de Haaitde, de I'électronique de puissance, du
contrble, etc. et des algorithmes de résolutiongudifons différentielles, congus pour les

systemes, fournissent un bon rapport vitesse/poécie simulation.

L'environnement  Simulink possede une interface lgiqye interactive,
particulierement conviviale, permet a I'utilisatele construire facilement et rapidement des
modeles a travers des blocs fonctionnels existiarts sa bibliotheque, citons par exemples :
sources, oscilloscope, intégrateur, additionneas, cbomposants plus complexes linéaires et
non linéaires, etc. Simulink offre la possibilité dréer des blocs non standard grace aux blocs
personnalisables comme les S-fonctiossfunction : system functiomui consistent a
programmer les équations du systéme a simulerigsant des langages étrangers (C, C++,
Ada).

L’algorithme de résolution divise le temps de siatidn en un ensemble de pas
d'intégration mineurs et pas d'intégration majeurde pas mineur représente une subdivision

du pas majeur. Le simulateur produit un résultzsttaque pas d'intégration majeur. Ce résultat
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utilise ceux de résolution calculés a chaque pamédration mineur afin d’améliorer la
précision.

Simulink utilise la régle de dépendance de donrae fixer I'ordre d’exécution des
blocs durant la phase d'initialisation. Un bloc elpmirect-feedthroughest celui dont ces
sorties sont en fonction de ses entrées alorsitilédi@ exécuté apres ceux qui calculent ses
entrées (exemple: additionneur, gaifjous les autres blocs sont appelésndirect-
feedthrough(exemple: intégrateur). Pour assurer I'ordre d'etién, Simulink commence a
exécuter les blocsondirect-feedthroughen premier lieu, dans n'importe quel ordre, fluis
exécute les blocdirect-feedthrougtdans un ordre qui respecte la régle de dépendaae d
citée.

Quartus I

Le logiciel Quartus Il est un outil de CAO dédidaaprogrammation des CPLDs et
FPGAs du fabricant Altera. La figure 25 décritliet de conception sous Quartus Il. Il permet
la description d'un projet, sa compilation, sa $ation logique et temporelle, son analyse
temporelle et la programmation d'un circuit ciiaartus Il permet la création des systéemes
complexes comportant des processeurs, des pédpkéri des mémoires, des bus, des
arbitres, et des noyaux d’IPs. Il comprend uneesdé fonctions de conception au niveau
systeme, permettant d’accéder a la large bibliatb&tjlP d’Altera et un moteur de placement

routage intégrant la technologie d’optimisationldesynthése physique et des solutions de

vérification.
Description graphique| Simulation R Simulation Programmation
ou textuelle | fonctionnelle | temporelle

Figure 25. Les différentes parties du flot de cqticen de QUARTUS I

Quartus Il est un logiciel qui travaille sous foraeeprojets c'est-a-dire il gére un design
sous forme d'entités hiérarchiques. Un projet 'esisémble des fichiers d'un design sous
formes graphiques, VHDL ou de bonnes configuratides composants (affectation de pins
par exemple).

SOPC Builder

Le SOPC Builder permet, entre autres, de concealasrmicrocontréleurs spécifiques a
une application. Ces microcontrdleurs comportamtcdune partie processeur a laquelle on
associe des périphériques (PIO, Timers, UART, USBjposants propriétaires, ...) et de la
mémoire. Cette derniére peut-étre embarquée dd&RBGA (on parle alors de RAM/ROM On
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Chip) ou a I'extérieur du composant FPGA. La pamieroprocesseur proprement dite est le
NIOS Il de ALTERA, processeur de 32 bits qui selidécen trois versions : économique,
standard, rapide. La version économique, la mainsspnte, utilise le moins de ressources du
FPGA. Bien sir il est possible d'intégrer d’auttgpes de processeurs pour peu qu’on
dispose de leurs modéles (VHDL, Verilog, ...). La atién d'une application SOPC
comprend les étapes suivantes :

= Creéation du composant matériel (processeur + périgures) dans I'environnement

Quartus.
= Télechargement dans le composant FPGA (configumatio

SOPC builder peut étre divisé en deux parties ségar une interface utilisateur
graphique (GUI) et le programme générateur. Danseiface graphique, le concepteur
organise tout son systeme, ajoutant et configulastcomposants. Pour le programme
générateur, il génére tous les fichiers nécesspesla conception.

NIOS I

Le NIOS Il est un processeur embarqué a jeu dlintn réduit (RISC) 32 bits,
développé par Altera et congu pour la mise en calesd=PGAs. Cela signifie qu'il s'agit d'un
processeur soft-core qui n'est pas produit comm&SIE. Le NIOS Il a des bus séparés pour
les données et les instructions (architecture dedfid), vaste ensemble de possibilités de
construire en série des périphériques et des auesfexternes (hors puce) des périphériques.

11.2.3. Couche de communication

La communication représente la premiere couche alesimulation HSIL. La
communication est basée sur la liaison USB quiléjst décrite dans le chapitre précédent a la
section V.1. La communication est assurée parltEsts-Fonction du Simulink.

Les S-fonctions fournissent un meécanisme puissanir gtendre les capacités de
Simulink. Une S-fonction permet de décrire les fammalités du systeme a l'aide d'un
langage de programmation autre que le langage Madenme les langages C/C++, Ada, ou
Fortran. La commandenex permet la compilation de la S-Fonction écrite enghge
étrangere pour générer une bibliotheque dynamiquparte son nom. Une fois la S-Fonction
est compilée, le bloc peut interagir avec les aubtecs du systeme. Les S-fonctions utilisent
une syntaxe d’appel particuliéere qui permet diatgr avec le moteur de résolution

d’équations de Simulink. Cette interaction quites$ semblable a l'interaction entre le moteur
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et les autres blocs de Simulink, utilise un cyclexécution spéciale. Une S-fonction est
composée par un ensemble de fonctions prédéfimess nous sommes intéressés en

particulier aux fonctions citées par la figure 26.

Début de la simulation

l

MdlInitializeSizes

A 4
MdlInitializeSampleTime

Initialisatior

»
»

A 4

MdIGetTimeOfNextVarHit

A 4

MdIOutputs

Boucle de simulation

\ 4
MdITerminate

Figure 26. Cycle de simulation d’'une S-fonction

Les fonctions MdlInitializeSizes et MdlInitialize®gleTimes sont exécutées durant la

phase d'initialisation de Simulink.
La premiere fonction sert a :
1- Initialiser les largeurs et le nombre de ports tfém et de sortie.
2- Fixer le nombre de modes de temps utilisés.
3- Evaluer les parametres de la S-fonction.

La deuxieme fonction est en charge de fixer laneaties modes de temps utilisés par la

S-fonction.

Les fonctions MdIGetTimeOfNextVarHit et MdIOutpusent exécutées a chaque pas

d’intégration durant la boucle de simulation (fig6).

La premiere fonction sert a fixer le prochain terdfgxécution de la S-fonction. Elle est
utilisée seulement si la S-fonction possede le namleemps VARIABLE_SAMPLE_TIME.

La deuxieme fonction, MdIOutputs calcule les signda sortie de la S-fonction.
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Finalement, la fonction MdITerminate est appeléié@rer la mémoire, a détruire des

objets, etc.

Une partie des fonctionnalités de ces fonctionst @xe accomplie par I'appel des
meéthodes existantes dans la bibliothe@imStructde Simulink. Cette derniere fournit un
ensemble assez vaste de méthodes trés utilesddes mfogrammation, exemplessGetT ()
qui retourne le temps courassGetOutputPortRealSignalfui permet d’accéder aux ports
de sortie de la S-fonction. L'utilisateur peut aguson code a l'intérieur des fonctions
prédéfinies. Lors de la création d’'une S-Fonctiomsquelette de code utilisant les fonctions

prédéfinies ainsi citées peut étre modifié en appales méthodes par exemple.
[1.2.4. Couche de synchronisation

Vue I'hétérogénéité du modeéle continu et du modbseret, des convertisseurs
analogigue-numerique et numérique-analogique doieae insérés. La S-Fonction qui

supporte la simulation HSIL est composée comme(Bgitre 27) :

X[K] Traitement Y[K]

numérigue
N N

Synchronisation (S-Fonction)

Xt — CAN CNA M— Y

Figure 27. Structure de la S-Fonction synchronisati

Convertisseur Analogique-Numérique (CAN) :

Un convertisseur analogique-numérique permet denvestir un signal
analogique vers un signal discret. Cette conversest basée sur deux phases

nécessaires : échantillonnage et quantification.

Un signal analogique, X(t) continu en temps et mipldude est échantillonné a une
période d’échantillonnage constantg:,lrespectant le théoréme de Shannogd{d >
Fmax). On obtient alors un signal échantillonng#.Tecr) discret en temps et continu en

amplitude.

Ce dernier est ensuite quantifié, pour obtenir ignad numérique X[Kk] discret en
temps et en amplitude. On définit le quantum quf&g28), ou LSB (Least Significant Bit)
le bit de poids faible comme étant la dimensioreke plages avec :

q=LSB = X/2' avec N présente le nombre de bits dont le coisgerr est codé. (14)
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X = k.q kE{1,...,7}

Sortie numérique

M
111 | ‘
110 |

J'/‘

101 /.

] q
100 |
011 |
010 |

rd

01|
000 [~ > Entrée analogique

0 X X2 X35 X

Figure 28. Caractéristique du Convertisseur Anatpg-Numérique
Traitement numérique :

Le noyau du traitement numérique se base sur liende donnée sous forme de
paquet respectant le modele de synchronisationté&dae paquet est composé d'un en-
téte et un corps comme lindique la figure 29. Ltéte informe I'ordonnanceur du
contréleur a exécuter ainsi de la taille des deanénvoyeées. Ici notre module de
synchronisation peut étre utilisé pour differentmtedleurs numériques en changeant
seulement le numéro de routine a exécuter qui spored a l'algorithme du contrdleur
désiré. Quand aux corps, ils contiennent les dannéevoyées et le temps de

synchronisation.

Numéro Routine| Taille Donnée Etiquette de temps
~~ —~— —— —~ —
Entéte Corps

Figure 29. Forme du paquet

Les paquets présentent un point clé d’échange déamtmulateur Simulink et
I'architecture cible implanté sur la carte FPGA.

La figure 30 décrit le modéle de synchronisatiahisétdans la simulation HSIL.
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Le modele de synchronisation qui se base sur timpdion matérielle USB
s'exécute en mode « Ping Pong ». La figure 30 reomqie lorsque le simulateur continu
est en exécution I'émulateur est en repos. Lorsgudernier regoit un paquet de donnée

du simulateur, il décode le paquet, change le ctaiet exécute le contrdleur désiré.

Simulateur Emulateur

Modéle continu Modele discret

I Paquet de donnée I

Tache contin

Tache discret:

Paquet de donnée
I Controleur

&
<

v

Temps Terr;bs physique
Figure 30. Schéma de synchronisation de la siraathatériel/logiciel en boucle

Convertisseur Numérique-Analogique (CNA) :

Un convertisseur numeérique-analogique permet deertin un signal discret vers

un signal analogigue comme l'indique la figure 31.

: b, —»

by —

Figure 31. Principe du Convertisseur Numérique-Agiiue

Chacun des" mots binaires pouvant étre appliqué en entréassocié a un signal
de sortie analogique, telle que:

Y= (b 2V b, 2%+ +by.20). (X/(2M-1)) avec best le MSB et ble LSB.
(15)
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On définit le LSB, ou quantum, comme étant la ghesite variation possible du
signal de sortie correspondant a un changemenit de Ipoids faible :
1LSB=X/(2'-1). (16)

1.  Modele et environnement de Co-simulation/Emulation des

systemes continu/discret (CODIS+)

Nous présentons dans cette section en premief’éievironnement CODIS. Ensuite,
une étude détaillée de I'environnement global CODd8i supporte d’'une part le simulateur
Simulink pour le modele continu et d’autre parsimulateur SystemC et la carte FPGA pour

le modele discret décrite.
[11.1. L’'environnement CODIS
Une description selon le modele de synchronisaitdisé est décrite dans cette partie.
[11.1.1. Présentation

L'une des plus grandes difficultés lors de la satiah continue/discrete est la

synchronisation du temps entre la simulation a éwdmts discrets et l'intégration

numerique du simulateur continu.

La synchronisation est un point clé qui influeneeprécision et la vitesse de
simulation. 1l existe deux approches fondamentalessynchronisation : l'approche
optimiste et I'approche pessimiste (Langeanu D120

L’approche optimiste permet a chaque simulateurffet®ier quelques pas
optimistes. Si un simulateur génere un événemeantala fin de ces pas, l'autre

simulateur doit étre capable de reculer son temps.

Dans le cas de lI'approche pessimiste, les simuatancent avec le méme pas de
temps, ce qui évite tout besoin de recul. A paftirmodéle de synchronisation basé sur
I'approche pessimiste nous définissons un modeékgydehronisation supportant a la fois

le simulateur continu et le simulateur/émulategcdbt présenté dans le chapitre 2.

L’environnement COntinuous Dlscrete Simulation (ASD(Bouchhima F., 2007)
présente un environnement de modélisation et stiooldes systemes continus/discrets. Une
présentation de cet environnement est décrite é&rasant sur le principe de simulation et les

modeles de synchronisation utilisés.
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[11.1.2. Principe de I'environnement CODIS :

. Simulink

Modéle continu

Inter_In Inter_Out

\4

A 4

Modeéle discret

Inter_Out Inter_In

Figure 32. Schéma global de I'environnement CODIS

La figure 32 montre le schéma global qui relie ledgle continu et le modeéle

discret ainsi les interfaces utilisées dans I'esrvirement CODIS.

Pour Simulink les interfaces peuvent étre paramétrées a partlewrs boites de

dialogue. CODIS posséde principalement trois tybieserfaces dans Simulink :

L’interface Inter_In: c’est une interface qui permet de lire les desnéecues de la
part du modéle discret. Cette interface implémeéateouche de communication et
permet de détecter les événements discrets paotedi le changement de contexte.
Cette derniére étape est responsable de détegiassage du temps de simulateur par
les étiquettes de temps des événements d’échantlye. Cette interface a comme
parametre :

1. Le nom, le nombre et le type des données des geritrée du modéle discret.

2. Les périodes d’échantillonnage.

3. Le mode utilisé.
L’interface Inter_Out: c’est une interface qui permet d’envoyer lesrims vers le
modele discret et de lancer le changement du ctmt©ette interface implémente la
méme couche que l'interfateter Inet a comme parameétre :

1. Le nom, le nombre et le type de données des persedies du modeéle discret.

2. Le mode utilisé.

L’interface Sync: Cette interface implémente la partie la plusantgnte de la phase
de la détection des événements discrets. Ellelesgamoints d’arrét que l'algorithme de
résolution doit atteindre sans dépassement. Cesspaint les étiquettes de temps des
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événements recus. Quand un événement est regerfiice fixe son prochain temps
d’activation égal a I'étiquette de temps de cenéwéent, ceci grace au mode de temps
de la S-fonction de linterfac8ync Une fois ce temps est atteint, I'interfdoger_In

ou Inter_Outest exécutée pour se synchroniser avec I'événeatgmur changer le
contexte vers le simulateur discret. Une fois queauBnk reprend I'exécution,
l'interface Sync est exécutée pour fixer son prochain temps d'digtuégal a
I'étiquette de temps du nouvel événement recutérface est exécutée au temps égal

zéro pour fixer son premier prochain temps.

Ces interfaces sont manipulées comme n’importe ¢t de la bibliotheque de
Simulink. Leurs ports d’entrée ou de sortie somhpatibles avec les ports du modéle continu
et peuvent étre connectés directement en utiliesnsignaux de Simulink. L'utilisateur doit
placer les interfaces a partir de la bibliotheges thterfaces dans la fenétre du modele
continu, puis il fixe leurs parametres et finalemiétes connecte avec les ports d’entrée et de
sortie du modele continu. Durant la phase d’irgation de la simulation, Simulink charge
les fonctionnalités de ces interfaces a partiradaithliotheque dynamique (.dll). Les interfaces
sont générées automatiquement par un outil de geém@rde code qui a comme entrée les

parametres définis par I'utilisateur.

Pour SystemC les interfaces peuvent étre appelées a partir deibiotheque de
simulation. CODIS posséde principalement deux tybieserfaces :

= L’interface Inter_In: c’est une interface qui permet de lire les desngecues de la
part du modele continu. Cette interface impléméateouche de communication et
assure I'échange de données, la conversion degusigt le changement de contexte
en envoyant des étiquettes du temps des événemiiéstgntillonnage. Elle assure
aussi la synchronisation avec les données éclumées a I'entrée du modele discret
grace aux horloges d’échantillonnage.

= L'interface Inter_Out: c’est une interface qui permet d’envoyer lesro@s vers le
modele continu et lancer le changement du contaxt@veau du noyau de SystemC.

Pour SystemC, l'outil génere aussi la fonction feain’ (ou la modifie si elle existe
déja) qui connecte les interfaces avec le modalgel. Le modele est compilé et I'éditeur de
lien appelle la bibliotheque de SystemC et la bthique statique, appelé bibliotheque de

simulation.
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[11.1.3. Modele de synchronisation de I'environnemeCODIS :

Une fois les interfaces générées et connectéesnagieles, le concepteur simule son
systeme en exploitant les outils de débogage dasx d@mulateurs intégrés par
'environnement. Dans cette section, une descripdio modele de synchronisation pessimiste

est présentée.

La figure 33 présente le modéle de synchronisat@m.modele est utilisé lorsque le
modele continu est en avance par rapport au maolisdest et respecte l'algorithme canonique
(Ghasemi H.R., 2005). Dans cet algorithme, le sitewir continu prend en considération
l'occurrence d'un événement discret a son tourinhlateur discret tient en compte les

événements d'état envoyes par le simulateur continu

Dans la figure 33, le simulateur continu et le dateur discret sont synchronisés a
l'instant A. Ce dernier simulateur commence a ebetdous les processus qui sont sensibles
aux eévénements déclenchés a l'instant courant eeta jour les signaux sans avancer le
temps, ce qui constitue un cycle de simulatiorfalit souligner que le noyau de SystemC
modifié permet I'exécution des processus sans avdactemps sauf lorsqu’'un changement
de contexte du simulateur continu vers le simulatdigscret est effectué. Ensuite, le
simulateur discret envoie au simulateur continutdmps d'occurrence de son prochain
événement de sortie (point B: prochain événemimf)ange le contexte de simulation vers le
simulateur continu (fleche 1). Ce dernier calcuds kignaux en résolvant les équations
différentielles du modele jusqu'a atteindre avetcigion le temps envoyé par le simulateur

discret (point C : temps d'événement discret djtddeux cas se présentent:

*Le temps du point C représente le temps d'occueresian événement
d'échantillonnage. Dans ce cas, le simulateur @ontiet a jour les signaux de sortie
avec leurs valeurs calculées a cet instant et ehémgontexte vers le simulateur
discret (fleche 3). Ce dernier avance pour le tempscurrence de I'événement

d'échantillonnage (fleche 4) et commence un nouggele de simulation.

* Le temps du point C est le temps d'occurrence éiddmement de mise a jour
des signaux. Dans ce cas, le simulateur continngehée contexte vers le simulateur
discret qui avancera pour le temps d'occurrencéédénement indiqué, calcule les
signaux et envoie leurs valeurs et le temps d'oenge du prochain événement.

Finalement, il change le contexte vers le simulatantinu qui va lire les nouvelles
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valeurs des signaux et procede pour le prochaipgedtevénement discret et le cycle

recommence (fleche 5 et 6).

i 4><\
Simulateur discret {7 B O—
1 5 R
3 7 9
. . t
Simulateur continu_{ 7 B . ] ;
2 6 10
—__» Avancement de la simulation l Synchronisation
O Evénement déclenché/prochain ] Temps d’événement discret atteint
Evénement d’état généré par le Evénement d'état considéré par le
simulateur continu simulateur discret

_>\a L'avancement du simulateur discret si I'événemeéatpas eu lieu

Figure 33. Le modele de synchronisation pessimiste

Le modele continu peut générer un événement digteis ce cas, le simulateur continu
indiqgue sa présence, envoie son temps d'occurrancsimulateur discret et change le
contexte de simulation (fleche 7). Le simulatewscdit doit considérer cet événement en
avancant le temps vers son temps d'occurrenceeréatiter les processus qui lui sont
sensibles.

I11.2. Discussion

Cet environnement a été validé par plusieurs amjpbics hétérogenes. CODIS est un
environnement de vérification des systemes héberegybasé sur une co-simulation entre le
simulateur Simulink et le simulateur SystemC. Lieonnement CODIS présente plusieurs
avantages citant :

= Utilisation des langages Matlab/Simulink pour led@le continu et SystemC pour le
modele discret. Ces deux langages sont classés e@tant les premiers langages a
utilisés dans les premiers phases de conceptiandafivérifier le fonctionnement du
systeme a réaliser. Ce point permet d'utilisebiéfiotheques existantes congcues pour

les modeles continus et discrets.
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= CODIS utilise le SystemC pour modéliser les pantegériels au lieu de VHDL ou
Verilog. Ceci permet d’accélérer a la fois le terdpda mise en marché et le temps de

simulation ainsi plusieurs niveaux d’abstractionyent étre utilisés.

Comme les autres environnements CODIS possedeuwgnselignitations, citons :
= Les temps de simulation et plus important par rap@ex nouveaux environnements
qui supportent a la fois les modeéles continu/discre
= L’environnement CODIS ne supporte pas la stratédjie Co-design lors de la
modélisation des contréleurs numériques. Ce qud ©ODIS non efficace pour les

contrbleurs complexes.

La méthodologie qui sera présentée par la suitewux put d'adapter CODIS a la
stratégie Co-design et d’accélérer le temps delation en utilisant une carte FPGA dont
I'architecture cible est implantée.

[11.3. Modele de synchronisation de I'environnemeniCODIS+

Nous présentons dans cette section le modele dtrgynsation global proposé (figure
34). Ce modele se base d'une part sur le modélsydehronisation pessimiste entre le
simulateur Simulink et le simulateur SystemC eutta part entre le simulateur SystemC et
une architecture cible implantée sur une carte FBGU la modélisation conjointe faite dans
le chapitre 2. Le temps de synchronisation reptéderpoint clé a décrire et on va ignorer les
types de paquets échangés entre les différentdategurs et émulateurs.

Attente @ Attente
+—> /\ <
Carte FPGA{ ]

v

L]
L]
v

I_I

o @ Yle
@ Enrepos
" <—> /\ /\

SystemC -[} O [} > !
® \ %{\ ©
Simulink {] O I >

N \/\/“
®

Figure 34. Modele de synchronisation de I'enviromeat CODIS+
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A linstant t=0s, le processeur cible implanté $arcarte FPGA déclenche la co-
simulation émulation ainsi un changement de cosatesdrs le simulateur SystemC est
effectué (fleche 1). Ce dernier commence a exédesemodules sensibles sans avancer le
temps de simulation. Une fois I'exécution est fide simulateur discret envoie le prochain
temps éventuel de synchronisation vers le simulatentinu. Un changement de contexte est
accompli par la suite (fleche 2). Lorsque le Simkilirecoit le prochain temps de
synchronisation, il commence a exécuter le modatéirru. Deux cas peuvent se présenter :

1- le temps étiquette est atteint avant la gér@ratiun pas d’'intégration.
2- Un pas d’intégration est généré avant I'attethteaemps étiquette.

On s'intéresse a ce stade la au premier cas. Lersgtemps est atteint (fleche 3), le
simulateur Simulink fait un changement de contextes le simulateur SystemC (fleche 4). A
cet instant SystemC avance son temps (fleche Bu dh cycle de simulation est terminé.
Puis, une tache logicielle est simulée par la cdldehe 7) et le simulateur SystemC entre
dans une phase de repos. Lorsque I'émulateur terg@ntache, un changement de contexte
vers le simulateur Simulink est fait a travers {st8mC (fleche 8 et fleche 9) en envoyant le
temps étiquette qui correspond au temps d’exécud®rla tache logicielle. Dans ce cas
Simulink continue I'exécution du modele continugu& atteindre le nouveau temps étiquette
envoyé (fleche 10) et se bloque pour donner 'aeceSystemC. Ensuite, le SystemC exécute
une tache matérielle sans avancer son temps eteel@vprochain temps de synchronisation
vers le simulateur continu. Lorsque le changemerdahtexte est accompli le modéle continu
commence a s’exécuter jusqu’a l'apparition d’'unr@ment d’intégration, et avant que le
temps d’'étiquette soit atteint, c’est le deuxieras. @ans ce cas, Simulink envoie le temps
d’apparition de I'événement d’intégration (temp#éette) vers le SystemC pour que ce
dernier avance son temps de simulation jusqu’alpsed®tiquette ainsi un changement de
contexte est fait. Ce cas représente un cas @iticar il perturbe le parallélisme de
'exécution des simulateurs. Le mécanisme décriinpé de conserver le bon fonctionnement
des simulateurs ainsi les échanges des instantSirhalink poursuit I'exécution jusqu’au
nouvel instant (fleche 18). Ce cas n’a pas d’iniltee sur 'émulateur car il est en phase

d'attente.

Le simulateur SystemC représente le maitre de ifennement de co-simulation /
émulation vue le mécanisme du noyau de la simuidtiotialisation puis exécution) et vue la
possibilité de la modification du noyau. L’émulatigdéja décrite dans le chapitre 2) est

assurée a travers des fonctions qui seront intégla¥es le code de haut niveau et ne nécessite
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pas la modification du noyau de la simulation dst&yC grace a l'interruption matérielle

faite par la liaison USB.

Les interfaces utilisées pour Simulink sont les m&minterfaces faites par
'environnement CODIS. La seule modification estalisée au niveau du type de paquet

échangé.

Pour SystemC deux nouvelles interfaces sont ajputée
» Interface_In: Cette interface fait appelle aux fonctions ddilaiotheque de la
simulation/émulation. Elle implémente la couchecdenmunication et permet
de lire les paquets envoyés de la part du procesgse.
= |Interface_Out Cette interface fait appelle aux fonctions deildiotheque de la
simulation/émulation. Elle implémente la couchecoenmunication et permet

d’envoyer les paquets vers le processeur cible.

V. Conclusion

Dans ce chapitre, nous avons détaillé les difféeenhéthodologies adaptées. En
premier lieu, une présentation de la simulationémalflogiciel en boucle est annoncée pour
le cas de la simulation des contréleurs numérigGeste technique est une extension de la
fameuse technique HIL utilisée dans Matlab/Simuld&tre technique respecte la conception
Co-design non utilisée dans la conception des @élanuirs numériques. La simulation
matériel/logiciel en boucle représente une techmigfficace pour les contréleurs complexes

et diminue le temps de la mise en marché.

En deuxiéme lieu, une extension de I'environnem€@DIS est proposée afin
d’accélérer le temps de simulation et de suppatesr systemes plus complexes. En fait,
'environnement CODIS souffre essentiellement dmge de simulation important lors de
I'utilisation de I'ISS et n'obéit pas a la stratégle conception Co-design pour les systemes
numériques. Notre environnement résolu ces deublgmes en utilisant une carte de

prototypage.

Dans le chapitre suivant, une implémentation devimnnement simulateur/émulateur,
de la simulation HSIL et de I'environnement de cuotdation/ émulation est validé a travers

plusieurs exemples d’application.
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Chapitre 4 : EXPERIMENTATION : APPLICATIONS ET
ENVIRONNEMENTS

l. Introduction

Les environnements de co-simulations présentent néwessité croissante pour la
modélisation des systemes continus/discrets. Bn ¢as environnements non seulement
facilitent la tache de la modélisation et accélarphase de conception mais aussi diminue le
co(t de fabrication des systemes. L’environnementatsimulation/émulation présenté dans
le chapitre précédent représente un outil puispant la simulation continu/discret vu le
schéma de synchronisation qui assure un tempsrdgagion minime et offre la possibilité de

modéliser les systemes numériques conjointemenddétérent niveau d’abstraction.

Dans ce chapitre, nous présentons plusieurs appfisa pour valider les
environnements détaillés précédemment, citonsyséeme de reconnaissance par empreinte
digitale, un systeme de régulateur de la vitessa dioteur a courant continu, un systeme de
contr6le en boucle fermée de la vitesse d’'un mateun systeme de contrdle de vitesse d’un
véhicule en se basant sur une identification biomét. Une étude algorithmique d’un
systeme de reconnaissance par empreinte digitatkeste au cours de la premiére partie de
ce chapitre. L’objectif de ces applications est Validation de I'environnement de
simulation/émulation matériels/logiciels, de lahmique de simulation matériel/logiciel en
boucle et [I'environnement CODIS+ de co-simulatiomiéation des systemes

continus/discrets.
Il. Implémentation de I'architecture cible sur FPGA
La communication étudiée dans les chapitres prétedtait basée sur une architecture

cible. On fixera dans cette section que I'architextible est composé du processeur NIOS I,

du bus Avalon et des mémoires.

On ajoute a cette architecture le contréleur USB1¥2 de la carte DE2-70 (famille
Altera) qui représente l'arbitre de la communicated n'appartient pas a I'architecture cible.

A l'aide de I'outil SOPC Builder I'architecture ddest implémenté (figure 35).
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Use  Conne... Module Mame Description
cpu Mios Il Processaor
— instruction_master Avalon Memory Mapped Master
— data_master Avalon Memory Mapped Master
[ jtag_debug_module Avalon Memory Mapped Slave
E onchip_mem On-Chip Memary (RAM or ROM)
[ 51 avalon Memory Mapped Slave
B timer Irterval Timer
— s1 Avalon Memary Mapped Slave
Bl sdram_u1 SDRAM Controller
[ =1 Avalon Memory Mapped Slave
B sdram_u2 SDRAM Controller
e 51 Avalon Memory Mapped Slave
E ssram Cypress CY7C1350C SSRAM
- =1 Avalon Memory Mapped Tristate Sk
B sysid System ID Peripheral
~— control_slave Avalon Memory Mapped Slave
Bl 1SP1362 ISP1362_IF
— he Avalon Memary Mapped Slave
— dc Avalon Memoary Mapped Slave

Figure 35. Modélisation de I'architecture cible

lll.  Expérimentation de I'environnement de Simulation/Enulation
matéeriel/logiciel

Dans cette section nous présentons dans la prepaéiie une étude algorithmique du
systeme de reconnaissance par empreinte digitalaplementation de I'application et les
résultats de la simulation/émulation sont explcitéans la deuxiéme partie.

l1l.1. Application : Systeme de reconnaissance pampreinte digitale

La reconnaissance par empreinte digitale est leess biométrique le plus répandu
dans le monde sécuritaire. Il est indéniable gueinsystéeme de reconnaissance soit le
meilleur non seulement grace a son faible coltaggport a d’autre modalité mais aussi grace
a sa sureté. La figure 36 montre les principaleaseb de reconnaissance par empreinte
digitale.

[11.1.1. Phase de prétraitement
La phase de prétraitement présente une phase iesepbur I'amélioration de

'image de I'empreinte. Cette phase est constitl&&étape de filtrage, de la binarisation et
de la squelettisation.

[11.1.1.1. Filtrage

Toute image de basse qualité provoque de gros ggrad dans le domaine de
traitement d’images. Dans ce cadre la plupart deages d'une empreinte digitales
demandent un filtrage afin d’extraire ses informasi utiles.
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L

Filtre de Gabc

-

Phase de prétraitem: < Binarisatior

-

Squelettisation

-

Phase d’extraction Extraction des minuties

[io—>

Phase de comparais : Base de donné
Comparaison

Figure 36. Chaine de reconnaissance

Le filtre de base que nous avons utilisé est wrefde Gabor a syrtrie paire et orienté
a 0 degre.

2 2
X
1% Y

hxy.g, f)=e >* ¥ coserix,) (16)

Pour obtenir les autres orientations, il suffiffé‘etuerune rotation des axes coordoni

X; cosé) sin@) || x
= : 17)
Yi] [~sin@ cos@)]||y
Selon les différents blocs de 'image, le filtraupavoir plusieurs directions privilégiées. D:
ce cada, le filtre final est une somme de fils de base plac@chaque directio

h=2h(x.y) @8
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u="% =
2

EG@0)=2 Zg,h[u,v,OG,i),F(l,i)]-N(i —u,j-v) (19)
Ou-E (i, j): nouvelle valeur du pixel (i, j).
-F (i, j): la fréquence du pixel (i, ).

-O (i, j): direction du pixel (i, ).

Sélection des parametres de Gabor

Pour I'extraction de la réponse des crétes et dies de diverses orientations du filtre

de Gabor, les parametres Betont fixés aux valeurs suivantes:

= La fréquence f correspond a la distance inter-sr@tas I'image de I'empreinte

digitale. Aprés plusieurs essais, on I'a fixéed 0,

= Les orientations examinées correspondantes auxrgatied sont: 30°, 45°, 60°

et 90°. Pour les images présentées, on &0fxé0°.

* Les parametres écarts typgset o, controlent la bande passante du filtre, ils
doivent étre convenablement choisis, vu leurs <effaignificatifs sur

I'amélioration des résultats.

» La valeur desy détermine le degré d’amélioration de contrasteedet rides et
les vallées alors que®, détermine le degré de lissage appliqué aux riolasau
long d’'une orientation locale.

111.1.2. Binarisation

La binarisation de I'image est le processus quidi@me une image en niveau de gris
en une autre noir et blanc. Dans une image en wmideagris, un pixel peut prendre 256
valeurs d’intensité différentes tandis qu’un pigahs une image noire et blanche ne peut étre
aussi que noir ou blanc. Cette transformationast £n appliquant un seuillage a I'image. La
valeur 1 signifie que le pixel est blanc alors tmealeur zéro indique que le pixel est noir.
L’échelle de gris est formée par des valeurs déesnantre 0 et 1. Lorsque le seuil est
appligué a l'image, tous les pixels sont comparsvaleur du seuil qui est calculée a travers
les seuils des couleurs RGB. N'importe quelle viatiaipixel inférieure au seuil prend zéro,
et n'importe quelle valeur de pixel supérieure euilprend 1. A la fin de ce processus, toutes
les valeurs des pixels sont soit zéro soit un. iAlfisiage sera transformée en format binaire

avec la valeur 0 pour les crétes et la valeur I fmsuvallées. Apres cette opération, les crétes
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dans I'empreinte digitale sont accentuées aveoudéear noire tandis que les vallées sont

blanches.

Dans le processus de binarisation, le choix dealew seuil calculé par I'équation

suivante est critique.

Avec M(i,j) la matrice de I'image, nl:nombre derig nc: nombre de colonnes
Il existe deux approches pour le calcul de seuil :

- Seuil Global : Le principe est de calculer la valewoyenne de toute I'image.
L’avantage est que cette solution est tres rapalers qu’elle cause des problémes si

l'image présente une hétérogénéité au niveau lumaa

- Seuil Local: Le principe est calculer la valeur yaone par masque. Le
principal avantage de cette méthode est la bonakt€ussue de la binarisation mais

le temps de calcul est tres important.

La figure 37 montre le résultat de binarisation g&uil global et local et prouve que la

binarisation avec un seuil local est le plus adépaoar une image d’empreinte.

sy T
\ - .-"--\{. ” ;
N - ! g

ARSI A

a) Image capturée bSeuillage global c)Seuillage local
Figure 37. Les méthodes de Binarisation
[11.1.3. Squelettisation

Apres la binarisation, un autre processus impodaittétre appliqué a I'image: Il s’agit

de la squelettisation. Ce processus réduit I'épaisde toutes les rides a un pixel.

Squelettisation a base de « Neighborhood » :
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Cette méthode est basée sur le prir d’élimination qui représente le noyau d
algorithme d'amincissement. Cet algorithme se Isasdes valeurs de poid‘est-a-dire le
nombre de pixel noir autour du pixel en questioaudlutilisons ainsi une fenétre de taille
3. Tous les types delation (256) forms par 8 pixels voisins de l'objet ont été examiné:

partir de ces cas, un groupe de ré d'élimination peut étre obtenu.

Cet algorithme est un algorithme itératif et s'teréorsque le long d'un traiteme

aucune modification n’egaite.

Le majeur probleme lors de la squelettisation saifeste via I'occurrence d'effet ¢
ZIGZAG sur la strie. Ce probléme cause la détectienfausse minutie. Nous propos:
comme solution d’amélioration, d’appliquer le fitde lissage sur I'ima squelette. En effet,
'expérience montre une image résultanteéliorée. La figure 38écrit la méthode d

squelettisation sans/avec le filtre de liss

a) Squelettisation sans fie de lissage b)Squelettisation avec fie de lissage
Figure 38. Squelettisation sans/avec filtrage

[11.1.2. Phase d’extractiol

L’extraction des minuties a partir d’'une empreiatpielettisée nécessite une méth
capable de distinguer et de classer les différdioteses et types de minuties. Donc il s’e
d’'un probleme de classification. Nous proposongpliguer une méthode classification
basée sur la distance de Hamming appelée DECOQGe @Geithode développée dans

chapitre est basée sur le travaildie Zhou (Jie Z., 2007).

Motivé par les nouvelles solutions de la décompmsitmulti-classe qui sont de
extensions déa méthode ECOC, on propose I'exploitation d’unevele méthode appele
Datadriven ECOC (DECOC) pour résoudre le probleme d@essilication dans le cas
'empreinte digitale.

Principe de base de la méthode ECO
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Error correcting output codes (ECOC) est utiliséndales domaines de la
communication et de la théorie de I'information slda but d'améliorer la fiabilité de la
transmission de signaux binaires et de mainteéntégrité des informations. Son principe est
d’ajouter des bits de parité pour chaque redonddedénformation. La distance entre deux
mots est définie a l'aide de la distance Hamming,rgprésente le nombre de différence de
bits dans les deux mots. Enfin, un processus dedd@ée examine les distances de Hamming
entre les binaires recus et valide I'ensemble d#s pour détecter et récupérer les erreurs.

ECOC est basée sur la plus courte distance de Hagrfoimulé comme suit :
y = argmin Hw,w(x)), k=1, ... , K (21)

Avec WK est la K" ligne de la matrice. H (W W(x)) est la fonction qui permet de
calculer la distance de Hamming. Nous attribuonisibel de classe codé de la plus proche,

c'est-a-dire, avec la plus courte distance de Hagnai I'échantillon de test.
Principe de la méthode DECOC

Nous proposons Data-driven ECOC (DECOC) pour canicde code de la matrice
ECOC en utilisant les données représentées paiXels de I'image. L'idée clé de DECOC
est de sélectionner certaines bases binaires danattice selon son score de confiance. Cette
mesure nous aidera a déterminer comment nous glatsblement inclure la matrice sous

test dans l'ensemble.

Avant de présenter le score de confiance, il faut d'abord définir le critére de
séparabilité d'un groupe de plusieurs classes, &/quésente le groupe qui contient les

classes de méme famille.

2
S(G)= > d(c.,c,) G|#1 and [G|#K -1
{|G|2—|G|Oj¢k,cjckDG U o (22)

Avec d(G, G est la distance entre deux classgseCG, qui est la distance de
Hamming entre les vecteurs de méme classe; | & la ¢aille du groupe, c'est-a-dire, le

nombre de motifs de méme classe ; 2/ §-G G |) est le facteur de normalisation.

La confiance d'une base binaire DECOC est aloigidéfomme:

o=l G

= |G,|#1 andG,| #K -1 (23)
SG.(f+IG.()
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G+(f) est I'ensemble des classes qui ont une aisttlamming minimale par rapport
aux pixels noirs de la classe f, G-(f) est I'endendles classes, qui ont une distance Hamming
minimale par rapport aux pixels blancs. S (G «f))-est égale a la distance entre la matrice

sous test et tous les patterns d’'une classe enl@aide nombre de pixels blancs non utilisés.

Le principe du flot d’apprentissage de la figures&base sur le calcul de la distance de
Hamming entre le bloc en question et chaque cld&assuite, on calcule le S(G+(f)) pour la
classe dont la distance de Hamming est minimata &alcule le S(G+/-(f)). Ainsi on calcule
le score confidentiel pour le cas de la terminaisimnla bifurcation et du non minutie. Le

score qui possede la valeur maximale présent@éedy bloc en question. D’ou la décision.

Bloc d’entrée accepté Classes

A\ 4 \ 4
Calculer toute les distances Hamming
entre le bloc d’entrée et les classés :
terminaison, bifurcation et non minuti¢

\ 4
Extraire des groupes de patterns des
differentes classes selon la distance
minimale

A 4
Calculer le critére de séparabilité

A\ 4
Calculer le score de confiance

A\ 4
Trier le score de confiance

A\ 4
Choisir le score maximal

A\ 4
Décision

Figure 39. Flot d’apprentissage de I'algorithme DEC
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Afin de choisir les bons motifs pour chaque classea utilisé plusieurs empreintes
squelettisées différentes. On a trouvé le totd8%emotifs dont 32 pour la classe terminaison,
104 pour la classe bifurcation et 221 pour la dass minutie. Le commun entre ces motifs

est que le centre de la fenétre (bloc) est un pirél et représente le point terminaison ou
bifurcation.

La figure 40 illustre quelques exemples pour chadasse.

e (Classe des terminaisons :

T1 T2 T3
¢ (lasse des bifurcations :
Bl B2 B4
e (lasse des non minuties :
NM1 NM2 NM3 NM4

Figure 40. Exemples de chaque classe
[11.1.3. Phase de comparaison

Plusieurs méthodes de comparaison sont traitées lddittérature. La plus connue se

base sur les cordonnées de chaque point minutieyple et l'orientation. Les grands

problemes de cette méthode consistent au déplateidnda rotation et a la pression de

'empreinte. Afin de résoudre ces problémes, plusid¢ravaux se basent sur la recherche du
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centre de I'empreinte. Mais ces travaux manqueobrende preécision lors de la détection du
centre.

Nous proposons comme solution de ces problemesméikode qui se base sur la

relation entre point minutie et indépendante dedamées.

La méthode de comparaison se base sur le calcuh ddistance Euclidienne de
'équation suivante entre deux points minuties easives en se balayant verticalement
(figure 41).

Dis tancey 1y = VO = %)% = (Y, = %,)° (24)

77\

B Minutie Terminaison © Minutie Bifurcation

[ ] Distance entre deux minuties

Figure 41. Méthode de comparaison

Notre méthode se base aussi sur le type de miptitie@ direction entre deux points
successifs. Les équations illustrent la méthode.

Directiony, ;) = Y27 Ny 29

X, =X

11 Bifurcation - Bifurcation
10 Bifurcation — Terminaism
01 Terminaisa — Bifurcation
00 Terminaisa — Terminaism

Type(M M2) — (26)

avec M1(x1,yl) et M2(x2,y2)
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Afin d’optimiser l'algorithme de comparaison, noagons proposé de remplacer la
direction par un calcul d’orientation comme l'indil’équation de la direction et la figure 42

pour gagner en terme de mémoire et en terme delcalc

Alpha = |arctan(directionl)| + |arctan(direction@y)

M1

Direction1

M2

M3
Direction2

Figure 42. Angle entre trois minuties

[11.1.4. Validation et performance:

Afin de valider la méthode de classification DEC@dlir ce type de classification, on a

utilisé la base de données universelle FVC2004 BB3 _

La performance d’'un systeme biométrique basé smgreinte digitale n'est validée
gu’a travers certaine taux, pour cela on défirttermes suivants :
v « False Acceptance Rate » (FAR): Ce facteur ptésda taux des fausses

reconnaissances. Plus ce taux est faible plus tlaué est meilleure.

v « False Rejection Rate » (FRR) : Ce facteur présentaux d’élimination de correcte

empreinte. Plus ce taux est faible plus la métlestieneilleure.

Le tableau 3 compare tous le systeme de reconnasgar rapport a quelques travaux

antérieurs.
FAR FRR
Méthode de (HAO G., 2005) 4.18% 9.93%
Méthode de (Omer S., 2009) 1,129 Not indicated
Méthode de (Ying HAO) 1% 2.5%
Méthode de (Jiong Z, 2008) 0.04% 1.31%
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La nouvelle méthode 0% 0.02%

Tableau 3 : Comparaison entre différentes méthol@egconnaissance par empreinte
digitale
Notre systéme de reconnaissance d’'une part moesreéahs résultats au niveau du taux
d’acceptation et d’autre part atteint un taux deonmaissance de 88.88% avec un temps
d’exécution globale de 7s sur un ordinateur cole@1.66 Ghz.

I11.2. Validation de la Simulation/Emulation

La premiére étape de I'implémentation représentphiase du partitionnement. Cette
étape a pour but de diviser le systeme en des m®dogiciels et d’autres modules comme
étant des composants matériels. Le principe dé@ipartement est basé en grande partie sur le
critere temps d’exécution : « Le module qui consmrbeaucoup plus de temps sera sous

forme matérielle afin d’atténuer le temps d’exémui.

OO P N W b OO N @

Temps duModule / Temps du
module Exctraction des munitie

Filtre Binarisation Squelettisation Comparaison

Temps d'exécution de I'extraction des munitie

Figure 43. Rapport de temps d’exécution

Un calcul de rapport entre le temps d’exécutionctiaque étape de la chaine de
reconnaissance par empreinte digitale (sauf le teodutraction) par rapport au temps
d’exécution du module extraction des minuties (gprésente le temps d’exécution minimal)
est effectué. La figure 43 représente I'histograncoreespondant du rapport.

En se basant sur ces résultats, on partitionne sgateme statiquement comme suit :

Composants matériels

- Lecture de I'empreinte
- Filtrage

- Binarisation
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- Comparaison

Lecture de I'emprein

Flux

Donnéel

Donnée2
Squelettisation

-| Extraction des Minutie en
Flux d utilisant le classifieur DECC

Binarisatiot

Flux

[ |
Ecrire(data) Lire ()

Interface_Out Interface_In

Flux

[ ]
Comnaraisao

Figure 44. Implémentation de I'application
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Applications logicielles

- Squelettisation

- Extraction des minuties
La figure 44, détaille I'implémentation de I'apmiton selon les interfaces décrit dans le
chapitre 2

[11.3. Résultats de la Simulation/Emulation

La validation de I'environnement de simulation/éatidn matériel/logiciel se base sur
le temps de simulation global. Le tableau 4 déeriemps de simulation de chaque module et
montre une grande opportunité de tel environnemEnt.fait, les deux points clé qui
soulignent le temps de simulation court de notréirennement sont la liaison USB et le

modeéle de synchronisation.

Module Temps (S)
Composant Lecture de
matériel 'empreinte
Filtre 0.03
Binarisation
Comparaison
Interface Interface 0.5
Application Squelettisation 0.01
logicielle :
Extraction des
Minutia
Simulation 0.54

Tableau 4: Temps de simulation de I'application

V. Expérimentation de la simulation matériel/logicielen boucle

Deux applications sont utilisées pour valider tawdation HSIL décrite dans le chapitre
précédent.

= La premiere application désigne la régulation eletrle de la vitesse d’'un
moteur a courant continu.

= La deuxieme présente un systeme de controle erebfaumée de la vitesse du
moteur.
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IV.1. Présentation des applications de test

Nous avons utilisé dans cette section deux apmitatpour valider la simulation
matériel/logiciel en boucle : un régulateur de il@sse d’un moteur a courant continu et un

systeme de contrdle en boucle fermée de la vithsseoteur.

IV.1.1. Régulateur de la vitesse d’'un moteur a caat continu

Les systemes de contr6le moteur a courant confiiguré 45) se basent sur un
actionneur commun qui fournit un mouvement de rmtatl_e circuit électrique équivalent de

I'induit et du rotor sont présentés dans la figuieante.

F, Champs
fi fixe

v C_|_> Armature
— circuit

Roftor

Figure 45. Schéma équivalent d’'un moteur a coucantinu

On considére que V est la tension d'entrée appdicgir le moteur et la vitesse de

rotation de I'arbre est la sortie du systeme. lterret I'arbre sont supposes rigides.

Les EDOs
Les parameétres du systéeme sont :

0 : La vitesse du moteur exprimée en tr.thin
- Ke: Gain statique exprimé en tr.rifiv"

Kt : Force électromotrice.

- J: Moment d'inertie du rotor exprimé en Kd.sf

- b : Rapport d’amortissement du systeme mécanique.
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- R : Résistance électrique exprimée en Ohm.
- L : Inductance électrique exprimée en H.
-V :Voltage d’entrée du moteur.

Les relations issues du systeme décrit sont :

Le moment du torque prend I'équation suivanteT. =Ki (28)

La force contre-électromotrice est proportionnélla vitesse angulaire de l'arbee= K, &
(29)

D’apreés les Lois de Newton et de Kirchhoff on obtie

J6+bO=Ki (30)
di . -
L—+Ri=V-K@& (31)
dt

On Applique par la suite le transformé de Laplace :
gJs+b)O(s) =Kl (s) (32)
(Ls+ R)I(s) =V (s) — KsO(s) (33)

La fonction de transfert en boucle ouverte du systest le suivant :

P(s)

_0(s) _ K : [rad /sec} (34)
V(s) (Js+b)(Ls+R)+K \%

Les figures 46 et 47 montrent le schéma bloc dtesye Simulink et I'implémentation

sous Matlab/Simulink avec :

i m
~
+
n|_.7<
+
QX
n
l<
r
(_{_’ [
Py
)
iq
o
D
+
o
(W2
V<

A

Régulateur PID i Modéle du moteur contint
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Figure 46. Diagramme de bloc d’'un régulateur desse d’'un moteur continu

Kd.s2+Kp.s+Ki
Tho— === -

Régulateur PID »
Sumi Inductance  Integratorl

d2/dt2(theta) dl;it(theta)
n
L@_’ e

Resistance
d/dt(i
69 ®

damping

Figure 47. Implémentation du systeme en Simulink
IV.1.2. Systeme de contréle en boucle fermée détlesse du moteur

Cet exemple qui est décrit dans la démonstratioSidrilink présente le model d’'un
moteur. Le collecteur d’admission déclenche legient de I'air-carburant vers les cylindres
par lintermédiaire des soupapes a éveénementsethisdEn méme temps, les processus a
temps continu flux d’admission, la génération dapte et I'accélération sont en exécution.

L’actionneur de papillon de gaz assure la régutadie la vitesse.

Ce modele est basé sur les résultats publiés pasiéy et Cook (Crossley P.R., 1991).
Il décrit la simulation d'un moteur a quatre cyhesl a allumage par étincelle interne. Le
travail Crossley et Cook montre aussi comment umailation basée sur ce modele a été
validée par des données d'essais dynamomeétrigaesotéele est composé essentiellement de

cing modules :
1. Accélérateur ("Throttle™)

2. Collecteur d'admission ("Intake manifold™)

3. Débit massique d’admission ("Intake Mass FloweRa
4. Course de compression ("Compression Stroke™ )
5. Génération de couple et d'accélération ("Togereration and Acceleration™)

Accélérateur ("Throttle")
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Le premier élément du modéle est 'accélérateenttée de commande est I'angle de la
plague et a vitesse a laquelle le modéle introdeit'air dans le collecteur d'admission. La
vitesse peut étre exprimée comme le produit de émotions:

1. une fonction empirique de I'angle de papillos gaz.
2. une fonction de la pression atmosphérique ebtecteur.

En cas de pression sur le collecteur, le débittrguierse le module accélérateur est en
fonction de l'angle d’accélération. Ce modele tieampte de ce comportement a basse
pression avec un état de commutation dans lesiégaale compressibilité indiquées dans

I'équation 35.
r.nai = f(6).9(P,) = débitmassiqudandecollecteu(g/s) (35)

avec
f(8) = 2821-0.052318 + 0.1029967 - 0.000638°

g(P,)=1 SiP, <P, /2

mb

a(P.) :Pi [P.Pw-P?: SiP,/2<P <P,

amb

g(R,) =~ PZ VP Pus—PZ; Si P,<P,<2P.,

amb

g(P.)=-1, Si2P

amb < I:)m

6 :Angle d'accélératon (deg)
P. : Pressiomucollecteuibar)

P._. : Pressiorambiantdéatmosphéque) (bar)

amb -

Collecteur d’admission ("Intake manifold™)

Le modele du collecteur d'admission se base suréaguation différentielle de la
pression d'admission. La difference dans les tdartrde et de sortie de débit massique
représente le taux de changement net de la massg@al rapport au temps. Cette quantite,
selon la loi des gaz parfaits, est proportionnéll& dérivée temporelle de la pression du
collecteur (voir équation 36). Notez que, contraieat au modele de Crossley et Cook, ce
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modele ne tient pas compte de la recirculation ges d'échappement, mais cela peut
facilement étre ajouté.

F; = ? (rﬁai - n’;ao) (36)

m
m

Avec
R : Constant du gaz.
T : température (K).

Vi : Volume du collecteur (A

m,, : Débitmassiqueel‘airdesortieducollecteur

F.'m : Tauxdechangememtepressiomandecollecteufbar/s).

Débit massique d'admission ("Intake Mass Flow Rate)
Le débit massique de l'air que les pompes desdrgéndu collecteur est décrit par
I'équation 37. Cette équation est dérivée d’'unei@narempirique. Ce taux est une fonction de

la masse de la pression d'admission et de la githssnoteur.

m,, = -0366+0.08979N.P, —00337N.P? +0.0001N2.P, (37)

Avec
N : Vitesse angulaire du moteur (rad/s).
Pm : Pression du collecteur (bar).

Pour déterminer le volume d'air total dans lesncyks, la simulation integre le débit
massique a partir du collecteur d'admission. Ceanpt de déterminer la masse d'air totale

qui est présente dans chaque cylindre aprés laealadmission et avant la compression.
Course de compression ("Compression Stroke")

Le vilebrequin assure le déclenchement des cylindtemoteur un par un. Le passage
d’un cylindre a un autre est indiqué par une taunthnivelle. Dans ce modele, l'admission, la
compression, la combustion, et I'échappement sdymsent simultanément. Pour prendre en
considération la compression, la combustion esraée de 180 degrés lors de la rotation du

vilebrequin.

Génération du couple et d'accélération ("Torque Gearation and Acceleration™)

-105-



Environnement de Co-Simulation / Emulation des systémes Continus / Discrets Mossaad Ben Ayed

Le dernier élément de la simulation décrit le ceugéveloppé par le moteur. Une
relation empirique dépendante de la masse dedwairapport air / carburant et de la vitesse
du moteur est utilisée pour le calcul du coupler(@quation 38).

2
Torque,, =-1813+37936.m, + 21.91(?) - 085.(?) + 026.0 - 0.0028 0% + 0027.N

~0.000107N? +0.00048N.0 + 255.0.m, - 005.0%.m,
(38)

M, : Masse de l'air dans le cylindre (g).

A .
(E) : Rapport air-carburant.

o : Avance de l'allumage.
Torqueng: Couple développé par le moteur (Nm).

Puis l'accélération angulaire du moteur est cakelé utilisant 'équation 39.

J N =Torque,,~Torque,, (39)

J : Moment d’inertie du moteur (kg.m2).

N : Accélération angulaire du moteur (rad/s?2).

Modeéle en boucle fermé

La figure 48 décrit le modéle du systéeme au nivfeaationnel.

? .
Closed-Loop Engine Speed Control
edgel80 N (1
— crank speed
alve timin
v valve iming (rad/sec)
71 \4
Desired rpm it
Speed Throttle Ang. P Throttle Ang. mass(k) P> Air Charge rad/s
Setpoint N ) Torque P Teng torpm Engine
P(Engine Speed, Fhass(k+1) P|mass(k+1) N N By Speed I:l
Controller . trigger =
trigger Combustion —p»| Tload
- Engine
Throttle & Manifold Compression Load Vehicle Speed (pm)
Dynamics
drag torque
Throttle
—> Degrees I:l
»
>
Copyright 1990-2005 The MathWorks Inc. throttle deg (purple)

load torque Nm (yellow)

Figure 48. Modéle en boucle fermé d’un contréleedalvitesse d’un moteur

IV.2. Validation de la simulation matériel/logicielen boucle
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1% Application : Régulateur de la vitesse d’'un moteaicourant continu

Les intégrateurs de moteur et le régulateur PIDt $&m contréleurs numériques a
simuler en utilisant la simulation HSIL. Pour celze intégration du bloc Synchronisation est
faite dans la figure 49.

e

—p Synchronization ‘—} .
- Resistance
\Y Régulateur PID Ydi®)
9 I 4»[>6°’—> Synchronization =

| -
L
Sum1l Inductance Integratorl
Ke
d2/dt2(theta) d/dt(thetal _
N
- 4»[>-§ Synchronization > [
Kt
r Sum Inertia Integrator Scope
o.1|<
damping

Figure 49. Modéle bloc de 'application 1 basé tasimulation HSIL
2°M Application: Contrdle en boucle fermée de la visesdu moteur

Deux blocs sont considérés comme des contréleuraéngues : "controller” et
"compression”. Ces deux blocs sont implantés comeseapplications logicielles. La figure

50 montre le modele en utilisant la technique HSIL.

? .
Closed-Loop Engine Speed Control
dgel80 N #@
valve timing Crz;';/s;i‘)sd
U
synchronization { » | Throttle A Air Ch rad/s
Speed —> P> Throttle Ang. synchronizationl | charge to rpm
Setpoint controller ! Ing Torque P Teng Engine
P(Engine Speed, Mass(k+1) - N Speed I:l
Compression N P{30/pi P
| trigger Combustion —p»| Tload
- Engine
Throttle & Manifold Load b—1 Vehicle Speed (rpm)
Dynamics
drag torque
Throttle
S Degrees I:l
»

»

throttle deg (purple)
load torque Nm (yellow)
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Figure 50. Modele bloc de I'application 2 basé taisimulation HSIL

IV.3. Résultats de la simulation matériel/logicieen boucle

1% Application : Régulateur de la vitesse d’'un moteaicoudant continu

La simulation est basée sur I'environnement MaBahllink et I'environnement NIOS I
(figure 51).

W motor [=e=Es] BB Nios T C/C-~ - ISR.c - Nios IIDE =S
File Edit View Simulation Format Tools Help File Edit Refactor Navigate Search Project Tools Run Window Help
D& s BB (e ¢S s sf  [ew o DwBSE 0 HelE @ 8 B @ % 0 Q & (B NeTGCr )

< - I v & 8l ve 35 Debug

7]

e (B = 0| flsRe &2 =8]8 052\ 8
istan: | ] - - D‘ |
i) printf (" Fonction Integrateur en cours po = — _

‘ princf (" ®%*Début calc ® Mz = O
Integsator! 5 & 0} A L
) & shtera.c, - | Problems Bl Console &2 . Properties | Search | =0
4% DE270,| || New_configuration [Nios T Hardware] Nios 1 Terminal | g B GE[EE
didtitheta) ***Début calcul*** -
Output = 80

#esFin calcul®w#

Inertia Integratar ] En Attente de réception
il asio|| Fonction Integrateur en cours pour la 21 éme fois
] 08 BAS ###Début calcul##*
damping ) [ cHY ||| outpuc = 84
Ready [100% odet5 4 iy ol S —
- [B D13 En Attente de réception
B[ deb Fonction Integrateur en cours pour la 22 éme fois
Bl scope [ElEr=] aam A TERHERUE, SR
- 1T ‘ ™ utput = 88
SE|LLL ARE B A& F E :'}.Lmigi #*%Fin caleulss+
li: 1 ||ER Atcente de réception
Lk Fonction Integrateur en cours pour la 23 éme fois
& [h 15R. ##*Début caleul**+ 3
-] LCD Cutput = 92 3
-1 MAl #%%Fin calcul***
G- ) SEG En Attente de réception

usb. Fonction Integrateur en cours pour la 24 &me fois

#**Début caloul#***

Output = 96

: #*#Fin calcul#*¥
« [ » L' 1

o Writable Srnar...ert

Figure 51. Environnement Simulink/NIOSII pour lmslation HSIL

Afin de valider la technique HSIL proposée deux ng®i de vérification clés sont

indispensables :

o Fiabilité du systéeme : Ceci est veérifie en compiales courbes d’entrées / sorties pour
chaque bloc de synchronisation par rapport au regoi@défini. La figure 52 montre

les différents signaux utilisés.
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a) Signal de la vitesse du moteur b) Signal d'igit&

c) Signal du sortie régulateur
Figure 52. Les signaux critiques utilisés pour &ification de I'application 1
0 Le temps de simulation est 1 seconde.
2°M Application: Contrdle en boucle fermée de la visesdu moteur
De méme que l'application 1, la simulation de I'gation 2 est vérifiée surtout par les

signaux de sortie des blocs "controller” et "corspren” (figure 53).

Le temps de simulation global du modéle en bowaimée est 2 secondes.

T hrottle Degrees

a) Signal d’accélération b) Accélération angulaire
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c) Débit massique d'admission

Figure 53. Les signaux critiques utilisés pour &ification de I'application 2
V.  Expérimentation de I'environnement CODIS+

Les systemes de sécurité et de contrdle pour lesnabiles deviennent de plus en plus
complexes grace a la grande révolution des techresdonumériques. Afin de valider
I'environnement CODIS+, nous proposons un systémiéclur de vitesse d’'un véhicule.

V.1. Application : systeme limiteur de vitesse

Empreinte

Systeme de
reconnaissance par
empreinte digitale

Non| reconn

(Reconnu vitesse maximale)

Systeme de contrdle
d’accélération du
moteur

Figure 54. Graphe fonctionnel du systeme

A 4
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Il existe plusieurs systemes meécatroniques guietiai probleme de contrdle de vitesse
d’un véhicule. Il existe essentiellement deux typesntrble obligatoire et contrdle facultatif.
Nous proposons dans ce contexte un systeme quielilai vitesse du moteur selon le
conducteur. Pour cela une identification du conelurcpar empreinte digitale permet de fixer
la valeur maximale que le conducteur peut atteindre

Le systeme limiteur de vitesse représente le cgaptmtre le systeme de contréle du
moteur ainsi décrit dans la section précédente systéme de reconnaissance par empreinte
digitale. La figure 54 donne le graphe fonctiontelmodele.

V.2. Implémentation et résultats

Le cycle de la simulation commence a partir du &y€l. Les modules matériels seront
simulés par le noyau de SystemC et les applicatiogsielles seront simulées sur
I'architecture cible implantée sur la carte FPGArdgqu’une personne est identifiée par le
systeme de reconnaissance par empreinte digitaterfacelnterface_Outenvoie un signal
déclencheur vers le blomter_In et un changement de contexte vers I'environnement
Simulink est procédé.

Le blocInter_In est lié directement a la position 2 d’'un commutat€e dernier joue le
réle d’'un déclencheur pour le systeme de contr@ecélération du moteur. Une personne
n’est pas reconnue, le systeme a pour vitesserd&engale a 0 (position 1 du commutateur).
Lorsque l'identification d’'une personne est réeussietrée 2 du commutateur, qui correspond
a la sortie dunter_In, prend la valeur vrai ce qui permet le changerderposition vers 3 et
le systeme de contrdle d’accélération du moteumaente son cycle de simulation. La figure
55 a) montre l'implémentation de l'application danetre environnement CODIS+ :co-
simulation/émulation continu/discret. La zone lrésente la description matérielle de I'étape
de filtrage, binarisation et comparaison en Systerh& zone 2 décrit les applications
logicielles — squelettisation et extraction des utigs — en utilisant I'outil NIOSII IDE. La
zone 3 et la figure 55 b) décrit le schéma de diosysteme de contrdle d’accélération du

moteur dans Simulink.
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b) schéma bloc du systéme de contrble d’accélérdtiomoteur dans Simulink
Figure 55. Implémentation de I'application

Notre systeme permet a la fois d'utiliser les medelde synchronisation
matériel/logiciel, la simulation HSIL et le modéale synchronisation continu/discret présenté

dans le chapitre précédent a la section 111.2.

Le temps de simulation global est 2.55s.

VI. Conclusion

Dans la premiére partie de ce chapitre, nous awaiglé I'environnement de

Simulation/Emulation. Nous avons développé poua del systeme de reconnaissance par
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empreinte digitale puisque tel systeme est considémme étant un systeme complexe qui se

compose nécessairement des composants matérikls applications logicielles.

Dans la deuxieme partie, l'implémentation de lahmgue de la simulation
matériel/logiciel en boucle est présentée. L'agtian de régulation de la vitesse d’un moteur
a courant continu et I'application de controle eudie fermée de la vitesse du moteur sont

utilisées pour valider la simulation HSIL.

Dans la troisieme partie de ce chapitre, nous avondémenté I'environnement
CODIS+ de co-simulation/émulation des systemesimofaliscret. Le systeme limiteur de
vitesse a été utilisé pour exploiter CODIS+. Lesul@ats trouvés prouvent I'importance de

notre environnement.
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CONCLUSION GENERALE

. Conclusion

L’hétérogénéité présente une caractéristique iedisgble dans les systemes actuels.
Les systemes continus/discrets représente l'intigébotre travail. La validation globale de
ces systemes demande des langages fournissantoremlifmes nécessaires pour la
modélisation et la demande des outils de simulgti@tis et performants. Actuellement, il
existe plusieurs langages et outils pour chaqueadwn Le grand probléme c’est que les
concepteurs appartenant a chaque domaine utilEntoutils pour simuler leurs modeéles
mais sans avoir une validation globale du systenteere Pour résoudre ce probléme, ce
travail a proposé une extension de I'environnen@®DIS afin d’accélérer le temps de
simulation d’'une part et dajouter d’autre fonctiatité pour supporter la complexité
croissante du domaine discret d’autre part. Natr@rennement utilise SystemC et une carte
FPGA a base d’'une architecture cible pour le doediscret et le simulateur Simulink pour
le modele continu. Ceci permet de bénéficier deetdexpertise de leurs langages et des

outils de débogage, et permet également d’expligigemodeéles et les bibliotheques existants.

Le premier chapitre a présenté le principe de nisaté&n et de simulation de chaque
domaine (discret, continu). Une étude approfondieles solutions et les travaux antérieurs
pour la modélisation et la simulation des systeh@srogénes. En s’appuyant sur cet état de

I'art, nous avons fixé le meilleur chemin a suipur la modélisation et la simulation.

Le chapitre 2 a abordé les différentes méthodesirdelation d’'un modele discret dans
la premiére partie. Plusieurs modeles de synchaiais entre le simulateur SystemC et une
architecture cible sont proposés. En fait, cetthitacture est implantée sur une carte FPGA
afin de remplacer 'lSS par le processeur cibled’atcélérer le temps de simulation. La
communication qui se base sur la liaison USB assirgansfert des paquets en mode

interruption (interruption matérielle).

Dans la premiére partie du chapitre 3 nous avonsraig une nouvelle technique de
simulation pour les controleurs numeériques. La satn matériel/logiciel en boucle permet
de surmonter le probléeme de la complexité des étmirs en adaptant la stratégie de Co-

design pour la modélisation. En fait, cette techaigiminue le temps de mise en marché et

-114-



Environnement de Co-Simulation / Emulation des systémes Continus / Discrets Mossaad Ben Ayed

facilite la modélisation. Une interface est utiiséans Simulink pour assurer la

synchronisation avec I'architecture cible implant@es la carte.

Dans sa deuxiéme partie, une présentation de f@mwement CODIS permet de
proposer un modele de synchronisation global qujlole les deux simulateurs et
'émulateur. Une étude théorique d'un exemple edhitlée afin de démontrer tous les

scénarios possibles lors d’'une simulation.

Dans le chapitre 4, dans un premier lieu, nous fvprésenté le systéme de
reconnaissance par empreinte digitale comme etantpartie de I'application globale. Une
étude détaillée sur l'apport ajouté dans la phasatraction (utilisation du classifieur
DECOC) durant la présentation de [Iapplication. nAfide valider les différents
environnements, une architecture a base du prach$9& |l est implantée sur la carte. Dans
un deuxieme lieu, nous avons validé [I'environnemed¢ simulation/émulation
matériel/logiciel, la simulation HSIL et I'enviroement de co-simulation/émulation
continu/discret. Les expérimentations ont montré arcellente précision et une vitesse de

simulation acceptable.

En conclusion, le niveau de difficulté d'implémeida des modeles de vérification
réside dans la nature des simulateurs utiliséss Darcas des simulateurs commercialisés
(fermés), cette implémentation devient difficilertsut si le constructeur ne fournit pas
d’outils supplémentaires a son simulateur. Ellephgs facile dans le cas des simulateurs a

source ouverte.

[I.  Perspectives

Il existe plusieurs outils de CAO pour la modéimatet la vérification des systemes.
Chaque outil possede des avantages et des incent®nLa meilleure solution consiste a
utiliser les avantages de chaque outil et a égsrlimites. En fait, cette solution se base sur
des interfaces génériques et assurant la commigmiceit la synchronisation entre différents
simulateur.

Dans ce contexte nous proposons de
= Voir lintégration des simulateurs continus a saeurtbre (Modelica, Scilab,
Ptolemyll), ce qui va permettre de voir d’autrepliémentations plus optimisées des
interfaces dans le cas du simulateur continu.
= Proposer un modéle de synchronisation matérietielgimulti-niveau entre le

simulateur SystemC et la carte dont des composiat#t en bas niveau. En effet, le
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modele doit supporter la bibliotheque SCE-MI (Stdd Co-Emulation Modeling
Interface) afin d’assurer la communication entraxdgrocessus dans différent niveau

d’abstraction.
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Résumé :Dans ces derniéres années, plusieurs intéréts mmntés vers les systéemes
continus/discrets. Ces systemes ont crée un bgmuin des outils de CAO capables de
modéliser et de vérifier leur fonctionnement global
Le sujet de cette thése porte sur la définitiodaemise en ceuvre d’'un modéle de co-
simulation/émulation pour une simulation précisesggtemes continus/discrets en se basant
sur I'environnement CODIS. En premiere partie, undele de simulation/émulation
matériel/logiciel est proposé. En deuxieme partigne nouvelle technique de
simulation"Hardware Software In the Loop" pour Bstémes de contréle est présentée.
Finalement, un modéle de co-simulation/émulationtico/discret basé sur le modéle de
I'environnement CODIS est validé.
Abstract: In the last years, several interests have beesnted to the heterogeneous
systems. Among these systems, the continuous/thssystems received an attention in the
Microsystems, the analog/digital systems and throbsystems. These systems created a
need for CAD tools, able to validate their globahbvioural.
The main goal of thesis is to define and to implet@co-simulation / emulation model for
an accurate simulation of continuous/discrete syste The first step, presents a
simulation/emulation environment for Hardawre/Saftev design. Then, a new simulation
technique titled Hardware Software In the Loop designing and verifying the controller
unit is described. Finally, an environment basedG#DIS tool and the two described
environments is presented.
CODIS, Simulink, System@xl 3 73 gai 3lSlaa 3 gai ; geiilial) cilalsl)
Mots clés Modéeles de simulation, modéles slenchroniation, SystemC, SimulinkCODIS
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